Proceedings of

2015 3rd International Conference on
Adaptive and Intelligent Agroindustry (ICAIA)

IPB International Convention Center, Bogor, Indonesia
August 3rd – 4th, 2015

Published by:

Department of Agroindustrial Technology
Bogor Agricultural University
Bogor, Indonesia
Welcome Message from The General Chairs of ICAIA 2015

On behalf of the organizing committee, it is our pleasure to welcome you to International Conference on Adaptive and Intelligent Agroindustry, Bogor, Indonesia. This is the 3rd conference on the topic that is held by the Department of Agroindustrial Technology, Bogor Agricultural University, Indonesia.

The conference is expected to provide excellent opportunity to meet experts, to exchange information, and to strengthen the collaboration among researchers, engineers, and scholars from academia, government, and industry. In addition, the conference committee invited five renowned keynote speakers, i.e. Prof Irawadi from Bogor Agricultural University; Prof Kenneth De Jong from George Mason University, USA; Dr Yandra Arkeman from Bogor Agricultural University; and Dr Guillermo Baigorria from University of Nebraska-Lincoln, USA.

The conference committee also invited Prof Noel Lindsay from University of Adelaide, Australia; Kiyotada Hayashi from National Agricultural Research Center-Tsukuba, Japan; Prof Margareth Gfrerer from Islamic State University of Jakarta, Indonesia; Dr Barry Elsey from University of Adelaide, Australia; Dr Gajendran Kandasamy from Melbourne University, Australia; and Imperial College London-British, Prof Allan O'Connor from University of Adelaide, Australia; Dr Wisnu Ananta Kusuma from Bogor Agricultural University, Indonesia; and Dr Frank Neumann from University of Adelaide, Australia, as invited speakers.

This conference was organized by Department of Agroindustrial Technology, Bogor Agricultural University and Asosiasi Agroindustri Indonesia, and technically sponsored by IEEE Indonesia Section. Furthermore, it was supported by Departement of Computer Science, Bogor Agricultural University; Surfactant and Bionegergy Research Center; PT Bogor Life Science and Technology; Indonesian Ministry of Industry; PT Pachira Distribusia; and PT Kelola Mina Laut.

I would like to take this opportunity to express my deep appreciation to the conference’s committee members for their hard work and contribution throughout this conference. I would like to thank authors, reviewers, speakers, and session chairs for their support to participate in the Conference. Lastly, I would like to welcome you to join ICAIA 2015 and wish you all an enjoyable stay in Bogor.

Sincerely,
Dr Yandra Arkeman
General Chairs, ICAIA 2015
WELCOMING ADDRESS

Prof. Dr. Ir. Nastiti Siswi Indrasti
Head of Agroindustrial Technology Department
Faculty of Agricultural Engineering and Technology
Bogor Agricultural University

on
3rd International Conference on Adaptive and Intelligence Agroindustry (3rd ICAIA)
Bogor, August, 3 – 4, 2015

Assalamu’alaikum Warohmatullahi Wabarokatuh
In the name of Allah, the beneficent and the merciful,

Distinguish Guest, Ladies and Gentlemen
Let me first thank you all for accepting the invitation to participate in this 3rd International Conference on Adaptive and Intelligence Agroindustry (ICAIA). In particular I would like to thank Rector of IPB (Institut Pertanian Bogor/Bogor Agricultural University) Prof. Herry Suhardiyanto for supporting this event as part of the series academic event in celebrating the 52nd Anniversary of Bogor Agricultural University.

We are certainly proud to have been able to assemble this event in IPB, Bogor. The range of participants and audience at this conference is precisely something I would like to stress. Participants who followed the event more than 150 people, coming from various countries including the USA, Australia, Japan, Vietnam, Philippine, Germany and Indonesia. The main goal of the conference is to provide an effective forum for distinguished speakers, academicians, professional and practitioners coming from universities, research institutions, government agencies and industries to share or exchange their ideas, experience and recent progress in Adaptive and Intelligent Agroindustry.

The 2015 3rd International Conference on Adaptive and Intelligent Agro-industry (ICAIA) is the third forum for the presentation of new advances and research results on various topics in all aspects of innovative agro-industry that highlights the development and improvement for today and tomorrow’s global need for food, energy, water and medicine. The aim of the conference is to stimulate interaction and cohesiveness among researchers in the vast areas of innovative agro-industry. Innovative Agro-industry has the ability to adapt intelligently to future global challenges, i.e. food, energy, water, and medical. Global challenges needs a new breed of Agroindustry which could produce innovative products to fulfill the needs through advanced processing technology, production systems and business strategy supported by cutting-edge information and communication technology.

The topic for this event is “Empowering Innovative Agroindustry for Natural Resources, Bioenergy and Food Sovereignty”. The topics clustered into four main parts:
Track 1 : Innovative Agroindustrial and Business System Engineering
Track 2: Frontier Approaches in Process and Bioprocess Engineering
Track 3: Frontier Approaches in Industrial Environmental Engineering
Track 4: Intelligent Information and Communication Technology for Adaptive Agroindustry of the Future

This event also hosts four (4) workshops: (1) Strategies for Agroindustry Development (2) LCA for Agroindustry (3) Innovation and Technopreneurship for Agroindustry and (4) Agroindustry Informatics.

