ICITEE 2014 Partners and Sponsors

Organized by

Co-organized by

Technically Co-Sponsored by

Supported by
On behalf of the organizing committee, it is our pleasure to welcome you to Yogyakarta, Indonesia, for our annual conference. This is the 6th conference that is held by the Department of Electrical Engineering and Information Technology, Faculty of Engineering, Universitas Gadjah Mada. This year, the conference is differently called as Joint conference 2014 as there will be 4 parallel conferences, including:

1. ICITEE (International Conference of Information Technology and Electrical Engineering) 2014,
2. CITEE (Conference of Information Technology and Electrical Engineering) 2014,
3. RC-CIE (Regional Conference on Computer and Information Engineering) 2014, and
4. CCIO (Conference on Chief Information Officer) 2014.

The joint conference’s theme is “Leveraging Research and Technology through University-Industry-Government Collaboration” emphasizes on the enhancement of research in a wide spectrum, including information technology, communication and electrical engineering, as well as e-services, e-government and information system. The conference is expected to provide excellent opportunity to meet experts, exchange information, and strengthen the collaboration among researchers, engineers, and scholars from academia, government, and industry.

In addition, the conference committee has invited five renowned keynote speakers, Prof. Marco Aiello from University of Groningen (RuG), Netherland, Prof. Einoshin Suzuki from Kyushu University, Prof. Yoshio Yamamoto from Tokai University, Prof. Jun Miura from Toyohashi University of Technology, and Prof. Kazuhiko Hamamoto from Tokai University, Japan. The conference committee also invited Tony Seno Hartono from National Technology Officer of Microsoft Indonesia and Dr. Ing. Hutomo Suryo Wasisto (Associate Team Leader in MEMS/NEMS and Sensor Group) Technische Universität Braunschweig, Germany as Invited speaker to present their current research activities.

This conference is technically co-sponsored by IEEE Indonesia Section. Furthermore, it is supported by JICA, AUN/SEED-Net, Ministry of Communication and Information Technology of The Republic of Indonesia, and King Mongkut’s Institute of Technology Ladkrabang, Thailand.

As a General Chair, I would like to take this opportunity to express my deep appreciation to the organizing committee members for their hard work and contribution throughout this conference. I would also like to thank authors, reviewers, all speakers, and session chairs for their support to Joint Conference 2014.

In addition to the outstanding scientific program, we hope that you will find time to explore Yogyakarta and the surrounding areas. Yogyakarta is city with numerous cultural heritages, natural beauty, and the taste of traditional Javanese cuisines, coupled with the friendliness of its people.

Lastly, I would like to welcome you to Joint Conference 2014 and wish you all an enjoyable stay in Yogyakarta.

Sincerely,

Hanung Adi Nugroho, Ph.D.
General Chair of Joint Conference 2014
On behalf of the technical program committee (TPC), we warmly welcome you to the 6th International Conference on Information Technology and Electrical Engineering (ICITEE 2014) in the cultural city of Yogyakarta, Indonesia. The committee has organized exciting technical programs for ICITEE 2014 with conference theme of “Leveraging Research and Technology through University-Industry Collaboration.” As an annual International conference, ICITEE provides excellent platform to share innovative idea and experiences, exchange information, and explore collaboration among researchers, engineers, practitioners and scholars the field of information technology, communications, and electrical engineering.

All 163 submitted papers from 18 countries throughout the world went through a rigorous review process and each paper was evaluated by at least three independent reviewers in accordance with standard blind review process. Based on the results of the rigorous review process, 78 papers have been selected, which constitute the acceptance rate of 47.9%. These papers have been grouped into 5, ranging from the fields of information technology, communications, power systems, electronics, and control systems. Besides those regular sessions, ICITEE 2014 also features world-class keynote/plenary speeches and distinghuish-invited speakers that reflect the current research and development trends in the aforementioned fields.

We are deeply indebted to all of our TPC members as well as our reviewers, who volunteered a considerable amount of their time and expertise to ensure a fair, rigorous, and timely review process. Many thanks should be given to our keynote and invited speakers who will share their experience in this conference. Last but not least, our sincere gratitude should be given to all authors for submitting their work to ICITEE 2014, which has allowed us to assemble a high quality technical program.

Welcome to Yogyakarta and hope you will enjoy a wonderful experience in this traditional city of Indonesia.

