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1. Introduction

We consider a non-homogeneous Poisson process N on [0, «o) with

inknown) locally integrable intensity function A. The intensity function A is
isumed to be a product of a periodic function with the quadratic trend. That

» for any given point s ¢ [0, 0}, the intensity function A can be written as
AMs) = () as?), (1.1

1ere Ag(s) is a periodic function with known period t and a denotes the

pe of the quadratic trend. We do not assume any (parametric) form of A
cept that it is periodic.

] [ ] . . . . . -
Since a), is also a periodic function with period T, without loss of

nerality, the intensity function A given in (1.1) can also be written as

A(s) = (Ao () (), (12)

ere Ao(s) = ak(s). Hence, for each point s & [0, w) and all & e Z,

h Z denotes the set of integers, we have
Ao(s + kt) = A (5). (1.3)

(1.2) and (1.3), the problem of estimating A at a given point s € [0, o0)
be reduced to a problem of estimating A, at a given point s o, ).
ice, for the rest of the paper, we restrict our attention to the problem of
mating A, at a given point s [0, 1).
Suppose that, for some © € Q, a single realization N{w) of the Poisson
ess N defined on a probability space (Q, F, P) with intensity function A
n by (1.2) is observed, though only within a bounded interval [0, n]. Our
in this paper is: (a) To construct a kernel-type estimator for A, at a

n point s &[0, 1) using only a single realization N{w) of the Poisson

e v — o —— ———
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process N observed in interval [0, n]. (b) To prove, under the minimal

conditions, that our estimator is weakly and strongly consistent in estimating
Ao(s). (c) To compute the asymptotic bias, variance, and the mean-squared

error of the proposed estimator.

We will assume throughout that s is a Lebesgue point of A, that is, we
have

h
Aiﬁ]ﬁj_h IA(s + x) — A(s)|x = O (1.4)

(e.g., see [5, pp. 107-108]), which automatically means that s is a Lebesgue
point of A. as well. This assumption is a mild one since the set of all
Lebesgue points of A is dense in R, whenever A is assumed to be locally

integrable.

We refer to {4] for some parallel results when the intensity function A is
assumed to satisfy A{s)=(A.(s))(as), that is the product of a periodic

function with the linear trend. See also [1] and [3] for some results when the
intensity function is assumed to satisfy A(s) = A (s) + as.

2. Construction of the Estimator and Results

Let K : R = R be a real valued function, called kernel, which satisfies
the following conditions: (K1) X is a probability density function, (K2) K is
bounded, and (K3) X has (closed) support [~1, 1] Let also 4, be a sequence

of positive real numbers converging to 0, that is,

h, 10, 2.1
as n—> . Now we may define the estimator of A. at a given point
s € [0, 1) as follows:

o

Remr(s)=— Z—-I—~ FK(E:(S—Jr@J Ndx). (22)

n k=0 h"(s + k't)z 0 hﬂ
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Next we describe the idea behind the construction of the kernel-type
imator il., . k(8) of A (s). Since there is available only one realization

the Poisson process N, we have to collect necessary information about the
known) value of X.(s) from different places of the interval [0, n]. For

s reason, assumption (1.3) plays a crucial role and leads to the following
ing of (approximate) equations. Let

N, =#{k:s+ktel0, nl,

iere # denotes the number of elements. Then we have

Ao(s) = N_ Zl {s + k)s + kr € [0, n]}

-y

(S+h) s + kt € [0, n]}

I
2|._.
k-1
[
1:_‘- >
+
9
\:‘,
[

1 . 1 S+kteh,
N TV—;Z(; + k)2 2;, I h A(x)(x e [0, n])dx

l =NLZ—~L—— EN([s + kv — A, s + kt+ B, ] N[0, 7))

1 |
—PT;)WN([S+AT—11R.5+h+hn]n[0’ n])

:.i.—-t

z—_f ([s + kv~ h,, s+ kt+ R N[0, 7)), (2.3)
im0 2h(s + k)

here T denotes the indicator function. We note that in order to make the first
in (2.3) works, we have assumed that s is a Lebesgue point of A and A,

mverges to 0. Thus, from (2.3), we conclude that
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5]

: T 1
Ao n(s) = ;Z_:‘)m N((s + kt = hy, 5 + kv + h, N[0, n)), (2.4)

is an estimator of A.(s). Note that the estimator ic, 2(s) can be rewritten as

; (s+kr)2

:Id

x _[: %I[—I,i]([s +kt = by, s+ kv + B, I N(dx). (2.5)

By replacing the function %l[_w(-) in (2.5) by the general kernel K(.), we
immediately arrive at the estimator introduced in (2.2).
Our main results are presented in the following theorems.

