# ISBN 978-979-95093-9-0

13



職員の

# PROCEEDINGS

### FACULTY OF MATHEMATICS AND NATURAL SCIENCES, BOGOR AGRICULTURAL UNIVERSITY IPB International Convention Center 15 - 17 November 2013

### Published By



And the second second







ISBN: 978-979-95093-9-0

# PROCEEDINGS

# ISS 2013

International Seminar on Sciences 2013 "Perspectives on Innovative Sciences"

> Bogor 15-17 November 2013 IPB International Convention Center

> > Published by



Faculty of Mathematics and Natural Sciences Bogor Agricultural University

i.

장장님 모르는 아유럽에

## 것 이외 소리

n se sense and the sense of the

Copyright© 2014

Faculty of Mathematics and Natural Sciences, Bogor Agricultural University Proceedings of International Seminar on Sciences 2013 "Perspectives on Innovative Sciences" Bogor 15-17 November 2013. Published by: FMIPA-IPB, Jalan Meranti Kampus IPB Dramaga, Bogor 16680 Telp/Fax: 0251-8625481/8625708 http://fmipa.ipb.ac.id ix + 395 pages ISBN: **978-979-95093-9-0** 

ii

### **Board of Editors**

### PROCEEDINGS INTERNATIONAL SEMINAR ON SCIENCES 2013

Chief Editor: Endar H. Nugrahani

Managing Editor: Indahwati Nisa Rachmania

Managing Team: Wisnu Ananta Kusuma Ali Kusnanto

### International Scientific Committee:

Manabu D. Yamanaka (Kobe University, Japan) Kanaya (Nara Institute of Science and Technology, NAIST, Japan) Ken Tanaka (Toyama University, Japan) Daniel Oosgood (Columbia University, USA) Emmanuel Paradis (Institut de Recherche pour le Développement , IRD, France) Rizaldi Boer (Bogor Agricultural University, Indonesia) Antonius Suwanto (Bogor Agricultural University, Indonesia)

### National Reviewer:

Kiagus Dahlan Tania June Sri Sugiarti Miftahudin Anja Meryandini Imas Sukaesih Sitanggang Farit Mochamad Afendi Paian Sianturi Husin Alatas Heru Sukoco Charlena Suryani

### FOREWORD

The International Seminar on Sciences 2013, which had the main theme "Perspectives on Innovative Sciences", was organized on November 15<sup>th</sup> -17<sup>th</sup>, 2013 by the Faculty of Mathematics and Natural Sciences, Bogor Agricultural University. This event aimed at sharing knowledge and expertise, as well as building network and collaborations among scientists from various institutions at national and international level.

Scientific presentations in this seminar consisted of a keynote speech, some invited speeches, and about 120 contributions of oral and poster presentations. Among the contributions, 66 full papers have been submitted and reviewed to be published in this proceeding. These papers were clustered in four groups according to our themes:

- A. Sustainability and Science Based Agriculture
- B. Science of Complexity
- C. Mathematics, Statistics and Computer Science
- D. Biosciences and Bioresources

In this occasion, we would like to express our thanks and gratitude to our distinguished keynote and invited speakers: Minister of Science and Technology, Prof. Manabu D. Yamanaka (Kobe University, Japan), Prof. Kanaya (Nara Institute of Science and Technology, NAIST, Japan), Prof. Ken Tanaka (Toyama University, Japan), Emmanuel Paradis, PhD. (Institut de Recherche pour le Développement, IRD, France), Prof. Dr. Ir. Rizaldi Boer, MS (Bogor Agricultural University), and Prof. Dr. Ir. Antonius Suwanto, M.Sc. (Bogor Agricultural University).

We would like also to extend our thanks and appreciation to all participants and referees for the wonderful cooperation, the great coordination, and the fascinating efforts. Appreciation and special thanks are addressed to our colleagues and staffs who help in editing process. Finally, we acknowledge and express our thanks to all friends, colleagues, and staffs of the Faculty of Mathematics and Natural Sciences IPB for their help and support.

