EDINGS OF THE INTERNATIONAL WORKSHOP
Tropical Bio-resources for Sustainable Development

"Role of Innovation to Enhance German Alumni in Scientific and Professional Capacities"

Editors:
Syarifah Iis Aisyah
Nandi Kosmaryandi
Anuraga Jayanegara
Ronald F. Kuehne

IPB International Convention Center
August 13rd-15th, 2014
Bogor, Indonesia
PROCEEDINGS OF THE INTERNATIONAL WORKSHOP
TROPICAL BIO-RESOURCES FOR SUSTAINABLE DEVELOPMENT

Role of Innovation to Enhance German Alumni in Scientific and Professional Capacities

13-15 August 2014
Bogor, Indonesia

Editors

Syarifah Isi Aisyah (Bogor Agricultural University, Indonesia)
Nandi Kosmaryandi (Bogor Agricultural University, Indonesia)
Anuraga Jayanegara (Bogor Agricultural University, Indonesia)
F. Kuehne (Georg-August-Universitaet Goettingen, Germany)
It is really honoured and very pleased to have this 6th SEAG International Workshop on Tropical Bio-resources for Sustainable Development, 13-15 August 2014, Bogor, Indonesia.

PREFACE

SEAG is an Alumni-networking group, which was established in year 2000, in countries in South-East Asia.

Since 1999, the Federal Ministry for Economic Cooperation and Development (BMZ) and the German Academic Exchange Service (DAAD) have systematically supporting alumni networks of graduates from German Universities. The University of Goettingen, Kassel and Marburg established an alumni consortium to support and maintain efficiently local and regional alumni networks in Egypt-Arab-Region (GEAR), in Latin America (ReCALL), in Iran (GIAN) and in South East Asia (SEAG).

The objectives of the alumni networks are to establish an alumni database, the exchange of scientific experiences among the alumni and their host universities in Germany, and finally to create and maintain local and regional networks. In order to achieve these goals, the consortium uses many tools, e.g., organizing symposiums, mini-workshops, international workshops, schools, etc.

In Indonesia, some Mini Workshops had been done several times and were placed in many universities in different provinces. The first mini workshop had been done in Brawijaya University, Malang, April 2003 for those alumni who work in Agriculture economy. The second one was executed in Soedirman University, Central Java on May 2004, for Agriculturist, and the third SEAG mini workshop was conducted in Taman Safari Bogor, May 2005 for Animal scientist. The fourth was in Sam Ratulangi University ~ North Sulawesi, for the society of forester, with the theme of Developing Public Awareness through Sustainable Forest Management. The fifth was conducted in USU (North Sumatera University) for area of Agricultural Technology, in November 2006. The Sixth was in Bogor Agricultural University for horticulturist, on May 2007.

As academicians or researchers who gained education, training or part of it in Germany, we should play a role as key person in our scientific society. Our partners from Germany also believe that their support can only be
Effectively provided if it is based on cooperation with key local players. Development cooperation is very essentially dependent on finding and integrating such key persons. Indeed, as German alumni, we show an effort to support for economic, technological and social transformation processes in our countries.

Some of us hold important positions in government, in the administration, business and industry and in academia. We may act as multipliers and disseminators in and within our societies. We should also introduce the specialist knowledge, provide motivation for innovation and cooperative capabilities in dealings with local and foreign partners. That is why we explore the theme of Tropical Bio-resources for Sustainable Development: The Role of Innovation to Enhance German Alumni in Scientific and Professional Capacities, for this workshop.

High appreciation is conveyed to the organizing committee from SEAG-Indonesia and CDA IPB for the effort to conduct this workshop. The very sincere thank is delivered to the German Academic Exchange Service (DAAD) for continues support financially and many other aspect give us valuable opportunities to learn from each other, to improve individual and institutional competences, and to experience a lot of things across universities.

