PROCEEDINGS OF THE INTERNATIONAL WORKSHOP
Tropical Bio-resources for Sustainable Development
"The Role of Innovation to Enhance German Alumni in Scientific and Professional Capacities"

Editors:
Syarifah Iis Aisyah
Nandi Kosmaryandi
Anuraga Jayanegara
Ronald F. Kuehne

IPB International Convention Center
August 13rd-15th, 2014
Bogor, Indonesia
PROCEEDINGS OF THE INTERNATIONAL WORKSHOP
TROPICAL BIO-RESOURCES FOR SUSTAINABLE DEVELOPMENT

"The Role of Innovation to Enhance German Alumni in Scientific and Professional Capacities"

13-15 August 2014
Bogor, Indonesia

Editors
Syarifah Iis Aisyah (Bogor Agricultural University, Indonesia)
Nandi Kosmaryandi (Bogor Agricultural University, Indonesia)
Anuraga Jayanegara (Bogor Agricultural University, Indonesia)
Ronald F. Kuehne (Georg-August-Universitaet Goettingen, Germany)
PREFACE

It is really honoured and very pleased to have this 6th SEAG International workshop, which is organized by SEAG (South East Asia-Germany) Alumni Network-Indonesia in collaboration with CDA (Career Development and Alumni Affairs), Bogor Agricultural University. SEAG is the German Alumni-networking group, which was established in year 2000, among countries in South-East Asia.

Since 1999, the Federal Ministry for Economic Cooperation and Development (BMZ) and the German Academic Exchange Service (DAAD) have been systematically supporting alumni networks of graduates from German Universities. The University of Goettingen, Kassel and Marburg established an alumni consortium to support and maintain efficiently local and regional alumni networks in Egypt-Arab-Region (GEAR), in Latin America (ReCALL), in Iran (GIAN) and in South East Asia (SEAG).

The objectives of the alumni networks are to establish an alumni database to enable the exchange of scientific experiences among the alumni and their host universities in Germany, and finally to create and maintain local and regional network. In order to achieve these goals, the consortium uses many tools, e.g. organizing symposium, mini workshop, international workshop, summerschool, etc.

For regional Indonesia, some Mini Workshops had been done several times which were taken placed in many universities in different provinces. The first SEAG mini workshop had been done in Brawijaya University, Malang, on April 2003 for those alumni who work in Agriculture economy. The second one was executed in Soedirman University, Central Java on May 2004, for Agriculturist, and the third SEAG mini workshop was conducted in Tamansafari Bogor, May 2005 for Animal scientist. The fourth was in Sam Ratulangi University – North Sulawesi, for the society of forester, with the theme of Developing Public Awareness through Sustainable Forest Management. The fifth was conducted in USU (North Sumatera University) for area of Agricultural Technology, in November 2006. The Sixth was in IPB Bogor for horticulturist, on May 2007.

As academicians or researchers who gained education, training or part of it in Germany, we should play a role as key person in our scientific society. Our partners from Germany also believe that their support can only be
effectively provided if it is based on cooperation with key local players. Therefore development cooperation is very essentially dependent on identifying and integrating such key persons. Indeed, as German alumni, we have to show an effort to support for economic, technological and social transformation processes in our countries.

Some of us hold important positions in government, in the administration, in business and industry and in academia. We may act as multipliers and disseminators in and within our societies. We should also introduce the requisite specialist knowledge, provide motivation for innovation and guarantee cooperative capabilities in dealings with local and foreign partners. That is why we explore the theme of Tropical Bio-resources for Sustainable Development: The Role of Innovation to Enhance German Alumni in Scientific and Professional Capacities, for this workshop.

High appreciation is conveyed to the organizing committee from SEAG-Indonesia and CDA IPB for the effort to conduct this workshop. The very sincere thank is delivered to the German Academic Exchange Service (DAAD) for continues support financially and many other aspect give us invaluable opportunities to learn from each other, to improve individual and institution competences, and to experience a lot of things across universities.

