

TELKOMNIKA Indonesian Journal of Electrical Engineering

ISSN 2302-4046

ELKOMNIKA

Indonesian Journal of Electrical Engineering is a peer reviewed international journal. The aim of the journal is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of telecommunication, signal processing, computing & informatics, instrumentation & control, and electrical & electronics engineering.

Editor-in-Chief:

Tole Sutikno Universitas Ahmad Dahlan Yogyakarta, Indonesia email: thsutikno@ieee.org

Co-Editors-in-Chief:

Signal Processing

Arianna Mencattini Department of Electronic Engineering University of Rome "Tor Vergata" Roma, Italy email: mencattini@ing.uniroma2.it

Telecommunications Engineering Leo P. Ligthart International Research Centre for Telecommunications and Radar Delft University of Technology Delft, Netherlands L.P.Ligthart@tudelft.nl

Ahmet Teke Cukurova University Adana, Turkey ahmetteke@cu.edu.tr

Technical University of Lodz Lodz, Poland Jacek.stando@p.lodz.pl

Munawar A Riyadi Universitas Diponegoro Semarang, Indonesia munawar.riyadi@ieee.org

Shahrin Md Ayob Universiti Teknologi Malaysia Johor, Malaysia shahrin@fke.utm.my

Surinder Singh Sant Longowal Inst of Eng & Tech Punjab, India surinder_sodhi@rediffmail.com

Yin Liu Symantec Research Labs' Core Symantec Corporation Mountain View, CA, USA liuv@cs.rpi.edu

Sriwijaya University Palembang, Indonesia

Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia jumrilyunas@ukm.my

Univ. of Arkansas at Little Rock Little Rock, Arkansas, USA

Sib, Oman seenu.phd@gmail.com

Ecole Nationale d'Ingenieurs de Tunis Tunis, Tunisia Bangkok, Thailand

Control Engineering Omar Lengerke Mechatronics Engineering Faculty Universidad Autonoma de Bucaramanga Bucaramanga, Colombia olengerke@unab.edu.co

> Computing and Informatics Wanquan Liu Dept of of Computing Curtin University of Technology Perth WA, Australia w.liu@curtin.edu.au

> > Ehsan O. Sheybani Virginia State University Virginia, United States esheyban@vsu.edu

Lunchakorn Wuttisittikulkij Chulalongkorn University Bangkok, Thailand Lunchakorn.W@chula.ac.th

Nik Rumzi Nik Idris Universiti Teknologi Malaysia Johor, Malaysia nikrumzi@ieee.org

Sanjay Kaul Fitchburg State University Fitchburg, Massachusetts, USA skaul@fitchburgstate.edu

Tutut Herawan Universiti Malaysia Pahang Pahang, Malaysia tutut@ump.edu.my

Yutthapong Tuppadung ytuppadung@gmail.com

Neil Bergmann (Australia)

The TELKOMNIKA Indonesian Journal of Electrical Engineering is published by IAES Institute of Advanced Engineering and Science in collaboration with Universitas Ahmad Dahlan (UAD).

Advisory Editors:

Aurelio Piazzi (Italy)

Patricia Melin (Mexico)

Responsibility of the contents rests upon the authors and not upon the publisher or editors.

Publisher address: Malaysia: 51 Jalan TU 17, Taman Tasik Utama, 75450 Malacca Indonesia: Griya Ngoto Asri D2, Bangunharjo, Sewon, Bentul 55187, Yogyakarta Website: http://iaesjournal.com/online/index.php/TELKOMNIKA Telp. +60 62 33 4659 / +62 274 4547770, e-mail: telkomnika.iaes@gmail.com

Electronics Engineering Mark S. Hooper Analog/mixed signal/RFIC Design IEEE Consultants Network of Silicon Viley California, USA m.hooper@ieee.org

Power Engineering Auzani Jidin Dept of Power Electronics and Drive Universiti Teknikal Malaysia Melaka Melaka, Malaysia auzani@utem.edu.my

Ahmad Saudi Samosir Universitas Lampung Lampung, Indonesia saudi@ieee.org

Fayçal Djeffal University of Batna Batna, Algeria faycaidzdz@hotmail.com

Mochammad Facta Universitas Diponegoro Semarang, Indonesia facta@ieee.org

Peng Peng Seagate Technology Bloomington, MN, USA peng.peng@seagate.com

Supavadee Aramvith Chulalongkorn University Bangkok, Thailand supavadee.a@chula.ac.th

Yang Han University of Electronic Science and Technology of China Chengdu, P. R. China hanyang_facts@hotmail.com

Argyrios Zolotas (UK) Hamid A. Tollyat (USA)