Theorem 1 (Consistency). Suppose that the intensity function X satisfies
(1.2) and is locally integrable. If the kernel K satisfies conditions (K1), (K2),

(K3), the bandwidth k, satisfies assumptions (2.1) and nzh,, — o, then

Frem k() DAes), (2.6)

as n —» o, provided s is a Lebesgue point of L. In other words, ic, n, k() is
a consistent estimator of \.(s). In addition, the Mean-Squared Error (MSE)

of ic' n K (8) converges 10 0, as n — oo, that is, we have
MSE(hc,n, k (s)) = 0, @2.7)

as n — o

Under naturally a stronger assumption on the choice of bandwidth 4,
we also have complete convergence of ic,,,, k (s), which is given in the

following theorem.
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Theorem 2 (Complete convergence). Suppose that the intensity function
A satisfles (1.2) and is locally integrable. If the kernel K satisfies conditions

(K1), (K2), (K3), the bandwidth By = n™% with 0 < o < 1, then

. ¢
lc,n, K(S) —> l‘. (S),
as n — o, provided s is a Lebesgue point of A. In other words, ic n, k{(5)
converges completely to \.(s) as n — oo,

Note also that, by Theorem 2 and the Borel-Cantelli Lemma, we have

strong consistency of ic. . Kk (), that is, we have

. .S,
A.‘.‘ n K (S‘) —> lc‘ (.S‘),
as n —» o,
Asymptotic approximations to the bias and variance of ic . k(s) are
given in the following two theorems.

Theorem 3 (Asymptotic approximation to the bias). Suppose that the
intensity function X satisfies (1.2), is locally integrable and Ao has finite

secon jvati . } j
d derivative A% at s. If the kernel K is symmetric and satisfies

conditions (K1), (K2), (K3), b, satisfies assumptions (2.1) and nh,‘} -3
then

N 1., l
Edc,n, i (5) = Aels) + 2 A2()A2 L XK (x)dx + o(h2), (2.8)
as n — oo,

Theorem 4 (Asymptotic approximation to the variance), Suppose that
. the intensity function ) satisfies (1.2) and is locally integrable. If the kernel K
' satisfies conditions (K1), (K2), (K3) and k, satisfies assumptions (2. 1), then
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2
a As) ¢! L2 1
Var(hg p () = 2250 | K2 (x)dx + o (2.9)
cmK 6n*h, »[-1 ) wh,

as n — ®, provided s is a Lebesgue point of A.

We note in passing that, the r.h.s, of (2.8) is the same as the rh.s. of (2.9)

~ of [4], the case when the intensity function is assumed to be the product of a

periodic function with the linear trend. The same asymptotic approximation
also appears in (2.5) of [2], the case when the intensity function is assumed
to be purely periodic. However, we have slightly different asymptotic
approximation to the variance of the estimator {cf. Theorem 4) compared to
the one in [4] {cf. (2.10) of [4]) as well as the one in [2] (cf. (3.4) of [2]).

From Theorems 3 and 4, one can obtain an asymptotic approximation to

the Mean-Squared Error (MSE) of ic‘ n, k (5), which is given by

. (s) ¢! TN 2
MSE(h ¢,  (s)) = “EHT:; J‘_] K2 (x)dx + Z(xc(s)j_] xzx(x)dx) hy

+ a( 21 J+ o(h), (2.10)

n“h,

as n — ». By minimizing the sum of the first and second terms of (2.10)
(the main terms for the variance and the squared bias), one can obtain the

optimal choice of A, which is given by

n2A(s) j_'] K2(x)dx

I
[FII N

Hij

hy = -
[x;(s) J'_‘I x2K(x)dx] .

With this choice of 4,,, the optimal rate of decrease of MSE(XC., n, x(5)) is of

order O(n'sl 5Yasn o .
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3. Proofs

Before proving Theorems 1, 2, 3 and 4, first we state and prove the
following lemma, which is needed for proving Theorems i and 2,

Lemma 1 (Asymptotic unbiasedness). Suppose that the intensity function
A satisfies (1.2) and is locally integrable. If the kernel K satisfies conditions
(K1), (K2), (K3) and h,, satisfies assumptions (2.1), then

EA. k()= A.(s), ' (3.1)
as n — o, provided s is a Lebesgue point of .

