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CONSISTENCY OF A KERNEL-TYPE 
ESTIMATOR OF THE INTENCITY OF 

THE CYCLIC POISSON PROCESS 
WITH THE LINEAR TREND 

l WAYAN MANGKU, SISWADI, AND RE°rNO BUDIARTI 

Abstract. A consistent kernel-type nonparametric estimator of the intensity function of 

a cyclic Poisson process in the presence of linear trend is constructed and investigated. It 

is assume<!, that only a single realization of \he Poisson process is observed in a bounded 

window. We prove that the propoeed estimator is consistent when the size of the window 

indefinitely expands. 

1. INTRODUCTION 

Let N be a Poisson process on [O, oo) with (unknown) locally integrable in­
tensity function >.. We assume that ).. consists of two components, namely a cyclic 
(periodic) component with period T > 0 and a linear trend. In other words, for 
each points e [O,oo), we can write).. as 

>.(s) = >.c(s) +as, (1) 

where >.c(s) is (unknown) periodic function with (known) period-rand a denotes 
(unknown) slope of the linear trend. In this paper, we do not assume any parametric 
form of >..,, except that it is periodic. That is, for e.ach point s E [O, oo) and all 
k E Z, with Z denotes the set of integers, we have 

(2) 

Received 31.o?'-2008, Accepted 15-11-2009. 
tOOO MatMmatiu Subject CW.,aifimti~ 60055, 62G05, 62G20. 
Kev won:b and Phf'l1fea: cyclic Poiseon proces11, intensity function, linear trend, nonpvametric estima­
tion, consistency. 
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Here we consider a Poisson process on [O, oo) instead of, for example, on R because 
A has to satisfy ( 1) and must be non negative. For the same reason we also restrict 
our attention to the case a ;o: O. The present paper (cf. also [2]) rums at extending 
previous work for the purely cyclic case, i.e. a= 0, (cf. [3], [4], [6], section 2.3 of 
[7]) to the more general model (1). 

Suppose now that, for some w E !1, a single realization N ( w) of the Poisson 
process N defined on a probability space (!1, .:F, P) with intensity function A (cf. 
(1)) is observed, though only within a bounded interval Wn = [O, n] C [O, oo). Our 
goal in this paper is to construct a consistent (general) kernel-type estimator of 
Ac at a given point s E [O, oo) using only a single realization N ( w) of the Poisson 
process N observed in interval Wn = [O, n]. 

There are many practical situations where we have to use only a single re­
alization for estimating intensity of a cyclic Poisson process. A review of such 
applications can be seen in [3], and a.number of them can also be found in [1], [5], 
[7], [9] and .[10]. 

We will assume throughout that s is a Lebesgue point of A, that is we have 

1 jh ' 
Jim 

2
h IA(s + x) - A(s)ldx = O 

hjO -h 
(3) 

(eg. see [11], p.107-108), which automatically means thats is a Lebesgue point of 
Ac as well. 

Note that, since Ac is a periodic function with period T, the problem of 
estimating Ac at a given points E [O. oo) can be reduced into a problem of estimating 
Ac at a given points E [O, r). Hence, for the rest of this paper, we will assume that 
SE [0.T). 

Note also that, the meaning of the asymptotic n - oo in this paper is some­
what different from the classical one. Here n does not denote our sample size, but 
it denotes the length of the interval of observations. The size of our samples is a 
random variable denoted by N(!O. n]). 

2. Construction of the estimator and results 

Let K : R - R be a real valued function, called kerne~ which satisfies t.he 
following conditions: (Kl) K is a probability density function, (K2) K is bounded. 
awl (K3) K has (closed) support [-1. 1]. Let alw h,. be a sequence of positive real 
11u1nbers converging to 0, t~at is, 

h,. 10. (!) 

as n - oo. 
Using the introduced notations, we may define the estimators of respectively 

a and Ac at a given point s E [O, T) as follows 

• 2N([O. n]) 
an:= • . n 

(2) 

; I 
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• 1 ~ 1 1n (x -(s + kr)) . ( n ) ~n.K(s):=ln(~)~kh,. 
0 

K h,. N(dx)-a,. s+ln(~). (3) 

The estimator given in (3) is a generalization of the estimator discussed and 
investigated in Helmers and Mangku [2] for the case that the period r is known. 
A general kernel-type estimator of the intensity of a purely cyclic Poisson process 
(i.e. a= O) was proposed and studied in Helmers, Mangku and Zitikis ([3], [4]). 