Nidhal Bouaynaya

nxbouaynaya@ualr.edu

Tarek Bouktir

Youssef Said y.said@ttnet.tn

Jacek Stando

Editors: **Deris Stiawan**

deris@ieee.org **Jumril Yunas**

Srinivasan Alavandar

Caledonian Univ. of Engineering

Larbi Ben Mhidi University Oum El-Bouaghi, Algeria tarek.bouktir@esrgroups.org

Vol. 12, No. 8, August 2014

Table of Contents

Regular Papers	
IR-UWB: An Ultra Low Power Consumption Wireless communication Technologie for WSN Anouar Darif, Rachid Saadane, Driss Aboutajdine	5699
Analysis of T-Source Inverter with PWM Technique for High Voltage Gain Application K. Eswari, R. Dhanya	5709
Simulation of Cascaded H-Bridge Multilevel Inverter Based DSTATCOM Rammohan Rao Makineni, C.N. Bhaskar	5720
A Grey Relation Analysis Method to Vibration Fault Diagnosis of Hydroelectric Generating Set Wang Ruilian, Gao Shengjian	5729
Design of the Coal Mining Transient Electromagnetic Receiver with A Large Dynamic Range Xiaoliang Zheng	5736
The Intelligent Control System of the Freezing Station in Coal Mine Freezing Shaft Sinking Xiaoliang Zheng, Yelin Hu, Zhaoquan Chen	5743
Growing Neural Gas Based MPPT for Wind Generator Using DFIG J. Priyadarshini, J. Karthika	5751
Harmonic Reduction in Variable Frequency Drives Using Active Power Filter M. Tamilvani, K. Nithya, M. Srinivasan	5758
PLC SCADA Based Fault Identification and Protection for Three Phase Induction Motor	5766
Venkatesan Loganathan, S. Kanagavalli, P.R. Aarthi, K.S. Yamuna	
The Comparative Study between Twisted and Non-Twisted Distribution Line for Photovoltaic System Subjected to Induced Voltage Generated by Impulse Voltage Nur Hidayu Abdul Rahim, Zikri Abadi Baharudin, Md Nazri Othman, Puteri Nur Suhaila Ab Rahman	5774
Automatic Monitoring of Pest Insects Traps Using Image Processing Akash J. Upadhyay, P. V. Ingole	5779
Simulink Based Multi Variable Solar Panel Modeling Chandani Sharma, Anamika Jain	5784
Brain Emotional Learning for Classification Problem Reza Mahdi Hadi, Saeed Shokri, Omid Sojodishijani	5793
Research on Electrical Energy Consumption Efficiency Based on GM-DEA Mei Liu	5801
Hybrid PSOGSA Method of Solving ORPD Problem with Voltage Stability Constraint J. Jithendranath, A.Srihari Babu, G.Durga Sukumar	5807
Reliability Analysis of Surge Arrester Location Effect in High voltage substations Seyed Ahmad Hosseini, Mohammad Mirzaie, Taghi Barforoshi	5814
An Overview of Electrical Tree Growth in Solid Insulating Material with Emphasis of Influencing Factors, Mathematical Models and Tree Suppression	5827

Anmad, A.A. Abd Jamil, A.A. Suleiman

ISSN 2302-4046

Vol. 12, No. 8, August 2014

Case Study of line loss Reduction in TNEB Power Grid S. Sambath, P. Palanivel, C. Subramani, S.P.K. Babu, J. Arputhavijayaselvi	5847
Performance Analysis of a High Voltage DC (HVDC) Transmission System under Steady State and Faulted Conditions M. Zakir Hossain, Md. Kamal Hossain, Md. Alamgir Hossain, Md. Maidul Islam	5854
Grid-connected Photovoltaic Power Systems and Power Quality Improvement Based on Active Power Filter Brahim Berbaoui, Samira Dib, Rachid Dehini	5861
Optimal Location of Wind Turbines in a Wind Farm using Genetic Algorithmr C.Balakrishna Moorthy, M.K. Deshmukh, Darshana Mukherejee	5869
Simulink Based Multi Variable Solar Panel Modeling Chandani Sharma, Anamika Jain	5877
Effect of Maximum Voltage Angle on Three-Level Single Phase Transformerless Photovoltaic Inverter Performance M. Irwanto, M.R. Mamat, N. Gomesh, Y.M. Irwan	5886
Comprehensive Evaluation to Distribution Network Planning Schemes Using Principal Component Analysis Method Wang Ruilian, Gao Shengjian	5897
New Controllable Field Current Induced Excitation Synchronous Generator Bei Wei, Xiuhe Wang	5905
Fault Location of Distribution Network Containing Distributed Generations Zou Bi-Chang, Zhou Hong	5910
Study on the Influence of Grid Voltage Quality Guiping Yi, Renjie Hu	5918
Short-term Power Prediction of the Photovoltaic System Based on QPSO-SVM Lei Yang, Zhou Shiping, Xia Yongjun, Shu Xin	5926
Estimation of Voltage Sag Loss Based on Blind Number Theory Fan Li-Guo, Zhang Yan-Xia	5932
Misidentification of Type of Lightning Flashes in Malaysia Puteri Nur Suhaila Ab Rahman, Zikri Abadi Bharudin, Nur Hidayu Abdul Rahim	5938
Enhancement Fault Ride-Through Capability of DFIG By Using Resistive and Inductive SFCLs	5946
Ali Azizpour, Mehdi Hosseini, Mahmoud Samiei Moghaddam	
Electric Field and Thermal Properties of Wet Cable: Using FEM Sushman Kumar Kanikella	5954
Peak Load Chopping Applying Fuzzy Bayesian Technique For Regional Load Management-Performance Evaluation Arindam Kumar Sil, N. K. Deb, Ashok Kumar Maitra	5963
Fuzzy Neural Network for Classification Fault In Protection System Azriyenni Azriyenni, Mohd Wazir Mustafa, Naila Zareen	5969
SVC Placement for Voltage Profile Enhancement Using Self-Adaptive Firefly Algorithm Selvarasu Ranganathan, Surya Kalavathi. M	5976
An Improved Reconstruction Algorithm Based on Compressed Sensing for Power Quality Analysis in Wireless Sensor Networks of Smart Grid Yi Zhong, Jiahou Huang	5985
A Study of Three-Level Neutral Point Clamped Inverter Topology Muhammad Kashif, Zhuo Fang, Samir Gautam, Yu Li, Ali Syed	5999

