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Abstract 

A kernel-type nonparametric estimator of the intensity obtained as the 
product of a periodic function with the quadratic trend of a non­

homogeneous Poisson process is constructed and investigated. It is 
considered the case when there is only a single realization of the 
Poisson process is observed in a bounded interval. The proposed 
estimator is proved to be weakly and strongly consistent when the size 
of the interval indefinitely expands. The asymptotic bias, variance, and 
the mean-squared error of the proposed estimator are also computed. 

Received: July 17, 2013; Accepted: August 7, 2013 
20!0 Mathematics Subject Classification: 62E20, 62G05, 62G20. 
Keywords and phrases: Poisson process, periodic intensity function, quadratic trend, 

kernel-type estimator, consistent estimation, bias, variance, mean-squared error. 



4 I W. Mangku, R. Budiarti, Taslim and Casman 

I. Introduction 

We consider a non-homogeneous Poisson process N on (0, co) with 

mlcnown) locally integrable intensity function A.. The intensity function A. is 

:sumed to be a product of a periodic function with the quadratic trend. That 

, for any given point s E (0, co), the intensity function A. can be written as 

A.(s) = (A.:.(s))(as 2 ), (I. I) 

1ere 1..:(s) is a periodic function with known period t and a denotes the 

ipe of the quadratic trend. We do not assume any (parametric) form of 1..: 
cept that it is periodic. 

Since al..~ is also a periodic function with period t, without loss of 

oerality, the intensity function A. given in (I. I) can also be written as 

A.(s) = (A.c(s )) (s 2 ), (1.2) 

ere A.c(s) = al..:(s). Hence, for each point s E (0, co) and all k e Z, 

h Z denotes the set of integers, we have 

A.J• + kt) = A.c(.• ). (1.3) 

(1.2) and ( 1.3), the problem of estimating A. at a given point s E (0, co) 

be reduced to a problem of estimating A.c at a given point s E (0, t). 

ice, for the rest of the paper, we restrict our attention to the problem of 

mating A.c at a given point s E (0, t ). 

Suppose that, for some w E n, a single realization N( w) of the Poisson 

:ess N defined on a probability space (n, :F, P) with intensity function A. 

:n by (1.2) is observed, though only within a bounded interval (0, n]. Our 

in this paper is: (a) To construct a kernel-type estimator for A.c at a 

:n point s E (0, t) using only a single realization N(w) of the Poisson 

'~: 
.... 

) 
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process N observed in interval (0, n]. (b) To prove, under the minimal 

conditions, that our estimator is weakly and strongly consistent in estimating 

A.c(s). (c) To compute the asymptotic bias, variance, and the mean-squared 

error of the proposed estimator. 

We will assume throughout that s is a Lebesgue point of A., that is, we 

have 

I' I fh 
h1f!i 2h. -h I A.(s + x)- A.(s) ldr = O (1.4) 

(e.g., see [5, pp. 107-108]), which automatically means thats is a Lebesgue 

point of Ac as well. This assumption is a mild one since the set of all 

Lebesgue points of A. is dense in R, whenever A. is assumed to be locally 

integrable. 

We refer to [4] for some parallel results when the intensity function A. is 

assumed to satisfy A.(s) = (A.c{s ))(as), that is the product of a periodic 

function with the linear trend. See also [I] and [3] for some results when the 

intensity function is assumed to satisfy A.(s) = A.c(s) +as. 

2. Construction of the Estimator and Results 

Let K : R ~ R be a real valued function, called kernel, which satisfies 

the following conditions: (Kl) K is a probability density function, (K2) K is 

bounded, and (K3) K has (closed) support (-1, ll Let also hn be a sequence 

of positive real numbers converging to 0, that is, 

hn -1-o, (2.1) 

as n ~ co, Now we may define the estimator of A.c at a given point 

s e (o, t) as follows: 

"' ~c,n,K(s)=-!;l: I 
2 

rK(x-(s+kt))N(dr). 
k=O hn(s +kt) 0 hn 

(2.2) 
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]'iext we describe the idea behind the construction of the kernel-type 

imator j_<-.n.ds) of A."(s). Since there is available only one realization 

the Poisson process N. we ha.ve to collect necessary information about the 

iknown) value of A.J<) from different places of the interval [O, n]. For 

s reason, assumption ( 1.3) plays a crucial role and leads to the following 

ing of (approximate) equations. Let 

N n = # {k : s + kt E [O, n ]}, 

1ere # denotes the number of elements. Then we have 

I "' 
A.J<) = N LA.J< + ki:)I{s +kt E [O, n]} 

n k=O -
. =_I_~ A.(s +kt) 