If we are interested in estimating .>.(s) at a given points, then .>.(s) can be 
estimated by 

5.n,K(s) = 5.c,n,K(s) + G.,,s. (4) 

To obtain the estimator a,, of a, it suffices to note that 

EN([O, n]) = ~n2 + O(n), 

as n _, oo, wJtlch directly yields the estimator given in (2). Note also that, if N 
were a Poisson proses with intensity function .>.(s) = as, then a,, would be the 
maximum likelihood estimator of q (see [8]). 

Next we describe the idea behind the construction of the kernel-type estimator 
5.c.n,K(s) of Ac(s). By (I) and (2) we have that, for any point sand k E N (N 
denotes the set of natural numbers), 

Ac(s) = Ac(s + kr) = >.(s + kr) - a(s + kr). (5) 

Let Bh(x) := [x-h,x+h] and Ln := L:~~-ook-1l(s+kr E [O,n]). By (5), we 
can write 

1 cc I 
= LL k (>.c(s + kr)) l(s + kr E [O, n]) 

" k=1 

I 
00 

I = LL k (>.(s + kr) - a(s + kr)) l(s + kr E [O, n]) 
n k=l 

1 cc I 
= L L;,::(>.(s+kr))l(s+krE [O,n])-as 

n k=l 
oc 

ar '°' [ J -L L.,l(s+krE 0,n). 
n k=l 

(6) 
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By (1) and the assumption that s is a Lebesgue point of.>., we have 

1 
00 

1 1 1 an A.,(s) "' -I: .>.(x)dx- as - -
Ln l=l kjDi.,,(s+kT)I s,,,,(•+kT)n(o,n] Ln 

= ....!:._ f 1 EN(Bh.(s+kr)n [O,n]) _a (s+ ~) 
Ln k 2h,. Ln 

k=l 

"'....!:._~lN(Bh.(s+kT)n[O,n])_a( ~)-
Ln~k 2h,. s+Ln 

(7) 

In the first "' in (7) we also have used the fact that 

aT
00 

ar·n an (1) an 
-L LI(s+kre[O,n])=-L (-+O(lJ)=-L +O -L "'£· 

n k=l n T n n n 

From the second "'in (7) and by noting that Ln ~ ln(n/r) as n -+ oo, we 
see that 

, ( )--1-~lN(is+kT-h,.,s+kr+hn]n[O,n])_ ( _n_) (B) 
-'c,n s - ln(!!) ~ k 2h,. a s+ In(!!) 

r k=1 T 

can be viewed as an estimator of .Ac(s), provided the slope a of the linear trend 
to be known. H a is unknown, we replace a by a,. (cf. (2)) and one obtains the 
estimator of .Ac(s) given by 

; ()--1-~.!_N([s+kr-h,,,s+kr+h,.]n[O,n])_. ( _n_) (9) 
-'c,nS -ln(!!)~k 2h,. an s+ln(!!) · 

T k=l T 

Now note that the estimator 5.c.n(s) given in (9) is a special case of the estimator 
>.c,n.K(s) in (3), that is in (9) we use the uniform kernel K = ~11-1.11(} Replacing 
this uniform kernel by a general kernel K, we then obtain the estimator of Ac given 
in (3). 

In Helmers and Mangku [2] has been proved the following lemma. 

Lema 1. Suppose tit at the intensity function A satisfies ( 1) and is locally integrable. 
Then we have 

(10) 

and 

(11) 

Tl 
m 
as 

th 
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as n __, oo, where IJ = ,--1 J; Ac(s)ds, the global intensity of the periodic component 
Ac· Hence a,. is a consistent estimator of a. Its MSE (mean-squared-error) is given 

by 
MSE (a,.)= 492 + 2a +o (~) 

n2 n3 
(12) 

asn- oo. 