Vol. 12, No. 8, August 2014

ISSN 2302-4046

Modeling and Analyzing for the Friction Torque of a Sliding Bearing Based on Grey System Theory	6009
Wang Baoming, Xu Jinxin, Chen ShengSheng, Wu Zaixin	
Fuzzy Sliding Mode Control of PEM Fuel Cell System for Residential Application Mahdi Mansouri, Mohammad Ghadimi, Kamal Abbaspoor Sani	6017
Design of Temperature Measurement and Data Acquisition System based on Virtual Instrument LabVIEW Xingju Wang	6027
Nonuniform Defect Detection of Cell Phone TFT-LCD Display Jahangir Alam S.M., Hu Guoqing	6036
Modeling and Simulation of Silicon Solar Cell in MATLAB/SIMULINK for Optimization Ehsan Hosseini	6047
Three-Stage Amplifier Adopting Dual-Miller with Nulling-Resistor and Dual- Feedforward Techniques Zhou Qianneng, Li Qi, Li Chen, Lin Jinzhao, Li Hongjuan, Li Yunsong, Pang Yu, Li Guoquan, Cai Xuemei	6055
Advances on Low Power Designs for SRAM Cell Labonnah Farzana Rahman, Mohammad F. B. Amir, Mamun Bin Ibne Reaz, Mohd. Marufuzzaman, Hafizah Husain	6063
Embedded System Application for Blind People Navigation Tool Wakhyu Dwiono, Siska Novita Posma, Arif Gunawan	6083
Film Thickness of Lithium Battery Fast De-Noising Based on Atomic Sequence Template Library Gong Chen, Xifang Zhu, Qingquan Xu, Ancheng Xu, Hui Yang	6088
Pantograph Control Strategy Research Based On Fuzzy Theory Guan Jinfa, Zhong Yuan, Fang Yan	6094
Slip Enhancement in Continuously Variable Transmission by Using Adaptive Fuzzy Logic and LQR Controller Ma Shuyuan, Sameh Bdran, Saifullah Samo, Jie Huang	6101
Control Strategy of Three Phase PWM by Three Half Bridge Topology Bidirectional DC/DC Converter and Resonant Dingzhen Li, Haizhen Guo	6111
Application of Virtual Instrument LabVIEW in Variable Frequency and Speed Motor System Haizhen Guo, Junxiao Wu	6119
Application Research based on Artificial Fish-swarm Neural Network in Sintering Process Song Qiang, Wang Ai-Min, Li Hua	6127
Quality Function Deployment Application Based on Interval 2-Tuple Linguistic Zhen Li	6134
Observer-based state feedback H-infinity control for networked control systems Yanhui Li, Xiujie Zhou	6144
Dynamic Modeling Process of Neuro Fuzzy System to Control the forverted Pendulum System Tharwat O. S. Hanafy, Mohamed K Metwally	6153
A New Particle Filter Algorithm with Correlative Noises Qin Lu-Fang, Li Wei, Sun Tao, Li Jun, Cao Jie	6164
Image Segmentation of Adhering Bars Based on Improved Concavity Points Searching Method	6173