Distinguish Guest, Ladies and Gentlemen,
Agroindustry transforms agricultural commodities into high value-added products. Agroindustry is industry that process agricultural products to increase their value added significantly by using technology and by considering environmental aspect and sustainability. However, with changing global demand and technology advancement, innovative agroindustry is needed in order to be competitive as well as sustainable. The challenge of future agroindustry is not merely efficiency and productivity anymore, but also the challenge to appropriately apply frontier technology as well as meeting future global demands.

Agroindustry needs to deal with the application of advance technologies and cope with future global issues. Current global issues which arise and expected to exist in the future are food sovereignty, renewable energy, sustainable water management and pharmacy. The ability of agro-industry to respond the future global issues and the undoubtedly substantial increase in demand in future decades will be highly dependent on the increased application of existing technologies as well as the exploitation of new and innovative technologies.

The emergence of high technology could be applied in the agro-industry are: nanotechnology, biotechnology, bioinformatics, food processing, food packaging-waste, state-of-the-art computation and many others. The aforementioned high-technology along with computation technology could greatly advance agro-industry from a traditional system into a smart-intelligent and innovative technology. Therefore, in the new millennia, adaptive-intelligent and innovative agro-industry will contribute to solutions to global problems and brings agriculture into perfection.

Hope this conference will also discuss this issue in more detail as it is an important matter for all of us. We should no more think just how to produce high value product but it is also necessarily important how to keep our live in good quality by understanding following old saying… “You do not live at once. You only die once and live every day”.

I do not to take up any more of your time with these opening remarks. Let me simply thank you once again for sharing your thoughts with us. Here’s wishing every success for the conference. May Allah bless all of us.

Thank you for your kind attention,
Wassalamu’alaikum Warohmatullahi Wabarokatuh
COMMITTEE

Condescendent
Prof. Dr. Ir. Herry Suhardiyanto, M.Sc (IPB’s Rector)

Steering Committee
Chairman
Prof. Dr. Ir. Nastiti Siswi Indrasti

Vice
Dr. Ir. Yandra Arkeman, M.Eng

Board member
Prof. Dr. Ir. Aziz Darwis
Prof. Dr. Ir. Irawadi Djamaran
Prof. Dr. Ir. Eriyatno, MSAE
Prof. Dr. Ir. Anas M. Fauzi
Prof. Dr. Ir. Syamsul Maarif, M.Eng
Prof. Dr. Ir. Machfud, MS
Prof. Dr. Ir. Djumali Mangunwidjaja

Organizing Committee
Chairman
Dr. Ir. Yandra Arkeman, M.Eng
Co-chairs :
Prof. Dr. Ir. Suprihatin
Prof. Dr. Ono Suparno, S.TP, MT

Treasury
Dr. Indah Yuliasih, S.TP, M.Si
Dr. Elisa Anggraeni, S.TP, MSc

Programs
Dr. Hartrisari Hardjomidjojo, DEA
Dr. Endang Warsiki
Ir. Lien Herlina, MSc
Dr. Ika Amalia Kartika

Funding
Dr. Meika Syahbana Rusli
Dr. Dwi Setyaningsih
Prof. Erliza Hambali
Dr. Mulyorini Rahayuningsih

Secretariat
Dr. Titi Candra Sunarti
Dr. Prayoga Suryadharma
Dr. Sugiarso, MS
Dr. Faqih Uddin
Niken Ayu Permatasari, STP, MSi
Angga Yuhistira, STP, MSi
Luthfa Jamilah, STP
Yulianti
Elvin Septiana

Paper & Proceedings
Prof. M. Romli
Prof. Marimin
Prof. Ani Suryani
Prof. Erliza Noor
Dr. Liesbetini Hartoto
Dr. Moch Yani

Accomodation dan Logistics
Dr. Andes Ismayana
Dr. Ade Iskandar
Dr. Muslich
Dr. Sapta Raharja

