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Abstract 
Statistical downscaling is an effort to link global scale to local scale variable. It uses GCM model 

which usually used as a prime instrument in learning system of various climate. The purpose of this study 
is as a SO model by using SVR in order to predict the rainfall in dry season; a case study at lndramayu. 
Through the model of SO. SVR is created with linear kernel and RBF kernel. The results showed that the 
GCM models can be used to predict rainfall in the dry season. The best SVR model is obtained at 
Cikedung rain station in a linear kernel function with correlation 0.744 and RMSE 23.937, while the 
minimum prediction result is gained at Cidempet rain station with correlation 0.401 and RMSE 36.964. This 
accuracy is still not high, the selection of parameter values for each kernel function need to be done with 
other optimization techniques. 

Keywords: statistical downscaling, general circulasi models, support vector regression, rainfall in dry 
season 

Copyright© 2014 Institute of Advanced Engineering and Science. All rights reserved. 

1. Introduction 
In some recent years ago, many efforts have already done to explore the effect of 

climate variety whether in a big scale or climate change toward the variability of rainfall in the 
worldwide (1). The climate variety especially rainfall in Indonesia mostly influenced by global 
phenomenon such as El-Nino and Southern Oscillation (ENSO), ENSO is conventionally 
identified as ocean temperature warming in eastern Pacific (2]. Indian Ocean Dipole (100), IOD 
as a modus of tropical physic in Indian Ocean is strongly believed as a main effect which 
causes dryness in Indonesia [3]. Madden Julian Oscillation (MJO), MJO as a global 
phenomenon influences the climate in western of Indonesia (4). This phenomenon also happens 
in lndramayu. It is one of Indonesia district which has monsoon rain and as a central production 
of agriculture particularly rice (5). The main factors cause crop failures in lndramayu are dryness 
(79.8%). pest attack (15.6%) and float (5.6%) [6]. 

One of instruments which can be used to observe the indication of climate variability is 
General Circulation Mode (7). It can be known that GCM has an intense relationship between 
big scale climate and whether on local scale for rainfall prediction (8), (9). Simulated rainfall 
pattern from the various models of GCM is able to give basic information that needed to the 
future development (10). However. GCM data is considered to the low of resolution and global 
scale which difficult to be used in doing prediction because local climate needs high resolution. 
but GCM is still can be used if it mixed to the downscaling technique. 

Many models that already used to predict climate in GCM and SD such as Buono et al 
(2010) (11] statistical downscaling modeling using Artificial Neural Networks (ANN) for 
prediction monthly rainfall in lndramayu In addition. Wigena (2006) [12) statistic~IJjownscaling 
model with Regression Projection Persuit (PPR) to forecast the rainfall (monthly r~in"311 case in 
lndramayu). This study uses Support Vector Regression on downscaling model to predict the 
rainfall in dry season 

Received April 1. 201 4: Revised June 3. 2014; Accepted June 15. 2014 
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Statistical downscaling is defined as transfer function that describes functional 
relationship of global atmospheric circulation with local climate elements [13]. Figure 1 is 
process illustration of downscaling statistical. 

l/v'here, 
Y = local climate variable 
X = GCM output variable 
t = time period 
p = many of Y variable 

q = many of X variable 
s = many of atmosphere layer 
g = GCM domain 

25.Y::__ .-4-~...L..J,,--.-'-~-'---''----'----"-----"-~.-"---''--~.:.._~·~ 

Stat1st1cal downscaling 

surface obser~attons 

. . 

Figure 1. Statistical Downscaling Illustration 

1.2. Support Vector Regression 

(1) 

Support Vector Regression (SVR) is the expansion of Support Vector Machine (SVM). 
SVM used to solve clarification problem. while SVR used to regression case. SVR is a method 
that can overcome overfitting, so that it will result better performance (14). 