ISSN 2302-4046

14

Vol. 12, No. 8, August 2014

Liu Guohua, Liu Bingle, Yuan Qiujie, Huang Zhenhui					
Which Representation to Choose for Image Cluster Haolin Gao	6181				
Slice Interpolation for MRI Using Disassemble-Reassemble Method Qinghua Lin, Min Du					
Gear Fault Diagnosis and Classification Based on Fisher Discriminant Analysis Haiping Li, Jianmin Zhao, Xinghui Zhang, Hongzhi Teng, Ruifeng Yang					
Similarity Measurement for Speaker Identification Using Frequency of Vector Pairs Inggih Permana, Agus Buono, Bib Paruhum Silalahi	6205(
A Novel Approach for Tumor Detection in Mammography Images Elahe Chaghari, Abbas Karimi	6211				
QR-based Channel Estimation for Orthogonal Frequency Division Multiplexing Systems Peilong Jiang, Honggui Deng, Bin Lei	6217				
Impact of FFT algorithm selection on switching activity and coefficient memory size	6224				
Imran Ali Qureshi, Fahad Qureshi					
Infrared image segmentation using adaptive FCM algorithm based on potential function	6230				
Evolution Process of a Broadband Coplanar- Waveguide-fed Monopole Antenna for Wireless Customer Premises Equipment Alishir Moradikordalivand, Tharek A. Rahman, Ali N. Obadiah, Mursyidul Idzam Sabran	6238				
Optimized Power Allocation for Cooperative Amplify-and-Forward with Convolutional Codes N Nasaruddin, M Melinda, E Elizar	6243				
A Novel Wireless Sensor Network Node Localization Algorithm Based on BP Neural Network Cheng Li, Honglie Zhang, Guangjun Song, Yanjy Liu	6254				
Performance Relay Assisted Wireless Communication Using VBLAST M.M. Kamruzzaman	6259				
A Novel Clustering Routing Protocol in Wireless Sensor Network Wu Rui, Xia Kewen, Bai Jianchuan, Zhang Zhiwei	6267				
Analysis to the Error and Accuracy of Differential Barometric Altimetry Lirong Zhang, Zhengqun Hu	6274				
Load Balancing Based on the Specific Offset of Handover Liu Zhanjun, Ma Qichao, Ren Cong, Chen Qianbin	6281				
Peak Power Reduction Using Improved Selective Mapping Technique for OFDM Muhmmad Rizwan Anjum, Mussa A. Dida, M. A. Shaheen	6291				
Three Decades of Development in DOA Estimation Technology Zeeshan Ahmad, Iftikhar Ali	6297				
Handover Scenarios for Mobile WiMAX and Wireless LAN Heterogeneous Network NMAED Wirastuti, CCW Emehel	6313				
Cliques-based Data Smoothing Approach for Solving Data Sparsity in Collaborative Filtering Yulie Yang, zhijun Zhang, Xintao Duan	6324				
A Complete Lattice Lossless Compression Storage Model					
	6332				

Vol. 12, No. 8, August 2014

ISSN 2302-4046

Ч.Г.,

Zhi Hullai			
A Complete Combinatorial Solution for a Coins Change Puzzle and Its Computer Implementation Daxin Zhu, Xiaodong Wang	6338		
Rules Mining Based on Rough Set of Compatible Relation Weiyan Xu, Ming Zhang, Bo Sun, Mengyun Lin, Rui Cheng	6346		
A Dynamic Selection Algorithm on Optimal Auto-Response for Network Survivability Jinhui Zhao, Yujia Sun, Liangxun Shuo	6354		
Valuing Semantic Similarity Abdoulahi Boubacar, Zhendong Niu	6361		
Dynamic Virtual Programming Optimizing the Risk on Operating System Prashant Kumar Patra, Padma Lochan Pradhan	6369		
Conceptual Search Based on Semantic Relatedness Abdoulahi Boubacar, Zhendong Niu	6380		
Image Protection by Intersecting Signatures Chun-Hung Chen, Yuan-Liang Tang, Wen-Shyong Hsieh, Min-Shiang Hwang	6386		
Time-Weighted Uncertain Nearest Neighbor Collaborative Filtering Algorithm Zhigao Zheng, Jing Liu, Ping Wang, Shengli Sun	6393		
Assembly Sequence Planning for Products with Enclosed Shell Yan Song, Juan Song, Zhihong Cheng	6403		
Small-world and Scale-free Features in Harry Potter Zhang Jun, Zhao Hai, Xu Jiu-qiang, Wang Jin-fa			
A Brief Analysis into E-commence Website Mode of the Domestic Luxury Lu Lian			
Downscaling Modeling Using Support Vector Regression for Rainfall Prediction Sanusi Sanusi, Agus Buono, Imas S Sitanggang, Akhmad Faqih	6423		

TELKOMNIKA Indonesian Journal of Electrical Engineering Vol. 12, No. 8, August 2014, pp. 6423 ~ 6430 DOI: 10.11591/telkomnika.v12i8.6195

6423

Downscaling Modeling Using Support Vector Regression for Rainfall Prediction

Sanusi*¹, Agus Buono², Imas S Sitanggang³, Akhmad Faqih⁴

 ^{1.2.3}Department of Computer Science, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, 16680 Bogor, Indonesia, Ph/Fax. +62-251-628448/622961
 ⁴Department of Geophysics and Meteorology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, 16680 Bogor, Indonesia, Ph/Fax. +62-251-628448/622961
 Corresponding author, e-mail: sanusiumarhasan@gmail.com¹, pudesha@yahoo.co.id², imas.sitanggang@gmail.com³, akhmadfa@jpb.ac.id⁴

Abstract

Statistical downscaling is an effort to link global scale to local scale variable. It uses GCM model which usually used as a prime instrument in learning system of various climate. The purpose of this study is as a SD model by using SVR in order to predict the rainfall in dry season; a case study at Indramayu. Through the model of SD, SVR is created with linear kernel and RBF kernel. The results showed that the GCM models can be used to predict rainfall in the dry season. The best SVR model is obtained at Cikedung rain station in a linear kernel function with correlation 0.744 and RMSE 23.937, while the minimum prediction result is gained at Cidempet rain station with correlation 0.401 and RMSE 36.964. This accuracy is still not high, the selection of parameter values for each kernel function need to be done with other optimization techniques.