With best regards,

TPC Chair
Advisory Board Committee

Adhi Susanto (Universitas Gadjah Mada, Indonesia)
Dadang Gunawan (Universitas Indonesia, Indonesia)
Yanuarsyah Haroen (Institut Teknologi Bandung, Indonesia)
Kuncoro Wastuwibowo (IEEE Indonesia Section)
T. Haryono (Universitas Gadjah Mada, Indonesia)
Chanboon Sathitwiriyawong (KMITL, Thailand)
Hidekazu Murata (Kyoto University, Japan)
Ruttikorn Varakulsiripunth (Thai-Nichi Institute of Technology, Thailand)
Lukito Edi Nugroho (Universitas Gadjah Mada, Indonesia)
Son Kuswadi (PENS, Indonesia)

Organizing Committee

Sarjiya (Universitas Gadjah Mada, Indonesia)
Eka Firmansyah (Universitas Gadjah Mada, Indonesia)
Hanung Adi Nugroho (Universitas Gadjah Mada, Indonesia)
I Wayan Mustika (Universitas Gadjah Mada, Indonesia)
Adha Imam Cahyadi (Universitas Gadjah Mada, Indonesia)
Sigit Basuki Wibowo (Universitas Gadjah Mada, Indonesia)
Kunthong Woraratpanya (KMITL, Thailand)
Prapto Nugroho (Universitas Gadjah Mada, Indonesia)
Teguh Bharata Adji (Universitas Gadjah Mada, Indonesia)
Sumet Prabhavat (KMITL, Thailand)
Natapon Pantuwong (KMITL, Thailand)
Noor Akhmad Setiawan (Universitas Gadjah Mada, Indonesia)
Indriana Hidayah (Universitas Gadjah Mada, Indonesia)
Kitsuchart Pasupa (KMITL, Thailand)
Avrin Nur Widiastuti (Universitas Gadjah Mada, Indonesia)
Teerapong Leelanupab (KMITL, Thailand)
Iswandhi (Universitas Gadjah Mada, Indonesia)
Budi Setiyanto (Universitas Gadjah Mada, Indonesia)
Bimo Sunarfrri Hantono (Universitas Gadjah Mada, Indonesia)
Yusuf Susilo Wijoyo (Universitas Gadjah Mada, Indonesia)
Agus Bejo (Universitas Gadjah Mada, Indonesia)
Husni Rois Ali (Universitas Gadjah Mada, Indonesia)
Azkario Rizky Pratama (Universitas Gadjah Mada, Indonesia)
Lilik Suyanti (Universitas Gadjah Mada, Indonesia)
Nawang Siwi (Universitas Gadjah Mada, Indonesia)

Technical Program Committee

Addy Wahyudie (United Arab Emirates University, UAE)
Adha Imam Cahyadi (Universitas Gadjah Mada, Indonesia)
Adhi Susanto (Universitas Gadjah Mada, Indonesia)
Alagan Anpalagan (Ryerson University, Canada)
Amirthalingam Ramanan (University of Jaffna, Sri Lanka)
Andy Warner (Google)
Anto Satryo Nugroho (BPPT, Indonesia)
Anton Satria Prabuwono (Universiti Kebangsaan Malaysia, Malaysia)
Ardyono Priyadi (Institute of Technology Sepuluh Nopember, Indonesia)
Armein Z. R. Langi (Bandung Institute of Technology, Indonesia)
Awinash Anand (Kyushu University, Japan)
Azwirman Gusrialdi (University of Central Florida, USA)
Boonprasert Suravkratanasakul (KMITL, Thailand)
Chalermsub Sangkavichitr (KMUTT, Thailand)
Chanboon Sathitwiriyawong (KMITL, Thailand)
Chotipat Pornavalai (KMITL, Thailand)
Cuk Supriyadi Ali Nandar (BPPT, Indonesia)
Dhomas Hatta Fudholi (La Trobe University, Australia)
Eiji Okamoto (Nagoya Institute of Technology, Japan)
Ekachai Leelarasmee (Chulalongkorn University, Thailand)
Esa Prakasa (UPI, Indonesia)
F Danang Wijaya (Universitas Gadjah Mada, Indonesia)
Fahkriy Hario P (Universitas Brawijaya, Indonesia)
Fikri Waskito (Nanyang Technological University, Singapore)
Gamantyo Hendrantoro (Institute of Technology Sepuluh Nopember, Indonesia)
Gunawan Wibisono (Universitas Indonesia, Indonesia)
Gusti Agung Ayu Putri (Udayana University, Indonesia)
Harris Simaremoro (Universite de Haute Alsace, France)
Haiguang Wang (Institute for Infocomm Research, Singapore)
Haruichi Kanaya (Kyushu University, Japan)
Heroe Wijanto (Institut Teknologi Telkom, Indonesia)
Hutomo Suryo Wasisto (Technische Universit&t Braunschweig, Germany)
I Ketut Gede Dharma Putra (Udayana University, Indonesia)
I Made Yulistyia Negara (Institute of Technology Sepuluh Nopember, Indonesia)
I Nyoman Satya Kumara (Udayana University, Indonesia)
I Putu Agung Bayupati (Udayana University, Indonesia)
Ida Ayu Dwi Giriantari (Udayana University, Indonesia)
Igi Ardiyanto (Toyohashi University of Technology, Japan)
Issarachai Ngamroo (KMITL, Thailand)
Ivanna Timotius (Satya Wacana Christian University, Indonesia)
Technical Sessions