Our main results are presented in the following theorem and corollary. 

Theorem 1. Suppose that the intensity function A satisfies {1) and is locally 
integrable. If the kernel K satisfies conditions (Kl), (K2), (K3), and h,, satisfies 

assumptions ( 1) and 
hn Inn-+ oo, (13) 

then 
- p 
Ac.n,K(s) --> Ac(s), (14) 

as n __, oo, provided s is a Lebesgue point of Ac· In other words, 5.c,. .. K(s) is a 

consistent estimator of Ac(s). In addition, the MSE of 5.c.n.K(s) converges to 0, as 

1l - oc. 

We note that, Lemma 1 and Theorem 1 together imply the following result. 

Corollary 1. Suppose that the intensity function A satisfies ( 1) rind is locally 
integmble. If the kernel K satisfies conditions (Kl). (K2), (K3). and h,, satisfies 

assumptions (I) and ( 13), then 

>. •. K(s) ~ A(s). (15) 

a.• 11 __, oo. protrided s ;s a Lebesgue point of A. In othe1· words. 5. ... 1<(-') i11 (4) i" 
a consistent esti1nntor of A(s). In addition, tlie MSE of 5. 11 .H(s) co1u 1c·1ycs t.o 0. a.o; 

n __. oo. 

3. Proofs of Theorem 1 

To prove 1'hrorc1n 1, it suffices t.o verify the folJo\\·ing t.,vo le111111<.i.-.;. 

Lemma 2. (Asymptotic unbiasedness) Suppos<! that. the intensity function A satisfie.• 
(1) and is locally integrable. If the kernel J( satisfies conditions (h'l), (/\2), (/\3). 
and h,. satisfies assumptions (I) and ( 13), then ' 

(1) 
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u n - co, provided a is a LdJeague point of .>..,. 

Lemnia 3. (Convergence of the variance) Suppose that the intensity /unction >. satis­
fies (1) and is locally integrable. If the kernel K satisfies conditions (KI), (K2), (K3) 
and h,. satisfies assumptions (1) and (13}, then 

Var ( >.c,n,K(s)) --> 0, (2) 

as n --> co, provided s is a Lebesgue point of >.c. 

Proof of Lemma 2 

Note that 

[ 

E>.c,n,K(s) =Int~) Ek~ 1n K (x-(~:kr)) EN(dx)-(s+ ln~~))Ea.. l 

(3) 
First we consider the first term on the r.h.s. of (3). This term can be written as 

_1_ f _1_ r K (x- (s + kr)) >.(x)dx 
In(~) k=I kh,. Jo hn 

= 1 .~ 1 f (x-(s+kr)) 
In(~)~ kh,. JR K h. >.(x)l(x E IO,n])dx. 

By a change of variable and using (1) and (2), we can write the r.h.s. of (4) as 

Int~) Ek~ L K (:,.) >.(x + s + kr)l(x + s + kr E (0. nj)dx 

= I (l!!) f k~ J K (hx ) >.c(x + s)l(x + s + kr E (0, nj)dx 
n r k=l ''n JR n 

(4) 

1 
00 

1 J. (x) +In(!!) L kh K h a(x + s + kr)l(x + s + kr E IO, n])dx. (5) 
T k=l rt R rt 

a 

We will first show that the first term on the r.h.s. of (3), that is the r.h.s. of n 
(5), is equal to c 

an 
>.c(s)+as+ In(~) +o(l), (6) 

as n _,co, by showing that the first term on the r.h.s. of (5) is equal to >.c(s)+o(l) 
and its second term is equal to as+ an/ln(n/r) + o(l), as n _, oo. To check this, 

(/ 

0 

I• 

(/ 
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note that the first term on the r.h.s. of {5) is equal to 

I (l!!) f, k! { K (: ) (>.0 (x + s) - ).,,(s)) l{x + s + kT E (0, n]}dx 
n ,.. k=I n JR n 

>.c(s) ~ 1 r ( x ) 
+In{!.;){;;;; khn JR K hn l(x + s + kr E (0,n])dx 

= hn ~(!.;) L K (,:) (>.c(x + s) - >.,,(s)) ~ ~l{x + s + kr e (0, n])dx 

>.c(s) r ( x) ~ 1 
+hnln(!.;) JR K hn {;;;; kl(x+s+kr E [O,n]}dx. 

