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COMPARISON OF SENSITIVITY ANALYSIS ON
LINEAR OPTIMIZATION USING OPTIMAL
PARTITION AND OPTIMAL BASIS
(IN THE SIMPLEX METHOD) AT SOME CASES

PBIB PARUHIUM SILALAHL = MIRNA SARIDEW]

'Lecturer at Bogor Agricultural University, bibparuhumi@yahoo.com
*Student at Bogor Agricultural University, mirnasardewkara@gmail com

Abstract. Sensitivity analysis deseribes the effects of coetficient changes ol a
linear optimization problem 1o the optimal solution, Usaally we use the optimal
basis approach as in the simplex method.  This paper discussed the sensitivity
analysis with another approaches: analysis using an optumal partition based on the
interior point method to determine the range and shadow price. We then compare
the results obtained with those produced by the simplex method with the help of
software LINDO 6.1,  The results of sensitivity analysis. obtained through the
optimal partition approach is more accurate than using the optimal basis approach
{the simplex method), especially for cases where the primal or the dual optimal
solution is not unigue. But when the primal and the dual have a unique optimal
solution, the simplex method and the optimal partition approach produce same
information.

Key words and Phrases | sensitivity analysis. shadow price, range. optimal
partition, optimal basis.

15 Introduction

Linear Oplimizat?on (LO) is concemed with the minimization or
maximization of a linear function, subject to constraints described by linear
equations and/or linear inequalities.

Sensitivity analysis describes the effect of changing the parameters of the
linear optimization model. i.e. studying the effect of changing the coefficients of
objective function and right-hand side value constraints to the optimal solution.
Sensitivity analysis that is used in the classical approach (the simplex method) based
on the optimal basis. This paper will present briefly sensitivity analysis by using
another approach. the analysis using the unique partition (optimal partition) based
on the interior point method. This method is presented by Roos. Terlaky and Vial
[1]. By using the optimal partition approach. we determine shadow price and range.
For the same problem we also performed a sensitivity analysis using the simplex
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method with the help of software LINDO 6.1. Then we compare the obtained results.

The structure of this paper is as follows. In section 2, we review shortly the
primal-dual problem, optimal partition and optimal sets, range and shadow price, and
sensitivity analysis with classical approach. In section 3, we present three cases of
LO problems to be analyzed and compared by using optimal partition and by using
LINDO 6.1. At the end we give concluding remarks.

2 Sensitivity Analysis

2.1. Primal - Dual

Every linear optimization problem can be modeled mathematically into a form
called the primal form (P) and the dual form (D).
The standard form of a primal and a dual form are as follows:
(P) min {¢'x : Ax = b, x>0},
(Dymax {b'y A’y +s=¢520},
wherec, x, s€ R", b, y € R" and 4 € R™*" is matrix with rank m.
Suppose the optimal value of (P) and (D) symbolized by v(b) and v(c) :
v(b) = min {c'x : Ax = b, x >0},
we)=max {b'y: A’y +5=0¢ 520)}.
The feasible regions of (P) and (D) are denoted by P and D, respectively:
P ={xeR":4Ax = b, x =0},
D:={(rs)ER™" Ay +s=c¢ 5s20).
If (P) and (D) are feasible then both problems have optimal solutions, and we
denote it by P* and D*,
P* = {x EP: c'x = v(b)}
D* = {(» s) € D: by = v(c)}.

2.2.  Optimal Partition and optimal sets
The followings are the theorems that used as base of forming an optimal partition.

Theorem 1.(Duality Theorem, cf. [1] Theorem 11.2) If (P) and (D) are feasible then
both problems have optimal solutions. Then, ifx € P and (y, 5) € D, these are optimal
solutions if and only if x"s = 0. Otherwise neither of the two problems has optimal
solutions, either both (P) and (D) are infeasible or one of the two problems is
infeasible and the other one is unbounded.

Theorem 2.(Goldman-Tucker. cf. [1] Theorem 11.3) If (P) and (D) are feasible
then there exists a strictly complementary pair of optimal solutions, that is an
optimal solution pair (x', s*) satisfying x* + s* > 0.

The optimal partition of (P) and (D) are the partition that splits the index of x
(and ) into B and N, as follows:

B:={i:x >0 forsomex € P*},
N:={i:s >0 for some (y, s) €D*}.

We may check that the duality theorem implies B N N = ©, and Goldman-
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Tucker theorem implies BUN - {12, .on).

We use 1. and x. as notations refer to the restriction of the vector v € R” to
the index set B and N respectivels. Similarhy, and A represent the restriction of
Ao the columns with indices ot set B and N respectively. We then have the following
lemma,

Lemma Ll.ict [1]) P* and D* can be expressed by the terms of the optimal
puartition into

Pr= oAy = b xn 20,0 =0},

D= )iy =85 =4 sn=0 sxZW

2.3.  Range and Shadow Price

Sensitivity analysis determines the shadow price and range of all the
coefficients b (the value of the right side of primal constraints) and ¢ (the value of
the right side dual constraints). In one case. the value of coefficient b or ¢ may be a
break point. If the coefficient is a break point, then we have two shadow prices: the
left shadow price and right shadow price. If the coefficient is not a break point. then
there is a shadow price at an open linearity interval and range of the coefficient is in
the linearity interval. Figure | shows an example of change in the optimal value for
the change in the value of ¢j (¢=] and ¢;=2 are break points).