Bogor, March 2014

The Organizing Committee

International Seminar on Sciences 2013

## Table of Content

|    |                                                                                                                                                                           |                                                                                                                                    | Page |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------|
|    | Board of Editors                                                                                                                                                          |                                                                                                                                    | iii  |
|    | Foreword                                                                                                                                                                  |                                                                                                                                    | iv   |
|    | Table of Content                                                                                                                                                          |                                                                                                                                    | V    |
| A  | . Sustainability and Science Based Agriculture                                                                                                                            |                                                                                                                                    | 1    |
| 1  | Development of a natural rubber dryer Based on multi energy<br>resources (biomass, solar and wind)                                                                        | Didin Suwardin, Afrizal<br>Vachlepi, Mili Pubaya, Sherly<br>Hanifarianty                                                           | 3    |
| 2  | Characterization of HDTMABr-modified Natural Zeolite and its<br>Application in Cr(VI) Adsorption                                                                          | Budi Riza Putra, Latifah K<br>Darusman, Eti Rohaeti                                                                                | 7    |
| 3  | Potency of Andrographis paniculata, Tinospora crispa, and<br>Combination Extract as<br>α-Glucosidase Inhibitor and Chromatographic Fingerprint Profile<br>of the Extracts | Wulan Tri Wahyuni, Latifah K<br>Darusman, Rona Jutama                                                                              | 17   |
| 4  | Utilization of Frond Palm Oil as Second Generation Bioethanol<br>Production using Alkaline Pretreatment and Separated Hydrolysis<br>and Fermentation Method               | Deliana Dahnum, Dyah Styarini,<br>Sudiyarmanto, Muryanto,<br>Haznan Abimanyu                                                       | 21   |
| 5  | Pretreatment of Grass Biomass with Biological Process for<br>Efficient Hydrolysis                                                                                         | Desy Kurniawati, Muhamad<br>Natsir, Rahmi Febrialis and<br>Prima Endang Susilowati                                                 | 27   |
| 6  | Alkaloid Compounds from Oil-Free Mahogany Seed (Swietenia<br>macrophylla, King) and Hypoglycemia Effect of Mahogany Seed<br>on The Rat (Rattus novergicus)                | Sri Mursiti, Sabirin Matsjeh,<br>Jumina, and Mustofa                                                                               | 31   |
| 7  | Utilization Of Vetiver Roots Waste Product as Strong, Low<br>Density, and Eco Friendly Material Pot                                                                       | Galuh Suprobo, Tatang<br>Gunawan, Cynthia Andriani, Rio<br>Candra Islami                                                           | 43   |
| 8  | Green Products from Wastewater of Tempe Industry                                                                                                                          | Susanti Pudji Hastuti, Yofi<br>Bramantya Adi, Bary Fratama,<br>Samuel Arunglabi,<br>Dewi KAK Hastuti, and Santoso<br>Sastrodiharjo | 47   |
| 9  | Saccharification of Oil Palm Empty Fruit Bunch After Alkaline<br>Pretreatment Followed by Electron Beam Irradiation for Ethanol<br>Production                             | Muryanto, Eka Triwahyuni,<br>Yanni Sudiyani                                                                                        | 55   |
| 10 | Isolation and Screening of Endophytic Bacteria from Bark of Raru<br>Plant (Tarrietia ribiginosa) and Their Potential for Bioetahnol<br>Production                         | Wasinton Simanjuntak, Heri<br>Satria, and Nurul Utami                                                                              | 61   |

| 11 | The Effect of Hypertension Herbs Formula to The Kidney<br>Functions                                                                                                        | Agus Triyono, Saryanto                                                    | 67  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----|
| 12 | The Use of Activated Carbon from Bintaro Fruit-Shell (Cerbera manghas) as an Adsorbent to Increase Water Quality                                                           | Armi Wulanawati, Kamella<br>Gustina and Djeni Hendra                      | 71  |
| 13 | Analysis of Active Compounds from Mangosteen Rind (Garcinia<br>mangostana L.) by Binding Affinity to The Androgen Receptor as<br>Anti-Prostate Cancer Drug Candidates      | Fachrurrazie, Harry Noviardi                                              | 77  |
| 14 | Antioxidant Activity from Formula of Jati Belanda (Guazuma<br>ulmifolia Lamk.), Jambu Biji (Psidium guajava Linn.), and Salam<br>(Eugenia polyantha Wight.) Leaves Extract | Syaefudin, Sulistiyani, Edy<br>Djauhari Purwakusumah                      | 81  |
| 15 | Diversity of Bacterial Mercury Reductase Resistance (merA) from<br>Bombana Gold Mine                                                                                       | Prima Endang Susilowati, Sapto<br>Raharjo, Rachmawati Rusdin,<br>Muzuni   | 87  |
| 16 | Brake Fern (Pteris vittata) as a Prospective Heavy Metal<br>Accumulator: Utilization Potentials of Harvested Biomass and<br>Heavy Metal                                    | Mochamad Taufiq Ridwan, Rike<br>Tri Kumala Dewi and Agung<br>Hasan Lukman | 91  |
| 17 | Protein Content Enhancement of Spirulina platensis by<br>Phosphorus Limitation and Nitrogen Addition in Beef Cattle<br>Wastewater Medium                                   | Irving Noor Arifin, Iin<br>Supartinah Noer and Asri Peni<br>Wulandari     | 99  |
| 18 | Development immobilized enzyme of white-rot fungus for decolorization of RBBR                                                                                              | Ajeng Arum Sari and Sanro<br>Tachibana                                    | 103 |
| 19 | Simple and Rapid Screening Method for Early Identification of<br>Salt Tolerant Foxtail Millet (Setaria italica L. Beauv)                                                   | Sintho Wahyuning Ardie, Nurul<br>Khumaida, and Amin Nur                   | 109 |
| 20 | Synthesis of Silver Nanoparticles by Using Extracellular<br>Metabolites of Lactobacillus delbrueckii subsp. bulgaricus                                                     | Suryani, Ridho Pratama, Dimas<br>Andrianto                                | 113 |
| В  | . Science of Complexity                                                                                                                                                    |                                                                           | 119 |
| 21 | Regional Heat Capacity Changes due to Changes of Land Cover<br>Composition Using Landsat-5 TM Data                                                                         | Winda Aryani, Idung Risdiyanto                                            | 121 |
| 22 | Microbial Cellulolytic Isolation and Identification from Durian Leather Waste                                                                                              | Hapsoh, Gusmawartati dan<br>Ujang Al Husnah                               | 129 |
| 23 | Predicting Water Surplus and Water Deficit in the Paddy Rice<br>Production Center in North Sulawesi Using the Water Balance<br>Model                                       | Johanis H. Panelewen, Johannes<br>E. X. Rogi and Wiske<br>Rotinsulu3      | 135 |
| 24 | Prediction of Dustfall Generation in Ambient Air over an<br>Inceptisol Soil Area                                                                                           | Arief Sabdo Yuwono, Lia<br>Amaliah                                        | 143 |
|    |                                                                                                                                                                            |                                                                           |     |