Syarifah Iis Aisyah

SEAG INDONESIA
CDA IPB
TABLE OF CONTENTS

INTRODUCTION ...1

WORKING GROUP 1: FUNDAMENTAL ASSESSMENT FOR BIO-RESOURCES

1. Distribution pattern of *Alstonia scholaris* - a species containing medicinal substances - in different forest ecosystems (Bambang Irawan, Iskandar Z. Siregar, Reiner Finkeldey) 4

2. Radical scavenging activity of leafy amaranths as potential antioxidant sources (Muhammad Ikhsan Sulaiman, Rita Andini) 11

3. Yield evaluation of 17 chili pepper (*Capsicum annuum* L.) lines in Bogor, West Java (Faradila Danasworo Putri, Muhammad Syur, Syarifah Iis Aisyah) ... 17

4. Current research development of in vitro embryo production on animal in Indonesia (Mohamad Agus Setiadi) 23

5. Ageenan prototype food product development of seaweed at Cluster Salabangka Islands of Central Sulawesi Province (Hawati Mappatoba, Asriani Hasanuddin) .. 28

6. Influence of different supplemental niacin levels on intake, digestibility and rumen fermentation of dairy cows: a meta-analysis (Rossy E. A. Anggreini, Erika B. Laconi, Anuraga Jayanegara) .. 38

7. Influence of tannin concentration in ration on fermentation parameters of Rumen Simulation Technique (RUSITEC): a meta-analysis (Anuraga Jayanegara, M. Ridla, Erika B. Laconi, Nihrowi) ... 42

8. An observation on the scales of three species of *Varanus* using scanning electron microscopy (Evi Arida) 48

9. The potency of tropical endophytic bacteria as plant growth and control agents (Abdul Munif) .. 54

10. Heavy metals and other elements concentration in *Emilia sonchifolia* grown in topand overburden of Serpentine soil from wako, Indonesia (A. Tjoa, H. Barus) .. 67
NG GROUP 2: APPLIED RESEARCH AND SCALING-UP OF BIO-RESOURCE INNOVATION

1. Thermal hydrolyzed rice husk as bioherbicide to control sedge weed *Fimbristylis miliacea* (L.) Vahl (H. Agusta, M. Syakir, D. Suntoro, M.B. Yunindanova, B. Arifin) .. 76
2. Potential sustainable maize-peanut production using appropriate fertilizer technology in ultisols of Moramo district, South Aceh regency (L. Karimuna, A. Maruf, Rahman, L.A. Sani) 81
3. Evaluation of estrus synchronization with sponge vaginal and artificial insemination technologies on sheep and goat (case study at Juhut village, Karang Tanjung sub district, Pandeglang, Banten) (Siti Darodjah Rasad, Rangga Setiawan, Toha, Winangun) .. 92
4. Concentrate protein albumin (probumin) from snakehead fish (*Channa striata*); local product of food supplement as cheap protein source for community (Abu Bakar Tawali, Meta Mandradatta, Veni Hadju) .. 96
5. Household scale environmentally friendly measures to reduce resource consumption (Arief Sabdo Yuwono) .. 102
6. White rot fungi- and bacterial rot in decomposition of cocoa pod waste and in growth reduction of *Phytophthora cinnamomi* and *Lasiodiplodia theobromae* (Tutik Kuswinanti, Ade Ilyana, Vien Sartika Dewi, Boharuddin, Jamila) 109
7. Sensitivity test of spices (garlic, chili, and pepper) to rat (*Rattus norvegicus* 1.) (Swastiko Priyambodo, Dewi Safitri) 114
8. Growth response of dragon fruit (*Hylocereus costaricensis*) on medium with Gandasil and Growmore in vitro (Faridatul Syahman, Busroni Asnawi, Tetra Tri Novi) 122
9. Effect of enriched phospho-compost application on the growth and phosphorous content of *Setaria splendida* Stapf (R. Dianita, H. Sy, Ubaidillah) .. 128
10. Implementation of life cycle assessment (LCA) on tempeh production in Bantul district - Yogyakarta special province – Indonesia (Wahyu Supartono, Lina Widyasari, Didik Purwadi) 133
11. Characteristics of floral and morphological hybrid rice parental lines on different seeding date (P.N. Susilawati, M. Pramen, B.S. Purwoko, T.K. Suharsi, Satoto) 140
12. Natural grass and plant residue qualities and values to support cows requirement on forage at Indonesian small scale rise and traditional dairy farming (Despal, Jazmi Malyadi, Destianingsih, Ayu Lestari, Hari Hartono, Luki Abdullah) 145
13. Effect of seed density and nutrient source on production and quality of green house fodder as dairy cattle feed (Idat Galih, Despal, Dara Melisa) ...151