Nila Optimal

Figure |. Optimal value function for ¢,

Suppose that (P) and (D) are feasible. According to optimal partition approach
[1]. range of b, is obtained by minimizing and maximizing b, over the set
{b: Ax = b, xx 20, xx = 0}.(1.1)
Left and right shadow price of b, are determined by minimizing and maximizing y,
over the set
Ay +s5=¢53=0 5y20)}. (1.2)
Range of ¢, is obtained by minimizing and maximizing the value of ¢, over the set
fepd' y+s=csp= 0 5v20)(1.3)
Left and right shadow price of ¢, are determined by minimizing and maximizing x,
over the set
{x:Ax = b. xg20. xx = 0}. (1.4)
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2.4, Sensitivity Analysis with the Classical Approach

Sensitivity analysis with the classical approach based on the simplex method
to solye linear optimization problems. The vptimal solution of this classical approach
is determined by an optimal basis.

Assume that 4 is a matrix of size myn and rank (1) = m. Indices of a basis
variable is denoted by B'. Then sub-matrin Ay, is a non-singular matrix of size mym
with Ag,xg, =b. xx,=0 where V' is the set of non-basis variable index of 4. A primal
basic solution x ¢can be determined by

v =) = (%2) 0.5

Xy 0
and a dual basic solution can be determined by

= -1 . S SHr - i
v = Aglep. 5= () = (g ) 0o

Sensitivity analvsis with the classical approach uses also formulas (1.5)-(1.8)
to determine the range and shadow price, but with the optimal basis partition (8°. .\
') instead of (8, N). In fact, P and 1) may have more than one optimal basis, and
therefore this classical approach may also provides different shadow price and range

[2].
4 Cases
We consider three cases as follows:

1. Optimal solution of the primal problem is unique and optimal solution of the
dual problem is not unique.

2. Optimal solution of the primal problein ts not unique and optimal solution of the
dual problem is unique.
3. Optimal solution of the primal and «he dual problems are unique.

J.1. Casel

Suppose the primal problem (P) is defingd! ¢y follows:
Min4.\'; - 5.\': + | l.\',:
st-x>+3x; =0
vy-xaexs= |
Xnxnx:20

The dual problem (D) is
Maxy'
sho<d
-Yi=32=-3
Syr-an<il

The feasible region of the dual problem is depicted in Figure 2. From Figure 2. it
can be seen that the set of optimal solutions of (D) is D*= {(yr. y2)l: | Vi <€3.y:
=4} and the optimal value is 4 . Slack variabie of each of the dual constraints are
as follows:
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It can be concluded that all the slack can be positive at an optimal solution unless the
slack value of the constraint v: < 4, i.e. 5, = 0. This means that the optimal partition
of set Nis N={2, 3}. Hence B={1}.

By using Lemma 1. we get:

P* = {x € P: x> = x: = 0} and (P) has a unique solutionx = (1. 0, 0).

Figure 2. Feasible region of case |.

Next we show examples of finding range and shadow price of h; =0 and ¢; =4. The
other range and shadow price can be found in the same way.

Range and Shadow Price for b, =0

By using (1.1). range b; can be determined by minimizing and maximizing b; over
theset {b: Ax = b, xp2 0, xx =0}.

We have Ax = b as follows

0 ~3 3 I" 1] b1
Xa| = .
[ B
From the above system we get
0= hf
= 1.
Hence the range of b, is the interval [0, 0]. Therefore &, = 0 is a break point.
By using (1.2). the shadow price of b, can be determined by minimizing and
maximizing y; over the set {y;: 4’ y + 5 = ¢ s4= 0, 5, 2 0}.

Using that y € D*, the minimum value of y;is | and the maximum value is 5. so the
shadow price for b, is [1. 3].

Range and Shadow Price for ¢, = 4

Range of ¢; determine by minimizing and maximizing ¢; over the set {c,: 4’ v + 5
=¢ 5= 0,5¢y20}.asin(1.3).

Matrix multiplication of 4’ y + 5 = ¢:
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0 1
=1 =3

3 =1

B

Based on Figure 1. if we eliminate the first constraint, ¥> will be in the interval [1,
r), By substituting y. = Oand v: to the first constraint, we get v- = ¢ This means
that 1 < ¢, o, hence the range for ¢ is the interval [, 2).

By using (1.4) shadow price of ¢, is determine by minimizing and maximizing x;
over the set {x.:Ax = b, x5 20, x4 = 0}, Because of x; = |, then the shadow price of
Ly is |,

In Table 1. we present range and shadow price of case | which are obtained by using
optimal partition approach. We also present range and shadow price obtained from
calculation by using LINDO (Table 2). We may see sensitivity analysis of the
simplex method (LINDO) did not detect that A, = 0 is a break point.