vi

| 25 | Carboxymethylation of Microfibrillated Cellulose to Improve<br>Thermal and Mechanical Properties of Polylactic Acid Composites                                                               | Fitri Adilla, Lisman<br>Suryanegara, Suminar S.<br>Achmadi                 | 149 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----|
| 26 | Esterification of Microfibrillated Cellulose with Various<br>Anhydrides to Improve Thermal and Mechanical Properties of<br>Polylactic Acid Composite                                         | Ajeng Mawangi, Lisman<br>Suryanegara, Suminar S.<br>Achmadi                | 155 |
| 27 | Thermal and Mechanical Properties Improvement of Polylactic<br>Acid-Nanocellulose Composites by Acetylation                                                                                  | Resty Dwi Andinie, Lisman<br>Suryanegara, Suminar S.<br>Achmadi            | 161 |
| С  | . Mathematics, Statistics and Computer Science                                                                                                                                               |                                                                            | 167 |
| 28 | The comparison spatial distribution observed, estimatated using<br>Neyman-Scott Rectangular Pulse Method (NSRP), and simulation<br>for mean of one-hour rain and probability of 24-hour rain | Rado Yendra, Ari Pani Desvina,<br>Abdul Aziz Jemain                        | 169 |
| 29 | Optimal VAR Injection Based on Neural Network Current State<br>Estimator for 20kV Surabaya Electrical Distribution System                                                                    | Dimas Fajar Uman P, Ontoseno<br>Penangsang, Adi Soeprijanto                | 175 |
| 30 | Fire-Fighting Robot Navigation System Using Wall Following<br>Algorithm and Fuzzy Logic                                                                                                      | Karlisa Priandana, Erwin M Y<br>Chriswantoro, Mushthofa                    | 181 |
| 31 | Analysis and Solving of Outliers in Longitudinal Data                                                                                                                                        | Viarti Eminita, Indahwati,<br>Anang Kurnia                                 | 187 |
| 32 | Implementation of Flowers and Ornamental Plants Landscape<br>Information System using Cloud Computing Technology                                                                             | Meuthia Rachmaniah and<br>Iswarawati                                       | 193 |
| 33 | Cluster Information of Non-sampled Area in Small Area<br>Estimation with Non-normally Distributed Area Random Effects<br>and Auxiliary Variables                                             | Rahma Anisa, Anang Kurnia,<br>Indahwati                                    | 199 |
| 34 | Study of Overdispersion for Poisson and Zero-Inflated Poisson<br>Regression on Some Characteristics of the Data                                                                              | Lili Puspita Rahayu, Kusman<br>Sadik, Indahwati                            | 203 |
| 35 | The Effect of Two-Way and Three-Way Interaction of Perceived<br>Rewards on the Relationship Quality                                                                                          | Enny Kristiani, Ujang<br>Sumarwan, Lilik Noor Yulianti<br>& Asep Saefuddin | 209 |
| 36 | Implementation of Inverse Kinematics for the Coordination<br>Control of Six Legged Robot                                                                                                     | Wulandari, Karlisa Priandana,<br>Agus Buono                                | 213 |
| 37 | Detection of C Code Plagiarism by Using K-Means                                                                                                                                              | Ahmad Ridha, Abi Panca<br>Gumilang                                         | 219 |
| 38 | Temporal Entity Tagging for Indonesian Documents                                                                                                                                             | Ahmad Ridha, Agus Simamora                                                 | 223 |
| 39 | Multidimensional Poverty Measurement Using Counting<br>Approach and Dual Cutoff Method in District of Banyumas                                                                               | Indah Soraya, Irwan Susanto,<br>Mania Roswitha                             | 229 |