Suppose we have a set of data as much as C set training data in a formula:(x = 
xi,yi with i=l .... .C, by x input data = {x1, x2, x3 •. .. ,n} !;;; 9'N and the corresponding output as 
(y == (J; .... ,yi] s;; 'J~ }. l/v'hen £value is equal as 0, we will get a perfect regression. Suppose we 
have a function as regression line below: 

f(x) = w · 4>(x) + b (2) 

By 4>(x) shows a point in feature space F the mapping result of x in input spa~ .Coefficient of 
w and b are estimated by minimizing the risk function that describes in the follo~g formulation: 

! 

(3) 

Depends on 

TELKOMNIKA Vol 12. No 8. August 2014 · 6423 - 6430 
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y, - w'(x1) - b S £ 

w'(x1) + b - Yi S £, i = 1, 2, 3, ... , t 

With, 

L (y f(x )) = {ly, - f(x1)I - £, IY1 - t(x1)I ~ EJ 
c 1' 1 O , to the others 

By minimizing U w 12 will make the function as thin as possible, as a result the capacity 
function can be controlled. £-insensitive loss function required to minimize nollll from w achieve 
better generalization to regression function f(x). That is why we have to solve the following 
problem: 

mini D w 02 (4) 

Depends on: 

YI - w'(x1) - b S £ 

w'(x1) + b - Y1 S £, i = 1, 2, 3, .... t 

Assume the function of f(x} which can approximate to all of these points (x,. y,). Then, 
we will get a cylinder as describe in Figure 2. 

J
""" , /t\· ~ tr 

~· .. · ~ · ·; jlxl 
@ ...-15 • • 

_ - ,,_._ - "' - · - · ·o - ~ S..- no • • /(J; ) ~. 
• O \!> ._..,, i,!,Y 

.©" 0 0 ~ Q · " 

o . .o.::1~ ,..., _~- - ··1 /".'."> -~- .. ~------ · '\:/ ·• @··· ·-- .; 

\ ' 

Figure 2. Regression Function at SVR (1 5] 

Accuracy of£ in this case we assume that all points in the range f ± E (feasible). In the 
case of ineligibility, where there are some points that may be out of range f ± E, we need to add 
variable of slack~~· . Furthermore. the optimization problem can use the following formula· 

(5) 

Depends on: i., 
l 

y, - wT ~(x,) - ~ - b S c.1 = 1. 2. 3 .... , t 
w~(x,) - y, - ( + b S £, i = 1, 2. 3, .... t 
~f ~ 0 

Oownsca/Jng Mode/mg Using Support Vector Regression for Rainfall Prediction (Sanus1) 

I 
I 
I . 
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The constant of C > 0 determined the bargaining between the thinness of function f and 
the upper limit of deviation that more than E was still tolerated. E was comparable to the 
accuracy of the approximation of the training data. The highest value oft was related to ~~ that 
has small and low approximation accuracy. The highest value for variable ~ will make empirical 
errors which have a considerable influence on the regularization factor. In SVR support vector 
there was the training data which located out of f from the decision function. 

By C was determined by user, K(x,, x1) was dot-product kernel that ioemified as 

K(x,, x1) = IPT (xi) ~T (x1), by using Lagrange multipliers and optimalization condition, The 
regression function was formulated explicitely in the following formula: 

(6) 

Before doing training and test of SVR, it is better for us to decide parameter value of C, 
E to the function of linear Kernel and C parameter, £, and y to RBF kernel function. 

2. Research Method 
This study was undertaken in several phases. All of those phases can be se:m in the 

following figure Figure 3. 
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Figure 3. Research Flowchart 

The beginning of this study was literature review. II used In order to uM erstand all 
problems that will be researched. Tne data used in this research is secondary data divided to 
GCM hindcast data result (used as clarify variable) and data of rainfall observation (used as 
respond variable). Result of GCM hindcast data was acquired from the Climate Information 
Tool Kit (CLIK) APEC Climate Center (APCC) as the rainfall data and tyre of ASCII file which 
consists of 6 models with a resolution grid of latitude and longitude 2.5 x2 s0