Design, Web and Publication
Dr. Taufik Djafta
Dr. Aji Hermawan
M. Arif Darmawan, MT
Teguh Adi Setia, AMd
<table>
<thead>
<tr>
<th>Time</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, August 3rd 2015</td>
<td>AGENDA</td>
</tr>
<tr>
<td>08.00 - 09.00</td>
<td>Registration</td>
</tr>
</tbody>
</table>
| 09.00 - 10.00 | Opening Ceremony  
  - Welcoming Address: Prof. Nastiti Siswi Indrasti (Head of DAT, Fateta, IPB)  
  - Welcoming Speech Head of Bogor Regency  
  - Conference Opening: Prof. Herry Suhardiayanto (Rector of IPB)  
  - Opening Speech and Conference Opening : Minister of Industry Indonesia *  
  - Launching Expose International program DAT |
| 10.00 – 10.05 | Photo Session |
| 10.05 - 10.15 | Coffee break |
| 10.15 - 10.45 | Keynote Speech :  
  1. Prof Irawadi (Bogor Agricultural University, Indonesia)  
  2. Prof. Kenneth De Jong (George Mason University, USA)  
  3. Dr. Yandra Arkeman (Bogor Agricultural University, Indonesia)  
  4. Dr. Guillermo Baigorria (University of Nebraska, Lincoln, USA) |
| 10.45 - 11.30 | Lunch break |
| 11.30 – 12.00 | Plenary Session 1 :  
  Prof. Noel Lindsay (University of Adelaide, Australia)  
  Dr. Kiyotada Hayashi (National Agricultural Research Center, Tsukuba, Japan)  
  Prof. Margareth Gfrerer (Islamic State University of Jakarta, Indonesia)  
  Dr. Barry Elsey (University of Adelaide, Australia)  
  Ir. M. Novi Sapatra (Marketing Director KML Food Group) |
<p>| 12.00 – 12.30 | Discussion |
| 12.30 – 13.30 | Coffee break |
| 13.30 – 13.50 | Parallel session A, B and C |
| 13.50 – 15.10 | Welcome Dinner |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tuesday, August 4(^{rd}) 2015</strong></td>
<td></td>
</tr>
<tr>
<td>08.30 – 09.00</td>
<td>Registration</td>
</tr>
<tr>
<td>09.00 – 09.20</td>
<td>Plenary Session 2:</td>
</tr>
<tr>
<td></td>
<td>Dr. Gajendran Kandasamy (PhD in Physic, Melbourne University; PhD in Innovation Imperial College, London)</td>
</tr>
<tr>
<td>09.20 – 09.40</td>
<td>Prof. Allan O’Connor (University of Adelaide, Australia)</td>
</tr>
<tr>
<td>09.40 – 10.00</td>
<td>Dr. Eng. Wisnu Ananta Kusuma, ST, MT (Bogor Agricultural University, Indonesia)</td>
</tr>
<tr>
<td>10.00 – 10.20</td>
<td>Dr. Frank Neumann (University of Adelaide, Australia)</td>
</tr>
<tr>
<td>10.20 – 10.45</td>
<td>Discussion</td>
</tr>
<tr>
<td>10.45 – 13.00</td>
<td>Parallel Session A, B and C</td>
</tr>
<tr>
<td>13.00 – 14.00</td>
<td>Lunch break</td>
</tr>
<tr>
<td>14.00 – 15.30</td>
<td>Parallel Workshop</td>
</tr>
<tr>
<td></td>
<td>• Strategies for Agroindustry Development</td>
</tr>
<tr>
<td></td>
<td>• LCA for Agroindustry</td>
</tr>
<tr>
<td></td>
<td>• Innovation and Technopreneurship for Agroindustry</td>
</tr>
<tr>
<td></td>
<td>• Agroindustrial Informatics</td>
</tr>
<tr>
<td>15.30 – 15.45</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>15.45 – 16.15</td>
<td>Closing remark</td>
</tr>
</tbody>
</table>
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcoming address from general chairs</td>
<td>i</td>
</tr>
<tr>
<td>Welcoming address from head of Agroindustrial Technology Departement</td>
<td>ii</td>
</tr>
<tr>
<td>Bogor Agricultural University Committee</td>
<td>iv</td>
</tr>
<tr>
<td>Agenda</td>
<td>v</td>
</tr>
<tr>
<td>Table of Content</td>
<td>vii</td>
</tr>
<tr>
<td><strong>Abstract of Invited Speakers</strong></td>
<td></td>
</tr>
<tr>
<td>Noel Lindsay</td>
<td>1</td>
</tr>
<tr>
<td>Kiyotada Hayashi</td>
<td>2</td>
</tr>
<tr>
<td>Barry Elsey</td>
<td>3</td>
</tr>
<tr>
<td>Frank Neumann</td>
<td>4</td>
</tr>
<tr>
<td>Yandra Arkeman</td>
<td>5</td>
</tr>
<tr>
<td>Wisnu Ananta Kusuma</td>
<td>6</td>
</tr>
<tr>
<td><strong>Innovative Agroindustrial and Business System Engineering</strong></td>
<td></td>
</tr>
<tr>
<td>The Feasibility Study of Establishment of Biodiesel and Paving Block</td>
<td>7</td>
</tr>
<tr>
<td>Industry From Spent Bleaching Earth</td>
<td></td>
</tr>
<tr>
<td>Febrini Purba, Ani Suryani and Sukardi</td>
<td></td>
</tr>
<tr>
<td>Green Supply Chain Management Innovation Diffusion in Crumb Rubber</td>
<td>13</td>
</tr>
<tr>
<td>Factories: Designing Strategies Towards Implementation</td>
<td></td>
</tr>
<tr>
<td>Tri Susanto, Marimin Marimin and Suprihatin</td>
<td></td>
</tr>
<tr>
<td>Mobile Business Analytics System for Service Level Analysis of Customer</td>
<td>19</td>
</tr>
<tr>
<td>Relationship Decision</td>
<td></td>
</tr>
<tr>
<td>Taufik Djatna and Yudhistira Chandra Bayu</td>
<td></td>
</tr>
<tr>
<td>Exploring an Innovative Approach to Address Non-Tariff Barriers</td>
<td>26</td>
</tr>
<tr>
<td>Experienced by Small to Medium Enterprises in Downstream Coffee Production in Indonesia</td>
<td></td>
</tr>
<tr>
<td>Andar Hermawan, Yandra Arkeman, Titi Candra Sunarti</td>
<td></td>
</tr>
<tr>
<td>Innovation on Guardrail Press Tool with Simple Technology for Highway Road Business</td>
<td>33</td>
</tr>
<tr>
<td>Bambang Suhardi Waluyo and M. Syamsul Ma'Arif</td>
<td></td>
</tr>
<tr>
<td>An Analysis of Innovation Network Performance on the Palm Oil Industry in North Sumatera</td>
<td>34</td>
</tr>
<tr>
<td>Danang Krisna Yudha, Aji Hermawan and Machfud</td>
<td></td>
</tr>
<tr>
<td>Application of Nanotechnology to Improve Physical Properties of Red Fruit Emulsion in order to Increase Its Industrial Use</td>
<td>41</td>
</tr>
<tr>
<td>Murti Ningrum and Syamsul Maarif</td>
<td></td>
</tr>
<tr>
<td>Exploring the Internationalization Process Model of an Indonesian Product – Case study: Fruit Chips SME’s</td>
<td>47</td>
</tr>
<tr>
<td>Dickie Sulistya Apriyianto, Hartrisari Hardjomidjojo, Titi C Sunarti</td>
<td></td>
</tr>
<tr>
<td>Innovation Management in Indonesian Palm Oil Industry</td>
<td>53</td>
</tr>
<tr>
<td>Karim Abdullah, Aji Hermawan and Yandra Arkeman</td>
<td></td>
</tr>
</tbody>
</table>

