
 and statituces. The FJMS is a fortinghty foumal published in tweive votumes annually and each volume comprises of ino lacues.
Abetrueting, findoxing and Rovirwa: Giober Impact Factor : 0.692, Scopus, Mathernatical Reviews, MathSelNot. ProCueat, IndexCopernicus. EBSCOhont, Zentralblatt MATH, Ulith's web. Indian Science Abstracts, SCIRUS, OCLC, Geogie Schoder, Excellence in Reseanch for Australla (ERA). AcaderncKeys.
submeation of Manuscripts: Authort may aubmit their papera for consideration in the Far East Journal of Mathermatical Sclences (FJMS) by the following modes:

2. Electrondeally: Al the o-mai addrese: Ims ©pphmi.com or kkazad ©pphmi.com
3. Herd copten: Papers in duplicate with a letter of submiasion at the address of the publisher. The peper muat be typed only on one sife in double apacing with a generous margin all round. An effort is made to wit be sent to the author submitting the paper, unle as requested otherwhse, without the original manuscript, for corrections.
Abetract and Reforances: Authors are requested to prowide an abatract of not more than 250 words and latest Matrematics Subfect Claseification. Statements of Lemmas, Propositions and Theorems should be set in Halics and cereincess should be arrenged in alphabetical order by the sumame of the firat author.
Page Chargoe and Reprints: Authors, are requested to arrange pege charges of thor papers USD 40.00 per page for USA and Canada, and EUR 30.00 per page for rest of the wortd from their institutions/research grants, If any. However, for authors in Indita this charge is Ra. 860.00 per page. No extra charges for colour figurea. Twentysots of reprints may be ordered at the time of proof correction.
Copyright: it is assumed that the submitted manuscript has not been pubished and will not be simultaneousty submitted or pubitshed eisewhere. By submitting a manuscript, the authors agree that the copyright for their aftictes I transfurred to the Pushpa Pubilahing House, Allahstad, India, If and when, the paper is accepted for pubitication. The publisher cancot take the responsibitity of any loss of manuscript. Therefora، authors are requested to malntain

Subscription Informatlon for 2013

insthutionai Price for at countries except India

Electronic Subscripton	¢720.00	US $\$ 995.00$
Print Subscription includes Online Access:	$€ 1195.00$	USS 1695.00

 Pricerime

Point Sus . For indian Institutions in India only)
Ptint Subsctiption Onty \qquad Rs. 15000.00
The subscription year runs from January 1, 2013 through December 31, 2013.
intormatton: The foumnals published by the "Pushpa Publishing House" are solbly distributed by the "Vjaya Booke nd Journais Distributors ${ }^{-}$
Contact Person: Subscription Manager, Vyaya Books and Journals Distributors, Vijaya Niwas

Information for Special Volume 2013

Special Votume 2013 (supptementary volume) of the Far East Joumal of Mathematical Sciences (FJMS) is devoted Special Volume 2013 (supppementary volume) of the Far East Joumal of Mathematical Sciences (FJMS) is devoted
10 articles on Computer Sciences. Infommation Sciences, Finencial Manragement and 8 itotogical Sclences, consisting of sbx issues to appear in the month of February. Apill, June. August, October and December. It is in eddition to tis regutar volumes.
The apectal volurne considers orignal research papers and critical survay articles bestically bing in the following reses:

1. Devetooment of theory and meihoda for Computer and Information Setences
2. Intrinstc force bringing Mathernalice and Computer Sclence closure for scientific and enginearing advancement
3. Impact of Mathematical lectunkques in Blological Sclences
4. Appitication of Mathematics in Finsmcles Manegerrient
5. Anatysis of aigorithms and Sotware tools for computational work

nstikutonel Price for al: countries except India

\qquad

Elactronic Subscription	€ 215.00	US5 315.00
Print Subscription indudes Online Access:	¢ 355.00	US 5525.00

Price In Indian Rs. (For Indian Institutions in India only)
Print Subacription Onty
Rs. 3500.00

ESTIMATING THE INTENSITY OBTAINED AS THE PRODUCT OF A PERIODIC FUNCTION WITH THE QUADRATIC TREND OF A NON-HOMOGENEOUS POISSON PROCESS