NL,( ,l{s+ktE[O n]} 
n k=O s +kt) • 

I "' I I 

"'Nn ~(s + kt)2 2hn I
s+kr+hn 
. A.(x)l(x E [O, n])dt 

s+/.."t-hn 

I "' I 
=NL ' EN([s +kt - hn, s +kt+ hnl n [o. n]) 

n k=O 2hn(s +kt) 

I "' I 
"'¥ L , N([s+kt-hn,s+kt+hnJn[o,n]) 

n k=O 2hn(s +kt) 

' "' I "' -L ' N([s +kt - hn• s +kt+ hnl n [o. n]), (2.3) 
n k=O 2hn(s +kt) 

here I denotes the indicator function. We note that in order to make the first 

in (2.3) works, we have assumed that s is a Lebesgue point of A. and hn 

•nverges to 0. Thus, from (2.3), we conclude that 

• 

"f!; 
!it· 

Estimating the Intensity obtained as the Product ... 37 

- ,"' I 
Ac,n(s) = n L 'N([s + kt-h., s +kt+ hnln [o, n]), (2.4) 

k=O 2hn(s +kt) 

is an estimator of A.c(s ). Note that the estimator j_c, .(s) can be rewritten as 

"' I '"'­j_c .(s) = n L, h (s + 
' k=O n 

rn I 
x Jo 21[-1,l]([s +kt- hn, s +kt+ h.])N(dx). (2.5) 

By replacing the function i l[-i, 1J(-) in (2.5) by the general kernel K(-), we 

immediately arrive at the estimator introduced in (2.2). 

Our main results are presented in the following theorems. 

Theorem I (Consistency). Suppose that the intensity function A. satisfies 

(1.2) and is locally integrable. If the kernel K satisfies conditions (Kl), (K2), 

(K3), the bandwidth hn satisfies assumptions (2.1) and n2 hn --+ oo, then 

- p 
Ac,n, K(s)-+ Ac(s ), (2.6) 

as n --+ oo, provided sis a Lebesgue point ofA.. In other words, j_c,n,K(s) is 

a consistent estimator of Ac (s ). In addition, the Mean-Squared Error (MSE) 

of j_c, n, K (s) converges to 0, as n --+ oo, that ls, we have 

MSE(j,c,n,K(s))--+ 0, (2.7) 

as n ~ oo. 

Under naturally a stronger assumption on the choice of bandwidth hn, 

we also have complete convergence of j_c, n, K (s ), which is given in the 

following theorem . 
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Theorem 2 (Complete convergence). Suppose that the intensity fimction 

A. satisfies ( 1.2) and is locally integrable. If the kernel K satisfies conditions 

(Kl), (K2), (K3), the bandwidth hn = n-o. with 0 <a< I, then 

- c 
Ac,n,K(s)~ A.c(s), 

as n ~ oo, provided sis a Lebesgue point o/A.. In other words, f.c,n,K(s) 

converges completely to A.,. (s) as n ~ oo. 

Note also that, by Theorem 2 and the Borel-Cantelli Lemma, we have 

strong consistency of ~c. n. K (s ), that is, we have 

.. a..r. 
A.,.,n,K(s)~A.J,), 

as n --> co. 

Asymptotic approximations to the bias and variance of i.c,n.K(s) are 

given in the following two theorems. 

Theorem 3 (Asymptotic approximation to the bias). Suppose that the 

intensity fimction A. satisfies ( 1.2), is locally integrable and A.c has finite 

second derivative A.~ at s. If the kernel K is symmetric and satisfies 

conditions (Kl), (K2), (K3), hn satisfies assumptions (2.1) and nh"/; ~ oo, 

then 

- I • 2 I I 2 2 EA., .. n.K(s) = A.c(s) + 21..c(s)hn _
1 
x K(x)dx + o(hn ), (2.8) 

as n--> oo. 