vii
Innovation Design Process for Gayo’s Coffee Quality Improvement
Rahmat Pramulya, M Syamsul Ma’Arif and Tajuddin Bantacut
59
Technology Innovation Adoption to Improve the Performance of Dairy Small-Medium Enterprises (SME): Case study in Pangalengan-Bandung Regency, West Java, Indonesia
Nuni Novitasari, Titi Candra Sunarti and Nastiti Siwi Indrasti
67
Process Innovation for Producing Bioethanol from Oil Palm Empty Fruit Bunches by Improving Fermentation Conditions
Fitriani Kasim, Novizar Nazir and Syamsul Ma'Arif
76
Managing Innovation through Knowledge Sharing in An Indonesia Coconut SME
Muchammad Kodyiat P, Machfud, Nastiti S Indrasti
82
Increasing Added Value of Banana by Producing Synbiotic Banana “Sale” Using Innovation & Technology Strategy Approach
Eka Ruriani
88
Innovation Palm Fronds Briquettes Through Noncarbonization Process
Petir Papilo, Syamsul Ma’Arif and Yandra Arkeman
93
Graphic Design Innovation As Brand Identity For “Mahlzeit N 'Das Brot “ Bread Packaging
Zulkarnain, Deny Dwi Lestari and M. Syamsul Ma'Arif
100
An AHP Application for Selecting A Business Innovation Strategy of Chocolate SMEs in East Java
Yani Kartika Pertiwi, M. Syamsul Maarif and Machfud
104
Understanding local food consumers and their motivations: A case study in Padang city
Poppy Arsil
110
Spatial Model Design for Competitive Improvement of Small Medium Scales Enterprises (Case Study: Bogor City)
Hartrisari Hardjomidjojo, Harry Imantho and Armaiki Yusmur
116
System Analysis and Design for Selecting Chitin and Chitosan Industry Location by Using Comparative Performance Index (CPI) Method
Dena Sismanaini, Nastiti S. Indrasti and Taufik Djatna
121
Arduino-Based Temperature Monitoring Device for Cold Chain Transportation
Delmar Zakaria Firdaus and Endang Warsiki
129
Development of Downstream Cocoa Industry: Exploring the Role of Government and Small and Medium Industry in Partnership
Farda Eka Kusumawardana, Yandra Arkeman, Titi C Sunarti
134
The Role of Communication in the Technology Transfer (A Case Study at the Center for Agro-based Industry)
Anindita Dibyono, Sukardi, Machfud
140
The Center for Pulp and Paper Appraising its Productivity in Generating Industry-Applicable Research: A Best Practice Illustration
Ahmad Rudh Firdausi, Anas M Fauzi, Machfud
147