Using the fact that 

cc 1 

(7) 

L kl(x + s + kr E [O, n]) =In(;)+ 0(1), (8) 
k=l 

-as n - oo uniformly in x E [-h,., h,,J, the r.h.s. of (7) can be written as 

= h,. I~(!.;) L K (:,.) (>.c(x + s) - >.c(s)) (1n{;) + 0(1)) dx 

+h,~~~~~) LK (,;..) (111{~)+0(1))dx 
= L K (:,.)hi,. (>..,(x+s)->.c(s))dx 

+>.c(s) { K(x.)dx + 0 (-
1 

1

1 
) , (9) la i,, n n 

as n - oo. Since s is a Lehesquc of >.0 (cf. (3)) and the kernel K satisfies 
conditions (K2) and (K3), it easily seen that the first term on the r.h.s. of (9) is 
o(I), as n - oo. By the assumption: JR K(x)dx = 1 {cf. {Kl)), the second term 
on the r.h.s. of (9) is equal to >.0 (s). A simple argument using assumption (13) 
shows that the third term on the r.h.s. of {9) is o(l), as n - oo. Hence, the first 
term on the r.h.s. of (5) is equal to >.c(s) + o(l), as n - oo. 

Next we show that the second term on the r.h.s. of (5) is equal to 

as+ an/ ln(n/r) + o(l). as n - oo. To verify this, note that this term can be 
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In~;') f;, k~ L K (,:) xl(x + s+ kT E [O,n])dx 

+In~) f;, k~ L K (,:) I(x + s+ kr E [O,n])dx 

+In~;) f;, k~ L K (,:) kl(x ~ s + kT E [o,n])dx 

= h,, ~(;') L K (,:) x f;, ~I(x + s + kT E [O, n])dx 

+ h,,:(;') L K (,:.) f;, ~I(x+s +kr E [O,n]}dx 

+ h.. :C;') k K (,:) f;;1cx + s + kr E [O,n])dx. 

Using (8), and the fact that 

oc 

LI(x +s+ kT E [O,n]) =; + 0(1), 
k=I 

as n - oo uniformly in x E [-h,,, h,.J, the quantity in {10) can be written as 

h,. ~(;') (1nc;i + ~(1)) L K (,:) xdx 

+ h..;:C;>l (1nc;i+oc1i) L K(:,.)dx 

(10) 

+ ,, .. ~:(~) (;+oc1i) L/((,:.)dx. (11) 

Since K is bounded and J~ 
1 
xdx = 0, the first term of ( 11) is equal t.o zero. A 

simple calculation shows that the second term of (11) is equal to ns + o( I) and the 
third term of (11) is equal to an/ln(n/r) + o(l) as n - oo. Hence, we have that 
the second term on the r.h.s. of (5) is equal to as+ an/ln(n/r) + o(l) as n - oo. 
Combining this with the previous result, we obtain (G). 

Finally we consider the second term on the r.h.s. of (3). I3y (10) of Lemma 
1, this term can be computed as follows 

- (s + ....!:...) (a+ 
20 

+ 0 (2.)) =-as - ~ + o(l), {12) 
Inn n n2 Jn(;') 

as n - oo. Combining (6) and (12) we obtain (1). This completes the proof of 
Lemma 2. 

Tl 

\ 
1 
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Proof of Lemma 3 

The variance of Xc,n,K ( s) can be computed as follows 

Var (>.c,n,K(s)) =Var (Int~)~ k~n ion K ( x- (~+ kT)) N(dx) )­

+Var (a,. (s + lnz~))) 

+2Cov (Int~)~ k~ Ion K ( x- (~+ kT)) N(dx),a,. (s + lnz~))). 

45 

(13) 

We will prove Lemma 3 by showing that each term on the r.h.s. of (13) is o(l) as 
n~oo. 

