The International Symposium on Agricultural and Biosystem Engineering

BOOK OF ABSTRACTS

"Improving The Role of Agricultural and Biosystem Engineering Toward Food & Energy Self-sufficiency and Sustainable Agriculture"
Editor:
Lilik Sutiarso
Murtiningrum

Reviewers:
Prof. Dr. Sakae Shibusawa (Tokyo University of Agriculture and Technology, Japan)
Prof. Dr. Sumio Kawano (Kagoshima University, Japan)
Prof. Dongil Chang, Ph.D. (Chungnam National University, Korea)
Associate Professor Takashi Okayasu, Ph.D. (Kyushu University)
Prof. Vinod Jindal, Ph.D. (Visiting Professor, Mahidol University, Thailand)
Prof. Dr. Sahid Susanto (Universitas Gadjah Mada, Indonesia)
Prof. Dr. Budi Rahardjo (Universitas Gadjah Mada, Indonesia)

Proceedings
The International Symposium on Agricultural and Biosystem Engineering 2013

Theme: Improving The Role of Agricultural and Biosystem Engineering Toward Food and Energy Self-sufficiency and Sustainable Agriculture

Published by:
Jurusan Teknik Pertanian Fakultas Teknologi Pertanian Universitas Gadjah Mada
Jl. Flora No.1 Bulaksumur, Yogyakarta, Indonesia 55281
Telephone/fax: +62-274-563542
E-mail: tep_fip@ugm.ac.id

Copyright law protected
Don’t to quote, reproduce and translate some or all of these books without the permission of the publisher

First Edition: 2013
ISBN: 978-602-14315-0-4
LIST OF CONTENT

Foreword... i
List of Content... ii

MAIN PAPER

Informalization Agriculture in Japan
Author: Takashi Okayasu

SUB-THEME: POSTHARVEST AND FOOD ENGINEERING

Design of Thermal Conductivity Apparatus Base on Transient-state Radial Cylinder Method
Authors: Bambang Dwi Argo, Wahyunanto A. Nugroho, Yoes B. Pristy and Ubaidillah

Effect Extraction Method of Composition Fatty Acid Dieng Carica Seeds Oil
(Carica candamarcensis HOK) as Edible Oil
Authors: Dewi Lurasati, Haslina and Bambang Kunarto

Adsorption Equilibrium Studies of Bio-Based Butanol from Fermentation Broth by Immobilized of Potato Starch Sorbent
Authors: Dina Wahyu, Tsair-Wang Chung

Quality Review of Three Types of Mangoeskin Using Ultrasonic Waves
Authors: Emmy Darmawati, Amir Hamzah

Influence of Air Flow Rate on Drying Characteristics of Clove
Authors: Junaedi Muhidong, Inge Scorpi Tulliza and Ishak

Performance Test of Equipment And Machines Of Banana Miller For Mechanization Technology Development Of Banana Processing In South Kalimantan Province
Authors: Retno Endrasari, Susy Lesmayati
Continuous Dehumidification of Organic Sorbent Powder in Two Connected Fluidized Beds with A Cooling and A Heating Pipe
Authors: Sukmawaty, Syahrul

Method of Waxing on Quality and Shelf-life of Semi-cutting Mangosteen in Low Temperature Storage
Authors: Usman Ahmad, Emmy, Darmawati, and Nur Rahma Refilia

Acidified Sodium Chlorite Treatments for Improving Shelf-life of Unripe Shredded Papaya
Authors: Vinod K. Jindal, Pompailin Sinrat and Nipon Chamchan

Fighting for Malnutrition in Indonesia by Production of Artificial Rice Based on Arrow Root and Cassava with Addition of Cowpea
Authors: Daniel Fatchurrahman, Wenny Bekti Sunarharum, Anugerah Dany Priyanto, Fathy Fasial Bahanan

Product Features and Cost Analysis Of MOCAS (Modified Cassava Starch) Based Bakery Products
Authors: Darmawan Ari Nugroho, Ibnu Wahid FA

Fuel Feeding Rate Controlling Base on the Temperature Distribution Simulation on Rosella Pod (Hibiscus sabdariffa linn) Drying Process
Authors: Dyah Wulandani, Leopold Oscar Nelwan, I Made Dewa Subrata

Identification of Determinant Factors in Processing and Technology: A Case Study of Fruit Processing Industries (FPi's) in Indonesia
Author: Ida Bagus Suryaningrat

Profile of The Peanut Moisture Content During Deep Bed Drying
Authors: Ansar, Sirajuddin, Widhiantari
Effect Lindak Cacao Fruit Maturity (Theobroma Cacao F.) with High Level of Polyphenols as Antioxidants
Authors: Jumriah Langkong and Mulyati M. Thahir