Frontier Approaches in Process and Bioprocess Engineering
Identification of Flavor Compounds In Cemcem (Spondiazpinata (L.F) Kurz) Leaf Extra
156
Luh Putu Wrasiat, Ni Made Wartini and Ni Putu Eny Sulistyadewi
Synthesis and Characterization of Nanosilica from Boiler Ash with Co-Precipitation Method
Wahyu Kamal Setiawan, Nastiti Siswi Indrasti and Suprihatin
The Comparison Of Media on the Microalgae *Nannochloropsis* sp. Culture
Anak Agung Made Dewi Anggreni, I Wayan Arnata and I B Wayan Gunam
Identification of Media and Indicator Liquid as A Recorder Smart Label
Endang Warsiki and Riris Octavia Sari
The Effect of Concentration of Mes Surfactant From Palm Oil and Concentrasion of Inorganic Salt to Interfacial Tension Value
Rista Fitria, Ani Suryani, Mira Rivai and Ari Imam
Effect of Nano Zinc Oxide On Bionanocomposite
Siti Agustina, Nastiti Siswi Indrasti, Suprihatin and Nurul Taufiqu Rohman
The Effects of Molar Ratio Between 80% Glycerol And Palm Oil Oleic Acid on the Synthesis Process of Ester Glycerol
Mira Rivai, Erliza Hambali, Giovanni Nurpratiwi Putri, Ani Suryani, Pudji Permadi, Bonar T.H Marbun and Ari Imam Sutanto
Selecting Part of Natural Fiber EFB which has Best Mechanical Strength through Tensile Test Analysis for Composite Reinforced Material
Farkhan, Yohanes Aris Purwanto, Erliza Hambali and Wawan Hermawan
Effect Of Ethyl Methane Sulfonate (EMS) On Growth Rate, Cell Size, Fatty Acid Content And Antioxidant Activities Of *Dunaliella* sp.
Mujizat Kawaroe and Amelia Gustini
Identification of phenol red as Staphylococcus aureus indicator label
Dunaliella sp.
Melati Pratama, Endang Warsiki and Liesbetini Hartoto
Enhancing Ethanol Tolerant of *Escherichia coli* Recombinant by Glutamate Addition under Aerobic Conditions
Indra Kurniawan Saputra, Prayoga Suryadarma and Ari Permana Putra
In Vitro Potentifal of Antibacterial Marine Microalgae Extract *Chaetoceros gracilis* Toward *Staphylococcus epidermidis* Bacteria
Ardhi Novraldi Ginting, Liesbetini Haditjaroko and Iriani Setyaningsih
The Potential Applications of Modified Nagara Bean Flour through Fermentation for Innovation of High Protein Analog Rice
Susi, Lya Agustina and Chondro Wibowo
Studies on the Characteristics of Pasayu (Pasta of Waste-Cassava) Fortification as a New Product Development
Marleen Sunyoto, Roni Kastaman, Tati Nurmala and Dedi Muhtadi
Optical And Particle Size Properties Of *Sargassum* Sp Chlorophyll As Dye-Sensitized Solar Cell (DSSC)
Makkulawu Andi Ridwan and Erliza Noor
Alkaline Pre-Treatment of *Gelidium latifolium* and *Caulerpa racemosa* for Bioethanol Production
New Trends in Industrial Environmental Engineering & Management
Formulating a Long Term Strategy for Sustainable Palm Oil Biodiesel Development In Indonesia: Learning From the Stakeholder Perspective
Beny Adi Purwanto, Erliza Hambali and Yandra Arkeman
Quality Improvement of Polluted River Water Used as Raw Water in Clean Water Supply by Using Biofiltration
Suprihatin, Muhammad Romli and Mohamad Yani
An Empirical Investigation of the Barriers to Green Practices in Yogyakarta Leather Tanning SMEs
Dwi Ningsih, Ono Suparno, Suprihatin and Noel Lindsay
Preliminary Study For CO₂ Monitoring System
Farhan Syakir, Rindra Wiska, Irvi Firqotul Aini, Wisnu Jatmiko and Ari Wibisono
Designing a Collaboration Form to Overcome Innovation Resistance in Waste Management Practices in Lampung Tapioca Industry
Nur Aini Adinda, Suprihatin, Nastiti Siswi Indrasti
Pollution Reducing Opportunities for a Natural Rubber Processing Industry: A Case Study
Syarifa Arum Kusumastuti, Suprihatin and Nastiti Siswi Indrasti
Creating the Standard for Specific Energy Consumption at Palm Oil Industry
Alfa Firdaus and M Syamsul Ma'Arif
Effects of Palm-Dea Non-Ionic Surfactant as an Additive in Buprofezin Insecticide on the Efficacy of it in Controlling Brown Planthopper Rice Pest
Fifin Nisya, Rahmini, Mira Rivai, Nobel Cristian Siregar, Ari Imam Sutanto and Ainun Nurkania
Intelligent Information & Communication Technology for Adaptive Agroindustry of the Future
Design of Web-Based Information System With Green House Gas Analysis for Palm Oil Biodiesel Agroindustry
Yandra Arkeman, Hafizd Adityo Utomo and Dhani S. Wibawa
Sequential Patterns for Hotspots Occurrence Based Weather Data using Clospan algorithm
Tria Agustina and Imas S. Sitanggang
How to Deal with Diversity in Cultivation Practices using Scenario Generation Techniques: Lessons from the Asian rice LCI Initiative
Kiyotada Hayashi, Yandra Arkeman, Elmer Bautista, Marlia Mohd Hanafiah, Jong Sik Lee, Masanori Saito, Dhani Satria, Koichi Shobatake, Suprihatin, Tien Tran Minh and Van Vu
Development of Life Cycle Inventories for Palm Oil in North Sumatra: Modelling Site-Specific Activities and Conditions
Vita D Lelyana, Erwinsyah and Kiyotada Hayashi
Sequential Pattern Mining on Hotspot Data using PrefixSpan Algorithm
Nida Zakiya Nurulhaq and Imas S. Sitanggang
An Intelligent Optimization Model Analysis and Design of Bio-filtration in Raw Water Quality Improvement
Ramiza Lauda and Taufik Djanla
Development Of People Food Consumtion Patterns Information System Based On Webmobile Application.
Fadly Maulana Shiddieq, Roni Kastaman and Irfan Ardiansah
Association Rules Mining on Forest Fires Data using FP-Growth and ECLAT Algorithm
Nuke Arincy and Imas S. Sitanggang
Development Of Expert System For Selecting Tomato (Solanum Lycopersicon) Varieties
Erlin Cahya Rizki Amanda, Kudang Boro Seminar, Muhamad Syukur and Noguchi Ryozo
Developing Life Cycle Inventories for Rice Production Systems in Philippines: How to Establish Site-specific Data within the General Framework
Elmer Bautista, Kiyotada Hayashi and Masanori Saito
Construction of Site-specific Life Cycle Inventories for Rice Production Systems in Vietnam
Tran Minh Tien, Bui Hai An, Vu Thi Khanh Van and Kiyotada Hayashi
Study on Life Cycle Benefit Assessment as a tool for promoting the solution of Environmental Problems
Tetsuo Nishi
Real Time Monitoring Glycerol Esterification Process with Mid IR Sensors using Support Vector Machine Classification
Iwan Aang Soenandi, Taufik Djatna, Irzaman Husein and Ani Suryani
Extraction of Multi-Dimensional Research Knowledge Model from Scientific Articles for Technology Monitoring
Arif R. Hakim and Taufik Djatna
Performance of Artificial Lighting Using Genetics Algorithms
Limbran Sampebatu
The Application of Fuzzy-Neuro Approach for ERP System Selection: Case Study on an Agro-industrial Enterprise
Joko Ratono, Kudang Boro Seminar, Yandra Arkeman and Arif Imam Suroso
Abstract— One of the problems associated with natural rubber processing is the environmental problems created by the use of large amounts of water, together with energy and chemicals that pollute the environment. An environmental innovation is considered as a strategy to address the environmental impacts better than a conventional end-of-pipe treatment. This research aims to explore the opportunities of pollution prevention that have not been implemented yet in a natural rubber processing industry. This study used a Case Study approach on a small and exploratory scale, with data collected from interviews and observations. The results show that the environmental issues that are related to factory’s daily operation that consists of water usage, accumulation of unprocessed material, the use of ammonia and the use of inorganic fertilizer. Some preventive strategies to overcome the environmental issues namely: reuse of the wastewater, efficiency of water usage, material substitution, and good housekeeping. The results of this study suggest the recommendation to overcome some specific environmental issues of a particular natural rubber industry that could be an appropriate template for broader study.