 Session 1. Software Engineering, Services, and Information Technology

TS 1 – 01 A Hybrid Technique for Enhancement of Periductal Fibrosis Ultrasound Images for Cholangiocarcinoma Surveillance
Pichet Wayalun (Khon Kaen University, Thailand); Saiyan Saiyod (Khon Kaen University, Thailand)

TS 1 – 02 A Real Time Mission-Critical Business Intelligence for Development of Mixture Composition on Aromatherapy Product Based on Customer Personality Type
Taufik Djatna (Bogor Agricultural University, Indonesia); Ida Bagus Dharma Yoga Santosa (Bogor Agricultural University, Indonesia)

TS 1 – 03 An Infrastructure-less Occupant Context-Recognition in Energy Efficient Building
Azkario Rizky (Universitas Gadjah Mada, Indonesia); Widy Widyawan (Gadjah Mada University, Indonesia); Guntur Putra (Universitas Gadjah Mada, Indonesia)

TS 1 – 04 An Integrated Model of Customer Repurchase Intention in B2C E-commerce
Saowakhon Homdus (King Mongkut's Institute of Technology Ladkrabang, Thailand); Singha Chaveesuk (King Mongkut's Institute of Technology Ladkrabang, Thailand)

TS 1 – 05 An Intuitive User Interface for Motion Retrieval on a Mobile Multi-touch Device
Natta Tammachat (King Mongkut's Institute of Technology Ladkrabang, Thailand); Natapon Pantuwong (King Mongkut's Institute of Technology Ladkrabang, Thailand)

TS 1 – 06 Automated Document Classification for News Article in Bahasa Indonesia Based on Term Frequency INVERSE Document Frequency (TF-IDF) Approach
Ari Aulia Hakim (Swiss German University, Indonesia); Alva Erwin (Swiss German University, Indonesia); Kho Eng (Swiss German University, Indonesia); Maulahikmah Galinium (Swiss German University, Indonesia); Wahyu Muliady (Akon Teknologi, Indonesia)

TS 1 – 07 Automatic Leaf Color Level Determination for Need Based Fertilizer Using Fuzzy Logic on Mobile Application
Kestriilia Prilianti (Universitas Ma Chung, Indonesia)

TS 1 – 08 Automatic Multi-Document Summarization for Indonesian Documents Using Hybrid Abstractive-Extractive Summarization Technique
Glorian Yapinus (Swiss German University, Indonesia); Alva Erwin (Swiss German University, Indonesia); Maulahikmah Galinium (Swiss German University, Indonesia); Wahyu Muliady (Akon Teknologi, Indonesia)

TS 1 – 09 Autonomous Monitoring Framework with Fallen Person Pose Estimation and Vital Sign Detection
Igi Ardiyanto (Toyohashi University of Technology, Japan); Jun Miura (Toyohashi University of Technology, Japan)

TS 1 – 10 Benchmarking of Feature Selection Techniques for Coronary Artery Disease Diagnosis
Noor Akhmad Setiawan (Universitas Gadjah Mada, Indonesia); Dwi Wahyu Prabowo (Universitas Gadjah Mada, Indonesia); Hanung Adi Nugroho (Universitas Gadjah Mada, Indonesia)

TS 1 – 11 Boosting Performance of Face Detection by Using an Efficient Skin Segmentation Algorithm
Mohammad Reza Mahmoodi (Isfahan University of Technology, Iran); Sayed Masoud Sayedi (Isfahan University of Technology, Iran)