Keywords: statistical downscaling, general circulasi models, support vector regression, rainfall in dry season

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

In some recent years ago, many efforts have already done to explore the effect of climate variety whether in a big scale or climate change toward the variability of rainfall in the worldwide [1]. The climate variety especially rainfall in Indonesia mostly influenced by global phenomenon such as El-Nino and Southern Oscillation (ENSO), ENSO is conventionally identified as ocean temperature warming in eastern Pacific [2]. Indian Ocean Dipole (IOD), IOD as a modus of tropical physic in Indian Ocean is strongly believed as a main effect which causes dryness in Indonesia [3]. Madden Julian Oscillation (MJO), MJO as a global phenomenon influences the climate in western of Indonesia [4]. This phenomenon also happens in Indramayu. It is one of Indonesia district which has monsoon rain and as a central production of agriculture particularly rice [5]. The main factors cause crop failures in Indramayu are dryness (79.8%), pest attack (15.6%) and float (5.6%) [6].

One of instruments which can be used to observe the indication of climate variability is General Circulation Mode [7]. It can be known that GCM has an intense relationship between big scale climate and whether on local scale for rainfall prediction [8], [9]. Simulated rainfall pattern from the various models of GCM is able to give basic information that needed to the future development [10]. However, GCM data is considered to the low of resolution and global scale which difficult to be used in doing prediction because local climate needs high resolution, but GCM is still can be used if it mixed to the downscaling technique.

Many models that already used to predict climate in GCM and SD such as Buono *et al* (2010) [11] statistical downscaling modeling using Artificial Neural Networks (ANN) for prediction monthly rainfall in Indramayu. In addition, Wigena (2006) [12] statistical downscaling model with Regression Projection Persuit (PPR) to forecast the rainfall (monthly rainfall case in Indramayu). This study uses Support Vector Regression on downscaling model to predict the rainfall in dry season.

Received April 1, 2014; Revised June 3, 2014; Accepted June 15, 2014

(1)

6424

Statistical downscaling is defined as transfer function that describes functional relationship of global atmospheric circulation with local climate elements [13]. Figure 1 is process illustration of downscaling statistical.

$$Y_{t,p} = f(X_{t,q,s,g})$$

Where,

Figure 1. Statistical Downscaling Illustration

1.2. Support Vector Regression

Support Vector Regression (SVR) is the expansion of Support Vector Machine (SVM). SVM used to solve clarification problem, while SVR used to regression case. SVR is a method that can overcome overfitting, so that it will result better performance [14].

Suppose we have a set of data as much as l set training data in a formula:{ $\chi = xi,yi$ with i=1,...,l, by x input data = { $x_1, x_2, x_3, ...,n$ } $\subseteq \Re N$ and the corresponding output as { $y = [y_i, ..., y_l] \subseteq \Re$ }. When ε value is equal as 0, we will get a perfect regression. Suppose we have a function as regression line below:

$$f(x) = w \cdot \phi(x) + b \tag{2}$$

By $\phi(x)$ shows a point in feature space F the mapping result of x in input space. Coefficient of w and b are estimated by minimizing the risk function that describes in the following formulation:

$$\min \frac{1}{2} \| w \|^2 + C \frac{1}{2} \sum_{i=1}^{\ell} L_{\varepsilon}(y_i, f(x_i))$$
(3)

Depends on

TELKOMNIKA Vol 12, No. 8, August 2014: 6423 - 6430

■ 6425

$$\begin{array}{l} y_i - w \varphi(x_i) - b \leq \epsilon \\ w \varphi(x_i) + b - y_i \leq \epsilon, i = 1, 2, 3, ..., \ell \end{array}$$

With,

$$L_{\varepsilon}(y_i, f(x_i)) = \begin{cases} |y_i - f(x_i)| - \varepsilon, |y_i - f(x_i)| \ge \varepsilon \\ 0, & \text{, to the others} \end{cases}$$

By minimizing $|| w ||^2$ will make the function as thin as possible, as a result the capacity function can be controlled. ε -insensitive loss function required to minimize norm from w achieve better generalization to regression function f(x). That is why we have to solve the following problem:

 $\min \frac{1}{2} \| \mathbf{w} \|^2$ (4)

Depends on:

 $\begin{array}{l} y_i - w\varphi(x_i) - b \leq \epsilon \\ w\varphi(x_i) + b - y_i \leq \epsilon, i = 1, 2, 3, ..., \ell \end{array}$

Assume the function of f(x) which can approximate to all of these points (x_i, y_i) . Then, we will get a cylinder as describe in Figure 2.