I. INTRODUCTION

Indonesia is the second largest natural rubber producer in the world after Thailand [1] with approximately 26% of the world's natural rubber needs is supplied by Indonesia [2]. The main types of natural rubber products in Indonesia are: crumb rubber, rubber sheet (Ribbed Smoked Sheet or RSS), concentrated latex, and crepe [3]. As one of the main commodities of the agricultural sector, Indonesia's natural rubber industries create attention with respect to the magnitude of potential wastewater, solid waste, as well as odor emissions resulting from the production processes chain [4].

Compliance with environmental laws in a country is one of the factors driving innovation opportunities within a company. It is intended to encourage the company and all its elements to use the technology, materials and processes that are more environmentally friendly [5]. Therefore, it is necessary to improve the environmental management performance through an innovation [6]. Innovation that aims to reduce environmental impacts is called environmental innovation [7]. The innovation could be on the process, product, marketing or organization [7]. While based on the approaches are used, the environmental innovation can be distinguished into two types i.e. reactive and preventive strategies [8]. Even though an end-of pipe treatment facility is able to comply with the effluent standards, the type of environmental strategy is seen as an uneconomic treatment and cannot anticipate changes in environmental issues in the future [9]. Therefore, it is necessary for industry to start looking for proactive strategies replacing the conventional waste management with the pollution prevention efforts at the sources.

Given the situation, the purpose of this study is to explore the opportunities for pollution prevention practices in a natural rubber company. Therefore, the research question that posed in this study is:

“What are the pollution prevention strategies to innovate the existing environmental practices?”

This question intends to explore the opportunities for environmental practices improvement based on the identified environmental impacts and company’s situation.

II. POLLUTION CONTROL FOR NATURAL RUBBER INDUSTRIES

Some characteristics of the waste or pollution associated with the processing of the intermediate
products of natural rubber are: 1) high concentration of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and suspended solids (SS) in the wastewater, 2) acidic effluent, 3) high concentration of ammonia and nitrogen compounds, 4) high level sulphate, and 5) high level of odor [10]. The untreated wastewater from natural rubber production can contaminate ground water and surface water [11]. In addition to water pollution, environmental impact is also caused by air pollution, for the example, odor and smoke particles from the production process of the RSS rubber [12]. In addition to air pollution from the production process, air pollution also comes from anaerobic wastewater treatment system due to the release of methane as a greenhouse gas [13]. With the strict environmental requirements and sanctions system from the Ministry of Environment, some medium and big business implement waste management systems. The wastewater that is discharged from the treatment facility must meet the quality of Ministry of Environment’s Decree No. 51 Year 1995 [14]. To comply with the regulation, the company must provide a sewage treatment unit to meet the required standard [15]. However, majority rubber industries in Indonesia are using conventional lagoons system to treat their wastewater, that requires long retention times and large area [16].