TS 1 – 12 C2C E-Commerce Trust Level Measurement and Analysis
Sayid Ali Hadi (Swiss German University, Indonesia); James Purnama (University of Indonesia, Indonesia); Moh. A. Soetomo (Swiss German University, Indonesia); Maulahikmah Galinium (Swiss German University, Indonesia)

TS 1 – 13 Calories Analysis of Food Intake Using Image Recognition
Natta Tammachat (King Mongkut's Institute of Technology Ladkrabang, Thailand); Natapon Pantuwong (King Mongkut's Institute of Technology Ladkrabang, Thailand)

TS 1 – 14 Contrast Measurement for No-Reference Retinal Image Quality Assessment
Hanung Adi Nugroho (Universitas Gadjah Mada, Indonesia); Titin Yulianti (Universitas Gadjah Mada, Indonesia); Noor Akhmad Setiawan (Universitas Gadjah Mada, Indonesia); Dhimas Arief D (Universitas Gadjah Mada, Indonesia)

TS 1 – 15 Digital Image Hashing Using Local Histogram of Oriented Gradients
Session 2. Wireless Communications, Networking and Vehicular Technology

TS 2 – 01 3D Artificial Material Characterization Using Rectangular Waveguide ... 164
Danang Widowo (ITB, Indonesia); Achmad Munir (Institut Teknologi Bandung, Indonesia)

TS 2 – 02 Design on FPGA of the IEEE 802.11p Standard Baseband OFDM Section Model .. 168

Iwan Suryawan (Satya Wacana Christian University, Indonesia); Ivanna Timotius (Satya Wacana Christian University, Indonesia)

TS 1 – 16 Emoticon-based Steganography for Securing Sensitive Data ... 79
Tohari Ahmad (Institut Teknologi Sepuluh Nopember (ITS), Indonesia); Gregory Sukanto (Institut Teknologi Sepuluh Nopember (ITS), Indonesia); Hudan Studiawan (Institut Teknologi Sepuluh Nopember, Indonesia); Waskitho Wibisono (Institut Teknologi Sepuluh Nopember, Indonesia); Royana Ithiadie (Institut Teknologi Sepuluh Nopember (ITS), Indonesia)

TS 1 – 17 Evaluation of Edge Orientation Histograms in Smile Detection ... 85
Ivanna Timotius (Satya Wacana Christian University, Indonesia); Iwan Suryawan (Satya Wacana Christian University, Indonesia)

TS 1 – 18 ICUMSA Identification of Granulated Sugar Using Discrete Wavelet Transform and Colour Moments 90
Afifah Rizky Diana Putri (Universitas Gadjah Mada, Indonesia); Adhi Susanto (Universitas Gadjah Mada, Indonesia); Litasari Litasari (Universitas Gadjah Mada, Indonesia); Pimlak Boonchukusol (King Mongkut's Institute of Technology Ladkrabang, Thailand); Yoshimitsu Kuroki (Kurume National College of Technology, Japan); Yasushi Kato (Kurume National College of Technology, Japan)

TS 1 – 19 Identification of Malignant Masses on Digital Mammogram Images ... 96
Hanung Adi Nugroho (Universitas Gadjah Mada, Indonesia); Faisal N (Gadjah Mada University, Indonesia); Indah Soesanti (Universitas Gadjah Mada, Indonesia); Lina Choridah (Universitas Gadjah Mada, Indonesia)

Santosa Sandy Putra (UNESCO IHE - Institute for Water Education, The Netherlands)

TS 1 – 21 Mobile Tourism Services Model: A Contextual Tourism Experience Using Mobile Services 108
Ridi Ferdiana (Universitas Gadjah Mada, Indonesia); Bimo Sunarfri Hantono (Universitas Gadjah Mada, Indonesia)

TS 1 – 22 Real Time Key Element Extraction for Design of In-Flight Meal Services Based on Passenger's Personality Traits ... 114
Taufik Djatna (Bogor Agricultural University, Indonesia); Hety Handayani Hidayat (IPB, Indonesia)

TS 1 – 23 Real Time Static Hand Gesture Recognition System Prototype for Indonesian Sign Language 120
Rudy Hartanto (Universitas Gadjah Mada, Indonesia); Adhi Susanto (Universitas Gadjah Mada, Indonesia); Paulus Santosa (Gadjah Mada University, Indonesia)