| 40 | Minimizing Linear Optimization Model of Basic Reproduction<br>Number in a Fixed Number of Vaccination Coverage using<br>Interior Point Method Approach | D. Chaerani, A. Anisah, N.<br>Anggriani, Firdaniza                | 235 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----|
| 41 | Expert System for Plant Growth using Hormones and Exogenous Factors based on Fuzzy Approach                                                            | Yaasiinta Cariens, Karlina Nisa                                   | 241 |
| 42 | The Effect of Divergent Branches on GPU-Based Parallel Program<br>Performance                                                                          | n Hendra Rahmawan, Yudi Satria<br>Gondokaryono                    | 247 |
| 43 | Ensemble of Extreme Estimates Based on Modified<br>Champernowne and Generalized Pareto Distributions                                                   | Aji Hamim Wigena, Anik<br>Djuraidah, Muhammad Hafid               | 253 |
| 44 | Genetic Algorithms Application for Case Study of<br>Multi-Criteria Decision Analysis (MCDA)<br>on the Data Contained Missing Value                     | Septian Rahardiantoro, Bagus<br>Sartono, Totong Martono           | 259 |
| 45 | An Implementation of Parallel AES Algorithm<br>for Data Encryption with GPU                                                                            | Aditya Erlangga, Endang<br>Purnama Giri, Karlisa Priandana        | 265 |
| 46 | Constructing Orthogonal Fractional Factorial Split-Plot Designs<br>by Selecting a Subdesign Dependently to Another Subdesign                           | Bagus Sartono, Yenni Angraini,<br>Indahwati                       | 269 |
| 47 | Spatial Clustering of Hotspots using DBSCAN and ST-DBSCAN                                                                                              | Utsri Yustina Purwanto, Baba<br>Barus,and Hari Agung Adrianto     | 275 |
| 48 | Gap between the Lower and Upper Bounds for the Iteration<br>Complexity of Interior-Point Methods                                                       | Bib Paruhum Silalahi                                              | 281 |
| 49 | Black Approximation To Determine Value Of Call Option On Stock In Indonesian Stock Exchange                                                            | Jacob Stevy Seleky, Endar H.<br>Nugrahani, I Gusti Putu Purnaba   | 287 |
| 50 | Analysis of Portfolio Optimization With and Without Shortselling<br>Basd on Diagonal Model: Evidence from Indonesian Stock Market                      | Kaleem Saleem, Abdul Kohar<br>Irwanto, Endar Hasafah<br>Nugrahani | 291 |
| 51 | Community Network Framework as a Support of Successful<br>Agricultural Community                                                                       | Rina Trisminingsih, Christine<br>Suryadi, Husni S. Sastramihardja | 299 |
| 52 | THE TRANSMISSION MODEL OF DENGUE FEVER<br>DISEASE: A COMPUTER SIMULATION MODEL                                                                         | Paian Sianturi, Ali Kusnanto,<br>Fahren Bukhari                   | 305 |
| 53 | Improving the Independence of the Components of a Decomposition in Time Series Data                                                                    | Hari Wijayanto, Bagus Sartono,<br>Casia Nursyifa                  | 311 |
| 54 | Modeling and Empirical Mapping of Vehicular Traffic System:<br>Case Study of Jabodetabek Region                                                        | Endar H. Nugrahani, Hadi<br>Sumarno, Ali Kusnanto                 | 322 |
|    |                                                                                                                                                        |                                                                   |     |

|    | D. Biosciences and Bioresources                                                                                                                                 |                                                                              | 323 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----|
| 55 | A QuEChERS Based Method for The Determination of Pesticide<br>Residues in Indonesian Green Coffee Beans Using Liquid<br>Chromatography Tandem Mass Spectrometry | Harmoko, Rahmana Emran<br>Kartasasmita, and Astika<br>Tresnawati             | 325 |
| 56 | Design and Implementation of Roaster Control System Using<br>Image Processing                                                                                   | Mohamad Agung Prawira<br>Negara, Satryo Budi Utomo,<br>Sumardi               | 333 |
| 57 | Genetic Variation of DGAT1/Eael Gene of Holstein Friesian in<br>National Dairy Cattle Stations                                                                  | Santiananda A. Asmarasari                                                    | 339 |
| 58 | The Potency of Dahlia Tubers as Prebiotic for Functional Food                                                                                                   | Ainia Herminiati, Sri<br>Pudjiraharti, Budi Setiawan                         | 345 |
| 59 | DNA identification using Markov Chain as feature extraction and<br>Probabilistic Neural Network as classifier                                                   | Toto Haryanto, Habib Rijzaani,<br>Muhammad Luthfi Fajar                      | 351 |
| 60 | Multiple Sequence Alignment with Star Method in Graphical<br>Processing Unit using CUDA                                                                         | Muhammad Adi Puspo Sujiwo,<br>Wisnu Ananta Kusuma                            | 359 |
| 61 | Abalone (Haliotis asinina) Wound Detection System Using<br>Histogram and Morphology                                                                             | Noer Fitria Putra Setyono, Aziz<br>Kustiyo, Dwi Eny Djoko<br>Setyono         | 365 |
| 62 | Local Alignment of DNA Sequence Using Smith-Waterman<br>Algorithm                                                                                               | Fariz Ashar Himawan,Wisnu<br>Ananta Kusuma                                   | 371 |
| 63 | Agronomic performance and yield potential of 18 corn varieties in Indonesia                                                                                     | Anggi Nindita, Willy Bayuardi<br>Suwarno, Surjono Hadi Sutjahjo,<br>Perdinan | 377 |
| 64 | Characteristic and Phisychochemical Properties of Sweet Potatoes<br>(Ipomoea batatas L)                                                                         | Ai Mahmudatussa'adah                                                         | 381 |
| 65 | Determination of Harvesting Time of Three Peanut Varieties<br>Based on Heat Unit Accumulation                                                                   | Heni Purnamawati, Yoga<br>Setiawan Santoso, Yudiwanti<br>Wahyu               | 387 |
| 66 | Respon of Celery (Apium graveolens) Leaves Yield to Plant<br>Population and Seed Number Per Planting Hole                                                       | Karo, B, Marpaung, A. E.,<br>Tarigan, R., Barus, S. and<br>Khaririyatun, N.  | 391 |