Study of Active Packaging System by Using Ethylene Adsorber to Prolong the Storage Life of Avocado Fruits (Persea americana Mill)
Author: Lilik Pujantoro, Andi Nurfaidah and Yadi Haryadi

The Development of Technology Bundle in Packaging of Export Quality of Mangosteens' Transportation
Authors: Ni Luh Yulianti and Gede Arda

Synthesis of Chitosan-Ag+ as Antibacterial Material
Authors: Shinta Rosalia Dewi, Sri Juari Santosa and Dwi Siswanta

Development of Coffee Beans Caffeine Extraction using Pressure and Temperature Controllable Reactor
Author: Sukrisno Widyotomo

Optimization of The High Refined Cellulose Process Production from the Sago Fiber Waste by A Delignification Process Involving Nitric Acid, Sodium hydroxide and Hydrogen peroxide as The Delignifying Agent
Author: Supranto

SUB-THEME : ENERGY AND AGRICULTURAL MACHINERY

Technical Analysis and Performance Test of A Small Scale Banana Milling Machine
Authors: Ade M Kramadibrata, Totok Herwanto and Boy Ricardo
Design of Measurement System Water Content in Pressurized Chamber without Disturbing the Process
Authors: Anang Lasriyanto, Sudjito S, Roedy S and Sumardi

Design of Farm Road Construction at the Tertiary Plot of Paddy Field
Authors: Asep Sapci, Erizal, Tatang Sumarna

Aerodynamics Properties of Castor Bean and It's Application for Blower System at Ricinus Castor Bean Hulling Machine
Authors: Cahyawan Catur Edi Margana, Rahmat Sabani, and Baharuddin

The Effect of Sugarcane Litter Compost to Soil Physical Mechanical Properties and Ratoon Sugarcane Performance
Authors: Iqbal, Tineke Mandang, E. Namaken Sembiring, M.A. Chozin

Tillage Characteristics of Rotavators in Farmland Condition of Korea
Authors: Dae-Cheol Kim, Ju-Seok Nam, Myoung-Ho Kim and Dae-Chun Kim

Feasibility Analysis of Palm Oil Mill Effluent Utilization as A Source of Electrical Energy
Authors: Suprihatin, E. Gumbira-Sa'id, O. Suparno, D.O. Suryanto and Sarono

Potential Production of Agricultural Byproducts and The Economic Feasibility of Rice Straw as A Feedstock for Bioethanol in Korea
Authors: Yeonghwan Bae, Kidong Park, Keum Joo Park

Study on Oil Palm Fresh Fruit Bunch Bruise in Harvesting and Transportation as A Function to Quality
Authors: Andreas Wahyu Krisdiarto and Lilik Sutiarso

Application of KUBOTA DC-60 for Paddy Wet Field Harvesting
Authors: Ledyta Hindiani and Gatot Pramuhadi
Engineering Characteristics and Potential Energy of Oil Palm Fruit Bunches Harvesting
Authors: Wawan Hermawan, Desrial, Muhammad Iqbal Nazamuddin

Design of Iron Wheel of A Light Tractor for Crop Maintenance in Unconsolidated Paddy Field
Authors: Radie P.A.S, I. W. Astika, D. M. Subrata and A. Azis

Design and Performance Test of Metal Kiln Venturi Drum Type for Coconut Shell Carbonization
Authors: S. Endah Agustina and Nurul Hasanah

Design of Sugarcane (Sacccharum Officinarum L) Cutting Machine for Seedling Preparation with Bud-chip Method
Authors: Siswoyo Soekarno, Luqman Budi Setiawan and Askin

The Clay Content Effect on the Formation of Shallow Mole Drainage: An Experimental Study
Authors: Siti Suharyatun, Bambang Purwantana, Abdul Rozaq and Muhjidin Mawardi

The Usage of Shaft to Shaft Transmission for Rotary Saw Crusher for Paddy Straw
Authors: Tri Tunggal, Tamaria Panggabean and Hilda Agustina

Functional Interaction between Pressure and Soil Sinkage for Terrestrial Robotic Vehicles
Author: Lenny Saulia

Design A Mechanical Device for Making Briquettes
Authors: Wiludjeng Trisasiwi, Agus Margiwiyatno, Petrus Hary Tjahja Soedibyo

A Method of Workload Application for Tractor Transmission
Authors: Su Chul Kim, Yoo Joo Kim, Seung Jae Park
SUB-THEME : LAND AND WATER RESOURCES ENGINEERING