I W. Mangku', R. Budiarti', Taslim ${ }^{2}$ and Casman ${ }^{3}$

${ }^{1}$ Department of Mathematics
Bogor Agricultural University
Jl. Meranti, Kampus IPB Darmaga
Bogor 16680, Indonesia
e-mail: wayan.mangku@gmail.com
${ }^{2}$ Madrasah Aliyah Negeri 1
Lubuklinggau, Bengkulu, Indonesia
${ }^{3}$ Madrasah Tsanawiyah Negeri Jatibarang, Indramayu, Indonesia

Abstract

A kernel-type nonparametric estimator of the intensity obtained as the product of a periodic function with the quadratic trend of a nonhomogeneous Poisson process is constructed and investigated. It is considered the case when there is only a single realization of the Poisson process is observed in a bounded interval. The proposed estimator is proved to be weakly and strongly consistent when the size of the interval indefinitely expands. The asymptotic bias, variance, and the mean-squared error of the proposed estimator are also computed.

Received: July 17, 2013; Accepted: August 7, 2013
2010 Mathematics Subject Classification: 62E20, 62G05, 62G20.
Keywords and phrases: Poisson process, periodic intensity function, quadratic trend, kemel-type estimator, consistent estimation, bias, variance, mean-squared error.

1. Introduction

We consider a non-homogeneous Poisson process N on $[0, \infty)$ with unknown) locally integrable intensity function λ. The intensity function λ is isumed to be a product of a periodic function with the quadratic trend. That , for any given point $s \in[0, \infty)$, the intensity function λ can be written as

$$
\begin{equation*}
\lambda(s)=\left(\lambda_{c}^{*}(s)\right)\left(a s^{2}\right) \tag{1.1}
\end{equation*}
$$

here $\lambda_{c}^{*}(s)$ is a periodic function with known period τ and a denotes the spe of the quadratic trend. We do not assume any (parametric) form of λ_{c}^{*} cept that it is periodic.

Since $a \lambda_{c}^{*}$ is also a periodic function with period τ, without loss of nerality, the intensity function λ given in (1.1) can also be written as

$$
\begin{equation*}
\lambda(s)=\left(\lambda_{c}(s)\right)\left(s^{2}\right) \tag{1.2}
\end{equation*}
$$

ere $\lambda_{c}(s)=a \lambda_{c}^{*}(s)$. Hence, for each point $s \in[0, \infty)$ and all $k \in \mathbf{Z}$, $h \mathbf{Z}$ denotes the set of integers, we have

$$
\begin{equation*}
\lambda_{c}(s+k \tau)=\lambda_{c}(s) \tag{1.3}
\end{equation*}
$$

(1.2) and (1.3), the problem of estimating λ at a given point $s \in[0, \infty)$ be reduced to a problem of estimating λ_{c} at a given point $s \in[0, \tau)$. ice, for the rest of the paper, we restrict our attention to the problem of mating λ_{c} at a given point $s \in[0, \tau)$.

Suppose that, for some $\omega \in \Omega$, a single realization $N(\omega)$ of the Poisson :ess N defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ with intensity function λ n by (1.2) is observed, though only within a bounded interval $[0, n]$. Our in this paper is: (a) To construct a kemel-type estimator for λ_{c} at a n point $s \in[0, \tau)$ using only a single realization $N(\omega)$ of the Poisson conditions, that our estimator is weakly and strongly consistent in estimating $\lambda_{c}(s)$. (c) To compute the asymptotic bias, variance, and the mean-squared error of the proposed estimator.

We will assume throughout that s is a Lebesgue point of λ, that is, we have

$$
\begin{equation*}
\lim _{h \downarrow 0} \frac{1}{2 h} \int_{-h}^{h}|\lambda(s+x)-\lambda(s)| d x=0 \tag{1.4}
\end{equation*}
$$

(e.g., see [5, pp. 107-108]), which automatically means that s is a Lebesgue point of λ_{c} as well. This assumption is a mild one since the set of all Lebesgue points of λ is dense in \mathbf{R}, whenever λ is assumed to be locally integrable.

