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CONSISTENCY OF A KERNEL-TYPE
ESTIMATOR OF THE INTENCITY OF
THE CYCLIC POISSON PROCESS
WITH THE LINEAR TREND

1 WAYAN MANGKU, S1SWADI, AND RETNO BUDIARTI

Abstract. A consistent kernel-type nonparametric estimator of the intensity function of
a cyclic Poisson process in the presence of linear trend is constructed and investigated. It
is mumed‘ that only a single realization of the Poisson process is observed in a bounded
window, We prove that the proposed estimator is consistent when the size of the window

indefinitely expands.

1. INTRODUCTION

Let N be a Poisson process on {0, 00) with (unknown) locally integrable in-
tensity function A. We assume that X consists of two components, namely a cyclic
(periodic) component with period 7 > 0 and a linear trend. In other words, for
each point s € [0, 00), we can write X as

As) = Ac(s) + as, (1)

where A.(s) is (unknown) periodic function with (known) period 7 and a denotes
{unknown) slope of the linear trend. In this paper, we do not assume any parametric
form of X, except that it is periodic. That is, for each point s € (0,00} and all

k € Z, with Z denotes the set of integers, we have
Ae(s + kr) = Ac(s). (2
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Here we consider a Poisson process on [0, 00) instead of, for example, on R because
A has to satisfy (1) and must be non negative. For the same reason we also restrict
our attention to the case a > 0. The present paper {cf. also [2]) aims at extending
previous work for the purely cyclic case, i.e. a = 0, (cf. 3], [4], [6], section 2.3 of
[7]) to the more general model (1).

Suppose now that, for some w € {2, a single realization N(w) of the Poisson
process N defined on a probability space (§2, F,P) with intensity function A (cf.
(1)) is observed, though only within a bounded interval Wy, = [0,7] C [0, 00). Our
goal in this paper is to construct a consistent (general) kernel-type estimator of
Je 2t a given point s € [0, 00) using only a single realization N{w) of the Poisson
process N observed in interval W, = [0,n].

There are many practical situations where we have to use only a single re-
alization for estimating intensity of a cyclic Poisson process. A review of such
applications can be seen in [3], and a.number of them can also be found in {1], [5],
[7], [9] and [10].

We will assume throughout that s is a Lebesgue point of A, that is we have

h

lim [ |\s+2)— A(s)ldz =0 3) -
h

hjo 2h J_

(eg. see [11), p.107-108), which automatically means that s is a Lebesgue point of
Ao as well.

Note that, since A. is a periodic function with period 7, the problem of
estimating A. at a given point s € [0, 00) can be reduced into a problem of estimating
Ac at a given point s € [(, 7). Hence, for the rest of this paper, we will assume that
sefo.T).

Note also that, the meaning of the asymptotic n — oo in this paper is some-
what different from the classical one. Here n does not denote our sample size, but
it denotes the length of the interval of observations. The size of our samples is a
random variable denoted by N([0.n]).

2. Construction of the estimator and results

Let K : R — R be a real valued function, called kernel, which satisfies the
following conditions: (K1) K is a probability deunsity function, (K2} K is bounded.
and (K3) K has (closed) support {—1.1]. Let also &, be a sequence of positive real
numbers converging to 0, that is,

hy | 0. (1)

as n — 00.

Using the introduced notations, we may define the estimators of respectively
a and ). at a given point s € {0, 1) as follows

5, o 2V(0.])

n2?

(2)
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and

e m_h,, K (T e - “"(”ln(“)) )

The estimator given in (3) is a generalization of the estimator discussed snd
investigated in Helmers and Mangku [2] for the case that the period 7 is known.
A general kernel-type estimator of the intensity of a purely cyclic Poisson process
(i-e. e = 0) was proposed and studied in Helmers, Mangku and Zitikis ([3], [4]).

If we are interested in estimating A(s) at a given point s, then A(s) can be
estimated by

A4:.!'11(

Ank(s) = Acn, ik (5) + Gns. @

To obtain the estimator &, of e, it suffices to note that

=]

EN(0,n]) = Zn? +O(n),

[ *]

as n — oo, which directly yields the estimator given in {2). Note also that, if N
were a Poisson proses with intensity function A(s) = as, then &, would be the
maximum likelihood estimator of g (see [8]).