Water Conservation Concern in Surakarta, Indonesia
Author: Agus Suyanto C-1

Influence of Increasing Rain due to Climate Change on Forest Slope Stability in Aso City, Kumamoto Prefecture, Japan
Authors: Aril Aditian and Tetsuya Kubota C-2

Evaluation on Land Use toward the Environment Support in Ponorogo Regency
Authors: Bambang Rahadi, Tunggul Sutan Haji, Euis Eliih Nurleliah and Novia Lusiana C-3

The Potential and Constraints of Agricultural Engineering Application in Tidal Lowlands Support Sustainable Food Crops Farming (A Case Study of Former Transmigration Area of Banyuasin Regency, South Sumatra Province, Indonesia)
Authors: Husin, Robiyanto H. Susanto, Benyamin Lakitan, Ardiyan Saptawan and M. Yazid C-4

The Effect of Elevation on Planting Calendar in West Timor Using Agricultural Rainfall Index (ARI) Methods
Authors: Jonathan E. Koehuall and Juli Setyanto C-5

Analysis of Soil Erosion on The Catchment Area of Musi Hydro-Power Plant, Bengkulu Province
Authors: Khairul Amri, A. Halim, Ngudiantoro and M. Faiz Barchia C-6

Distribution and Characteristic of Landslides in Volcanic Mountains of West Java, Indonesia
Authors: Ngadisih, Ryuichi Yatabe, Netra P. Bhandary and Ranjan K. Dahal C-7
Sediment Related Disasters Induced by Intense Precipitation During Hurricane Events in Nuevo Leon, Mexico. Authors: Laura Sanchez-Castillo, Tetsuya Kubota, Israel Cantu-Silva and Hasnawir

Prediction of Water Balance to Determine Growing Period of Sugarcane (Saccharum Officinarum L.) In Kalasan, Sleman. Authors: Kamelia Dwi Jayanti, Putu Sudira and Bambang Hendro Sunarminto

Effect of Silica Extracted from Sugar Cane Bagasse and Compost to Soil’s Physical Properties Under Rainfall Simulator. Authors: Musthofa Lutfi, Hafidz Yuswandhi U and Wahyunanto Agung N

Determining The Relationships Between Soil Electrical Conductivity and Some Soil Properties Measured by The Real-Time Soil Sensor (RTSS). Authors: Ni Nyoman Sulasri, Sakae Shibusawa and Masakazu Kodaira

Implementing A Minimum Environmental Flow and Its Effects on Water Management at Sekampung Irrigation Area. Authors: Endro Prasetyo Wahono, D. Legono and Istiarto and B.

Constraint and Accelerating Factors of Hydrology and Water Resources in Monsoon Region for The Development of Irrigated Paddy Land: A Case Study at Bali Island. Author: Sahid Susanto

Development of Bio-System Management for Land and Water Conservation of Watershed. Author: Sahid Susanto
Prospectives of Water Table Management on Reclaimed Tidal Lowlands with Subsurface Drainage Systems (Case Study of Banyu Urip of Banyuasin, South Sumatera Province, Indonesia) Authors: Erry Koriyami, Robiyanto H. Susanto, Dedi Setiabudidaya, Ngudiantoro and F.X. Suryadi

Load Force of Water in Tubes on Irrigation Water-Scooped Wheel Authors: Mohammad Agita Tjandra and Apri Roma Habeahan

Organic Mulching for Soil Water Conservation Author: Muhijidin Mawardi

Performance of Rotary Sprinkler on The Dry Land Author: Sitti Nur Faridah, Daniel Useng, Mahmud Achmad, Aryuni

Soil Conservation Strategy for Potentially Landslide Areas in Gintung Sub-Watershed, Central Java Province, Indonesia Authors: Nur Ainun Pulungan, Chandra Setyawan, Sekar Jatiningtyas, Junun Sartohadi

SUB-THEME D1: ENVIRONMENTAL ENGINEERING

Water Quality (BOD5 and COD) Mapping of West Tarum Canal as Water Resources for Irrigation Authors: Mouli De Rizka Dewantoro and Yan El Rizal U.D.