Syarifah Iis Aisyah

SEAG INDONESIA
CDA IPB
TABLE OF CONTENTS

INTRODUCTION

WORKING GROUP 1: FUNDAMENTAL ASSESSMENT FOR BIO-RESOURCES

1. Distribution pattern of *Alstonia scholaris* - a species containing rich medicinal substances - in different forest ecosystems
(*Bambang Irawan, Iskandar Z. Siregar, Reiner Finkeldey*) .. 4

2. Radical scavenging activity of leafy amaranths as potential antioxidant sources
(*Muhammad Ikhsan Sulaiman, Rita Andini*) .. 11

3. Yield evaluation of 17 chili pepper (*Capsicum annuum* L.) lines in Bogor, West Java
(*Faradila Danasworo Putri, Muhamad Syakur, Syarifah Isi Aisyah*) 17

4. Current research development of *in vitro* embryo production on farm animal in Indonesia
(*Mohamad Agus Setiadi*) ... 23

5. Carageenan prototype food product development of seaweed at Cluster Salabangka Islands of Central Sulawesi Province
(*Mahrwati Mappatoba, Asrian Hasanuddin*) ... 28

6. Inventory of Dipterocarpaceae at Soraya Research Station, Leuser Ecosystem Area
(*Iqbar, Essy Harnelly*) .. 33

7. Influence of different supplemental niacin levels on intake, digestibility and rumen fermentation of dairy cows: a meta-analysis
(*Rossy E. A. Anggreini, Erika B. Laconi, Anuraga Jayanegara*) .. 38

8. Influence of tannin concentration in ration on fermentation parameters of Rumen Simulation Technique (RUSITEC): a meta-analysis
(*Anuraga Jayanegara, M. Ridla, Erika B. Laconi, Naikrowi*) .. 42

9. An observation on the scales of three species of *Varanus* using scanning electron microscopy
(*Evv Arida*) ... 48

10. The potency of tropical endophytic bacteria as plant growth and biocontrol agents
(*Abdul Munif*) ... 54

11. Effect of oxygen concentration on storage of sapodilla fruit
(*Achras zapota* L.)
(*Bambang Susilo, Rini Yulianingsih, Dyah Ayu Agustiningsri*) .. 61

12. Heavy metals and other elements concentration in *Emilia sonchifolia* grown in topand overburden of Serpentine soil from Sorowako, Indonesia
(*A. Tjoa, H. Barus*) .. 67
WORKING GROUP 2: APPLIED RESEARCH AND SCALING-UP OF BIO-RESOURCE INNOVATION

1. Thermal hydrolyzed rice husk as bioherbicide to control sedge rice weed *Fimbristylis miliacea* (L.) Vahl (H. Agusta, M. Syakir, D. Guntoro, M.B. Yunindanov, B. Arifin) .. 76

2. Potential sustainable maize-peanut production using appropriate biofertilizer technology in ultisols of Moramo district, South Konawe regency (L. Karimuna, A. Maruf, Rahman, L.A. Sani) 81

3. Evaluation of estrus synchronization with sponge vaginal and artificial insemination technologies on sheep and goat (case study at Juhut village, Karang Tanjung sub district, Pandeglang district, Banten) (Siti Darodjah Rasad, Rangga Setiawan, Toha, Kikin Winangun) ... 92

4. Concentrate protein albumin (probumin) from snakehead fish (*Channa striata*); local product of food supplement as cheap albumin protein source for community (Abu Bakar Tawali, Meta Manendradatta, Veni Hadju) .. 96

5. Household scale environmentally friendly measures to reduce resource consumption (Arief Sabdo Yuwono) .. 102

6. Use of white rot fungi- and bacterial rot in decomposition of cocoa pod waste and in growth reduction of *Phytophthora palmivora* and *Lasiodiplodia theobromae* (Tutik Kuswinanti, Ade Roesmana, Vien Sartika Dewi, Boharuddin, Jamila) 109