GROUP 3: SCIENCE-POLICY INTERFACING ON SOURCE CONSERVATION AND UTILIZATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical rain forest in Kalimantan as source of medicinal plants:</td>
<td>Yudi Firdayanul Arifin, Siti Hamidah</td>
<td>159</td>
</tr>
<tr>
<td>Development of Gambir (Uncaria gambir) for rural economy:</td>
<td>Andy Ahmad Zaelany</td>
<td>166</td>
</tr>
<tr>
<td>Integration analysis of sweetened condensed milk in Indonesia:</td>
<td>Venty Fitriany Nurunisa, Bonar M. ga, Ratna Winandi A., Bernhard Brümmer</td>
<td>178</td>
</tr>
<tr>
<td>Analyses of forest and land fires towards climate change in Indonesia</td>
<td>Lailan Syaufina</td>
<td>185</td>
</tr>
<tr>
<td>Agroforestry based medicinal plants and marketing partnership</td>
<td>Leif Sundawafi, Ninuk Purjaningsih, Edy Djauhari Purwakusumah</td>
<td>191</td>
</tr>
<tr>
<td>Survey on the community socio-economic of the district of Flores</td>
<td>Vincentius Repu</td>
<td>197</td>
</tr>
<tr>
<td>Reef rehabilitation and management program (COREMAP)</td>
<td></td>
<td>206</td>
</tr>
<tr>
<td>Management of natural resources in tropical peat swamp forest</td>
<td>Ujang Suwarna</td>
<td>213</td>
</tr>
<tr>
<td>Analysis of the competitiveness of pangasius fish farming in Gajah</td>
<td>Angga Yudhistira, Harianto, Bernhard Brümmer, Stephan Wessels, Nunung</td>
<td>219</td>
</tr>
<tr>
<td>Sub-district, Lampung Tengah District, Lampung province, Indonesia</td>
<td>Kusnadi</td>
<td>226</td>
</tr>
<tr>
<td>Importance of biodiversity conservation and livelihood of community</td>
<td>Nandi Kosmaryandi, Sambas Basuni, Lilik Bertyo, Soeryo Adiwibowo</td>
<td>233</td>
</tr>
<tr>
<td>Approaching in national park management in Indonesia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Competitiveness analysis of Indonesian shrimp farming, case study: PT. Surya Windu Kencana (SWK), East Java (Siti Mulyani, Berhard Brummel; Gabriel Horstgen-Schwark, Raciunat Pambudy) .. 242

14. Competitiveness and policy impact analysis of feedlots in Lampung (Labudda Parmecawi, Berhard Brummel; Stefan Schwarze, Raciunat Pambudy) .. 248

15. The Contribution of Agricultural Sector towards Culinary Business Development at Kupang Municipality East Nusa Tenggara Province (Markus Bunga) ... 254

16. The Morphological Character of the “Bendi” Horse as Short Distance Urban Transport Modes that are Environmentally Friendly (Sri Adiani, Dordia A. Rotinsulu, Benji Takaendengan) 261

17. The diversity of fungi on polluted mangrove ecosystem at Belawan and Jaring Halus, North Sumatra province (Yunasfi, Pindi Patana) .. 266

18. Natural products exploration in frame of tropical plant bioresource conservation and utilization (Enih Rosamah, Harlinda Syahruddin, Ruziyani) .. 273

19. The impact of trade policy on international palm oil trade flows (Riska Pujiati, M Firdaus, Andriyono K Adhi) .. 278

LIST OF PARTICIPANTS .. 284

COMMITTEE ... 287
Influence of different supplemental niacin levels on intake, digestibility and rumen fermentation of dairy cows: a meta-analysis

Rossy E. A. Anggreini1, Erika B. Laconi2, Anuraga Jayanegara2,*

1Graduate School of Nutrition and Feed Science, Bogor Agricultural University, Bogor, 16680, Indonesia
2Department of Nutrition and Feed Technology, Bogor Agricultural University, Bogor, 16680, Indonesia
* Corresponding email: anu_jayanegara@yahoo.com