TS 1 – 24 Release of Masking and FAME Performance Evaluation to Improve Speech Intelligibility on Cochlear Implant ... 126
Sena Sukmananda Suprapto (Institut Teknologi Sepuluh Nopember, Indonesia); Dhany Arifianto (Institut Teknologi Sepuluh Nopember, Indonesia); Sekartedjo Sekartedjo (Institut Teknologi Sepuluh Nopember, Indonesia)

TS 1 – 25 Statistical Analysis of Popular Open Source Software Projects and Their Communities .. 132
Andi Wahju Rahardjo Emanuel (Universitas Kristen Maranatha, Indonesia)

TS 1 – 26 Text-Background Decomposition for Thai Text Localization and Recognition in Natural Scenes 138
Ungsumalee Suttapaki (King Mongkut's Institute of Technology Ladkrabang, Thailand); Kunthong Woraratpanya (King Mongkut's Institute of Technology Ladkrabang, Thailand); Kitsuchart Pasupa (King Mongkut's Institute of Technology Ladkrabang, Thailand); Pimlak Boonchukosol (King Mongkut's Institute of Technology Ladkrabang, Thailand); Taravichet Titjaroonroj (King Mongkut's Institute of Technology Ladkrabang, Thailand); Rattaphon Hokking (King Mongkut's Institute of Technology Ladkrabang, Thailand); Yoshimitsu Kuroki (Kurume National College of Technology, Japan); Yasushi Kato (Tsuruoka National College of Technology, Japan)

TS 1 – 27 The Study of Utilization of SIP in Mobile Monitoring Abnormal Events Wireless Sensor Network 144
Andreo Yudertha (Gadjah Mada University, Indonesia); Widy Widyawan (Gadjah Mada University, Indonesia); Sujoko Sumaryono (Gadjah Mada University, Indonesia)

TS 1 – 28 TIS Dishub DIY: An Implementation of Traveler Information System in Special Region of Yogyakarta 150
Daniel Febrian Sengkey (Gadjah Mada University, Indonesia); Sayuri Egaravanda (Universitas Gadjah Mada, Indonesia); Lukito Nugroho (Universitas Gadjah Mada, Indonesia)

TS 1 – 29 Website Quality Assessment for Portal Hospital Indonesia Using Gap Analysis ... 156
Muhammad Adipridhana (Swiss German University, Indonesia); Maulahikmah Galinium (Swiss German University, Indonesia); Heru Ipung (Swiss German University, Indonesia)
- Session 3. Power Systems -

TS 3 – 01 A Probabilistic Approach to Analyze and Model the Simultaneity of Power Produced by Wind Turbines in a Wind Farm ... 232
Kaveh Malekian (Chemnitz University of Technology, Germany); Anne Göhlich (Chemnitz University of Technology, Germany); Liana Pop (Chemnitz University of Technology, Germany); Wolfgang Schufft (University of Technology Chemnitz, Germany)

TS 3 – 02 An Improved Maximum Efficiency Control for Dual-Motor Drive Systems ... 239
Luiz Rizki Ramelan (Universitas Gadjah Mada, Indonesia); Eka Firmansyah (UGM, Indonesia); Tian-Hua Liu (National Taiwan University of Science and Technology, Taiwan); Shao-Kai Tseng (National Taiwan University of Science and Technology, Taiwan); Jing-Wei Hsu (National Taiwan University of Science and Technology, Taiwan)

TS 3 – 03 CCT Computation Method Based on Critical Trajectory Using Simultaneous Equations for Transient Stability Analysis .. 245
Ardyono Priyadi (ITS, Indonesia); Ony Qudsi (Politeknik Elektronika Negeri Surabaya, Indonesia); Mauridhi Purnomo (Institut Teknologi Sepuluh Nopember, Indonesia)

TS 3 – 04 Comparison of Economic Models for Two Differently Configured Uninterrupted Power Supply Systems From User Electricity Bill Perspective .. 251
Awais Yousaf (The University of Lahore, Pakistan); Omaiza Yousaf (The University of Lahore, Pakistan); Durdana Yousaf (Lahore Electric Supply Company, Pakistan)
TS 3 – 05 Development of a Power Flow Software for Distribution System Analysis Based on Rectangular Voltage Using Python Software Package
Lukman Hakim (Universitas Lampung, Indonesia); Muhamad Wahidi (Universitas Lampung, Indonesia); Trisno Handoko (Universitas Lampung, Indonesia); Henri Gusmedi (Universitas Lampung, Indonesia); Noer Soedjarwanto (Universitas Lampung, Indonesia); Federico Milano (University College Dublin, Ireland)