We refer to [4] for some parallel results when the intensity function λ is assumed to satisfy $\lambda(s)=\left(\lambda_{c}(s)\right)(a s)$, that is the product of a periodic function with the linear trend. See also [1] and [3] for some results when the intensity function is assumed to satisfy $\lambda(s)=\lambda_{c}(s)+a s$.

2. Construction of the Estimator and Results

Let $K: \mathbf{R} \rightarrow \mathbf{R}$ be a real valued function, called kernel, which satisfies the following conditions: (K 1) K is a probability density function, (K2) K is bounded, and (K3) K has (closed) support [-1,1]. Let also h_{n} be a sequence of positive real numbers converging to 0 , that is,

$$
\begin{equation*}
h_{n} \downarrow 0 \tag{2.1}
\end{equation*}
$$

as $n \rightarrow \infty$. Now we may define the estimator of λ_{c} at a given point $s \in[0, \tau)$ as follows:

$$
\begin{equation*}
\hat{\lambda}_{c, n, K}(s)=\frac{\tau}{n} \sum_{k=0}^{\infty} \frac{1}{h_{n}(s+k \tau)^{2}} \int_{0}^{n} K\left(\frac{x-(s+k \tau)}{h_{n}}\right) N(d x) . \tag{2.2}
\end{equation*}
$$

Next we describe the idea behind the construction of the kernel-type imator $\hat{\lambda}_{c, n, K}(s)$ of $\lambda_{c}(s)$. Since there is available only one realization the Poisson process N, we have to collect necessary information about the iknown) value of $\lambda_{c}(s)$ from different places of the interval $[0, n]$. For s reason, assumption (1.3) plays a crucial role and leads to the following ing of (approximate) equations. Let

$$
N_{n}=\#\{k: s+k \tau \in[0, n]\},
$$

sere \# denotes the number of elements. Then we have

$$
\begin{align*}
\lambda_{c}(s) & =\frac{1}{N_{n}} \sum_{k=0}^{\infty} \lambda_{c}(s+k \tau) \mathbf{I}\{s+k \tau \in[0, n]\} \\
& =\frac{1}{N_{n}} \sum_{k=0}^{\infty} \frac{\lambda(s+k \tau)}{(s+k \tau)^{2}} \mathbf{I}\{s+k \tau \in[0, n]\} \\
& \approx \frac{1}{N_{n}} \sum_{k=0}^{\infty} \frac{1}{(s+k \tau)^{2}} \frac{1}{2 h_{n}} \int_{s+k \tau-h_{n}}^{s+k \tau+h_{n}} \lambda(x) \mathbf{I}(x \in[0, n]) d x \\
& =\frac{1}{N_{n}} \sum_{k=0}^{\infty} \frac{1}{2 h_{n}(s+k \tau)^{2}} \mathbf{E} N\left(\left[s+k \tau-h_{n}, s+k \tau+h_{n}\right] \cap[0, n]\right) \\
& \approx \frac{1}{N_{n}} \sum_{k=0}^{\infty} \frac{1}{2 h_{n}(s+k \tau)^{2}} N\left(\left[s+k \tau-h_{n}, s+k \tau+h_{n}\right] \cap[0, n]\right) \\
& \approx \frac{\tau}{n} \sum_{k=0}^{\infty} \frac{1}{2 h_{n}(s+k \tau)^{2}} N\left(\left[s+k \tau-h_{n}, s+k \tau+h_{n}\right] \cap[0, n]\right) \tag{2.3}
\end{align*}
$$

here I denotes the indicator function. We note that in order to make the firs in (2.3) works, we have assumed that s is a Lebesgue point of λ and h_{n} inverges to 0 . Thus, from (2.3), we conclude that

$$
\begin{equation*}
\hat{\lambda}_{c, n}(s)=\frac{\tau}{n} \sum_{k=0}^{\infty} \frac{1}{2 h_{n}(s+k \tau)^{2}} N\left(\left[s+k \tau-h_{n}, s+k \tau+h_{n}\right] \cap[0, n]\right), \tag{2.4}
\end{equation*}
$$

is an estimator of $\lambda_{c}(s)$. Note that the estimator $\hat{\lambda}_{c, n}(s)$ can be rewritten as

$$
\begin{align*}
\hat{\lambda}_{c, n}(s)= & \frac{\tau}{n}
\end{aligned} \begin{aligned}
\infty & \frac{1}{h_{n}(s+k \tau)^{2}} \\
& \times \int_{0}^{n} \frac{1}{2} \mathbf{I}_{[-1,1]}\left(\left[s+k \tau-h_{n}, s+k \tau+h_{n}\right]\right) N(d x) \tag{2.5}
\end{align*}
$$

By replacing the function $\frac{1}{2} \mathbf{I}_{[-1,1]}(\cdot)$ in (2.5) by the general kernel $K(\cdot)$, we immediately arrive at the estimator introduced in (2.2).