Abstract Rumen microbes can synthesis niacin but at fewer amount. Niacin is occasionally supplemented into dairy cows’ ration to improve their production performance especially during early lactation period. The present study was aimed to assess the effect of different supplemental niacin levels on intake, digestibility and rumen fermentation of dairy cows through meta-analytical study. A database was constructed from published literatures reporting niacin supplementation on dairy cows. A total of 49 studies from 46 published articles were integrated into the database. Different niacin levels at various supplemental levels were specified, i.e. 0 to 24 mg; nutrient intake and rumen fermentation parameters were integrated as well. Data were analyzed by a mixed model methodology in which different studies were treated as random effects whereas niacin levels were treated as fixed effects. The significant effect was stated when \(P < 0.05 \). When a parameter showed \(0.05 < P < 0.1 \), then the effect was considered to have a tendency to be significant. The results showed that different levels of niacin supplementation did not significantly influence nutrient intake, digestibility and rumen fermentation of dairy cows \((P > 0.05) \). It is concluded that supplementation of niacin has less effect in improving intake, digestibility and rumen fermentation.

Keywords meta-analysis, niacin, concentration, dairy cow

Introduction

Dairy cows require supplementation of niacin in the diet at sufficient levels because the rumen microbes can produce niacin in small amounts only. Niacin plays a role in generating energy in the Krebs cycle (ATP cycles) [1]. Energy deficiency leads to body fat mobilization of dairy cows to be used as energy and then increases beta-hidroxybutiric acid concentration; this condition stimulates ketosis, a metabolic disorder, to occur [2]. It is
that niacin supplementation can overcome the negative energy balance in dairy cows especially during early lactating period. This study was aimed to know the influence of niacin supplementation levels on intake, digestibility and rumen fermentation profiles of lactating dairy cows by a -analysis method.

Materials and Methods

Database development

A database was developed from published literatures reporting addition of various levels on nutrient intake, digestibility and rumen fermentation of lactating dairy cows. Literature search was conducted using data search generators, i.e. Google scholar and Scopus to collect articles with the keywords “niacin” and “dairy cow”. Accordingly, levels of niacin supplementation were specified in the database. After collection of a total of 49 studies from 46 published articles with the above-mentioned keywords were obtained; the articles were published from 1981 to 2013.

Statistical analysis

Obtained were subjected to a statistical meta-analysis based on a model methodology [3, 4]. The model used was linear model, with niacin supplementation levels as fixed effects and different random effects. The following model was employed:

\[Y_{ij} = \beta_0 + \beta_1 X_{ij} + s_i + b_i X_{ij} + e_{ij} \]

where \(Y_{ij} \) = dependent variable, \(\beta_0 \) = overall intercept across all studies (fixed), \(\beta_1 \) = linear regression coefficient of \(Y \) on \(X \) (fixed effect), \(X_{ij} \) = the continuous predictor variable (niacin supplementation level), \(s_i \) = effect of study \(i \), \(b_i \) = random effect of study \(i \) on the regression of \(Y \) on \(X \) in study \(i \), and \(e_{ij} \) = the unexplained residual error.

Statistics used were P-value and Akaike information criterion (AIC). Significance of an effect was stated when P-value <0.05. Additionally, when P-value between 0.05 to 0.1, an effect was stated as a tendency to be significant. All statistical analyses were performed with SAS Software.
Results and Discussion

1. Influence of niacin supplementation on intake and digestibility of dairy cows

The effects of niacin supplementation levels on dry matter intake (DMI), dry matter digestibility (DMD), organic matter digestibility (OMD), crude protein digestibility (CPD), neutral detergent fiber digestibility (NDFD) and acid detergent fiber digestibility (ADFD) were insignificant (Table 1). In another study, supplementation of niacin at different levels increased rumen microbial population and nutrient degradation in the rumen. Niacin supplementation at 0.75 to 3.75 g/cow/d increased cattle growth by 0.7 to 10.9%; however, supplementation of niacin above 7.5 g/cow/d caused negative effects on the performance [1]. The present meta-analysis reveals that niacin supplementation does not produce consistent results. A plausible explanation is that the supplementation may effectively contribute to dairy cows only during a certain lactation period, most probably in early lactation, not the whole.