X Next we describe the idea behind the construction of the kernel-type estimator
Acnxc(s) of Ac(s). By (1) and (2) we have that, for any point s and k € N (N
denotes the set of natural numbers),

Ae(8) = Acls + k1) = A(s + k) — als + k). (5)

Let Bu(z) := [z — h.x+ h] and L, == T o _ k™ (s + k7 € [0,n]). By (5), we
can write

| —~

1

Acls) {Xe(s + kT))I(s + k7 € [0,n])

=
e

1l
t-'|....
M2 i T,
Ed R

(A(s + k7) — als + k7)) (s + kT € [0,n])

1

T (Ms+ k7)) 1(s+ kv € [0,n]) —as

Eod B

A

e I

=1

—z— Em:l(s+k*re 10,n]). (6)
k=1

A
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By (1) and the assumption that s is a Lebesgue point of A, we have

1 an

1 w1
s) = — T Mz)dxr —as — —
AC() Ly kz_:kIBhn(s+kT)l B, (a+k7T)N[0,n] ( ) Ly
1 x~1EN(B,,(s+kr)N[0,n]) ( ﬂ)
= L_ngz T a s-i—Ln
1l & lN(Bhﬂ(s+k1')ﬂ[0,n])_ ( i)
~ LT,%E 2h, “\*TL.) @

In the first = in {7) we also have used the fact that

.

zl(s+kre[o )= 2 (2+ o) =g+o(z1:) ~ 2

Ln k=1

From the second = in (7) and by noting that L, ~ In(n/7) as n — oo, we
see that

1 N{[s+ kT~ hy s+kr+ho)N{0,n]) )
. il 3 kl 8
C (3) ln( k= k Zhn (s+l( ) ()
can be viewed as an estimator of A.(s), provided the slope a of the linear trend
to be known. If g is unknown, we replace a by @, (cf. (2)) and one obtains the

estimator of A:(s} given by

:\c,n (s) =

1 & 1N([s+k'r—h,,,s+k7'+hn]0[0171]) s, (s+

in(3) & 2h, m(;)) - )

Now note that the estimator A.,(s) given in (9) is a special case of the estimator
Acn.i (s) in (3), that is in (9) we use the uniform kernel K = 1I|_, y(.). Replacing
this uniform kernel by a general kernel X, we then obtain the estimator of A, given
in (3).

In Helmers and Mangku [2| has been proved the following lemma.

Lema 1. Suppose that the intensity function A satisfies (1) and is locally integrable.
Then we have
E@)=e+ 20~ (10)
™ n2
and
. 2a 1
Var (i) = 2 +0 (F) (11)

Tl
mn
as

th

co
i

C
m

s

| ¥
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asn — oo, where § = 171 fg Ac(8)ds, the global intensity of the periodic component
Xe. Hence iy is a consistent estimator of a. Its MSE (mean-squared-error) is given
by

, 462 + 2 1

as n — 00.

Our main results are presented in the following theorem and corollary.

Theorem 1. Suppose that the intensily function A satisfies (1) and is locally
integrable. If the kernel K satisfies conditions (K1),(K2),(K3), and h, setisfies
assumptions (1) and
hylnn -+ oo, (13)
then
:\c.".K(s) L ‘\C(s)! (14}

as n — oo, provided s is a Lebesgue point of Ac. In other words, Acn.x(s) is @
consistent estimator of Ac(s). In addition, the MSE of Acin, x(s) converges to 0, as
n — oc. '

We note that, Lemma 1 and Theorem 1 together imply the following result.

Corollary 1. Suppose that the intensilty function A satisfies (1) and is locally
integrable. If the kernel K satisfies conditions (K1).(K2).(K3). and h, satisfies
assumptions (1) and (13}, then

Ani(s) 2 Ms). (15)
as n — 0. provided s is a Lebesgue point of A. In other words. A,y (5) in ({) is

a consistent estimator of A(s). In addition. the MSE of Mo (8) converyes to 0. as
n — oo,

3. Proofs of Theorem 1
To prove Theorem 1, it suffices to verify the following two leimmas.
Lemma 2. (Asymptotic unbiasedness) Supposc that the intensity function A satisfies
(1) and is locally integrable. If the kernel K satisfies conditions (K1), (K2), (K3).
and k., satisfies assumptions (1) and (13), then :

Eic.n.K(S) - Ac(s)! (1)




42 I. W. MANGKU, SiswADI, R. BUDIARTI

as i — 00, provided 8 is a Lebesque point of A..