Characteristic of Friction and Shading Rate for Al-Screen Curtain Authors: Wonsik Choi, Sunmi Choi, Kyungran Kim, Changju Lee, Jaeyoung Byun, and Sungyoung Park, and Daeyoung Park
Utilization of Cassava Peel as Feed by Fermentation (Zero Waste Application in Mocaf Industry)
Authors: Andrew Setiawan, Gensi Ginting, Sukatiningsih, Achmad Subagio

Utilization of Tofu Liquid Waste as Growing Media for Hair Worm (Tubifex sp.) to Reduce Environmental Pollution
Authors: Arief Muammar, Aditya Mahendra, Astia R. Safitri

Cultivation of Chlorella Sp. in Tofu Processing Wastewater Using Raceway Recirculated Pond Bioreactor
Authors: Wahyunanto A. Nugroho, Mustofa Lutfi

Effect of Transient Organic Load Fluctuation using Cassava Waste Water on Anaerobic Hybrid Reactor
Authors: Yusron Sugiarto, Pratin Kullavanijaya

Reduction of Metal Mercury Concentration by The Plant’s Mata Lele (Azolla pinnata R. Br.) for Irrigation Water
Authors: Rusnam, Asmiwarti and Maidar Pratomo

SUB-THEME D2 : BIOPHYSICS ENGINEERING

Inoculation of Uromycladium Tepperianum Causes Gall Rust Disease in Various Provenances Sengon (Falcatoria moluccana (Miq.)
Authors: Arief Muammar, Gita Meidiana, Fitria R. Ratnadani, Siti H. Nurrohmah and Diah Rachmawati

Spectral Imaging Technology for Quality Evaluation of Agricultural Materials
Author: Byoung-Kwan Cho
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenotypic Characters Analysis of Cross Melon (Cucumis melo L.) Tacapa</td>
<td>D-10</td>
</tr>
<tr>
<td>Authors: Ganies Riza Arisya, Andika Tripramudya Onggo, Budi Setiadi Daryono</td>
<td></td>
</tr>
<tr>
<td>Yield Function Model of Vegetable Crops</td>
<td>D-11</td>
</tr>
<tr>
<td>Authors: Rahman Ari, Rahmad Hari Purnomo and Hilda Agustina</td>
<td></td>
</tr>
<tr>
<td>Identification of Nitrogen Status in Brassica juncea L. Using Color Moment, GLCM and Backpropagation Neural Network</td>
<td>D-12</td>
</tr>
<tr>
<td>Authors: I Putu Gede Budisanjaya, I. K. G. Darma Putra and I Nyoman Satya Kumara</td>
<td></td>
</tr>
<tr>
<td>Real Time Detection of Pin Hole on Worm-eaten Chestnut with 2CCD Camera</td>
<td>D-13</td>
</tr>
<tr>
<td>Authors: Soo Hyun Park, Soo Hee Lee, Seong Min Kim and Sang Ha Noh</td>
<td></td>
</tr>
<tr>
<td>Growth and Light Utilization Efficiency of Lettuce as Affected by Frequency and Duty Ratio of LED Illumination</td>
<td>D-14</td>
</tr>
<tr>
<td>Authors: Jae Su Lee and Yong Hyeon Kim</td>
<td></td>
</tr>
<tr>
<td>A Model-Based Approach for Extracting Viscoelastic Properties from Ultrasound Measurements</td>
<td>D-15</td>
</tr>
<tr>
<td>Authors: Sri Waluyo, Ya Guo, Gang Yao and Jinglu Tan</td>
<td></td>
</tr>
<tr>
<td>Energy and Emissions on Lemura (Sardinella sp.) Fishing in Bali Strait</td>
<td>D-16</td>
</tr>
<tr>
<td>Authors: Miftahul Choiron, Wahyu Supartono, Ag. Suryandono</td>
<td></td>
</tr>
<tr>
<td>Scale-up of Production System Prior to Commercial Moss (Sphagnum sp.) Rooftop Greening Material</td>
<td>D-17</td>
</tr>
<tr>
<td>Authors: Mirwan Ushada, Wildan Fajar Bachtiar, Ario Wicaksono, Haruhiko Murase</td>
<td></td>
</tr>
<tr>
<td>The Role of Seed Producer in Maintaining Corn Production Sustainability</td>
<td>D-18</td>
</tr>
<tr>
<td>Authors: Winda Amilia, Didik Purwadi, Henry Yuliando</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Non Destructive Measurement of Catechin Content in Gambir (Uncaria gambir Roxb) Using NIR Spectroscopy</td>
<td>D-19</td>
</tr>
<tr>
<td>Authors: Andasuryani, Y.A. Purwanto, I.W. Budiastra, K. Syamsu and Lady C.E. Lengkey</td>
<td></td>
</tr>
<tr>
<td>Non Destructive Prediction of Ripe-Stage Quality of Mango Fruit CV ‘Gedong Gineu’ stored in Low Temperature by NIR Spectroscopy</td>
<td>D-20</td>
</tr>
<tr>
<td>Authors: Yohanes Aris Purwanto, Putri Wulandari Zainal, Surisno, Usman Ahmad, Yoshio Makino, Seiichi Oshita, Yoshinori Kawagoe and Shinichi Kuroki</td>
<td></td>
</tr>
</tbody>
</table>