Our main results are presented in the following theorems.
Theorem 1 (Consistency). Suppose that the intensity function λ satisfies (1.2) and is locally integrable. If the kernel K satisfies conditions (K1), (K2), (K3), the bandwidth h_{n} satisfies assumptions (2.1) and $n^{2} h_{n} \rightarrow \infty$, then

$$
\begin{equation*}
\hat{\lambda}_{c, n, K}(s) \xrightarrow{p} \lambda_{c}(s) \tag{2.6}
\end{equation*}
$$

as $n \rightarrow \infty$, provideds is a Lebesgue point of λ. In other words, $\hat{\lambda}_{c, n, K}(s)$ is a consistent estimator of $\lambda_{c}(s)$. In addition, the Mean-Squared Error (MSE) of $\hat{\lambda}_{c, n, K}(s)$ converges to 0 , as $n \rightarrow \infty$, that is, we have

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\lambda}_{c, n, K}(s)\right) \rightarrow 0, \tag{2.7}
\end{equation*}
$$

as $n \rightarrow \infty$.
Under naturally a stronger assumption on the choice of bandwidth h_{n}, we also have complete convergence of $\hat{\lambda}_{c, n, K}(s)$, which is given in the following theorem.

Theorem 2 (Complete convergence). Suppose that the intensity function λ satisfies (1.2) and is locally integrable. If the kernel K satisfies conditions (K1), (K2), (K3), the bandwidth $h_{n}=n^{-\alpha}$ with $0<\alpha<1$, then

$$
\hat{\lambda}_{c, n, K}(s) \xrightarrow{c} \lambda_{c}(s),
$$

as $n \rightarrow \infty$, provided s is a Lebesgue point of λ. In other words, $\hat{\lambda}_{c, n, K}(s)$ converges completely to $\lambda_{c}(s)$ as $n \rightarrow \infty$.

Note also that, by Theorem 2 and the Borel-Cantelli Lemma, we have strong consistency of $\hat{\lambda}_{c, n, K}(s)$, that is, we have

$$
\hat{\lambda}_{c, n, K} \stackrel{\text { a.s. }}{\rightarrow} \lambda_{c}(s)
$$

as $n \rightarrow \infty$.

Asymptotic approximations to the bias and variance of $\hat{\lambda}_{c, n, K}(s)$ are given in the following two theorems.

Theorem 3 (Asymptotic approximation to the bias). Suppose that the intensity function λ satisfies (1.2), is locally integrable and λ_{c} has finite second derivative λ_{c}^{*} at s. If the kernel K is symmetric and satisfies conditions (K1), (K2), (K3), h_{n} satisfies assumptions (2.1) and $n h_{n}^{2} \rightarrow \infty$, then

$$
\begin{equation*}
\mathbf{E} \hat{\lambda}_{c, n, K}(s)=\lambda_{c}(s)+\frac{1}{2} \lambda_{c}^{\prime \prime}(s) h_{n}^{2} \int_{-1}^{1} x^{2} K(x) d x+o\left(h_{n}^{2}\right) \tag{2.8}
\end{equation*}
$$

as $n \rightarrow \infty$.
Theorem 4 (Asymptotic approximation to the variance). Suppose that the intensity function λ satisfies (1.2) and is locally integrable. If the kernel K satisfies conditions (K1), (K2), (K3) and h_{n} satisfies assumptions (2.1), then

Estimating the Intensity obtained as the Product ...