Table 1. Range and shadow price obtained from optimal partition approach

(Case I)

Coefficient Range Shadow price
b =0 0 [1.5]
h:=l [0. @) 4
¢y =4 [1. ) |
c:==5 [-9. ») 0
c:= 11 [-1. o) 0

Table 2. Range and shadow price obtained from LINDO (Case 1)

Coefficient Range Shadow price
hy =0 (-e0. 0] |
b:=1 [0, @) 3
cj=+ [1.00) |
¢r==5 [-9. e0) 0
ci=11 [-1, ) 0

3.2. Casell

Suppose the primal problem (P) is defined as follows:
Min 4x; + 3lx:-3x; + 1lxy
stivs-x:+3x,=0

X+ 7.\': =X;=X4= |

Xn X xn x>0,

The dual problem (D) is
Max:
s.-<4
3y + Tya<3l
-y - <=3
Syi-ya< 1l
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The feasible region of the dual problem is shown in Figure 3. From Figure 3, we
obtain that the optimal solution of (D) 1s D* = Ly, va)iv = 1, v: = 44 and the optimal
value is 4. Slack variable of each of the dual constraints are as follows:

Figure 3, Feasible region of case IL

By substituting v; = |, vz = 4. we obtain the values of each slack. Slack in these
constraints: y> <4, 3y, + Tye<3land-yy - yv:<-5are0.ie. s, =5:=5;=0. Hence
in the primal problem only x; x:and x: can be positive. Therefore the optimal
partition (B, N) is obtained. ie. N= {4} and B = {1, 2, 3}.

By using Lemma 1. we get:

P* = {x € P: x,= 0} and (P) has not unique solution : § (x; x2x0) i(a.ta=taa, 3(
Y%-Ya))}.0<ca<l.

By using the same calculation as in case |, we get ranges and shadow prices of case
I (Table 3). Table 4 shows ranges and shadow prices of case |l obtained by using
LINDO.

Table 3. Range and shadow price obtained from optimal partition approach

(Case I1).

Coefficient Range Shadow price
bi=0 (-c0. 3/7) I
b= 1 [0. o) 4
cr =4 R} “ ' 0]
cr=31 31 ['4, 0]
ci=-5 -5 [%, 0]

ci=11 [-1. ) 0
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Table 4. Range and shadow price obtained from LINDO (Case 11).

Coefticient Ruange Shadow price
br= (-00. 0] I
Bl [0, @) 4
Gy =4 [1.4] |
¢ =31 [31. ) 0
=5 [-5, @) U
ei=11 [-1. ) 0

From Table 3 and Table 4, there are differences in range and shadow price obtained
by using optimal partition and the simplex method. At the coefficient b, = 0, for the
same shadow price. the optimal partition detect a greater range. Next, at the
coefticients ¢, =4, ¢»> = 31, and ¢ = -5, analysis using the simplex method does not
detect any break points.

3.3, Caselll

Suppose the primal problem (P) is defined as follows:
Min3ix; - 5x: + |l
stlx;-x>+3x:=0

Txp-xz-x:=1

£ %5 B 21

Dual problem (D) is
Max v
s.t3yr + T <31

o R b -5

3wl

The feasible region of the dual problem is shown in Figure 4, From Figure 4, it can
be determined that the optimal solution of (D) is D* = {(y, ¥2): yi = . y» = 4} and
the optimal value is 4 . Slack variable of each of the dual constraints are as follows:

e+t Tont+s = 315, =31-3v-T
A+ =R =54y
Svy-va+si=11 Ssi=11-31 =0

We can check that at 3, = 1 and v> = 4. all the slack can be positive except slack in
the constraint 3y = 7y2< 31 and -y, - y» <-5, at the constraints mentioned we have
s;=s:=0. Hence the optimal partition (B, N)is N = {3} and B= {1, 2}.

By using Lemma 1, we obtain:

P* = {x € P: x;= 0} and (P) has a unique solution x = ("4. %, 0).

By using the same calculation as before. we get ranges and shadow prices of case 111
(Table 5). Table 6 shows ranges and shadow prices of case Il obtained by using
LINDO.



e —— e

)

Figure 4 Feasible region of case 1

Table 5. Range and shadow price obtained from optimal partition approach

(Case I11).

Coellicient Rungy Shadow price
b0 (-0.3 7] 1
h:=1 [0. en) 4
¢r= 31 |19, =) .
v = =5 f-?. w) iy
¢ = 11 |-1, o) U

Table 6. Range and shadow price obtained from LINDO (Case I11).

Coefficient Range Shadow price
h =0 (-09, 3/7] |
b= [0. o) 4
v =31 [19. =) Y
c:=-5 [-7. ) Ya

;=11 [-1. 0) 0

We may see that the range and shadow price using optimal partitioning and the
simplex method are same.

4. Concluding Remarks

The results of sensitivity analysis by using the simplex method (using the optimal
basis approach) for cases where one of the primal or dual optimal solution is not
unigue. is not as perfect as the results obtained by using optimal partition approach.
When the primal and the dual have a unique optimal solution. simplex method and
optimal partition approach give the same information.
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