SUB-THEME : SYSTEM AND MANAGEMENT

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Optimization of Crude Palm Oil at PTPN VII Unit Usahe Betung by Using Goal Programming Method</td>
<td>E-1</td>
</tr>
<tr>
<td>Authors: Rahmad Hari Purwanto, Endo Argo Kuncoro and Malis Septian</td>
<td></td>
</tr>
<tr>
<td>Application of Analytical Hierarchy Process in Selection of Herbal Product</td>
<td>E-2</td>
</tr>
<tr>
<td>Authors: Luh Putu Wrasiat, Dewa Ayu Anom Yuarini, Ida Ayu Mahatma Tuningrat and I Made Anom Surisna Wijaya</td>
<td></td>
</tr>
<tr>
<td>Subak Development Programs to Implement Agro-Ecotourism</td>
<td>E-3</td>
</tr>
<tr>
<td>Authors: Sumiyati, Wayan Windia, I Wayan Tika and Ni Nyoman Sulastri</td>
<td></td>
</tr>
<tr>
<td>A Study on Determinant Factor Affecting Performance of Palm Oil Productivity in Pelalawan Regency, Riau Province, Indonesia</td>
<td>E-4</td>
</tr>
<tr>
<td>Authors: Widya Alwarrizzi and Putu Hungga</td>
<td></td>
</tr>
<tr>
<td>Authors: Arief Sudarmaji, Akio Kitagawa and Junichi Akita</td>
<td></td>
</tr>
</tbody>
</table>
Development of UV and Violet Illumination System with High Power LED for Fluorescence Imaging
Authors: Hyoung Lee, Moon S. Kim, Soo Hyun Park and Sang Ha Noh

Development of Real Time Change Point Analysis for Field Environmental Information in Agriculture
Authors: Andri Prima Nugroho, Takashi Okayasu, Muneshi Misuoka, Eiji Inoue, Yasumaru Hirai and Lilik Sutiarso

Simplified Algorithm for Daily Time Step Simulation of Standalone PV System Using Peak Sun Hour Data
Authors: Dimas Firmanda Al Riza and Syed Ihsham-ul Haq Gilani

Image Processing Method for Counting of Fish Eggs and Fish Juveniles
Authors: I Wayan Astika and Fajar Mulyanti

Institutional Culture in Brantas Watershed Management
Author: Nugroho Tri Waskitho

Modeling and Simulation of Oil Palm Plantation Productivity Based on Land Quality and Climate using Artificial Neural Network
Author: Hermantoro

Application of Fuzzy Quantification Theory I in The Criteria Selection of Gate Operation in Blawong Irrigation System, Bantul, Yogyakarta
Authors: Murtiniringrum, Mega Primarini and Saiful Rochdyanto

Kinetic of Drying of Sliced Turmeric with Modified Direct Sun Drying by Employing Greenhouse Effect
Authors: Hanim Z. Amanah, Silvia Insan Muliawati and Sri Rahayoe
Non Destructive Prediction of Ripe-Stage Quality of Mango Fruit Cv ‘Gedong Gincu’ Stored in Low Temperature by NIR Spectroscopy

Yohannes Aris Purwanto¹² Putri Wulandari Zainal³ Sutrisno¹ Usman Ahmad¹ Yoshio Makino¹ Seiichi Oshita¹ Yoshinori Kawagoe³ and Shinichi Kuroki⁶
¹Department of Mechanicaland Biosystem Engineering, Bogor Agricultural University
Email: arispurwanto@ipb.ac.id
²Center for Tropical Horticulture Studies, Bogor Agricultural University
³Faculty of Agro-industrial Technology, Dharma Andalas University
⁴Graduate School of Agricultural and Life Sciences, The University of Tokyo
⁵College of Bioresource Sciences, Nihon University
⁶Graduate School of Agricultural Science, Kobe University

Abstract

This study demonstrates the use NIR spectroscopy to predict the internal quality parameter in mango fruit non destructively. Soluble solids content (SSC), pH and firmness of mango fruits cv. ‘Gedong Gincu’) were examined by NIR reflectance to find out factors to be considered in online detection. The wavelength range of 1000–2400 nm was selected and data pre-processing was used to enhance the precision of calibration models based on partial least square (PLS). The coefficient of correlation (r) of SSC, pH and firmness were 0.756, 0.94 and 0.89, and the standard error of prediction (SEP) were 2.10°Brix, 0.157 and 0.63 kgf, respectively. It is concluded that by using the NIR measurement system, in the appropriate spectral range, it is possible to nondestructively predict the ripe-stage quality of mango fruit i.e. SSC, pH and firmness.