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\lambda}_{c, n, K}(s)\right)=\frac{\pi^{2} \lambda(s)}{6 n^{2} h_{n}} \int_{-1}^{1} K^{2}(x) d x+o\left(\frac{1}{n^{2} h_{n}}\right) \tag{2.9}
\end{equation*}
$$

as $n \rightarrow \infty$, provided s is a Lebesgue point of λ.
We note in passing that, the r.h.s. of (2.8) is the same as the r.h.s. of (2.9) of [4], the case when the intensity function is assumed to be the product of a periodic function with the linear trend. The same asymptotic approximation also appears in (2.5) of [2], the case when the intensity function is assumed to be purely periodic. However, we have slightly different asymptotic approximation to the variance of the estimator (cf. Theorem 4) compared to the one in [4] (cf. (2.10) of [4]) as well as the one in [2] (cf. (3.4) of [2]).

From Theorems 3 and 4, one can obtain an asymptotic approximation to the Mean-Squared Error (MSE) of $\hat{\lambda}_{c, n, K}(s)$, which is given by

$$
\begin{align*}
\operatorname{MSE}\left(\hat{\lambda}_{c, n, K}(s)\right)= & \frac{\pi^{2} \lambda(s)}{6 n^{2} h_{n}} \int_{-1}^{1} K^{2}(x) d x+\frac{1}{4}\left(\lambda_{c}^{\prime \prime}(s) \int_{-1}^{1} x^{2} K(x) d x\right)^{2} h_{n}^{4} \\
& +o\left(\frac{1}{n^{2} h_{n}}\right)+o\left(h_{n}^{4}\right) \tag{2.10}
\end{align*}
$$

as $n \rightarrow \infty$. By minimizing the sum of the first and second terms of (2.10) (the main terms for the variance and the squared bias), one can obtain the optimal choice of h_{n}, which is given by

$$
h_{n}=\left[\frac{\pi^{2} \lambda(s) \int_{-1}^{1} K^{2}(x) d x}{\left(\lambda_{c}^{\prime \prime}(s) \int_{-1}^{1} x^{2} K(x) d x\right)^{2}}\right]^{\frac{1}{5}} n^{-\frac{2}{5}}
$$

With this choice of h_{n}, the optimal rate of decrease of $\operatorname{MSE}\left(\hat{\lambda}_{c, n, K}(s)\right)$ is of order $\mathcal{O}\left(n^{-8 / 5}\right)$ as $n \rightarrow \infty$.

3. Proofs

Before proving Theorems 1,2,3 and 4, first we state and prove the following lemma, which is needed for proving Theorems 1 and 2 .

Lemma 1 (Asymptotic unbiasedness). Suppose that the intensity function λ satisfies (1.2) and is locally integrable. If the kernel K satisfies conditions (K1), (K2), (K3) and h_{n} satisfies assumptions (2.1), then

$$
\begin{equation*}
\mathbf{E} \hat{\lambda}_{c, n, K}(s) \rightarrow \lambda_{c}(s) \tag{3.1}
\end{equation*}
$$

as $n \rightarrow \infty$, provideds is a Lebesgue point of λ.
Proof. The expectation on the l.h.s. of (3.1) can be computed as follows:

$$
\begin{align*}
& \mathbf{E} \hat{\lambda}_{c, n, K}(s) \\
= & \frac{\tau}{n} \sum_{k=0}^{\infty} \frac{1}{h_{n}(s+k \tau)^{2}} \int_{0}^{n} K\left(\frac{x-(s+k \tau)}{h_{n}}\right) \mathbf{E} N(d x) \\
= & \frac{\tau}{n} \sum_{k=0}^{\infty} \frac{1}{h_{n}(s+k \tau)^{2}} \int_{\mathrm{R}} K\left(\frac{x-(s+k \tau)}{h_{n}}\right) \lambda(x) \mathbf{I}(x \in[0, n]) d x . \tag{3.2}
\end{align*}
$$

By a change of variable and using (1.2) and (1.3), the r.h.s. of (3.2) can be written as

$$
\begin{align*}
& \frac{\tau}{n} \sum_{k=0}^{\infty} \frac{1}{h_{n}(s+k \tau)^{2}} \int_{\mathbf{R}} K\left(\frac{x}{h_{n}}\right) \lambda(x+s+k \tau) \mathbf{I}(x+s+k \tau \in[0, n]) d x \\
= & \frac{\tau}{n h_{n}} \int_{\mathbf{R}} K\left(\frac{x}{h_{n}}\right) \lambda_{c}(x+s) \sum_{k=0}^{\infty} \frac{(x+s+k \tau)^{2}}{(s+k \tau)^{2}} \mathbf{I}(x+s+k \tau \in[0, n]) d x . \tag{3.3}
\end{align*}
$$