Table 1 Intake and digestibility of dairy cows on different supplemental niacin levels

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>N</th>
<th>Intercept</th>
<th>SE</th>
<th>Slope</th>
<th>SE</th>
<th>P-value</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI kg/d</td>
<td>85</td>
<td></td>
<td>21.1</td>
<td>0.88</td>
<td>-0.013</td>
<td>0.014</td>
<td>0.340</td>
<td>360.8</td>
</tr>
<tr>
<td>DMD %</td>
<td>14</td>
<td></td>
<td>65.3</td>
<td>2.07</td>
<td>-0.034</td>
<td>0.063</td>
<td>0.609</td>
<td>66.0</td>
</tr>
<tr>
<td>OMD %</td>
<td>7</td>
<td></td>
<td>71.3</td>
<td>1.89</td>
<td>-0.144</td>
<td>0.093</td>
<td>0.220</td>
<td>32.5</td>
</tr>
<tr>
<td>CPD %</td>
<td>9</td>
<td></td>
<td>53.4</td>
<td>11.52</td>
<td>-0.088</td>
<td>0.072</td>
<td>0.312</td>
<td>50.9</td>
</tr>
<tr>
<td>NDFD %</td>
<td>20</td>
<td></td>
<td>43.6</td>
<td>6.69</td>
<td>-0.102</td>
<td>0.126</td>
<td>0.433</td>
<td>126.3</td>
</tr>
<tr>
<td>ADFD %</td>
<td>22</td>
<td></td>
<td>42.2</td>
<td>4.12</td>
<td>-0.065</td>
<td>0.114</td>
<td>0.582</td>
<td>133.9</td>
</tr>
</tbody>
</table>

DMI: dry matter intake; DMD, dry matter digestibility; OMD, organic matter digestibility; CPD, crude protein digestibility; NDFD, neutral detergent fiber digestibility; ADFD, acid detergent fiber digestibility; N, number of data; SE, standard error; AIC, Akaike information criterion.

2. Influence of niacin supplementation on rumen fermentation of dairy cows

Results of meta-analysis showed that niacin supplementation did not affect rumen fermentation, i.e. VFA profiles and ammonia concentration (Table 2). It appears that niacin has less effect for rumen microbes, but the effect is more obvious for the host animals. Other authors reported that niacin supplementation affected the production of total VFA and acetate and propionate, but had minimal influence on butyrate production [5]. Niacin supplementation can improve rumen microbial population and, hence, such supplementation may increase fermentation of feed in the rumen especially...
The acetate [2] and can improve the fermentation of carbohydrates, thus increasing production of total VFA [6]. It might be that different results in fermentation is due to the influence of the different treatment, different total VFA from rumen fluid and the type of feed given to dairy cows.

Influence different supplemental niacin levels on rumen fermentation of dairy cows

<table>
<thead>
<tr>
<th>Unit</th>
<th>Parameter estimates</th>
<th>Model statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intercept</td>
<td>Slope</td>
</tr>
<tr>
<td>mM</td>
<td>SE</td>
<td>SE</td>
</tr>
<tr>
<td>23</td>
<td>129.3</td>
<td>0.610</td>
</tr>
<tr>
<td>16</td>
<td>63.7</td>
<td>-0.017</td>
</tr>
<tr>
<td>16</td>
<td>21.3</td>
<td>0.021</td>
</tr>
<tr>
<td>16</td>
<td>3.1</td>
<td>-0.003</td>
</tr>
<tr>
<td>16</td>
<td>11.2</td>
<td>-0.002</td>
</tr>
<tr>
<td>16</td>
<td>97.9</td>
<td>-0.324</td>
</tr>
</tbody>
</table>

VFA, volatile fatty acid; C2, acetate; C3, propionate; C2/C3, acetate to propionate ratio; NH3, ammonia concentration; N, number of data; SE, standard error; AIC, Akaike information criterion.

References