III. POLLUTION PREVENTION
Some environmental approaches to deal with environmental pollution in industries include: (1) the end-of-pipe approach, (2) pollution prevention or total quality management (TQM), (3) product stewardship, and (4) sustainable development [17], [18]. A company is said to be environmentally innovative if they meet one of the several criteria such as the integration of environmental criteria into the design process or product, improvements in waste management and recycling process for either internal or external [19]. The shifting from reactive into pollution prevention strategy show higher level of proactivity in terms of environmental management strategy in a company. This includes an environmental innovation in process [20]. Pollution prevention is reduction or elimination of pollutants creation at the sources, not when the waste is already formed [21], [22]. Some activities that are categorized as pollution prevention include the substitution of raw materials, spill and leak prevention, modification processes and equipment, modification of products, and so forth [23].

IV. DATA AND METHODOLOGY
A. Conceptual framework and case study
In seeking the innovative environmental strategies, it is necessary to conduct the identification and prioritization of key environmental issues for the determination of the resources and actions required [24]. After that, a more detailed examination of the status and performance of environmental management are required. Thus, to determine the areas and corrective actions, it is necessary to review the existing environmental management system in the company. This review may consist of the amount of natural resources used during production processes, and the amount of waste that is formed along with the potential environmental impacts that may result.

Hence, research on innovative strategies and opportunities for environmental improvement will be done in a natural sheet rubber processing factory using the fumigation method. A case study approach was used to understand the findings [25], [26]. This approach also was taken due to the specific conditions of a company that leads to difference environmental impacts, environmental management [27] and relationship with the local environmental institution. The stages in this study consist of identification the source of pollution and practices that are not environmentally friendly, obstacles to pollution prevention efforts, and possible environmental innovations in achieving environmental improvements in the plant. This research was in a rubber processing company in Central Java Province, Indonesia which is called company X. The company manufactures quality rubber products such as RSS (ribbed smoked sheet) and cutting (pieces of rubber from the sorting process). This company employs 1,447 employees. Ribbed smoked sheet (RSS) is one of the processed products made from rubber plantations in Indonesia that occupies the second largest rubber products after crumb rubber or SIR (Standard Indonesian Rubber). The process of RSS rubber through smoking is more complicated than the manufacturing of crumb rubber that consist of nine stages [28]. The stages in the RSS production from field latex are: raw materials handling before arrive at factory, reception of latex in the factory, dilution latex, coagulation, milling, draining, drying with fumigation, sorting, and packaging.

B. Data Collection
- Literature Study
By studying data from books, journals, research report, publications and documents that are relevant for this study. The documents that were studied include environmental regulations, the company's monthly production reports, and job training reports.  
- Interview
The interview aims at generating primary data from source persons, who were selected through purposive method sampling [29]. The interviewees were selected based on their expertise in the rubber industry and
The potential environmental effects that can be identified in this rubber company namely:

1) Pollution by wastewater resulting from the production process that uses large amounts of water. The effluent of rubber wastewaters have negative impacts on the sediments, water body receiver and macroinvertebrate due to the content of pollutants such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), heavy metals and conductivity [34].

2) Air pollution that comes from burning wood to the rubber latex curing process. Burning the rubber firewood can cause smoke particles pollution if there are no proper ventilation systems [12]. It also has effect to the local residents. However, this concern is not significant because from the air monitoring results, it shows that the air quality still meet the regulatory standards.

3) Bad smell due to the accumulation of raw material that has not been processed yet in the secondary product unit. The odor is usually caused by organic matter in the raw materials and the amount of water that causes the decay process. As for odor control in factory environments can be performed by using liquid smoke, but it is still less optimal because it has not eliminated the source of the smell.

4) The use of ammonia. Ammonia is used to prevent coagulation latex at the time of collecting the latex, and prevent contamination of the latex [35]. Ammonia has a pungent odor, toxic, and corrosive to some materials [36]. With these characteristics, ammonia will impact on the health of the respiratory system of workers [12].

5) The use of inorganic fertilizers contributes to greenhouse gases. This is due to two reasons: 1). the process of making artificial fertilizers which is energy intensive; and 2) the application of fertilizer will release the gas N₂O [13].

<table>
<thead>
<tr>
<th>No.</th>
<th>Material</th>
<th>Application</th>
<th>Unit</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An organic fertilizer</td>
<td>Plantation</td>
<td>Liter</td>
<td>140</td>
</tr>
<tr>
<td>2</td>
<td>Water</td>
<td>Plant irrigation, production processes (dilution, coagulation, equipment washing)</td>
<td>m³</td>
<td>69,546</td>
</tr>
<tr>
<td>3</td>
<td>Ammonia</td>
<td>Latex preservation and anti-precoagulation</td>
<td>Liter</td>
<td>475</td>
</tr>
<tr>
<td>4</td>
<td>Formic acid</td>
<td>Coagulation of latex</td>
<td>Liter</td>
<td>700</td>
</tr>
<tr>
<td>5</td>
<td>Rubber firewood</td>
<td>Smoking process</td>
<td>m³</td>
<td>3,047</td>
</tr>
<tr>
<td>6</td>
<td>Electricity</td>
<td>Machines and equipment</td>
<td>kWh</td>
<td>53,173</td>
</tr>
</tbody>
</table>

B. Pollution prevention opportunities

From the identification of the existing processes and the interviews result, the improvements that are...
required namely on the production process, handling of raw material and waste management systems. Therefore some solutions that can be proposed to prevent environmental pollution can be seen in the table 2.