Accuracy of ε in this case we assume that all points in the range $f \pm \varepsilon$ (feasible). In the case of ineligibility, where there are some points that may be out of range $f \pm \varepsilon$, we need to add variable of slack ξ, ξ' . Furthermore, the optimization problem can use the following formula:

$$\min = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{t=1}^{t} (\xi_t + \xi_t^*)$$
(5)

Depends on:

$$\begin{split} y_i &- w^T \varphi(x_i) - \xi_i - b \le \epsilon, i = 1, 2, 3, ..., \ell \\ w \varphi(x_i) &- y_i - \xi_i^* + b \le \epsilon, i = 1, 2, 3, ..., \ell \\ \xi, \xi^* \ge 0 \end{split}$$

Downscaling Modeling Using Support Vector Regression for Rainfall Prediction (Sanusi)

State State

84.5.5 2.5.5.5.5.

The constant of C > 0 determined the bargaining between the thinness of function f and the upper limit of deviation that more than ϵ was still tolerated. ϵ was comparable to the accuracy of the approximation of the training data. The highest value of ϵ was related to ξ^*_i that has small and low approximation accuracy. The highest value for variable ξ^*_i will make empirical errors which have a considerable influence on the regularization factor. In SVR support vector there was the training data which located out of f from the decision function.

By C was determined by user, $K(x_i, x_j)$ was dot-product kernel that identified as $K(x_i, x_j) = \phi^T(x_i) \phi^T(x_j)$, by using Lagrange multipliers and optimalization condition. The regression function was formulated explicitly in the following formula:

$$f(x) = \sum_{i=1}^{t} (\alpha_i - \alpha_i^*) K(x, x_i) + b$$
(6)

Before doing training and test of SVR, it is better for us to decide parameter value of C, ϵ to the function of Linear Kernel and C parameter, ϵ , and γ to RBF kernel function.

2. Research Method

This study was undertaken in several phases. All of those phases can be seen in the following figure Figure 3.

Figure 3. Research Flowchart

The beginning of this study was literature review; it used in order to understand all problems that will be researched. The data used in this research is secondary data divided to GCM hindcast data result (used as clarify variable) and data of rainfall observation (used as respond variable). Result of GCM hindcast data was acquired from the Climate Information Tool Kit (CLIK) APEC Climate Center (APCC) as the rainfall data and type of ASCII file which consists of 6 models with a resolution grid of latitude and longitude 2.5^ox2.5^o, data accessed

TELKOMNIKA Vol. 12. No. 8. August 2014: 6423 - 6430

from the website CLIK APCC (http://clik.apcc21.org), as well as two models of GCM hindcast rainfall obtained from the website of the International Research Institute Data Library (IRIDL) (http://iridl.ldeo.columbia.edu), as data of Climate Prediction Center(CPC) Unified Gauge-Based Analysis of Global Daily Precipitation from The International Research Institute for Climate and Society (IRI) and TSV file type with a grid resolution of latitude and longitude 0.5°x0.5°. Hindcast GCM data used to build prediction model in 3 different months: May, June, and July (MJJ) from the year of 1982-2008 (27 years) every model at every rainfall station. In this study, there are 8 GCM hindcast rainfalls to build prediction model as shown in Table 1.

The data of rainfall observation (respond variable) is the average value of seasonal rainfall at every rainfall station in Indramayu by longitudinal position of107°52-108°36 BT and 6°15-6°40 LS, it was obtained from the measurement and test that performed by Meteorology Department in Indramayu. There were 15 observation stations used as shown in Table 2. The data of rainfall observation was used 3 months: May, June, July (MJJ) from the year of 1982-2008 (27 years) at every rainfall station.

Data of GCM was cropped in grid of 7x7 and then make all of GCM data model to the line vector; Next, average rainfall of data GCM and observations to be the annual rainfall. Furthermore, distribute training and test data by using 9-fold cross Validation, 9 is divided due to the number of year and redone in nine times. The data PCA is necessary to be done because it can avoid the double linear data in GCM model and to save computing time during training and testing the SVR model. Reduction process is held by taking one or more major components with diversity of ≥98%. Finally the SVR training and testing can be done.