TS 3 – 06 Efficiency Improvement of a Solar Power Plant Using Combine Cycle: An Experimental Study on a Miniaturized Solar Power Station
Bishwajit Banik Pathik (American International University-Bangladesh, Bangladesh); Nipa Datta (American International University-Bangladesh, Bangladesh); Muhammad Najibul Ahmed (American International University-Bangladesh, Bangladesh); Roksan Liya (American International University-Bangladesh, Bangladesh); Nazia Zaman (American International University-Bangladesh, Bangladesh)

TS 3 – 07 Flower Pollination Algorithm for Optimal Control in Multi-Machine System with GUPFC
Mohammad Musofa Mulya, Pambudy (Gadjah Mada University, Indonesia)

TS 3 – 08 Frequency Dependent Model of Underground Cables for Harmonic Calculations in Frequency Domain
Kaveh Malekian (Chemnitz University of Technology, Germany); Uwe Schmidt (Dresden University of Technology, Germany); Abdullah Hoshme (Chemnitz University of Technology, Germany); Ali Shirvani (TU Chemnitz, Germany)

TS 3 – 09 Fuzzy Logic Principles for Wind Speed Estimation in Wind Energy Conversion Systems
Agus Naba (University of Brawijaya, Indonesia)

TS 3 – 10 Investigation and Modeling of Transient Voltage Stability Problems in Wind Farms with DFIG and Crowbar System
Kaveh Malekian (Chemnitz University of Technology, Germany); Uwe Schmidt (Dresden University of Technology, Germany); Ali Shirvani (TU Chemnitz, Germany); Wolfgang Schufft (University of Technology Chemnitz, Germany)

TS 3 – 11 Magnetic Flux Distribution Due to the Effect of Stator-Rotor Configuration in the Axial Machine
Danang Wijaya (UGM, Indonesia); Nobal Rahadyan (Universitas Gadjah Mada, Indonesia); Husni Ali (UGM, Indonesia)

TS 3 – 12 Maximum Power Point Tracking Algorithm for Photovoltaic System Under Partial Shaded Condition by Means Updating β Firefly Technique
Yanuar Safarudin (Institut Teknologi Sepuluh Nopember, Indonesia); Ardyyono Priyadi (ITS, Indonesia); Mauridhi Purnomo (Institut of Technology Sepuluh Nopember, Indonesia); Margo Pujiantara (ITS, Indonesia)

TS 3 – 13 Multi-Resolution Complex Image Method of Horizontal Multilayer Earth
Qi Yang (Wuhan University, P.R. China)

TS 3 – 14 On the Potential and Progress of Renewable Electricity Generation in Bali
Satya Kumara (Udayana University, Bali, Indonesia); Wayan G. Ariastina (Udayana University, Indonesia); I Suherayasa (Udayana University, Indonesia); Ida Giriantari (Udayana University, Bali, Indonesia)

TS 3 – 15 Optimal Configuration of PV-Wind turbine-Grid-Battery in Low Potency Energy Resources
D Fittrin (Universitas Gadjah Mada, Indonesia); D Wijaya (Universitas Gadjah Mada, Indonesia); Sasongko Pramono Hadi (Gadjah Mada University, Indonesia)

TS 3 – 16 Optimal Solution of Reliability Constrained Unit Commitment Using Hybrid Genetic Algorithm-Priority List Method
Sariyi Sariyja (Gadjah Mada University, Indonesia); Arief Budi Mulyawan (Gadjah Mada University, Indonesia); Andi Sudiarsro (Gadjah Mada University, Indonesia)

TS 3 – 17 Partial Discharge Analysis Using PCA and ANN for the Estimation of Size and Position of Metallic Particle Adhering to Spacer in Gas-Insulated System
Firmansyah Nur Budiman (Universitas Gadjah Mada, Indonesia); Yasin Khan (King Saud University, Saudi Arabia)

TS 3 – 18 Quantum Neural Network for State of Charge Estimation
Kevin Gausultan Hadith Mangunkusumo (Universitas Gadjah Mada, Indonesia); Danang Wijaya (UGM, Indonesia); Yung-Ruei Chang (Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan); Yih-Der Lee (Institute of Nuclear Energy Research, Taiwan); Kuo Lung Lian (National Taiwan University of Science and Technology, Taiwan)

Danang Wijaya (UGM, Indonesia); Shollhattha Aziz (UGM, Indonesia); Hartanto Prabowo (UGM, Indonesia)