Keywords: mango fruit, NIR spectroscopy, internal quality, nondestructive prediction, ripe-stage quality

Introduction

Gedong Gincu is one of the exotic cultivar mango fruit (Mangifera indica L.) in Indonesia due to its sweet taste, medium size and beauty orange color. Mango fruit are usually harvested at the hard green stage (unripe) when they are physiologically mature but before the onset of the climacteric rise (Lakshminarayana et al., 1970). Mature hard green mango fruit attain a superior eating quality when ripe while immature ones do not (Medlicott et al., 1988). After harvesting, the hard green mango fruits are usually directly transported to market. In order to delay the ripening process during long-distance transportation, hard green mango fruits are stored at low temperature condition. Monitoring of quality parameter during this handling step will be very important.

Prediction of ripe-stage quality are usually done by monitoring an external and measuring an internal qualities. Various scientists have considered maturity qualities from different perspectives (Peacock, et al., 1986). Soluble solid content (SSC), pH (acidity) and firmness are the internal quality indices for mango fruits. The methods to measure these internal qualities are still destructive. Therefore, it is essential to develop efficient and non-destructive methods for measuring these internal attributes of mango fruit. Near infrared (NIR) spectroscopy is a fast, easy-to-use and non-destructive analytical technique (Day and Fearn, 1982). NIR spectroscopy has decisive advantages compared to traditional methods.
whereby it analyse sample rapidly (a few seconds per sample) and no need sample preparation (Pissard et al., 2012; Saleh et al., 2012). In addition, it is a chemical-free (limited to the reagents required for reference analyses and no waste is produced (Pissard et al., 2012; Yan et al., 2009), and can be carried out on-line (Saleh et al., 2012).

The use of NIR spectroscopy to measure internal quality attributes of fruits produce has been investigated extensively during the last decade. Use of NIR spectroscopy in fruit is receiving extensive research effort, and commercial applications are in the early stage of implementation (Abbott et al., 1997; Armstrong, 2000). The ability to rapidly 'scan' fruit online, and then sort it, means that if a given characteristic can be accurately measured, fruit can be segregated into distinct classes and either handled or marketed in a different manner.

The variety of studied fruit is large, ranging from apple (Clark et al., 2003; McGlone et al., 2005; Alamar et al., 2007), kiwi fruit (Moghimi et al., 2010), citrus (Kim et al., 2004), mango (Saranwong et al., 2003), mandarin (Guthrie et al., 2005; Gomez et al., 2006), peach (Carlomagno et al., 2004) and pear (Han et al., 2006). More applications and recent developments have been reviewed (Nicolai, 2007). Previous studies have shown that NIR has the capability to evaluate soluble solids content (SSC) in ripe mango fruit (cv. 'Caraboa') (Saranwong et al., 2001, 2003). The objective of this study was to develop calibration model and prediction of the internal quality parameter i.e. Soluble solid content, pH and firmness in mango fruit cv. Gedong Gincu during low temperature condition using NIR spectroscopy.

Materials and methods

Sample Preparation

The 153 mango fruits cv. Gedong Gincu used in this study were randomly divided into two groups of samples: the first group was used to develop the calibration models (103 samples) and the other for predicting quality and model validation purposes (50 samples). All samples had been harvested from the same farmer orchard during one day at commercial maturity or at the level maturity of 80-85 percent. Samples of mango fruits were stored at temperature of 13°C. This was a simulation condition for long distance transportation for mango fruits. Measurement was carried out every 2 days during period storage of 22 days. After acquisition of spectra, SSC was measured using digital Refractrometer, pH was measured using digital pH meter (D-24, HORIBA) and firmness was measured using Rheometer model CR-300.

NIR Spectra Collecting

Spectra of mango fruits were collected in the range of 1000-2400 nm with an increment of 5 nm using NIRflex N-500 (Büchi Labortechnik AG, Flawil, Switzerland) at room temperature of 25°C. Spectra data were collected by measuring the diffuse reflectance of samples. Operation of the instrument and data collection of NIR spectra were conducted by using NIRWare 1.2 software (Büchi Labortechnik AG, Flawil, Switzerland). Chemometric analysis was conducted by using NIRCAL 5.2 software (Büchi Labortechnik AG, Flawil, Switzerland).

A large amount of spectral data is usually obtained from NIR instrument and yield useful analytical information (Blanco and Villarroya, 2002; Osborne et al., 1993). However, the data acquired from NIR spectrometer contains background information and noise besides sample information. In order to obtain reliable, accurate and stable calibration models, it is necessary to pre-process spectral data before modeling (Cen and He, 2007). Spectral preprocessing techniques are required to remove any irrelevant information including noise.
uncertainties, variability, interaction and unrecognized features. Determining of pre-treatment method to develop calibration model NIR depends on material type and content to be predicted (Mouazzen et al., 2005).