Lemmia 3. {Convergence of the variance) Suppose that the intensity function ) satis-
fies (1) and is locally integrable. If the kernel K satisfies conditions (K1), (K2), (K3)
and h, satisfies assumptions (1) and (13), then

Var (ic‘,‘,f((s)) - 0, @)
as n ~+ 00, provided s is a Lebesgue point of A..
Proof of Lemma 2
Note that

. 1l &1 ¢ x—{s+k7) a n .
Eloni(s) = () > i fa K( ™ ) EN(dz) (s+ 1n(g)) Ea,.
(3)

First we consider the first term on the r.h.s. of (3). This term can be written as

w2 o, (o

1n(1_r1) ZE"LK(}?) Mz +s+kr)I{z + s+ kr € [0.n])dz
L
k

f K (-i?) de(z + 3)l(x + s + k7 € [0,n])dz
R n

1 &1
+1n(g>ZmLK(%) a{z + s+ k)I(z + s+ k7 € [0.n))dz. (5)

We will first show that the first term on the r.h.s. of (3), that is the r.h.s. of
(5), is equal to
an
Ac(s) + as + —— + o(1), 6
(5) + a5 + s + o) (©)
as n — 0o, by showing that the first term on the r.h.s. of (5) is equal to A.(s)+0(1)
and its second term is equal to as + an/In(n/T) + o(1), as n — oo. To check this,

1 loc _'_l__ T — (S"l"kT) . T i
i )Zkh,, RK(————hﬂ )A( )(z € [0,n))dz. (4),é

i
i

i

(r

)

[£]
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note that the first term on the r.h.s. of (5) is equal to

In(“)zkh_/ ( )(A (z+5) = A(s) Iz + s+ k7 € [0,n])dx

1;:((3)) Z . f (%) I(z + s+ k7 € [0,n))dz

- 1() K( )(’\(“‘s) "c(S))Z ZK(z + 5+ kr € 0,n])dz

n
T k=1

T 1
i ln(g)_[RK(En")gEI(x+s+kre [0,n))dz. (7)

Using the fact that
Z%I(x+s+kr€ [0,m) = (%) + 0Q2), )
k=1

-as n — oo uniformly in x € [~hy. h,}, the r.h.s. of (7} can be written as

= Eﬁ;l{(‘__)[ f‘(i) (Ac(z +5) — Acls)) (ln(g)+0(1))d:c
h:\h(]s") ( ) 11( )+0(l))

/RK (h—) 7 (el + 8) = Acls)) dx
+Ac(s) /R K(a:)dx+0( 1 ) (9)

hylnn

as n — oo. Since s is a Lebesque of M. (¢f. (3)) and the kernel K satisfies
conditions (K2) and (K3), it easily seen that the first term on the r.hs. of (9) is

o(1}, as n — oo. By the assumption: [ K(z)dr = I (cf. (K1)), the second term
on the r.hs. of (9) is equal to A.(s). A simple argument using assumption (13)
shows that the third term on the r.h.s. of (9) is o{1), as n — co. Hence, the first
term on the r.h.s. of (5) is equal to A(s) + 0(1), as n — oo,

Next we show that the second term on the r.h.s. of (5) is equal to

as + an/In(n/1) + 0(1). as n — oo. To verify this, note that this term can be
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written as
hé)gf—LK i)zl(z+s+kfe[0,n])dx
+m‘2f$)gk_1h:'/;x(i) Iz + s+ k7 € [0,n))dz
+m“;)g;%£‘x(-::) kl(:r-{ts+k‘r€ (0, n))dz
- h“;(%)/;ff(-:: Igil(z+s+krelo,n])dr
+hﬂf:(_3)LK(i)gél(z+s+kre{O,n])dx
+hm“lnf($).[nx(i)gl(z+s+kre[o,n])dr. (10)
Using (8), and the fact that

il(z +s+krejon))= 2 +0(1),
k=}

as n — oo uniformly in £ € [—hy, k.), the quantity in (10) can be written as
a n : T
AT (n2) + o)) jRK (E) wdx
as n x
e (1n(2) + o)) /RK (E’) dz

o m®) :';’(_) (2+ o)) LK (f-) dz. (11)

Since K is bounded and f_ll xdz = 0, the first term of {11) is equal to zero. A
simple calculation shows that the second term of (11) is equal to as + o(1) and the
third term of (11) is equal to an/In{n/7) + o(1) as n — co. Hence, we have that
the second term on the r.h.s. of (5) is equal to as + an/In(n/7) + of1) as n — co.
Combining this with the previous result, we obtain (G).