7. Repellence test of spices (garlic, chili, and pepper) to rat (*Rattus rattus diardii* L.) (Swastiko Priyambodo, Dewi Safitri) .. 114

8. Growth response of dragon fruit (*Hylocereus costaricensis*) on MS medium with Gandasil and Growmore in vitro (Faridatul Mukminah, Busroni Asnawi, Tetra Tri Novi) ... 122

9. Effect of enriched phospho-compost application on the growth and phosphorous content of *Setaria splendida* Stapf (R. Dianita, A. Rahman Sy, Ubaidillah) .. 128

10. Implementation of life cycle assessment (LCA) on tempeh production in Bantul district – Yogyakarta special province – Indonesia (Wahyu Supartono, Lina Widiasari, Didik Purwadi) 133

11. Study of characteristics floral and morphological hybrid rice parental lines on different seeding date (P.N Susilawati, M. Sundimana, B.S. Purwoko, T.K. Suharsi, Satoto) ... 140

12. Natural grass and plant residue qualities and values to support lactating cows requirement on forage at Indonesian small scale enterprise and traditional dairy farming (Despal, Jazmi Malyadi, Yessy Destianingsih, Ayu Lestari, Hari Hartono, Luki Abdullah) 145
13. Effect of seed density and nutrient source on production and quality of greenhouse fodder as dairy cattle feed (Idat Galih Permana, Despal, Dara Melisa) ... 151

WORKING GROUP 3: SCIENCE-POLICY INTERFACING ON BIO-RESOURCE CONSERVATION AND UTILIZATION

1. Tropical rainforest in Kalimantan as source of medicinal plants: a case study at Dayak Meratus ethnic in South Kalimantan (Yudi Priananul Arifin, Siti Hamidah) ... 159

2. Development of Gambir (Uncaria gambir) for rural economy: between policy and people aspiration (Andy Ahmad Zaelany) 166

3. Conservation of wildlife bio-resource management for livelihood (Ratna Iswarin Pujaningsih) ... 172

4. Market integration analysis of sweetened condensed milk in Indonesia: do sweetened condensed milk prices follow the prices of imported milk and sugar? (Venty Fitriany Nurunisa, Bonar M. Sihoga, Ratna Winandi A., Bernhard Brümmer) ... 178

5. Trend analyses of forest and land fires towards climate change in Indonesia (Lailan Syaufina) ... 185

6. Agroforestry based medicinal plants and marketing partnership for community empowerment: cases in Bogor district and Sukabumi district, West Java province (Leti Sundawati, Ninuk Pujaningsih, Edy Djohari Purwakusuman) ... 191

7. A survey on the community socio-economic of the district of coral reef rehabilitation and management program (COREMAP) of Sikka, Flores Flores (Vincentius Repu) ... 197

8. Influence of leadership style, organizational culture, and work motivation on employee performance in public company pawn shop branch office in Kupang City, East Nusa Tenggara, Indonesia (Fred Marthinus Dethan) ... 206

9. Management of natural resources in tropical peat swamp forest of Indonesia (Ujang Suwarna) ... 213

10. Analysis of the competitiveness of pangasius fish farming in Kota Gajah Sub-district, Lampung Tengah District, Lampung Province (Angga Yudhistira, Harianto, Bernhard Brümmer, Stephan Wessels, Nunung Kusnadi) ... 219

11. The sustainability of coffee plantation in West Lampung, Lampung province, Indonesia (Yeti Lis Purnamadewi) ... 226

12. The importance of biodiversity conservation and livelihood of customary community approaching in national park management in Indonesia (Nandi Kosmaryandi, Sambas Basuni, Lilik Prasetyo, Soeryo Adiwibowo) ... 233
13. Competitiveness analysis of Indonesian shrimp farming, case study: PT. Surya Windu Kencana (SWK), East Java (Siti Maryam, Bernhard Brümmer, Gabriele Hörstgen-Schwark, Rachmat Pambudy) 242