By noting that

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(x+s+k \tau)^{2}}{(s+k \tau)^{2}} \mathbf{I}(x+s+k \tau \in[0, n])=\frac{n}{\tau}+\mathcal{O}(1) \tag{3.4}
\end{equation*}
$$

as $n \rightarrow \infty$ uniformly in $x \in\left[-h_{n}, h_{n}\right]$, we obtain

$$
\begin{equation*}
\mathbf{E} \hat{\lambda}_{c, n, K}(s)=\frac{1}{h_{n}} \int_{\mathrm{R}} K\left(\frac{x}{h_{n}}\right) \lambda_{c}(x+s) d x+\mathcal{O}\left(\frac{1}{n}\right) \tag{3.5}
\end{equation*}
$$

as $n \rightarrow \infty$. The first term on the r.h.s. of (3.5) can be written as

$$
\begin{equation*}
\frac{1}{h_{n}} \int_{\mathrm{R}} K\left(\frac{x}{h_{n}}\right)\left(\lambda_{c}(x+s)-\lambda_{c}(s)\right) d x+\frac{\lambda_{c}(s)}{h_{n}} \int_{\mathrm{R}} K\left(\frac{x}{h_{n}}\right) d x \tag{3.6}
\end{equation*}
$$

Since s is a Lebesque point of λ_{c} (cf. (1.4)) and the kernel K satisfies conditions (K2) and (K3), it is easily seen that the first term of (3.6) is $o(1)$, as $n \rightarrow \infty$. By the assumption $\int_{\mathbf{R}} K(x) d x=1$ (cf. (K1)), the second term of
(3.6) is equal to $\lambda_{c}(s)$. Clearly, the second term on the r.h.s. of (3.5) is $o(1)$, as $n \rightarrow \infty$. Hence, the r.h.s. of (3.5) is equal to $\lambda_{c}(s)+o(1)$, as $n \rightarrow \infty$. This completes the proof of Lemma 1.

Proof of Theorem 3. By (2.1) and Young's form of Taylor's theorem, the first term on the r.h.s. of (3.5) can be written as

$$
\begin{aligned}
& \frac{1}{h_{n}} \int_{-h_{n}}^{h_{n}} K\left(\frac{x}{h_{n}}\right) \lambda_{c}(x+s) d x=\int_{-1}^{1} K(x) \lambda_{c}\left(s+x h_{n}\right) d x \\
& =\lambda_{c}(s)+\lambda_{c}^{\prime}(s) h_{n} \int_{-1}^{1} x K(x) d x+\frac{\lambda_{c}^{\prime \prime}(s)}{2} h_{n}^{2} \int_{-1}^{1} x^{2} K(x) d x+o\left(h_{n}^{2}\right)
\end{aligned}
$$

as $n \rightarrow \infty$. Since the kernel K is symmetric around zero, we have that $\int_{-1}^{1} x K(x) d x=0$. By the assumption $n h_{n}^{2} \rightarrow \infty$, the second term on the r.h.s. of (3.5) is $o\left(h_{n}^{2}\right)$, as $n \rightarrow \infty$. Hence we have (2.8). This completes the proof of Theorem 3.

Proof of Theorem 4. The variance of $\hat{\lambda}_{c, n, K}(s)$ can be computed as follows:
$\operatorname{Var}\left(\hat{\lambda}_{c, n, K}(s)\right)=\frac{\tau^{2}}{n^{2}} \operatorname{Var}\left(\sum_{k=0}^{\infty} \frac{1}{h_{n}(s+k \tau)^{2}} \int_{0}^{n} K\left(\frac{x-(s+k \tau)}{h_{n}}\right) N(d x)\right)$. (3.7)