Calibration model

Calibration model was established using PLS algorithm. Statistical parameters used to evaluate the developed NIR calibration models were:

1) **Bias**, i.e., the average deviation between the reference value \(x_n\) and the predicted value \(y_n\) of V-Set. It is recommended that Bias should equal to zero (Williams and Norris, 1990).

\[
Bias = \frac{1}{n} \sum (x_n - y_n)
\]

2) The standard error of calibration set (SEC), i.e., the standard deviation of the differences between the reference value \(x_n\) and the predicted value \(y_n\) of C-Set, corrected for bias.

\[
SEC = \sqrt{\frac{1}{n-1} \sum (x_n - y_n - Bias)^2}
\]

3) The standard error of validation set (SEP), i.e., the standard deviation of the differences between the reference value \(x_n\) and the predicted value \(y_n\) of V-Set, corrected for bias.

\[
SEP = \sqrt{\frac{1}{n-1} \sum (x_n - y_n - Bias)^2}
\]

4) Coefficient of corelation \(r\) between the reference value \(x_n\) and the predicted value \(y_n\).

\[
r = \frac{\sum (x_n-x_{\bar{n}})(y_n-y_{\bar{n}})}{\sqrt{\sum (x_n-x_{\bar{n}})^2} \sqrt{\sum (y_n-y_{\bar{n}})^2}}
\]

The model is considered more useful when \(r\) value approaches 1, whereby \(r\) value is larger than 0.90, considered as high correlation (Williams and Norris, 1990).

5) Coefficient of determination \(R^2\) between the reference value \(x_n\) and the predicted value \(y_n\).

\[
R^2 = \left(\frac{\sum (x_n-x_{\bar{n}})(y_n-y_{\bar{n}})}{\sqrt{\sum (x_n-x_{\bar{n}})^2} \sqrt{\sum (y_n-y_{\bar{n}})^2}} \right)^2
\]

6) Coefficient of variation (CV);

\[CV\text{ in } C\text{-Set: } CV = \frac{SEC}{\bar{x}} \times 100\]

\[CV\text{ in } V\text{-Set: } CV = \frac{SEP}{\bar{x}} \times 100\]

A very reliable calibration could be achieved when the value of CV in C-Set was lower than 5\% and the value of CV in V-Set was lower than 10\% (Mlček et al., 2006).
Results and discussion

NIR Spectra Analysis

References data of SSC, pH and firmness in sample of mango fruits for calibration set and validation set are shown on Table 1.

<table>
<thead>
<tr>
<th></th>
<th>N*</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSC(°Brix)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td>103</td>
<td>10.23</td>
<td>21.07</td>
<td>16.55</td>
<td>3.12</td>
</tr>
<tr>
<td>Validation</td>
<td>50</td>
<td>10.13</td>
<td>21.07</td>
<td>16.33</td>
<td>3.23</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td>103</td>
<td>2.99</td>
<td>4.78</td>
<td>0.46</td>
<td>3.61</td>
</tr>
<tr>
<td>Validation</td>
<td>50</td>
<td>2.99</td>
<td>4.78</td>
<td>0.45</td>
<td>3.60</td>
</tr>
<tr>
<td>Firmness (kgf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td>103</td>
<td>0.26</td>
<td>3.94</td>
<td>1.27</td>
<td>1.62</td>
</tr>
<tr>
<td>Validation</td>
<td>50</td>
<td>0.28</td>
<td>3.93</td>
<td>1.30</td>
<td>1.57</td>
</tr>
</tbody>
</table>

*Number of samples

Figure 1 and 2 show original spectra and normalized pre-treatment NIR spectra in mango fruits. The original one shows that there is a parallel shift of spectra. It occurred because spectra data of NIR did not only contain sample information, but also background information as well as noises. Therefore, pre-treatment was needed before modelling to get reliable, accurate and stable calibration model (Cen and H, 2007). Spectra data resulted from diffuse reflectance measurement at solid sample would be followed by scattering noise as a result of particle size difference (Chen et al., 2013). This case was supported by Blanco and Villarroya (2012) who acknowledged that physical properties of solid samples influence spectra of solid samples. Spectra pattern of near infrared reflectance indicated that wavelength of 1215-1395 nm was CH₂, 1450 nm and 1940 nm were water, 1765 nm was CH₂ and cellulose, and 2252-2400 was carbohydrate.
Figure 1. Original reflectance NIR spectra of mango fruits