14. Competitiveness and policy impact analysis of feedlots in Lampung (Labudda Parameswari, Bernhard Brümmer, Stefan Schwarze, Rachmat Pambudy) .. 248

15. The Contribution of Agricultural Sector Towards Culinary Business Development at Kupang Municipality East Nusa Tenggara Province (Markus Bunga) ... 254

16. The Morphological Character of the “Bendi” Horse as Short Distance Urban Transport Modes that are Environmentally Friendly (Sri Adiani, Dordia A. Rotinsulu, Ben J Takaendengan) 261

17. The diversity of fungi on polluted mangrove ecosystem at Belawan and Jaring Halus, North Sumatra province (Yunasfi, Pindi Patana) ... 266

18. Natural products exploration in frame of tropical plant bio-resource conservation and utilization (Enih Rosamah, Harlinda Kuspradini, Rita Khairani) ... 273

19. The impact of trade policy on international palm oil trade flows (Riska Pujiati, M Firdaus, Andriyono K Adhi) ... 278

LIST OF PARTICIPANTS .. 284

COMMITTEE ... 287
Influence of tannin concentration in ration on fermentation parameters of Rumen Simulation Technique (RUSITEC): a meta-analysis

Anuraga Jayanegara¹,*, M. Ridla¹, Erika B. Laconi¹, Nahrowi¹

¹ Department of Nutrition and Feed Technology, Bogor Agricultural University, Bogor, 16680, Indonesia
* Corresponding author: anuragaja@apps.ipb.ac.id

Abstract The objective of this study was to summarize and to quantify the effects of tannin on fermentation parameters of rumen simulation technique (RUSITEC) through a meta-analysis approach. Experiments reporting tannin concentration and rumen fermentation using the RUSITEC system were integrated into a database, and comprised of 6 studies and 25 treatments. Parameters recorded were nutrient digestibility, gas production, methane (CH₄) emission, short-chain fatty acid (SCFA) profiles, pH, ammonia (NH₃) and microbial population (bacteria and protozoa). The analysis of the data assembled in the database was based on mixed model methodology in which different studies were treated as random effects whereas tannin concentration was treated as fixed effects. Results revealed that in vitro crude protein digestibility (CPD), neutral detergent fiber digestibility (NDFD) and acid detergent fiber digestibility (ADF) decreased linearly as the tannin concentration increased with the P-value of 0.047, 0.005 and 0.004, respectively. Comparing the magnitude of reduction in CP and fiber digestibility by the influence of tannin, the compound appeared to cause higher negative effect on CP digestibility than that of fiber as indicated by the slopes. However, the overall OMD did not significantly decrease although the slope remained negative. Methane emission tended to decrease at higher tannin concentration when expressed per unit of substrate (P=0.066) and significantly decreased when expressed per unit of total gas produced (P=0.005). It can be concluded that tannin is a potential compound for mitigating ruminal methane emission but its use on the other hand also decrease nutrient digestibility.

Keywords tannin, rumen, fermentation, rusitec, meta-analysis

1. Introduction

Tannin is among plant secondary compounds produced by plants in their intermediary metabolism. It is polyphenolic compound with diverse
structure (such as between hydrolysable and condensed tannin) and molecular weight but has similar property: it binds and precipitates protein \[1\]. With respect to ruminant nutrition, tannin is considered to have both beneficial and detrimental nutritional effects. Some of the beneficial effects of tannin are better utilization of dietary protein, faster growth rate, higher milk yield and improved animal health through prevention of bloat and nematode infection. Negative effects of tannin have been associated with its toxicity to rumen microbes and the animals especially when present at high concentration in ration (>50 g/kg dry matter) \[2\].