First we check that the first term on the r.h.s. of (13) is o(l) as n __, oo. 
To do this, we argue as follows. By ( 1), for sufficiently large n, we have that the 
intervals [s + kT - h,,, s + kT + hn] and [s + jT - hn, s + jT + h,.J are not overlap 
for all k ~ j. This implies, for all k ~ j, 

K (x - (s + kT)) N(dx) and K (x - (s + jT)) N(dx) 
hn hn 

are independent. Hence, the variance in the first term on the r.h.s. of (13) can be 
computed as follows 

1 ~ 1 1" 2 (x-(s+kT)) 
(h,. ln(~))2 6 k2 o K hn Var(N(dx)) 

= l" 2-f: \[K2(x-(s+kT))EN(dx) 
(h,.ln(:;:)) k=I k o h,. 

= 1 n 2-f 121" K2 (x - (s + kT)) >.(x)dx. (14) 
(h,. In(:;:)) >=I k 0 h,. 

Dy a change of variable and using (1) and (2). the r.h.s. of (14) can be written as 

(h,. I:(~ ))2 t. :2 L K 2 
(:..) >.(x + s + kr)l(x + s + kT E IO, nJ)dx 

= (hn 1:(~))2 t. :2 JR K' (:.) >.<(x + s)l(x + s + kr E IO, nj)dx 

+ (hn I:(~))' t. :. L K 2 
(:.) a(x + s + kT)l(x + s + kT E IO, nJ)dx. (15) 

I 
' 
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The first term on the r.h.s. of (15) is equal to 

(h,. ~(;'))2 L K 2 
(,:.) (>.c(x + s) - >.c(s) + >.c(s)) t, :. l(x + s + kT E [0, n])dx 

= (h,. ~(;' )}' L K 2 
(,:.) (>.c(x + s) - >.c(s)) t, :. l(x + s + kT E [O, n])dx 

>.c(s) J. 2 ( x ) .;;.. 1 + (h,. ln(;'))' R K h,. ~ k2l(x + s + kT E [O,n])dx. 
(16) 

Note that 

00 1 :E k2 l(x + s + kT E (0, n]) = 0(1), 
k~l 

(17) 

as n __, oo,.uniformly in x E [-hnohn]- Since the kernel K is bounded and has 
support in [-1, l], by (3) and (17) we see that the first term on the r.h.s. of (16) 
is of order o((lnn)-2(hn)-1)) = o(l), as n __, oo (cf. (13)). A similar argument 
shows that the second term on the r.h.s. of {16) is of order O((hn lnn)-2

) = o(l), 
as n~ oo. 

Next we consider the second term on the r.h.s. of (15). This term can be 
written &S 

(hn:(';))2 L K 2 (:n) (x + s) ~ : 2 I(x + s + kT E [O,n])dx 

ar J. 2 (x)~l + (hn In('; ))2 R K hn ~ j/(x + s + kr E [O, n])dx. 

By (17), the first term of {18) reduces to 

O(l)(hnl:(';))2 LK2 (:n) (x+s)dx 

= 0(1) (ln(';~)2 h,. L K 2
(x)(xh,, + s)dx 

= 0 C1n(';\)2hn) = o(l), 

(18) 

(19) 

as n __, oo. By a similar argument and using (8), we see that the second term of 
(18) is of order O((hnlnn)-1 ) = o(l), as n __, oo (cf. (13)). Hence we have proved 
that the first term on the r.h.s. of (13) is o(l), as n __, oo. 

Next we consider the second term on the r.h.s. of (13). By (11) of Lemma 1, 
this term can be computed as follows 

(•+In~';))' Var(ii,,) = (•
2 + (ln~;))2 + !~)) (~ +O (~3 )) = o(l), (20) 

. 
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as n-+ oo. 
Finally, we consider the third. term on the r.h.s. of (13). Since' the fust and 

second terms on the r.h.s. of (13) are both of order o(l) as n --> oo, by Cauchy­
Schwarz, it easily seen that the third term on the r.h.s. of (13) is o(l) as n --> oo. 
Therefore, all terms on the r.h.s. of (13) are indeed of order o(l) as n--> oo, which 
i)nply (2). This completes the proof of Lemma :t. 
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