Tabel 1. The Data of GCM Hindcest Rainfall and its Founders

No Model Name		Ensemble	Institution	Sources	References	
1	GCPS T63T21	4	Korea	http://clik.apcc21.org	[16]	
2	GDAPS T106L21	20	Korea	http://clik.apcc21.org	[16]	
3	CMC1-CanCM3	120 -	Columbia	http://iridl.ldeo.columbia.edu	[17]. [19]	
4	CanCM3-AGCM3	10	Canada	http://clik.apcc21.org	[16]	
5	GFDL-CM2P1	120	Columbia	http://iridl.ldeo.columbia.edu	[17], [19]	
6	NASA-GSFC L34	8	U.S.A	http://clik.apcc21.org	[16]	
7	METRI AGCM L17	10	Korea	http://clik.apcc21.org	[16]	
8	PNU	5	Korea	http://clik.apcc21.org	[16]	

Tabel 2. The Name and Location of the 15 Rainfall Observation Stations in Indramayu

Y	Station Name	LS	вт	Y	Station Name	LS	BT
Y,	Bangkir	-6.336	108.325	Ya	Ujungaris	-6.457	108.287
Y2	Bulak	-6.338	108.116	Y 10	Loh berner	-6.406	108.282
Y3	Cidempet	-6.354	108.246	Y11	Sudimampir	-6.402	108.366
Y.	Cikedung	-6.492	108.185	Y 12	Juntinyuat	-6.433	108.438
Ys.	Losarang	-6.398	108.146	Y13	Krangkeng	-6.503	108.483
Ys	Sukadana	-6.535	108.300	Y 14	Bondan	-6.606	108.299
Y ₇	Sumurwatu	-6.337	108.325	~	Kedokan	6 500	109 424
Y.	Tugu	-6.433	108.333	1 15	Bunder	-0,509	100.424

3. Results and Analysis

Downscaling model by using SVR to predict the rainfall in dry season with clarify variable in model of GCM and observation of rainfall as respond variable, All of those data were used at every 15 rainfall stations in Indramayu. Here are the results of the prediction of the model GCM rainfall averaged as shown in Table 3.

Based on the prediction result on Table 3, it can be said that the result will be better if it has a high correlation while RMSE in low value. On the kernel linear function the thigh correlation value was obtained at Cikedung rainfall station. On the other hand, the low correlation value was gotten at Cidampet rainfall station. Overall, it can be concluded that result production by using kernel linear function was better than RBF kernel function. It was marked by the correlation value or RMSE value in every rainfall station.

Downscaling Modeling Using Support Vector Regression for Rainfall Prediction (Sanusi)

ellen eans ersity ienco wan anc an to anity time duco

1.2.2.2.025	_ A.M. 20.	

No	Candler	Kernel L	inear	Kernel RBF		
	Station	Correlation	RMSE	Correlation	RMSE	
1	Bangkir	0.578	62.269	0.562	67.799	
2	Bulak	0.684	26.052	0.345	30.298	
3	Cidempet	0.401	36.964	0.241	35.353	
4	Cikedung	0.744	23.937	0.538	42.483	
5	Losarang	0.721	26.955	0.556	32.823	
6	Sukadana	0.419	30.517	0.528	31.287	
7	Sumurwatu	0.670	36.918	-0.053	42.855	
8	Tugu	0.651	28.449	0.472	32.258	
9	Ujungaris	0.515	29.653	0.422	32.261	
10	Lohbener	0.675	32.349	0.579	35.478	
11	Sudimampir	0.514	55.424	0.472	57.634	
12	Juntinyuat	0.611	44.384	0.648	49.783	
13	Kedokan Bunder	0.726	39.267	0.696	43.202	
14	Krangkeng	0.655	43.335	0.414	49.422	
15	Bondan	0.681	24.730	0.208	27.530	

Tabel 3. The Average Correlation of the Prediction Result by using GCM Model Data and RMSE Values between Rainfall Observation in Indramayu

The best GCM model was in Taylor chart that closer to the observation point. By looking at standard deviation, RMSE and correlation, observation point is the standard deviation of data point at a particular location [20]. There are 8 explanation of GCM models we can find at Taylor chart, they are: 1. CMC1-CanCM3, 2. GDAPS T106L21, 3. GFDL-CM2P1, 4. GCPS T63T21, 5. CanCM3-AGCM3, 6. METRI AGCM L17, 7. NASA-GSFC L34, 8. PNU. Here is Taylor chart for GCM model at Cikedung and Cidempet rainfall station as shown in Figure 5.

Figure 5. Taylor Chart for GCM Model

Based on the chart in Figure 5, it was known that Cikedung rainfall station was at standard deviation about ±44 and RMSE value ±30. The 1 model was potentiality to be the best model in this location if it compared to another model while Cidempet rainfall station was at ±36 standard deviation. The 1 model became the best model in this location if it compared to another model. But, the 1 model at Cidempet station was not as better as 1 model at Cikedung station, it was caused by the 1 model at Cidempet station has ±32 RMSE value. The overall of linear kernel function was better than RBF kernel function.

ISSN: 2302-4046

4. Conclusion

To sum it up, the models which were resulted to predict the rainfall in dry season will be better if it looked from the average of prediction result or the error average. The best correlation value was obtained at Cikedung rainfall station in 0.744 correlation value and 23.937 RMSE while the lowest linear kernel function was gained at Cidempet rainfall station in 0.401 correlation value and 36.964 RMSE. The kernel function of RBF was not included to the best function because the result prediction was lower than linear kernel function. It can be seen from the correlation value or RMSE on RBF kernel function.

