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The effect of spectrum range limitation to the efficiency of 
Al0.3Ga0.7As/GaAs/InP/Ge multijunction solar cells 

A simulation case 

T. Sumaryada•a, E.S. Wahyuni3
, H. Syafutra3

, H. Alatasa 
eoretical Physics Division at Department of Physics, Bogar Agricultural University (IPJ?) 

Jalan Meranti Kampus IPB Dramaga Bogar 16680, Indonesia . 

ABSTRACT 

-ect of Spectrum Range Limitation (SRL) to the efficiency and performances of multijunction solar cells 
• 7As/GaAs/lnP/Ge was investigated using simulation approach. Simulations were done using two different 
first with No Spectrum Range Limitation (NSRL) and the second with SRL. In the first model each subcell 
I) was free to absorb AM l .5G solar radiation spectrum from 280 nm up to 2500 nm, while for the second model. 
rption spectrum for each subcell depends on the cut-off wavelength of its previous subcell. For each model. a 
tical current flow in each layer was simulated. The results have shown that SRL dropped the efficiency by 

a half (44.90 %) compared to simulation with NSRL. All current-producing simulations were performed using 
11 ailable PC ID program. 

rds: Spectrum range limitation, Multijunction solar cells, Simulation, PC! D 

1. INTRODUCTION 

ar energy is one of the most promising renewable energy resources in the world. The abundance amount of solar 
..... and the zero emission produced are some of the reasons that motivate people to continue research in this field. 

f the solar cells available in the market are silicon based panels with efficiency up to 15%, while cheaper panels 
n amorphous silicon can only produce half of it [I]. With such a low efficiency a large area will be needed for 
g a solar farm. As an example the largest solar farm in the world, Topaz solar farm in California, can produce 
·ty up to 550 MW and power almost 200,000 homes, but it takes about 25 km2 area [2]. One way to reduce the 

this massive area is by inventing a new type of solar cells with a high efficiency rate. The development of high 
cy solar cells mostly focused on multijunction solar cells made from III-V compounds like GaAs, AIGaAs, InP, 

- lnP. Multijunction solar cells use several semiconducting layers or subcells, each with different bandgap energy 
orption coefficient. Recently some groups have claimed to approach or even surpass 40% solar cells efficiency 

--. Theoretically the more subcells put into, the more electricity produced by the solar cells (6]. 

Jar energy could also be used to power satelites and outer space vehicles [7]. In outer space we can expect to 
e a full blackbody spectrum from the sun, but on the ground the solar energy received is really depend on its 

. The reduction of solar energy by the atmosphere is shown by the Air Mass (AM) parameter denoted by 
cose. As an exampe, AMO is the radiation with the orientation angle of 0° (sun is right on top of our head). while 

.:G is a global solar radiation with the average orientation angle around 48° and the total solar irradiance about 989 
The amount of solar radiated energy will affect the total electrical power produced, so studying the behavior of 

-ells under various types and conditions of radiation could benefit us in designing the most efficient solar cells. 

multijunction solar cells , several p-n junction materials were stacked together according to their bandgap energy 
top layer is material with the highest Eg and will absorb solar radiation in the low wavelength region. The next 

are materials with lower Eg and will absorb solar radiation in the higher wavelength regions. Jn the previous 
h. we have designed and simulated multijunction solar cells under ideal conditions [8]. In this paper we are 
ed in comparing the efficiency of multijunction solar cells due to two types of conditions, firstly all material s or 

absorb the whole solar radition spectrum (from 280 nm - 2500 nm), and secondly each material absorbs solar 
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radiation in their respective spectrum range. We will discuss this effect of spectrum range limitation to the perforr 
and efficiency ofmultijunction solar cells AI0.3Gao.7As/GaAs/InP/Ge using simulation approach. 

2. METHODS 

The incident solar radiation to the first subcell was taken from AM1.5G data (ASTM G 173-03) [9], while th• 
off wavelength of each subcell was determined from the coefficient of absorption calculated using Equation (I) [I 0 

a(A.) = 5.5J(E(A.)- Eg) + l.5~E(A)-(Eg + O. l)(µmf 1 

The transmitted intensity to the next subcell /(A) depends on the amount of radiation, thickness of the subcell , an 
absorption coefficient of the previous subcell (/0, d, and a(A) ), following Equation (2) : 

/(A.)= Io.e-a(J.)d 

Simulation of power production of each subcell was performed using PCI D program which is developed by Bi 
et.al and freely available in the web [I I]. Since this program can only simulate one layer at a time, several simulai 
must be performed and depending on how many junctions accounted in solar cells. For our simulation (4-junction · 
cells), the total efficiency of solar cells is calculated using : 

7J = Pi + P2 + P3 + P4 x 100% 
"'Yo 

Where P0 is 10 multiplied by A (A= 1 cm2
, which is the area of solar cell in the simulation) and assumed as the i 

solar power to the first subcell , while P1, P2• P3. and P~ are the output power produced from the subcell number '. 
and 4 respectivelly. 