By (2.1), for sufficiently large n, we have that the intervals $\left[s+k \tau-h_{n}, s+k \tau+h_{n}\right]$ and $\left[s+j \tau-h_{n}, s+j \tau+h_{n}\right]$ are not overlap for all $k \neq j$. This implies, for all $k \neq j$,

$$
K\left(\frac{x-(s+k \tau)}{h_{n}}\right) N(d x) \text { and } K\left(\frac{x-(s+j \tau)}{h_{n}}\right) N(d x)
$$

are independent random variables. Hence, the r.h.s. of (3.7) can be computed as follows:

$$
\begin{align*}
& \frac{\tau^{2}}{n^{2} h_{n}^{2}} \sum_{k=0}^{\infty} \frac{1}{(s+k \tau)^{4}} \int_{0}^{n} K^{2}\left(\frac{x-(s+k \tau)}{h_{n}}\right) \operatorname{Var}(N(d x)) \\
= & \frac{\tau^{2}}{n^{2} h_{n}^{2}} \sum_{k=0}^{\infty} \frac{1}{(s+k \tau)^{4}} \int_{0}^{n} K^{2}\left(\frac{x-(s+k \tau)}{h_{n}}\right) \mathbf{E} N(d x) \\
= & \frac{\tau^{2}}{n^{2} h_{n}^{2}} \sum_{k=0}^{\infty} \frac{1}{(s+k \tau)^{4}} \int_{0}^{n} K^{2}\left(\frac{x-(s+k \tau)}{h_{n}}\right) \lambda(x) d x . \tag{3.8}
\end{align*}
$$

By a change of variable and using (1.2) and (1.3), the r.h.s. of (3.8) can be written as

$$
\begin{align*}
& \frac{\tau^{2}}{n^{2} h_{n}^{2}} \sum_{k=0}^{\infty} \frac{1}{(s+k \tau)^{4}} \int_{\mathrm{R}} K^{2}\left(\frac{x}{h_{n}}\right) \lambda(x+s+k \tau) \mathbf{I}(x+s+k \tau \in[0, n]) d x \\
= & \frac{\tau^{2}}{n^{2} h_{n}^{2}} \int_{\mathrm{R}} K^{2}\left(\frac{x}{h_{n}}\right) \lambda_{c}(x+s) \sum_{k=0}^{\infty} \frac{(x+s+k \tau)^{2}}{(s+k \tau)^{4}} \mathbf{I}(x+s+k \tau \in[0, n]) d x . \tag{3.9}
\end{align*}
$$

Now note that

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(x+s+k \tau)^{2}}{(s+k \tau) 4} \mathbf{I}(x+s+k \tau \in[0, n])=\frac{\pi^{2}}{6 \tau^{2}}+o(1) \tag{3.10}
\end{equation*}
$$

as $n \rightarrow \infty$ uniformly in $x \in\left[-h_{n}, h_{n}\right]$. Then, the r.h.s. of (3.9) is equal to

$$
\begin{equation*}
\frac{\pi^{2}}{6 n^{2} h_{n}^{2}} \int_{\mathbf{R}} K^{2}\left(\frac{x}{h_{n}}\right) \lambda_{c}(x+s) d x+o\left(\frac{1}{n^{2} h_{n}}\right) \tag{3.11}
\end{equation*}
$$

Since s is a Lebesgue point of λ_{c} (cf. (1.4)) and the kernel K has support in $[-1,1]$, we see that the first term on the r.h.s. of (3.11) is equal to the r.h.s. of (2.9). We also see that the second term of (3.11) is of the same order as the second term on the r.h.s. of (2.9). This completes the proof of Theorem 4.

Proof of Theorem 1. By Lemma 1, Theorem 4 and the assumption $n^{2} h_{n} \rightarrow \infty$ as $n \rightarrow \infty$, we have (2.6) and (2.7). This completes the proof of Theorem 1 .