Theorem 4 (Asymptotic approximation to the variance). Suppose that 

: the intensity fimction A. satisfies ( 1.2) and is locally integrable. If the kernel K 

satisfies conditions (Kl), (K2), (K3) and hn satisfies assumptions (2.1), then 
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• 1t2A.(s) JI 2 ( I ) Var(A.c,n,ds)) = - 2- K (x)dx + o - 2-6n hn -I n hn 
(2.9) 

as n ~ oo, provided s is a Lebesgue point o/A.. 

We note in passing that, the r.h.s. of(2.8) is the same as the r.h.s. of(2.9) 

of [ 4], the case when the intensity function is assumed to be the product of a 

periodic function with the linear trend. The same asymptotic approximation 

also appears in (2.5) of [2], the case when the intensity function is assumed 

to be purely periodic. However, we have slightly different asymptotic 

approximation to the variance of the estimator (cf. Theorem 4) compared to 

the one in [4] (cf. (2.10) of[4]) as well as the one in [2] (cf. (3.4) of[2]). 

From Theorems 3 and 4, one can obtain an asymptotic approximation to 

the Mean-Squared Error (MSE) of ~c. n, K (s ), which is given by 

MSE(f.c,n,K(s)) = 1t2~(s) r K 2(x)dx + ±(t..~(s) r x 2K(x)dx)\: 
6n hn -I -I 

+ o(+) + o(h:), 
n hn 

(2.10) 

as n ~ oo. By minimizing the sum of the first and second terms of (2.10) 

(the main terms for the variance and the squared bias), one can obtain the 

optimal choice of h., which is given by 

I 

I 1t2A.(s) f, K2(x)dx ]5 -~ 
h = n 5 

n ( I )2 A.~(s) J_, x 2K(x)dx . 

With this choice of h., the optimal rate of decrease of MSE(ic, n, K(s )) is of 

order O(n-815) as n ~ oo. 
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3. Proofs 

Before proving Theorems 1, 2, 3 and 4, first we state and prove the 

following lemma, which is needed for proving Theorems 1 and 2. 

Lemma I (Asymptotic unbiasedness). Suppose that the intensity function 

A. satisfies ( 1.2) and is locally integrable. If the kernel K satisfies conditions 

(Kl), (K2), (K3) and hn satisfies assumptions (2.l), then 

Ei."· n, K (s) --> 1..Jv ), (3.1) 

as n --> oo, provided s is a Lebesgue point ofl... 

Proof. The expectation on the l.h.s. of (3.1) can be computed as follows: 

Ei.,., n, K (s) 

_ t ~ 1 ("K(x - (s +kt)) 
- 7; f:'o hn(s + kt)2 Jo hn EN(dx) 

=.! i: 1 ( (x-(s+kt)) 
n k=O hn(s + kr)2 JR K hn 1..(x)I(x E [O, n])dx. (3.2) 

By a change of variable and using ( 1.2) and ( 1.3 ), the r.h.s. of (3.2) can be 
written as 

~ i: 1 
2 i K(~)l..(x + s + kt)l(x + s + kr E [O, n])dx 

n k=O hn(s + kr) R h" 

t r (x) ( ~(x+s+kt)2 
[ J =-,;--Ji K h l.."x+s)L, 2 I(x+s+ktE O,n)dx. (3.3) 

n n R n k=O (s + kr) 

By noting that 

~(x+s+kr)2 n 
L.,,,"-----2,-'--l(x + s +kt e [O, n]) = - + O(l), (3.4) 
k=O (s + kr) t 

c 
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as n --> oo uniformly in x E [-hn, hn1 we obtain 

E~c,n,K(s) = ~n JR K(;.)1..c(x + s)dx + o(~), 

as n --> oo. The first term on the r.h.s. of (3.5) can be written as 

~n JRK(;.)<1..c(x+s)-A.c{s))dx+ A.h~v) JRK(;,)c1x. 

41 

(3.5) 

(3.6) 

Since s is a Lebesque point of Ac (cf. (1.4)) and the kernel K satisfies 

conditions (K2) and (K3), it is easily seen that the first term of (3.6) is o(l), 

as n--> oo. By the assumption fR K(x)dx = 1 (cf. (Kl)), the second term of 

(3.6) is equal to A.c{s). Clearly, the second term on the r.h.s. of(3.5) is o(I), 

as n--> oo. Hence, the r.h.s. of (3.5) is equal to A.c{s) + o(l), as n--> oo. 

This completes the proof of Lemma 1. 