### Gap between the Lower and Upper Bounds for the Iteration Complexity of Interior-Point Methods

### Bib Paruhum Silalahi<sup>1)</sup>

<sup>1)</sup> Lecturer at Department of Mathematics, <u>Faculty of Mathematics and Natural Sciences</u>, Bogor Agricultural University, Bogor, Indonesia (bibparuhum1@yahoo.com)

### Abstract

Recently, the use of interior-point methods to solve linear optimization problems, have been becoming great attention to the researchers. The most important thing is that the interior point methods have the best complexity compared to other methods and also efficient in practice. Gonzaga, Monteiro and Adler presented small-update path-following methods, a variant of interior-point methods, which is the best known upper bound for the iteration complexity of an interior-point method. Roos, Terlaky and Vial presented an interior-point method using primal-dual full-Newton step algorithm and state the upper bound for the iteration complexity of an interior-point method in difference expression. Deza, Nematollahi, Peyghami and Terlaky showed several worst cases of the interior-point method by using Klee-Minty problem. Using their worst cases, we present a lemma, where from this lemma we may obtain the lower bound for the iteration complexity of an IPM.

Keywords: interior-point method, upper bound, lower bound

#### **I. INTRODUCTION**

Optimization is the branch of applied mathematics which studies problems where one seeks to minimize (or maximize) a real function of real variables, subject to constraints on the variables. The solution set of the constraints defines the feasible region (or the domain) of an optimization problem.

#### **II. BRIEF HISTORY OF LINEAR OPTIMIZATION**

Linear Optimization (LO) is concerned with the minimization or maximization of a linear function, subject to constraints described by linear equations and/or linear inequalities.

### A. Simplex Methods

LO emerged as a mathematical model after World War II, when Dantzig in 1947 proposed his simplex method for solving "linear programming" (then known as optimization) problems [1].

The feasible region of an LO problem is a polyhedron, the solution set to a system of linear constraints. Simplex methods move along vertices of the polyhedron in order to find an optimal vertex. These methods are designed in such a way that during this process the value of the objective function changes monotonically to its optimal value.

After its discovery, the Dantzig simplex method has inspired much research in mathematics. Simplex methods were placed as the top 10 algorithms in the twentieth century by the journal Computing in Science and Engineering [2]. There are many variants of a simplex method, distinguished by rules for selecting the next vertex (so-called pivot rules). The success of simplex methods have raised some questions such as: whether there exists a pivot rule that requires a polynomial number of iterations, and whether there are linear optimization problems that require an exponential number of iterations.

The last question was answered by Klee and Minty [3] in 1972. They gave an example of an LO problem with 2n inequalities for which the simplex method may need as much as  $2^n - 1$  iterations. Their example uses Dantzig's classic most-negative-reduce-cost pivot rule.

The *n*-dimensional Klee-Minty (KM) problem is given by :

 $\min y_n$ 

subject to  $\rho y_{k-1} \le y_k \le 1 - \rho y_{k-1}, \ k = 1, ..., n,$ 

(26)

where  $\rho$  is small positive number by which the unit cube  $[0,1]^n$  is squashed, and  $y_0 = 0$ . The domain is a perturbation of the unit cube in  $\mathbb{R}^n$ . If  $\rho = 0$  then the domain is the unit cube and for  $\rho \in (0,1/2)$  it is a perturbation of the unit cube which is contained in the unit cube itself, as can easily be verified. Since the perturbation is small, the domain has the same number of vertices as the unit cube, i.e.  $2^n$ . Klee and Minty showed that in their example the simplex method with the Dantzig rule walks along all these vertices. Thus it became clear that the computational time needed by the Dantzig simplex method may grow exponentially fast in terms of the number of inequalities. Since then exponential examples have been found for almost every pivot rule.

### B. The ellipsoid Method

The shortcomings of simplex methods (at least theoretically) stimulated researchers to look for other methods with a running time that grows polynomially fast if the number of inequalities grows. The first polynomial-time algorithm for LO problems is the ellipsoid method. The basic ideas of this method evolved from research done in the 1960s and 1970s in the Soviet Union (as it then was called). The idea of the ellipsoid method is to enclose the region of interest by an ellipsoid and to decrease the volume of the ellipsoid in each iteration [4]. This method was first published in a paper of ludin and Nemirovskii [5]. Independently in 1977, Shor [6] also presented the ellipsoid method. Khachiyan modified this method and in 1979 [7] he introduced this method as the first polynomial-time algorithm for LO problems.