Proof. The expectation on the 1.h.s. of (3.1) can be computed as follows:

Eic. n K (")

%ih(wh J' [ (;:"T)]Ew(dr)

__—Z I (H o 2N K(x—(;: kt)J}L(x)l(xe[O, M. (2)

By a change of variable and using (1.2) and (1.3), the r.h.s. of (3.2) can be
written as

@

T 1 x

=) ———— | K| —|Ax+s5+k)I ]
nk:(}hn("""‘h')z '[R (hn) bt s )(x"‘?'l'k‘te[(), n])dx

T (f;]lc(x + S)ZM I(x+ 5+ ke € [0, n)dx. (3.3)
k=0

nhy (s + kt)?
By noting that
(x+s+ kt) n
{x+s+ktel0 ==
;) (v kR ( [0, ) = =+ O(), (4)
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as n —> oo uniformly in x € [A,, A,}, we obtain
Bl n k(6) =5 J' ( )x (x+s)dx+0( ) (3.5)
as n — o, The first term on the r.h.s. of (3.5) can be written as

T I ( )(1 (x+9)- x(s))dxﬁ‘(*) IRK(hi]dx. (3.6)

"

Since s is a Lebesque point of A, (cf. (1.4)) and the kernel K satisfies
conditions (K2) and (K3), it is easily seen that the first term of (3.6) is o(1),
as n —> . By the assumption _[ R K(x)dx =1 (cf. (K1)), the second term of

(3.6) is equal to A,(s). Clearly, the second term on the r.h.s. of (3.5) is o(1),
as n — . Hence, the r.hs. of (3.5) is equal to A.(s)+o(1), as n — o,

This completes the proof of Lemma 1.

Proof of Theorem 3. By (2.1) and Young’s form of Taylor’s theorem,
the first term on the r.h.s. of (3.5) can be written as

L At [ s

= Ao(s) + AL(s)h, jil K (x)dx + 3‘%‘9;@3 L 2K (x)dx + o{h2),

as n — «. Since the kemel K is symmetric around zero, we have that
j‘llxK(x)dx = 0. By the assumption nh> —» oo, the second term on the
r.hs. of (3.5)is o(h,f ), as n — . Hence we have (2.8). This completes the
proof of Theorem 3.

Proof of Theorem 4. The variance of A, , x(s) can be computed as
follows:

2 S x —(s + kt)
Var(he, n, g (s)) = "—Var[g = _[ K( 7 JN(dx)]. (3.7
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By (2.1}, for sufficiently large »n, we have that the intervals
[s+kt—h, s+kr+h]and [s+ jr—th,, s+ j1+ h,] are not overlap for
all & # j. This implies, for all £ = j,

K(ﬁ%‘;f—kﬂ-] N(dx) and K(i_—(;—tj—.r)JN(dx)

are independent random variables. Hence, the r.h.s. of (3.7) can be computed
as follows:

n:,,gg(vm)‘; ['x 2(x (‘: ’”)JV r(N(dx))
2 = n
T8 Sy
) "h,?;;(ukr) fx [E%t*@)“")d"‘ 68

By a change of variable and using (1.2} and (1.3), the r.h.s. of {3.8) can be
written as

S W e

2 i 2
-t 2f x X+5+kt)
i (i pee e BT s ketomec 09

Now note that
i

(x+s+k-r
Z Giid I(x + 5+ k1 € [0, n])—?+o(l) (3.10)

as n — o uniformly in x € [-A,, 4,]. Then, the r.h.s. of (3.9) is equal to

2

T 2 x 1
0 [k (;I:ch(x+s)dx+o(n2h J G.11)

n
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Since s is a Lebesgue point of A. (cf. (1.4)) and the kemnel X has support in

[~1, 1], we see that the first term on the r.h.s. of (3.11) is equal to the r.h.s. of

(2.9). We also see that the second term of (3.11) is of the same order as the
second term on the r.h.s, of (2.9). This completes the proof of Theorem 4.

Proof of Theorem ‘1. By Lemma 1, Theorem 4 and the assumption
nzh,, — o as # ~» o, we have (2.6) and (2.7). This completes the proof of

Theorem 1.

Proof of Theorem 2. To prove Theorem 2, we have to show, for any
e>0,

D P( Rk (8) = Ae(5) | > &) < o0, (3.12)

n=1
First note that
P(| Ae,m k(5) = Rels) | > €) < P R g (5) — g x (5) |
+| Bhg, y k (5) = R (s) ] > ).
By Lemma I, there exists a positive real number M such that, for all n > M,

| EA, . () = Ao(s) | < &/2. This implies, for sufficiently large n,

P(| 7‘:'c,n,K(S)" lc(.S')I >g) < P(I ic,n,K(S)- Eic,n.K(S) | > %)

_ e, k()

g2

(3.13)

by the Chebyshev inequality. From Theorem 4 and the assumption &, = n~*

with 0 <o <1, we see that the rhis. of (3.13) is O(n*~?), which is

summable, and Theorem 2 follows. This completes the proof of Theorem 2.
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