• data accessed 
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from the website CLIK APCC (http://clik.apcc21.org), as well as two models of GCM hindcast 
rainfall obtained from the website of the International Research Institute Data library (IRIDL) 
(http:l/iridl.ldeo.columbia.edu), as data of Climate Prediction Center(CPC) Unified Gauge-Based 
Analysis of Global Daily Precipitation from The International Research Institute for Climate and 
Society (IRI) and TSV file type with a grid re~olution of latitude and longitude 0.5°x0.5°. Hindcast 
GCM data used to build prediction model in 3 different months: May, June, and July (MJJ) from 
the year of 1982-2008 (27 years) every model at every rainfall station. In this study, there are 8 
GC.M hindcast rainfalls to build prediction model as shown in Table 1. 

The data of rainfall observation (respond variable) is the average value 9f seaso.nal 
rainfall at every rainfall station in lndramayu by longitudinal position of107°52-108°36 BT 
and 6°15.-6°40.LS, it was obtained from the measurement and test that performed by 
Meteorology Department in lndramayu. There were 15 observation stations used as shown in 
Table 2. The data of rainfall observation was used 3 months: May, June, July (MJJ) from the 
year of 1982-2008 (27 years) at every rainfall station. 

Data of GCM was cropped in grid of 7x7 and then make all of GCM data model to the 
line vector; Next, average rainfaii of data GCM and observations to be the annual rainfall. 
Furthermore, distribute training and test data by using 9-fold cross Validation, 9 is divided due to 
the number of year and redone in nine times. The data PCA is necessary to be done because it 
can avoid the double linear data in GCM model and to save computing time during training and 
testing the SVR model. Reduction process is held by taking one or more major components with 
diversity of ~98% Finally the SVR training and testing can be done. 

Tabel 1. The Data of GCM Hindcest Rainfall and its Founders 

No Model Ensemble Institution Sources References 
Name 

1 GCPS T63T21 4 Korea hUp llchk apcc21 .org (16) 
2 GDAPS T106L21 20 Korea http /ld1k apcc21 .org (16) 
3 CMC1.CanCM3 120 Columbia http.lliridl.ldeo.columbia edu (17). (19) 
4 CanCM3·AGCM3 10 Canada http.l/d1k.apcc21 .org (16) 
5 GFDL-CM2P1 120 Columbia http://iridl ldeo columbia edu (17]. (19) 
6 NASA·GSFC L34 8 U.S.A http:l/dik apcc21 .org (16) 
7 METRI AGCM L17 10 Korea hltp:l/cllk apcc21 .org (16) 
8 PNU 5 Korea http llcllk.apcc21 .org (16) 

Tabel 2. The Name and Location of the 15 Rainfall Observation Stations in lndramayu 
y Station LS BT y Station LS BT Name Name 
y, Bangkir -6 336 108.325 y, Uiungaris -6 457 108.287 
Y1 Bulak -6.338 108.116 Y10 Loh bemer -6 406 108.282 
Y1 Ctdempet -6 354 108.246 y ,, Sud1mampir -6 402 108.366 
v. C1kedung -6 492 108.185 Y11 Junhnyuat -6 433 108.438 
y! Losarang -6 398 108.146 Yu Krangkeng -6 503 108 483 
v, Sukadana -6.535 108.300 Y,. Bond an -6 606 108 299 
v, Sumurwatu -6 337 108.325 

Yu 
Kedokan -6 509 108 424 

Y, Tugu -6.433 108 333 Sunder 

3. Results and Analysis 
Downscaling model by using SVR to predict the rainfall 1n dry season with clarify 

variable in model or GCM and observation of rainfall as respond variable. All of those data were 
used at every 15 rainfall stations in lndramayu. Here are the results of the prediction of the 
model GCM rainfall averaged as shown in Table 3 