TS 3 – 20 The Dynamic Performance of Grid-Connected Fixed-Speed Wind Turbine Generator
Husni Rois Ali (UGM, Indonesia)

TS 3 – 21 TVAC PSO for Modal Optimal Control POD and PSS Coordination in UPFC
Rian Fatah Mochamad (UGM, Indonesia); Sasongko Pramono Hadi (Gadjah Mada University, Indonesia); Mokhammad Selyonegoro (UGM, Indonesia)
Session 4. Electronics, Circuits, and Systems

TS 4 – 01 A Face Detector Based on Color and Texture
Mohammad Reza Mahmoodi (Isfahan University of Technology, Iran); Sayed Masoud Sayedi (Isfahan University of Technology, Iran)

TS 4 – 02 Analysis of Single Excitation Signal for High Speed ECVT Data Acquisition System
Arbai Yusuf (CTECH Labs Edwar Technology Co., Indonesia); Imamul Muttakin (CTECH Labs Edwar Technology Co., Indonesia); Wahyu Widada (CTECH Labs Edwar Technology Co., Indonesia); Warsito P. Taruno (CTECH Labs Edwar Technology Co., Indonesia)

TS 4 – 03 Pulley’s Clamping Force and Axial Position Measurements for Electro-mechanical Continuously Variable Transmission in Automotive Applications
Bambang Supriyo (Universiti Teknologi Malaysia, Malaysia); Kamarul Tawi (Universiti Teknologi Malaysia, Malaysia); Mohd Che Kob (Universiti Teknologi Malaysia, Malaysia); Izhari Mazali (Universiti Teknologi Malaysia, Malaysia); Mohd Che Kob (Universiti Teknologi Malaysia, Malaysia)

TS 4 – 04 Reconfigurable Hardware Implementation of Gigabit UDP/IP Stack Based on Spartan-6 FPGA
Mohammad Reza Mahmoodi (Isfahan University of Technology, Iran); Sayed Masoud Sayedi (Isfahan University of Technology, Iran); Batul Mahmoodi (Telecommunication Company of Isfahan, Iran)

TS 4 – 05 The Performance of Three-Phase Four-Wire Grid-Connected Inverter with Enhanced Power Quality
Susatyo Handoko (Universitas Gadjah Mada, Indonesia); Sasongko Pramono Hadi (Gadjah Mada University, Indonesia); Suharyanto Suharyanto (Gadjah Mada University, Indonesia); Eka Firmansyah (UGM, Indonesia)

TS 4 – 06 Underwater Sound Propagation Characteristics At Mini Underwater Test Tank with Varied Salinity and Temperature
Niken Yuwono (Institut Teknologi Sepuluh Nopember, Indonesia); Dhany Arifianto (Institut Teknologi Sepuluh Nopember, Indonesia); Endang Widjiani (Institut Teknologi Sepuluh Nopember, Indonesia); Wirawan Wirawan (Institut Teknologi Sepuluh Nopember, Indonesia)

Session 5. Control Systems

TS 5 – 01 A Neural Network Structure with Parameter Expansion for Adaptive Modeling of Dynamic Systems
Erwin Sitompul (President University, Indonesia)

TS 5 – 02 A New Approach in Self-Generation of Fuzzy Logic Controller by Means of Genetic Algorithm
Erwin Sitompul (President University, Indonesia); Iksan Bukhori (President University, Indonesia)

TS 5 – 03 Double Target Potential Field
Ferry Manalu (Universitas Katolik Indonesia Atma Jaya, Indonesia)

TS 5 – 04 Robust Residual Generation for Sensor Fault Isolation in Systems with Structured Uncertainty
Samiadji Herdjunanto (Gadjah Mada University, Indonesia); Adhi Susanto (Universitas Gadjah Mada, Indonesia); Oyas Wahyunggoro (UGM, Indonesia)

TS 5 – 05 Design of Decoupled Repetitive Control for MIMO Systems
Edi Kurniawan (Indonesian Institute of Sciences, Indonesia); Riyo Wardoyo (Indonesian Institute of Sciences, Indonesia); Oka Mahendra (Indonesian Institute of Sciences, Indonesia)
Session 1

Software Engineering, Services and Information Technology
Real Time Key Element Extraction for Design of In Flight Meal Services Based on Passenger’s Personality Traits

Taufik Djatna
Post Graduate Program of Agro-industrial Technology, Bogor Agriculture University
Dramaga Bogor, West Java, 16680 Indonesia
taufik.djatna@ipb.ac.id