Figure 2. Normalized reflectance NIR spectra of mango fruits
Calibration model

Calibration and validation of NIR spectra were carried out to predict SSC, pH and firmness of mango fruits. Calibration was obtained based on the correlation between data of NIR reflectance with SSC, pH and firmness (Table 2). For calibration set, it was obtained that Bias, SEC, CV and R² for SSC, -0.004, 0.15707, 4.35 and 0.884 for pH, -0.048, 0.63, 38.55 and 0.787 for firmness, respectively. For prediction set, it was obtained for Bias, SEP, CV and R² were 0.2604, 2.64867, 16.22 and 0.39 for SSC, -0.0006, 0.17512, 4.87 and 0.87 for pH, 0.0094, 0.69, 43.84 and 0.75 for firmness, respectively. The result showed that the model has a good correlation. This value was good as Mouazen et al. (2005) stated that calibration model having value of R² between 0.66 and 0.81 indicated approximate quantitative predictions, between 0.82 and 0.90 was considered to be a good prediction, and larger than 0.91 revealed excellent.

SEC and SEP value in this study has a quite small. This result was good since there was a small difference between SEC and SEP values. Good calibration model has a small difference between SEC and SEP. A large difference is an indication of calibration set of not a representative of validation set (Lammertyn et al., 2000). When SEP value is larger than two times than SEC, most likely over fitting will occur (Hruschka, 1990). SEP values of this study were smaller than SEC, which led to prevent the over fitting.

Figure 3, 4 and 5 show data distribution of calibration and prediction of SSC, pH and firmness. The r value indicates that PLS was an appropriate calibration technique to extract spectra variation relate to SSC, pH and firmness of mango fruits. Bias value at set calibration for SSC, pH and firmness of this study were 0.230, -0.004 and -0.048, respectively. When the evaluation was conducted using new sample at set validation. Bias value for SSC, pH and firmness were 0.2604, -0.0006 and 0.0094, respectively. It showed that accuracy of calibration could be maintained to predict SSC, pH and firmness.

Table 2. Calibration and validation of NIR model for SSC, pH and firmness

<table>
<thead>
<tr>
<th>SSC (°Brix)</th>
<th>Calibration</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N*</td>
<td>103</td>
<td>N*</td>
</tr>
<tr>
<td>Bias</td>
<td>0.230</td>
<td>Bias</td>
</tr>
<tr>
<td>SEC</td>
<td>2.10426</td>
<td>SEC</td>
</tr>
<tr>
<td>CV (%)</td>
<td>12.72</td>
<td>CV (%)</td>
</tr>
<tr>
<td>R²</td>
<td>0.571</td>
<td>R²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N*</td>
<td>103</td>
<td>N*</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.004</td>
<td>Bias</td>
</tr>
<tr>
<td>SEC</td>
<td>0.15707</td>
<td>SEC</td>
</tr>
<tr>
<td>CV (%)</td>
<td>4.35</td>
<td>CV (%)</td>
</tr>
<tr>
<td>R²</td>
<td>0.884</td>
<td>R²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Firmness (kgf)</th>
<th>Calibration</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N*</td>
<td>103</td>
<td>N*</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.048</td>
<td>Bias</td>
</tr>
<tr>
<td>SEC</td>
<td>0.63</td>
<td>SEC</td>
</tr>
<tr>
<td>CV (%)</td>
<td>38.55</td>
<td>CV (%)</td>
</tr>
<tr>
<td>R²</td>
<td>0.787</td>
<td>R²</td>
</tr>
</tbody>
</table>

N*: number of samples

The International Symposium on Agricultural and Biosystem Engineering (ISABE) 2013
Figure 3. Measured SSC by reference method and predicted SSC by NIR

Figure 4. Measured pH by reference method and predicted pH by NIR

Figure 5. Measured firmness by reference method and predicted firmness by NIR
Conclusion

This study has established a technique, based on NIR spectroscopy of the fruit, for predicting the ripe-stage qualities i.e. SSC, pH and firmness of mango fruits cv Gedong Gincu. By means of partial least square (PLS) regression relationship was established between reflectance spectra and SSC, pH and firmness parameters. PLS method resulted good calibration results for SSC, pH and firmness prediction. The predicted values were highly correlated with destructively measured values. It was concluded that by using the NIR spectroscopy measurement system, in the appropriate spectral range, it is possible to nondestructively predict the SSC, pH and firmness of mango fruit.

Acknowledgement

This work was supported by Bilateral Exchange Program JSPS-DGHE Joint Research Project 1-4-2010 to 31-3-2012 (JSPS/AP/109596 November 20, 2009).

References