Based on the prediction result on Table 3. it can be said that the result will be be~r if it 
has a high correlation while RMSE in low value. On the kernel linear function the~~igh 
correlation value was obtained at Cikedung rainfall station. On the other hand. the ICM' 
correlation value was gotten at C1dampet rainfall station. Overall. it can be concluded that result 
production by using kernel linear function was better than RBF kernel function. It was marked by 
the correlation value or RMSE value in every rainfall station 

Downscaling Mode/mg Using Support Vector Regression for Rainfall Prediction (Sanus1) 
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I 
~ 

I 



• 

6428 • ISSN: 2302-4046 

Tabet 3. The Average Correlation of the Prediction Result by using GCM Model Data and 
RMSE Values between Rainfall Observation in lndramayu 

No Station 
Kernel Linear 

Correlation RMSE 
Kernel RBF 

Corre:ation RMSE 
1 Bangkir 0.578 62.269 0.562 67.799 
2 Bulak 0.684 26.052 0.345 30.298 
3 Cidempet 0.401 36.964 0.241 35.353 
4 Cikedung 0.744 23.~37 0.53!: 42.483 
5 Losarang 0.721 26.955 0.556 32.823 
6 Sukadana 0.41 9 30.517 0.528 31.287 
7 Sumurwatu 0.670 36.918 -0.053 42.855 
8 Tugu 0.651 28.449 0.472 32.258 
9 Ujungaris 0.515 2!l.653 0.422 32.261 
10 Lohbener 0.675 32.3-19 0.579 35.478 
11 Sudimampir 0.514 55.424 0.472 57.634 
12 Juntinyuat 0.611 44.384 0.648 49.783 
13 Kedokan Bunder 0.726 39.267 0.696 43.202 
14 Krangkeng 0.655 43.335 0.414 49.422 
15 Bondan 0.681 24.730 0.208 27.530 

The best GCM model was in Taylor chart that closer to the obser,.,ation point. By 
looking at standard deviation, RMSE and correlation, observation point is tha standard deviation 
of data point at a particular location (20). There are 8 explanation of GCM models we can find at 
Taylor chart, they are: 1. CMC1-CanCM3, 2. GOAPS T106L21 . 3. GFDL-CM2P1, 4. GCPS 
T63T21, 5. CanCM3-AGCM3, 6. METRI AGCM L 17, 7. NASA-GSFC L34, 8. PNU. Here is 
Taylor chart for GCM model at Cikedung and Cidempet rainfall staticn as shown ir. Figure 5. 
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Figure 5. Taylor Chart for GCM Model 

Based on the chart in Figure 5, it was known that Cikedung rainfal: station was at 
standard deviation about ±44 and RMSE value ±30. The 1 model was potentiality to be the best 
model in this location if it compared to another model while Cidempet rainfall station was at ±36 
standard deviation. The 1 model became the best model in th;s location if it compared to 
another model. But, the 1 model at Cidempet station was not as better as 1 m~~el at Cikedung 
station, it was caused by the 1 model at Cidempet station has ±32 RMSE value~Jrhe overall of 
linear kernel function was better than RBF kernel function. 1 

TELKOMNIKA Vol 12, No. 8. August 2014 6423 - 6430 



• 

.. 

TELKOMNIKA ISSN: 2302-4046 • 6429 

4. Conclusion 
To sum it up, the models which were resulted to predict the rainfall in dry season will be 

better if it looked from the average of prediction result or the error average. The best correlation 
value was obtained at Cikedung rainfa:I station in 0.744 correlation value and 23.937 RMSE 
while the lowest linear kernel function was gained at Cidempet rainfall station in 0.401 
correlation value and 36.964 RMSE. The kernel function of RBF was not included to the best 
function because the result prediction was lower than linear kernel function. It can be seen from 
the correlation value or RMSE on RBF kernel function. 

Suggestion to the next research, downscaling model of GCM model data can be 
applied in order to predict the rainfall in dry season by using Support Vector Regression. The 
utilization of GCM grid can be used besides grid of 7x7. The accuracy was not high yet, and 
then the selection of parameter values for each kernel function needs to be performed with 
other optimization techniques. 
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