He proved that the ellipsoid method solves an LO problem in  $O(n^2L)$  iterations with the total number of arithmetic operations  $O(n^5L)$ , where *n* is the number of inequalities and *L* is the total bitlength of the input-data. Then in his next paper [8] he gave a better bound,  $O(n^4L)$ , for the total number of arithmetic operations.

Following Khachiyan's work, the ellipsoid method was studied intensively for its theoretical and practical aspects, with the hope that LO problems could be solved faster than by simplex methods. The results were not as expected. In practice, the rate of convergence of the ellipsoid method is rather slow, when compared to simplex methods. The worst-case iteration bound for simplex methods, in any of its several implementations, is an extremely poor indicator of the method's actual performance. On the other hand, the worst-case bound for the ellipsoid method appears to be a good indicator for the practical behavior of the ellipsoid method [9], which makes the method become too slow for practical purposes.

### C. Interior-point Methods

A really effective breakthrough occurred in 1984, when Karmarkar [10] proposed a different polynomial-time method (known as Karmarkar's projective method) for LO problems. Contrary to simplex methods, whose iterates are always on the boundary of the domain, Karmarkar's method passes through the interior of the domain to find an optimal solution.

In the worst-case, for a problem with n inequalities and L bits of input data, his method requires O(nL) iterations. In each iteration, Karmarkar's algorithm requires  $O(n^{2.5})$  arithmetic operations and each arithmetic operation needs a precision of O(L) bits. In total, in the worst-case, Karmarkar's algorithm requires  $O(n^{3.5}L)$  arithmetic operations on numbers with O(L) bits. The theoretical running time of this algorithm is better than that of the ellipsoid algorithm by a factor of  $O(\sqrt{n})$ . More exciting, Karmarkar claimed that the algorithm is not only efficient in theory, but also in practice.

Karmarkar's paper initiated a revolution in the field of optimization. It gave rise to so-called interior-point methods (IPMs), first for LO but later also for the more general class of convex problems.

Renegar, in 1988 [11], improved the number of iterations to  $O(\sqrt{nL})$  iterations. Other variants of IPMs, called potential reduction methods, require also only  $O(\sqrt{nL})$  iterations. This was shown by Ye [12], Freund [13], Todd and Ye [14] and Kojima, Mizuno and Yoshise [15]. The main idea of these methods is the usage of a potential function for measuring the progress of the method. Karmarkar's projective method also uses a potential function.

A wide class of IPMs uses the so-called *central* path, which was introduced by Sonnevend [16] and Meggido [17], as a guide line to the set of optimal solutions; these methods are therefore called pathfollowing methods. Small-update path-following methods, a variant of path-following methods, were presented Monteiro and Adler [18] and Roos and Vial [19]. Their methods require  $O(\sqrt{nL})$  iterations, which is the best known upper bound for the iteration complexity of an IPM. Roos, Terlaky and Vial in their book [20] obtained the same upper bound by using an algorithm which is a so-called primal-dual full-Newton step algorithm. Expressing the absolute accuracy of the objective function by  $\varepsilon$  their upper bound for the number of iterations is

$$\left| \sqrt{2n} \ln \frac{n\mu^0}{\varepsilon} \right|$$

(27)

where  $\mu^0 > 0$  denotes the initial value of the socalled barrier parameter.

#### III. GAP BETWEEN THE LOWER AND UPPER BOUNDS

Figure 1 shows the central path of the 2-dimensional Klee-Minty (KM) problem for  $\rho = 1/3$ .



The central path is an analytic curve that moves through the interior of the domain to the optimal set.

Ideally it is a nice smooth curve that goes more or less straightforward to the optimal set. In that case path-following methods are extremely efficient. In practice the curve may possess some sharp turns. We assume that each such turn will require at least one iteration of a path-following IPM. As a consequence we may consider the number of sharp turns in the central path as a lower bound for the number of iteration of any path-following IPM.

Recently, Deza, Nematollahi, Peyghami and Terlaky [21] showed that when adding abundantly many suitable chosen redundant constraints to the KM cube, the squashed cube which is formed by the inequalities of KM problem, then one may force the central path to visit small neighborhoods of all the vertices of the KM cube.

Deza et al. concluded that an IPM needs at least 2" -1 iterations to solve their problem. Hence the number of iterations may be exponential in the dimension *n* of the cube. This does not contradict the polynomial-time iteration bound (2) however. Note that the number of inequalities of the *n*dimensional KM problem is 2*n*. If *N* denotes the number of inequalities in the problem that causes the central path to visit small neighborhoods of all the vertices of the KM cube, then the upper bound should be  $O(\sqrt{N} \ln(N\mu^0 / \varepsilon))$ . Assuming that  $\mu^0 / \varepsilon = O(1)$ , one may consider this bound as  $O(\sqrt{N} \ln N)$ . The bound implies that the number *N* of inequalities must be exponential in *n* as well, because we should have  $2^n - 1 = O(\sqrt{N} \ln N)$ .