Research on tannin in relation to ruminant nutrition has been conducted under various experimental conditions, either in vivo (directly to the animal), in sacco (fistulated animal) or in vitro (laboratory equipment that mimic rumen fermentation). The latter method is divided into two groups, i.e. in vitro batch and in vitro continuous culture. Research synthesis of tannin effect on rumen digestion and fermentation based on in vivo and in vitro batch studies across various ruminant species has been previously performed through a meta-analytical approach \[3\]. However, the studies based on in vitro continuous culture like in rumen simulation technique or RUSITEC \[4\] have not been summarized. In the present study, therefore, a meta-analysis was conducted to summarize and to quantify the effects of tannin concentration on fermentation parameters of RUSITEC.

2. Materials and Methods

RUSITEC experiments reporting tannin concentration and rumen fermentation were integrated into a database (comprised of 6 studies and 25 treatments). The studies were Sliwinski et al. \[5\], Hess et al. \[6-7\], Tiemann et al. \[8\], Bekele et al. \[9\] and Khiaosa-ard et al. \[10\] (Table 1). Parameters recorded were nutrient digestibility, gas production, methane (CH₄) emission, short-chain fatty acid (SCFA) profiles, pH, ammonia (NH₃) and microbial population (bacteria and protozoa). Tannin forms were either from non-extracted or extracted tannins of plant origins, and constituted of different tannin types, i.e. hydrolysable, condensed or unspecified or mixed tannins. Such different tannin types were not a main point of interest but rather the amount or concentration of the tannin in the ration. Therefore, they were not stated as a categorical variable and not included in the statistical model. Studies reporting treatments with addition of polyethylene glycol (PEG) were excluded from the database since the substance may neutralize the effects of tannins under rumen environment.
The analysis of the data assembled in the database was made by a statistical meta-analysis approach [11]. Studies were treated as random effects whereas tannin concentration was treated as fixed effects using MIXED procedure of SAS version 9.2. The following statistical model was employed:

\[Y_{ij} = B_0 + B_1 X_{ij} + s_i + b_i X_{ij} + e_{ij} \]

where \(Y_{ij} \) = dependent variable, \(B_0 \) = overall intercept from all studies (fixed effect), \(B_1 \) = linear regression coefficient of \(Y \) on \(X \) (fixed effect), \(X_{ij} \) = value of the continuous predictor variable (dietary tannins), \(s_i \) = random effect of study \(i \), \(b_i \) = random effect of study \(i \) on the regression coefficient of \(Y \) on \(X \) in study \(i \), and \(e_{ij} \) = the unexplained residual errors. The study variable was declared in the CLASS statement since it does not contain any quantitative information. Data were weighted by the number of replicates each study and scaled to 1 to take into consideration of unequal variance among studies. Microbial population data were transformed into their logarithmic units to allow linear relationships with the independent variable. Model statistics presented are \(P \)-value and coefficient of determination (\(R^2 \)).

<table>
<thead>
<tr>
<th>Study no.</th>
<th>Reference</th>
<th>Basal feed</th>
<th>Tannin source</th>
<th>Tannin level (g/kg DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Slawinski et al. (2002a)</td>
<td>Grass, hay, silage and barley</td>
<td>Chestnut</td>
<td>0 to 2.5</td>
</tr>
<tr>
<td>2</td>
<td>Hess et al. (2006)</td>
<td>Koronivia grass</td>
<td>Cratylia argentea, Calliandra calothyrsus</td>
<td>0 to 135</td>
</tr>
<tr>
<td>3</td>
<td>Hess et al. (2008)</td>
<td>Koronivia grass</td>
<td>Leucaena leucocephala, Flemingia macrophylla, Calliandra calothyrsus</td>
<td>0 to 62.2</td>
</tr>
<tr>
<td>4</td>
<td>Tiemann et al. (2008a)</td>
<td>Koronivia grass</td>
<td>Vigna unguiculata, Calliandra calothyrsus</td>
<td>0 and 71</td>
</tr>
<tr>
<td>5</td>
<td>Bekele et al. (2009)</td>
<td>Koronivia grass</td>
<td>Samanea saman, Acacia angustissima, Sesbania sesban, Cajanus cajan</td>
<td>0 to 45</td>
</tr>
<tr>
<td>6</td>
<td>KhiaoSa-Ard et al. (2009)</td>
<td>Grass-clover hay</td>
<td>Onobrychis viciafolia, Acacia mearnsii</td>
<td>0 and 78.9</td>
</tr>
</tbody>
</table>
3. Results and Discussion