Finally we consider the second term on the r.h.s. of (3). By {10) of Lemma
1, this term can be computed as follows

-(s+ ﬁ) (a+¥+0(%))=—as—ﬁ%+0(1)‘ (12)

as n — 00. Combining {6) and (12) we obtain (1). This completes the proof of
Lemma 2.

Tl
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Proof of Lemma 3

The variance of 5«,_.,,,' K (s) can be computed as follows
: 1 -1 [ z—(s+k7)
|4 n = —_
ar (Ac‘ .K(s)) Var (ln(%) E A n.[u K( e )N(dx))'

+Var (o o+ r.%))
ol [ (= e (o)

(13)

We will prove Lemma 3 by showing that each term on the r.h.s. of (13} is o(1) as
2 — OQ.

First we check that the first term on the r.h.s. of (13) is o(1) as n — co.
To do this, we argue as follows. By (1), for sufficiently large n, we have that the
intervals {s + kT — hy,s + k7 ++ hy] and {s + j7 — hyn, s + j7 + hy] are not overlap
for all k # j. This implies, for all k # j,

K (%ﬁﬁl) N{dz) and K (z—'%‘:—fj—”) N{(dz)

are independent. Hence, the variance in the first term on the r.h.s. of (13) can be
computed as follows

(hn ln 1 2i% f (E:(%Eﬂ ) Var(N{dz))

k=1
T zkfjl L[ ()
(A, In(Z ))2§:k2/ (-"M) Mz)dz. (14)

By a change of variable and using (1) and (2), the r.h.s. of (14) can be written as

(hn In(Z ))szZ/}(’( ))\(z+s+kr)l(:c+s+k-re[0 nj)dz

(hﬂlnl( ) £ fcl‘j K? (hn))\c(:+s)l(z+s+kre[0 n})dx
(hnln( ))? Z,%[ ( n)ﬂ(z+s+k7)1(z+s+k-r€[0 nj)dz. (15)
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The first term on the r.h.s. of (15) is equal to

1 2{ Z .- .l n
jR K (E) Ocla+9) = A+ MDY gl + o+ kr € [0z

(hn In(Z))?
Ihn_l:@W ]R K? (%) Oclz +5) — ,\c(s))g %I(H s+ kr € [0,n))dz
Ac — 1
* 1:1(:;))‘2 L:ﬁ (i) g gl +s+kr € [0,n])d= (16)
Note that
3 gl + s+ kr € [0,n]) = OQ), (17)
k=1

as 1 — 0o, uniformly in 2 € [~hn,h,). Since the kernel K is bounded and has
support in [—1,1], by (3) and (17) we see that the first term on the r.h.s. of (16)
is of order o{(Inn)~2(h,)™ 1)) = o(1), as n — oo (cf. (13)). A similar argument
shows that the second term on the r.h.s. of (16) is of order O((hn Inn)™2) = o(1),
as n — 00.

Next we consider the second term on the r.hs. of {15). This term can be
written as

a T oo 1

(hn In(E) /RKZ (h_) (z+ s)§§1(3+3+ kr € [0, n])dz
L 2 T i 1

+(hn In(Z))2 LK (hn) ; kI(.1:+ s + k7 € [0, n])dz. (18)

By (17), the first term of (18) reduces to

O Gz L= (Ff“) (= + s)dz
=0(1)(‘1:T(;))_2h.. j; K2(z)(zh, + s)dz

—0 (WEI)?EI) = o(1), (19)

as n — oo. By a similar argument and using (8), we see that the second term of
(18) is of order O((hn Inn)~1) = o(1), as n — oo (cf. (13)). Hence we have proved
that the first term on the r.h.s. of (13) is o(1), as n — co.

Next we consider the second term on the r.h.s. of (13). By (11) of Lemma 1,
this term can be computed as follows

(s-}- E_(%)’Var (6n) = (32 + (1n?;))2 + l:f;)) (i’% +0 (;15)) = o(1), (20)
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as i — Co.

Finally, we consider the third term on the r.h.s. of (13)- Sincé the first and

second terms on the r.h.s. of (13} are both of order o(1) as n — oo, by Cauchy-
Schwarz, it easily seen that the third term on the r.h.s. of (13) is o(1) as n — co.
Therefore, all terms on the r.h.s. of (13) are indeed of order o(1) as n — co, which
imply (2). This completes the proof of Lemma 3.
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