### Reuse of wastewater

With the quality of treated wastewater effluent that meets the Quality Standard according to the Ministry of Environment's Decree No. 51/1995 [14], there is the opportunity to use it for irrigation or secondary purposes. The end output of the wastewater treatment unit of processing of natural rubber in Thailand was reused for irrigation purposes in various rubber plantations and rice plantations through several experiments [37]. Some of these experiments used to test the impact on vegetables, rubber trees, as well as rice. They also suggest the feasibility of re-using wastewater for irrigation of cash crops plantation with the consideration of the economic value and organic nutrients contained in the effluent. However, in the context of Indonesia, the output of effluent reuse for irrigation must meet certain statutory requirements as stipulated in Government Regulation No. 82/2001 [38] on Water Management and Water Pollution Control. So, prior to its implementation, it is necessary for testing of the control plants for a year. In addition, as the company is big enough and has implemented an environmental management system, company X must consider the quality of effluent that still meets with the requirements for irrigation water quality standards issued by the Ministry of Environment.

### Efficiency in water usage

Because to the large amount of water used, the company should conduct efficiency for water use. In this case it does not mean reducing the amount of water usage, but examining the efficiency of its use. This is in line with the manager's technique which is for example to warn employees to turn off the water taps when not needed. Although the boss is still a very necessary role in the supervision of its implementation, the employees show a cooperative attitude to implement management directives.

### Raw material substitution

According to the engineering manager that one of the main pollutant of concern is the use of ammonia. Ammonia is used to freeze the latex. Liquid smoke is an alternative as a latex coagulant to replace ammonia. Liquid smoke is considered more environmentally friendly because it is made from a biomass through a pyrolysis process. The company has such resources given they own the rubber plantation and can utilize parts of rubber trees that have not grown to make liquid smoke. In addition, to reduce the emissions due to fertilizer, the use of organic fertilizer such as animal manure would be to replace synthetic fertilizer [13].

### Good housekeeping

According to [22], good housekeeping is considered as a cost effective way to reduce pollution. Its implementation requires commitment and active participation of managers and employees. The practices consist of awareness of employees to use water, chemicals and fertilizer efficiently and carefully.

---

**TABLE 2**

<table>
<thead>
<tr>
<th>Previous action and result</th>
<th>Change that less pollute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The use of chemicals such as ammonia and formic acid for latex coagulation.</td>
<td>Substitution of the chemicals with organic coagulant, for example with the use of liquid smoke from biomass that is more environmentally friendly.</td>
</tr>
<tr>
<td>2 Uncontrolled use of water when washing the latex freezing equipment.</td>
<td>The response of employees to close the water taps when not in use so as to prevent water wastage.</td>
</tr>
<tr>
<td>3 Treated wastewater flowed through the drain pipe end.</td>
<td>Study to reuse wastewater for secondary purposes.</td>
</tr>
<tr>
<td>4 The accumulation of unprocessed raw material in the unit byproducts causes bad smell.</td>
<td>Add more partitions in the fumigation chamber, to increase the capacity of curing and accelerating curing time, thereby reducing the accumulation of unprocessed material.</td>
</tr>
<tr>
<td>5 Rubber sheet drying time is for 21 days in the fumigation chamber.</td>
<td>Addition of drying time optimization rubber partition in the fumigation chamber, so that the drying time is faster and more products are produced.</td>
</tr>
<tr>
<td>6 The use of synthetic fertilizers in rubber plantations contributes to greenhouse gas emissions.</td>
<td>Cooperate with a rubber research center which has been producing organic fertilizer and fungicide.</td>
</tr>
<tr>
<td>7 The use of fertilizers in general.</td>
<td>Efficiency in the use of fertilizer by proper time and frequency fertilization, as well as the prevention of shedding of the fertilizer.</td>
</tr>
</tbody>
</table>
VI. CONCLUSION AND RECOMMENDATION

This study examines the current situation of environmental management in a natural rubber processing company to explore the pollution prevention practices opportunities.

The prevention at the source consists of efficiency in water usage, raw material substitution, good housekeeping, and increasing production capacity.

These environmental improvement strategies cannot be generalized beyond the company where the conditions and characteristics differ by region. However, this design is an appropriate template for a broader based study. In addition, future research also needed to evaluate the effectiveness if the application of these strategies is implemented by the organization.

The results of this research highlight the practical implications by optimizing employees' participation for environmental friendly practices. As the strategic implications, this research also assists the company’s management in environmental decision making by conducting a feasibility study on an environmental project towards implementation. These results also suggest policy makers to assist industries in the environmental management and provide the industries with technical guide. Finally, the success of efforts to implement the pollution prevention practices requires active participation from all involved parties in the company, as well as optimization of the roles of relevant experts.

REFERENCES