In vitro crude protein digestibility (CPD), neutral detergent fiber digestibility (NDFD) and acid detergent fiber digestibility (ADFD) decreased linearly as the tannin concentration increased with the P-value of 0.047, 0.005 and 0.004, respectively (Table 2). Comparing the magnitude of reduction in CP and fiber digestibility by the influence of tannin, the compound appeared to cause higher negative effect on CP digestibility than that of fiber as indicated by the slopes. An increase of tannin concentration by 1 g/kg declined CPD by 2.921 mg/g. The decrease was lower for the NDFD and ADFD, i.e. 1.231 and 1.549 mg/g, respectively. However, these figures might change if the slopes were corrected by the intercepts due to substantial different digestibility between CP and fiber at dietary tannins equal to 0 g/kg. All of these relationships had high R², i.e. higher than 0.4. The results support a theory that tannin may form complexes with some nutrients such as protein and carbohydrate and, therefore, may reduce their digestibility in the digestive tract of ruminants [1-2, 12]. However, the overall OMD did not significantly decrease although the slope remained negative. This was also the case for the total gas production.

Methane emission tended to decrease at higher tannin concentration when expressed per unit of substrate (P=0.066) and significantly decreased when expressed per unit of total gas produced (P=0.005). The latter had a high R², i.e. 0.677. Explanation of the methane decrease due to tannin appears to be because of the decrease in digestibility of nutrients, particularly fiber, which decreases H₂ production as a substrate for methanogenesis as well as direct inhibition on methanogen population; the latter occurs since tannin is toxic to some groups of rumen microbes including the methanogen [3, 13]. Tannins had almost no effects on all SCFA variables, except that the substance linearly decreased C₄ (P=0.013, R²=0.403). Dietary tannin had also no significant effects on ruminal pH, NH₃, bacteria and protozoa population.

Table 2: Equations for linear regression of the effect of tannin concentration on fermentation parameters of rumen simulation technique (RUSITEC)

<table>
<thead>
<tr>
<th>Response parameter</th>
<th>n</th>
<th>Intercept</th>
<th>SE</th>
<th>P intercept</th>
<th>Slope</th>
<th>SE slope</th>
<th>P slope</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMD (mg/g)</td>
<td>25</td>
<td>441.9</td>
<td>36.81</td>
<td><0.001</td>
<td>-0.672</td>
<td>0.3918</td>
<td>0.178</td>
<td></td>
</tr>
<tr>
<td>CPD (mg/g)</td>
<td>14</td>
<td>644.2</td>
<td>76.19</td>
<td>0.014</td>
<td>-2.921</td>
<td>1.2914</td>
<td>0.047</td>
<td>0.407</td>
</tr>
<tr>
<td>NDFD (mg/g)</td>
<td>25</td>
<td>323.6</td>
<td>26.56</td>
<td><0.001</td>
<td>-1.231</td>
<td>0.3801</td>
<td>0.005</td>
<td>0.411</td>
</tr>
</tbody>
</table>
4. Conclusion

Tannin is a potential natural compound for mitigating ruminal methane emission but its use on the other hand also decrease nutrient digestibility. Further investigation is therefore required to determine an optimum concentration of tannin in ration in which it mitigates methane emission and simultaneously supports rumen digestion and fermentation.

5. References