Proof of Theorem 3. By (2.1) and Young's form of Taylor's theorem, 

the first term on the r.h.s. of(3.5) can be written as 

1 Jh" ( x) JI hn -hn K hn 1..c(x + s )dx = -I K(x )1..c(s + Xhn }dx 

J
I 1..'(s) JI 

= 1..c(s) + A.~(s)hn xK(x)dx + _c_h;; x2 K(x)dx + o(h;;), 
-I 2 -I 

as . n --> oo. Since the kernel K is symmetric around zero, we have that 

JI xK(x)dx = 0. By the assumption nh;; --> oo, the second term on the 
-I 

r.h.s. of (3.5) is o(hji ), as n --> oo. Hence we have (2.8). This completes the 

proof of Theorem 3. 

Proof of Theorem 4. The variance of i.c, n, K (s) can be computed as 

follows: 

, ,2 (~ 1 (" (x-(s+kt)) ) Var(l..c,n,K(s)) = 2Var L, 2 Ji K h N(dx). (3.7) 
n k=Oh.(s+kr) 0 n 
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By (2.1 ), for sufficiently large n, we have that the intervals 

[s +kt - h., s +kt+ hnJ and [s + jt - h •• s + jt + hnJ are not overlap for 

all k * j. This implies, for all k * j, 

K( x-(zn+ kt))N(dt) and K( x-(~n+ jt))N(dt) 

are independent random variables. Hence, the r.h.s. of(3.7) can be computed 
as follows: 

2 ., 
_t " 1 f" 2(x-(s+kt)) 
n2h;, f:'o (s + kt)4 J0 K hn Var(N(dt)) 

2 "' 
= -' " I f" K2(X - (s +kt)) 

n2h;, f:'o (s + kt)4 Jo hn EN(dt) 

= ~\ f I 4 r K2(X - (z + kt))A.(x)dt. 
nh•k=O(s+kt) 0 n 

(3.8) 

By a change of variable and using ( 1.2) and ( 1.3), the r.h.s. of (3.8) can be 
written as 

,2 "' I f 2( x ) 
22 L 4 Ji K h A.(x+s+kt)l(x+s+kte[O,n])dt 
n hn k=o(s+kt) R n 

_ __i_ r 2(.!__) -f(x+s+kt)
2 

( [ l - 22 J,K h A.c(x+s)k,, 4 Ix+s+kteO,n)dt. 
n hn R n k=O (s+kt) 

(3.9) 

Now note that 

-f (x+s+kt)2 112 
k.. ( )4 I(x + s +kt e [O, n]) = -

2 
+ o(I), 

k=O s +kt 6t 
(3.10) 

as n--> oo uniformly in x e [-h •. h.]. Then, the r.h.s. of(3.9) is equal to 

1122 2 JR K2(: )A.c(x + s)dt + a(-2'-)· 
6n hn n n hn 

(3.11) 
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Since sis a Lebesgue point of Ac (cf. (1.4)) and the kernel K has support in 

[-1, I], we see that the first term on the r.h.s. of(3.l 1) is equal to the r.h.s. of 

(2.9). We also see that the second term of (3.11) is of the same order as the 

second term on the r.h.s. of (2.9). This completes the proof of Theorem 4. 

Proof of Theorem I. By Lemma I, Theorem 4 and the assumption 

n2 hn --> oo as n --> oo, we have (2.6) and (2. 7). This completes the proof of 

Theorem I. 

Proof of Theorem 2. To prove Theorem 2, we have to show, for any 

& > 0, 

"' 
LP(I ~c,n,ds)-A.c{s) I> e) < oo. (3.12) 
n=I 

First note that 

P(I ~c,n,ds)-A.c{s) I> e) '.'> P(j ~c,n,K(s)- E~c,n,K(s) I 

+I E~c.n,ds)-A.c(s) I>&). 

By Lemma I, there exists a positive real number M such that, for all n > M, 

I E~c.n.K(s)-A.c(s) I< e/2. This implies, for sufficiently large n, 

P(j ~c.n,K(s)-A.c{s) I>&)'.'> P(I ~c,n,ds)- E~c,n,K(s) I>~) 

4Var(~c n K(s )) < •• 
&2 

(3.13) 

by the Chebyshev inequality. From Theorem 4 and the assumption hn = n-a. 

with O <a.< I, we see that the r.h.s. of (3.13) is O(na.-2 ), which is 

summable, and Theorem 2 follows. This completes the proof of Theorem 2. 
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