In [21], Deza et al. also argued that such a redundant KM problem, whose central path visits small neighborhoods of all the vertices of the KM cube, gives rise to a lower bound for the maximal number of iterations in terms of N. Several papers appeared since then, each new paper using less redundant constraints and, as a consequence, yielding a higher lower bound for the iteration complexity of an IPM. The results of these papers are summarized in Table 1.

Table 1. Results from the literature.

| Type of<br>redundant<br>constraints | Number<br>of<br>redundant<br>inequalitie<br>s | Lower<br>bound for<br>iteration<br>complexity    | Refe<br>-<br>renc<br>e |
|-------------------------------------|-----------------------------------------------|--------------------------------------------------|------------------------|
| $\rho y_{i-1} - y_i \leq d$         | $O(n^2 2^{6n})$                               | $\Omega\left(\sqrt[6]{\frac{N}{\ln^2 N}}\right)$ | [21]                   |
| $\rho y_{k-1} - y_k \leq d$         | O(n2 <sup>3n</sup> )                          | $\Omega\left(\sqrt[3]{\frac{N}{\ln N}}\right)$   | [22]                   |
| $\rho y_{k-1} - y_k \leq d$         | $O(n^3 2^{2n})$                               | $\Omega\left(\sqrt{\frac{N}{\ln^3 N}}\right)$    | [23]                   |
| $-y_i \leq d_i$                     | <i>O</i> ( <i>n</i> 2 <sup>2</sup> ")         | $\Omega\left(\sqrt{\frac{N}{\ln N}}\right)$      | [24]                   |

Column 4 gives the related references. Column 1 shows the type of constraints used in the corresponding paper, column 2 the order of the number N of inequalities used, and column 3 the resulting lower bound for the number of iterations of IPMs. In each case one has  $N \ge 2^n$ .

The next lemma explains how the lower bounds in column 3 can be deduced from the figures in column 2 of Table 1.

**Lemma 1.** If the number N of inequalities describing a redundant KM problem is  $O(n^p 2^{qn})$  and the central path enters a small neighborhood of each vertex, then any IPM requires at least

$$\Omega\left(\sqrt[q]{\frac{r^{p}N}{\ln^{p}N}}\right)$$

iterations, where r is such that  $N \ge 2^m$  and p,q,r > 0.

#### Proof:

It is well known that if an iterate x is on (or close to) the central path, then the search direction at x in any interior-point method is (about) tangent to the central path. The KM path consists of  $2^n - 1$  line segments. Since for each sharp turn in the central path an IPM requires at least one iteration, when solving the redundant KM problem at least  $2^n - 1$  iterations are needed. The number N of inequalities being  $O(n^p 2^{qn})$ , we have  $N \le cn^p 2^{qn}$  for some

c > 0. This implies  $\frac{N}{cn^p} \le 2^{qn}$  for some c > 0.

Thus we obtain

# iterations 
$$+1 \ge 2^n \ge \left(\frac{N}{cn^p}\right)^{\frac{1}{q}}$$
.

From  $N \ge 2^{m}$  we derive, by taking the 2-logarithm at both sides, that  $\log_2 N \ge rn$ , whence  $n \le \log_2 N/r$ . Substituting this we get

# iterations 
$$+1 \ge \left(\frac{Nr^p}{c(\log_2 N)^p}\right)^{\frac{1}{q}}$$
.

This implies the statement in the lemma.

As stated before, the best known upper bound for the iteration complexity of an IPM is the bound in (27). For fixed values of  $\mu^0$  and  $\varepsilon$  we may write

$$\sqrt{N} \ln \frac{N\mu^0}{\varepsilon} = \sqrt{N} \ln N + \sqrt{N} \ln \frac{\mu^0}{\varepsilon}$$
$$= O(\sqrt{N} \ln N).$$

Comparing this with the highest lower bound in Table 1, which is  $\Omega(\sqrt{N/\ln N})$ , we conclude that there is still a gap between the lower and upper bounds for the iteration complexity of IPMs: the bounds differ by a factor  $\ln^{\frac{3}{2}} N$ .

#### REFERENCES

- G. B. Dantzig, *Linear Programming and* 1] *Extensions*, Princeton N.J.: Princeton University Press, 1963.
- J. Dongarra and F. Sullivan, "Guest editors : 2] introduction to the top 10 algorithm,"
- *Computing in Science and Engineering*, vol. 2, no. 1, pp. 22-23, 2000.
- V. Klee and G. Minty, "How good is the simplex algorithm?," in *Inequalities, III (Proc. Third Sympos., Univ.California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin, New York, Academic* Press, 1972, pp. 159-175.
- D. Luenberger and Y. Ye, Linear and
  4] Nonlinear Programming, Third ed., New York: Springer, 2008.