Suggestion to the next research, downscaling model of GCM model data can be applied in order to predict the rainfall in dry season by using Support Vector Regression. The utilization of GCM grid can be used besides grid of 7x7. The accuracy was not high yet, and then the selection of parameter values for each kernel function needs to be performed with other optimization techniques.

References

- Karamouz M, Fallahi M, Nazif S, Farahani, RM. Long Lead Rainfall Prediction Using Statistical Downscaling and Artificial Neural Network Modeling. Archive of SID. Sharif University of Technology. 2009; 16(2): 165-172.
- [2] Chen TS, Yang CT, Kuo MC, Kuo HC, Yu SP. Probabilistic Drought Forecasting in Southern Taiwan Using El Niño-Southern Oscillation Index. Terr. Atmos. Ocean. Sci. 2013; 24(5): 911-924.
- [3] Ashok K, Guan Z, Yamagata T. A Look at the Relationship between the ENSO and the Indian Ocean Dipole. J Meteorological Society. 2003; 18(1): 41-56
- [4] Evana L, Effendy S, Hermawan E. Pengembangan Model Prediksi Madden Julian Oscillation (MJO) Berbasis pada Hasil Analicis Data Real Time Multivariate MJO (RMM1 dan RMM2). J. Agromet. 2008, 22 (2): 144-159.
- [5] Zein. Pemodelan Backpropagation Neural Networks dan Probabilistic Neural Network untuk Pendugaan Awal Musim Hujan Berdasarkan Indeks Iklim Global. Thesis. Bogor. Postgraduate Bogor Agriculture University; 2006.
- [6] Estiningtyas W. Pengembangan Model Asuransi Indeks Iklim untuk Meningkatkan Ketahanan Petani Padi dalam Menghadapi Perubahan Iklim. Dissertation. Bogor: Postgraduate Bogor Agriculture University; 2012
- [7] Villages RJ, Jarvis A. Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis Working. J Centro International de Agricultura Tropical International Center for Tropical Agriculture. 2010; 1: 1-18.
- [8] Liu Y, Fan K. A New Statistical Downscaling Model for Autumn Precipitation in China. J. Climatol. 2012; DOI: 10.1002/joc.3514.
- [9] Kannan S, Ghosh S. Prediction of daily rainfall state in a river basin using statistical downscaling from GCM output. Springer, Department of Civil Engineering, Indian Institute of Technology Bombay. India, Spinger. 2010; DOI 10.1007/s00477-010-0415-y.
- [10] Faqih A. Rainfall Variability in the Austral-Indonesian Region and the Role of Indo-Pacific Climate Drivers. Dissertation University of Southern Queensland. 2010.
- [11] Buono A, Faqih A, Boer R, Santikayasa IP, Ramadhan A, Muttaqien MR, Asyhar A. A Neural Network Architecture for Statistical Downscaling Technique: A Case Study in Indramayu District. Publication in International Conference, The Quality Information for Competitive Agricultural Based Production System and Commerce (AFITA). 2010.
- [12] Wigena HA. Pemodelan statistical downscaling dengan regression projection persuit untuk peramalan curah hujan (kasus curah hujan bulanan di Indramayu). Dissertation. Bogor: Postgraduate Bogor Agriculture University. 2006.
- [13] Sutikno. Statistical Downscaling Luaran GCM dan Pemanfaatannya untuk Peramalan Produksi Padi. Dissertation. Bogor. Postgraduate Bogor Agriculture University. 2008.
- [14] Smola A, Schölkopf B. A Tutorial on Support Vector Regression. NeuroCOLT, Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK. 2004; 199–222.
- [15] Arampongsanuwat S, Meesad P. Prediction of PM₁₀ using Support Vector Regression. International Conference on Information and Electronics Engineering, IACSIT Press. Singapore. 2011; 6.
- [16] An KH, Heo Jin Y, Hameed SN. CLIK 2.0 CLimate Information tool Kit User Manual. APEC Climate Center. 2010.
- [17] Xie P, Yatagai A, Chen M, Hayasaka T, Fukushima Y, Liu C, Yang S. A gauge-based analysis of daily precipitation over East Asia. Journal of Hydrometeorology. 2008, (8): 607-627.
- [18] Chen MW, Shi P, Xie VBS, Silva VE, Kousky R, Higgins W, Janowiak JE. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. 2008. Res. 113, D04110, doi:10.1029/2007JD009132.

Downscaling Modeling Using Support Vector Regression for Rainfall Prediction (Sanusi)

Чr ,

[19] Chen M, Xie P. CPC Unified Gauge-based Analysis of Global Daily Precipitation. Western Pacific

Geophysics Meeting, Cairns, Australia. 2008.
 [20] Taylor KE. Summarizing multiple aspect of model performance in a single diagram. J Geophysical Research: Atmospheres. 2001; 106(D7): 7183-7192.

TELKOMNIKA Vol. 12, No. 8, August 2014: 6423 - 6430

6430 🔳

1 ٠