3. RESULTS AND DISCUSIONS 

The profiles of absorbed solar radiation for each model are shown in Figure. I (a) and (b ). For NSRL m 
subcells were free to absorb solar radiation within the range of 280 nm to 2500 nm. On the other hand, in SRL 
each subcell absorb radiation within a specific range determined by absorption coefficient of the subcell and its 
subcell. For example, GaAs absorbs radiation within the range of 684-873 nm. The value of 684 nm is the 

wavelength of the previous subcell (Alo3Gao.1As), while 873 nm is the cut-off wavelength of GaAs 
spectrum range for all subcells were shown in Table.I . 
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Figure. I (a) AM I .5G spectrum and the absorption region for each subcell based on NSRL (No Spectrum Range Limitation). ar­
(b) AM 1.5G spectrum and the absorption region for each subcell based on SRL (Spectrum Range Limitation). 
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(a) (b) 
1) The profile of radiation converted into electricity for each subcell based on NSRL (No Spectrum Range Limitation). and 
ofile of radiation converted into electricity for each subcell based on SRL (Spectrum Range Limitation). 

amount of radiation converted into electricity for each subcell can be seen in Figure 2 and Table. I . For 
-As, the ouput electric power produced is 438 mW under NSRL condition, and 198 mW under SRL. This is a 
or 54.79 % drop of efficiency. The amount of radiation loss (radiation which is not being absorbed and not 

nverted into electricity) is defined as the difference between absorbed radiation and the ouput power. Radiation 
the first subcell is \ 0.8 mW (or 2.41 % loss) in NSRL, and 253.8 mW (56.17 % loss) in SRL model. For the 
ubcell, GaAs, the output power is 130 mW for NSRL and 81 mW for SRL, or a 37.7 % drop of ouput power. 
n loss for the second subcell is 76 mW (36.9 % loss) for NSRL, and 122 mW (60.1 % loss) for SRL model. The 
1cell, lnP, produced 36 mW output in NSRL model, but only 7.6 mW in SRL, or 78.9 % drop of ouput power. 
n loss for lnP is 3.0 mW (7.69 % loss) for NSRL, and 32.4 mW (81 % loss) for SRL model. The last subcell , Ge, 
j 31.6 mW of electricity in NSRL, and 63 .6 mW in SRL model. Interestingly, instead of a drop, we gain an 
of efficiency about I 01.26 % for this subcell. Radiation loss for Ge is 228.4 mW (87 .85 % loss) for NSRL and 
nW (75.8 % loss) for SRL model. 

le. I Simulation Results. 

Type of SubceU Incoming Absorbed Ou put Absorption Total 
radiation radiation radiation Power spectrum efficiency 

(mW/cm2
) (mW/cm2

) (mW) range (nm) (%) 

A lo 3Gcl(nAs 989.80 448.80 438.00 280-2500 

GaAs 541.00 206.00 130.00 280-2500 
NSRL lnP 335.00 39.00 36.00 280-2500 64.21 

Ge 296.00 260.00 31.60 280-2500 

A 10 3Ga0.1As 989.80 451 .80 198.00 280-684 

Ga As 538.00 203 .00 81 .00 684-873 

SRL \n? ?i ?i 5 .()<J 4() .\)\) l .6<J '013-1}'2 \ 35.38 

Ge 295 .00 263.00 63.60 921-1864 
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From the analysis above, the third subcell, lnP, contribute the least to the total efficiency of solar cells. 
much radiation loss, and too little output power produced by InP, especially in SRL model. This problem is p 
related to the crystal properties of lnP. The lattice constant of Al0.3Ga0.7As, GaAs, and Ge are almost identical, 
5.65 Angstrom, while for InP is around 5.90 Angstrom. As we know, lattice mismatch between two adjacent subce 
lead to a significant loss or dissipation of energy during the current producing process inside the solar cells [ 12, t: 
hypothesize that if we remove lnP subcell, and keep the triple j unction intact (Al03 Ga0 7As/GaAs/Ge), a better effic" 
and minimal radiation loss can be achieved. 

There are two ways to model the performance of a multijuncttion solar cells, first by using non iden · 
currents, and second by using an identical current flow in each subcell. The first is rather unrealistic and unprac · 
since in reality we do not harvest the output from each subcell individually. The more realistic way to extract the el 
power from solar cells is by forcing the same value of currents flow in each subce\l (or setting a series connection 
subcells) [8] . In this simulation, we only consider non identical currents flow in each subcell, which is unrealistic. 
since we only interested in studying the solar cells behavior under different spectrum range, the same behavior 
expected to appear in an identical current model. 

The current-voltage characteristic of each subcell under NSRL and SRL condition can be seen in Figure.3. 
general we can state that the limitation of spectrum range will drop the values of current Use}, voltage (Voe), and o • 
power of solar cells. 

oms -------.. 
O.o3 

_ O.D25 ----.. 
.'.!. c O.ul 

~ O.oI5 ;; 
u 0.01 

0 0.5 

Voltage (V) 

(a) 
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-GaA5 

- lnP 

- Ge 

1.5 

0025 

0.02 
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~ 
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0 0.5 1.5 

Voltage (VI 
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Figure.3 (a) The current-voltage characteristic of each subcell based on NSRL (No Spectrum Range Limitation) model and 
(b) The current-voltage characteristic of each subcell based on SRL (Spectrum Range Limitation) model. 

4. CONCLUSIONS 

We have simulated the performance of Al0.3Ga0.7As/GaAs/I nP/Ge multijunction solar cells under two . 
radiation spectrum, NSRL and SRL. The limitation of spectrum range in each subcell have dropped the total e 
of solar cells from 64.21 % to 35 .38 % . This significant drop (44.90 %) of solar cells efficiency probably di. 
lattice mismatch between lnP and its neighboring subcells (GaAs and Ge). This lattice mismatch could act as a 
dissipation of power and radiation loss. Removing lnP subcell would probably increase the efficiency and r 
radiation loss in solar cells. 
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