D. Iudin and A. Nemirovskii, "Informational

5] Complexity and Effective Methods of Solution for Convex Extremal Problems," Ekonomika i Matematicheskie Metody (Translated into English in Matekon, 13:25-46, 1977), vol. 12, pp. 357-369, 1976.

N. Shor, "Cut-off Method with Space
 6] Extension in Convex Programming Problems,"

Kibernetika (Translated into English in Cybernetics, 13(1):94-96), vol. 13, no. 1, pp. 94-95, 1977.

L. Khachiyan, "A Polynomial Algorithm in

- 7] Linear Programming," Doklady Akademiia' Nauk SSSR (Translated into English in Soviet Mathematics Doklady 20, 191--194), vol. 244, pp. 1093-1096, 1979.
- L. Khachiyan, "Polynomial Algorithms in Linear Programming," Zhurnal Vychisditel'noi Matematiki i Matematicheskoi Fiziki (Translated into English in USSR Computational Mathematics and Mathematical Physics 20:53--72), vol. 20, pp. 51-68, 1980.

R. Bland, D. Goldfarb and M. Todd, "The

- 9] Ellipsoid Method: A Survey," Operations Research, vol. 29, no. 6, pp. 1039-1091, 1981.
- N. Karmarkar, "A new polynomial-time
  algorithm for linear programming," *Combinatorica*, vol. 4, no. 4, pp. 373-395, 1984.

J. Renegar, "A polynomial-time algorithm,

- based on Newton's method, for linear programming," *Mathematical Programming*, vol. 40, pp. 59-93, 1988.
- Y. Ye, "A class of potential functions for linear 12] programming," Iowa City, IA~52242, USA,
  - 1988. R. Freund, "Polynomial-time algorithms for
- 13] linear programming based only on primal scaling and projected gradients of a potential function," *Mathematical Programming*, vol. 51, pp. 203-222, 1991.

M. Todd and Y. Ye, "A centered projective

 [14] algorithm for linear programming," Mathematics of Operations Research, vol. 15, pp. 508-529, 1990.

M. Kojima, S. Mizuno and Y/A., "An O( $\sqrt{nL}$ )

15] iteration potential reduction algorithm for linear complementarity problems," *Mathematical Programming, Series A*, vol. 50, pp. 331-342, 1991.

G. Sonnevend, "An analytic center for

16] polyhedrons and new classes of global algorithms for linear (smooth, convex) programming," in System Modelling and Optimization: Proceedings of the 12th IFIP-Conference held in Budapest, Hungary, September 1985, Lecture Notes in Control and Information Sciences ed., vol. 84, Berlin, West-Germany: Springer Verlag, 1986, pp. 866-876.

N. Megiddo, "Pathways to the optimal set in 17] linear programming," in Progress in

Mathematical Programming, Interior Point and Related Methods, N. Megiddo, Ed., New York, Springer Verlag, 1989, pp. 131--158.

R. Monteiro and I. Adler, "Interior-path

[18] following primal-dual algorithms. Part I : Linear programming," Mathematical Programming. vol. 44, pp. 27-41, 1989.

C. Roos and J.-P. Vial, "A polynomial method 19] of approximate centers for linear programming problem," *Mathematical Programming*, vol. 54, pp. 295-306, 1992.

 C. Roos, T. Terlaky and J.-P. Vial, Interior
 20] Point Methods for Linear Optimization, Second edition of Theory and Algorithms for Linear Optimization, Wiley, Chichester, 1997 ed., New York: Springer, 2006.

A. Deza, E. and Nematollahi, R. Peyghami and

21] T. Terlaky, "The central path visits all the vertices of the Klee-Minty cube," *Optimization Methods & Software*, vol. 21, no. 5, pp. 851-865, 2006.

 A. Deza, T. Terlaky and Y. Zinchenko,
 "Central path curvature and iterationcomplexity for redundant Klee-Minty cubes," in Advances in applied mathematics and global optimization, Adv. Mech. Math. ed., vol. 17, New York, Springer, 2009, pp. 223--256.

A. Deza, E. Nematollahi and T. Terlaky, "How

23] good are interior point methods? Klee-Minty cubes tighten iteration-complexity bounds," *Mathematical Programming*, vol. 113, no. 1, Ser. A, pp. 1-14, 2008.

E. Nematollahi and T. Terlaky, "A simpler and 24] tighter redundant Klee-Minty construction," *Optimization Letters*, vol. 2, no. 3, pp. 403-414, 2008.

B. Jansen, C. Roos and T. Terlaky, "A

25] Polynomial Dikin-type Primal-Dual Algorithm for Linear Programming," *Mathematics of Operations Research*, vol. 21, pp. 341-353, 1996.

R. Monteiro, I. Adler and M. Resende, "A

26] polynomial-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension," *Mathematics of Operations Research*, vol. 15, pp. 191-214, 1990.

T. Tsuchiya, "Affine Scaling Algorithm," in [27] Interior Point Methods of Mathematical

Programming, T. Terlaky, Ed., Dordrecht, The Netherlands, Kluwer Academic Publishers, 1996, pp. 35-82.