Proof of Theorem 2. To prove Theorem 2, we have to show, for any $\varepsilon>0$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathbf{P}\left(\left|\hat{\lambda}_{c, n, K}(s)-\lambda_{c}(s)\right|>\varepsilon\right)<\infty \tag{3.12}
\end{equation*}
$$

First note that

$$
\begin{aligned}
& \mathbf{P}\left(\left|\hat{\lambda}_{c, n, K}(s)-\lambda_{c}(s)\right|>\varepsilon\right) \leq \mathbf{P}\left(\left|\hat{\lambda}_{c, n, K}(s)-\mathbf{E} \hat{\lambda}_{c, n, K}(s)\right|\right. \\
&\left.+\left|\mathbf{E} \hat{\lambda}_{c, n, K}(s)-\lambda_{c}(s)\right|>\varepsilon\right)
\end{aligned}
$$

By Lemma 1, there exists a positive real number M such that, for all $n>M$, $\left|\mathbf{E} \hat{\lambda}_{c, n, K}(s)-\lambda_{c}(s)\right|<\varepsilon / 2$. This implies, for sufficiently large n,

$$
\begin{align*}
\mathbf{P}\left(\left|\hat{\lambda}_{c, n, K}(s)-\lambda_{c}(s)\right|>\varepsilon\right) & \leq \mathbf{P}\left(\left|\hat{\lambda}_{c, n, K}(s)-\mathbf{E} \hat{\lambda}_{c, n, K}(s)\right|>\frac{\varepsilon}{2}\right) \\
& \leq \frac{4 \operatorname{Var}\left(\hat{\lambda}_{c, n, K}(s)\right)}{\varepsilon^{2}} \tag{3.13}
\end{align*}
$$

by the Chebyshev inequality. From Theorem 4 and the assumption $h_{n}=n^{-\alpha}$ with $0<\alpha<1$, we see that the r.h.s. of (3.13) is $\mathcal{O}\left(n^{\alpha-2}\right)$, which is summable, and Theorem 2 follows. This completes the proof of Theorem 2.

References

[1] R. Helmers and I W. Mangku, Estimating the intensity of a cyclic Poisson process in the presence of linear trend, Ann. Inst. Statist. Math. 61 (2009), 599-628.
[2] R. Helmers, I W. Mangku and R. Zitikis, Statistical properties of a kemel-type estimator of the intensity function of a cyclic Poisson process, J. Multivariate Anal. 92 (2005), 1-23.
[3] I W. Mangku, Consistent estimation of the distribution function and the density of waiting time of a cyclic Poisson process with linear trend, Far East J. Theor. Stat. 33 (2010), $81-91$.
[4] I W. Mangku. Estimating the intensity obtained as the product of a periodic function with the linear trend of a non-homogeneous Poisson process, Far East J. Math. Sci. (FJMS) 51 (2011), 141-150.
[5] R. L. Wheeden and A. Zygmund, Measure and Integral: An Introduction to Real Analysis, Marcel Dekker, Inc., New York, 1977.

FAR EAST JOURNAL OF MATHEMATICAL SCIENCES (FJMS)

Editorial Board

Gunjan Agrawal, India
Natig M. Atakishiyev, Mexico
Antonio Carbone, Italy
Hasan Coskun, USA
Zhenlu Cui, USA
Manav Das, USA
Shusheng Fu, China
Wei Dong Gao, China
Toshio Horiuchi, Japan
Lisa M. James, USA
Koji Kikuchi, Japan
George S. Androulakis, Greece
Carlo Bardaro, Italy
Yong Gao Chen, China
Claudio Cuevas, Brazil
Maslina Darus, Malaysia
Massimiliano Ferrara, Italy
Salvatore Ganci, Italy
Demetris P. K. Ghikas, Greece
Jay M. Jahangiri, USA
Young Bae Jun, South Korea
Hideo Kojima, Japan
Victor N. Krivtsov, Russian Federation
Alison Marr, USA
Jong Seo Park, South Korea
Alexandre J. Santana, Brazil
A. L. Smirnov, Russian Federation

Chun-Lei Tang, China
Carl A. Toews, USA
Vladimir Tulovsky, USA
Qing-Wen Wang, China
Peter Wong, USA
Pu Zhang, China

Yangming Li, China
Manouchehr Misaghian, USA
Cheon Seoung Ryoo, South Korea
K. P. Shum, China

Ashish K. Srivastava, USA
E. Thandapani, India
B. C. Tripathy, India

Mitsuru Uchiyama, Japan
G. Brock Williams, USA

Chaohui Zhang, USA
Kewen Zhao, China

Principal Editor
Azad, K. K. (India)
(1)