Hety Handayani Hidayat
Post Graduate Program of Agro-industrial Technology, Bogor Agriculture University
Dramaga Bogor, West Java, 16680 Indonesia
hetyhhidayat@apps.ipb.ac.id

Abstract— In flight meal services is one of the most important points to judge an airline as favorite to the passengers. It is crucial to include personal trait in designing these services. Thus, this work concentrated on formulating model of in-flight meal services. First, by using Key Element Extraction (KEE), we identify passenger’s personality traits in real time from social media. And then we design model formulation of in-flight meal services, by using Quantification Theory Type 1 (QTT1). The identification of passenger’s personality traits in computational experiment are based on particular type such as neophobia, variety seeking selective, and variety seeking. Variants formulation for each personality traits were designed for different categories such as menu variant, originality, appearance, suitability, cordiality, punctually and responsibility. To enabling implementation of this model, it is required to attach it to the current booking and database costumer system that running online.

Keywords— In flight meal services; personality traits; real time; design

I. INTRODUCTION

As air transportation industries grow, core business of the airline is bringing passengers from one place to their destinations. Also, airline businesses are in charged to give a good service during their journeys [1,2,3,4,5]. For fulfilling the passenger’s requirement, airline also completing their services with set aside food what is known as term in flight meal [6].

In flight meal services is one of the factors on passenger’s list for choosing an airline which is covering food (i.e quality, volume, menu variation, and appearance), pricing, cordiality of crew (particularly flight stewardess), getting information, ordering method, and punctually [7]. In flight meal services is related to personality traits. This argued was reinforced by result of research that categorized the factor that was influenced tourist food consumption as cultural or religious influences, socio-demographic factors, food-related personality traits, exposure effect or past experience, and motivational factors. Due to that problem, airline must know the passenger’s personality traits [8].

In today’s competitive environment with rapid innovation in meal in flight, there is an increased need for fulfilling passenger’s requirement in-flight meal services airline business. Airlines have a challenge to serve the right meals for right passengers on the right flight. For increasing their competitiveness, they should implemented requirement for their own in-flight meal services systems.

Enterprise needs a data analysis in real time mode [9] belonging to in-flight meal services. Real time requirement will roam the data warehouse which have a big volume and wreaked the data on business operation rapidly. Also, real time will be optimize the decision making process by supply the conceptual data [10,11,12].

To make a real time access, business process must be integrated with social media. In this case, social media defined as information media online (internet based) that enable the user for participating, sharing, and making content virtual easily. It has capability to recording social interaction in large number and real timely. Information are being unlimited by time and space. But by using social media, personality traits of costumer may be revealed for their own convenience.

Therefore this work aims to identify passenger’s personality traits, and to design architectural real time key element extraction of in-flight meal services based on passenger’s personality traits.

II. METHODOLOGY

In this case, the most important information is passenger’s requirements. That one of the factors to influence passenger’s requirement is their own personality traits. So, airline should identify personality of their passengers well. Based on that information, airline should design formulation to reveal and deploy favorable services that is suitable with their personality traits. The methodologies are in this paper presented on Figure 1.

![Figure 1. Research Framework](image)
A. Preprocessing

Preprocessing is a requirement of in preparing the raw data. So it is help to comprehend the undestanding of information in future steps. These stages are consisted of exchanging data from unstructured real time data to a structured data and reducing irrelevant terms [13].

B. Key Element Extraction (KEE)

KEE is an algorithm for finding key persons and key terms of a discussion by scoring passengers and terms in the context of their significance in discussions. Higher scored passengers are key persons having innovative and creative ideas or potential for producing them. Higher scored terms are key terms indicating or leading to innovative and creative ideas. KEE is based on the idea of mutually reinforcing relationship between passengers and terms: significant passengers are the passengers using many significant terms, and conversely, significant terms are the terms used by many significant passengers [14]. The following questions detailed each step of KEE as follows:

\[s(p_i) = \sum_{p_j \in p_i} s(t_j) \cdot w(p_j) \cdot \alpha(t_j) \quad (1) \]
\[s(t_j) = \sum_{p_i \in t_j} s(p_i) \cdot w(p_i) \cdot \alpha(t_j) \quad (2) \]

Where:
- \(p_i \) : passenger \(i^{th} \) (\(i = 1, 2, \ldots, n \))
- \(t_j \) : term \(j^{th} \) (\(j = 1, 2, \ldots, m \))
- \(s(p_i) \) : Score of passengers
- \(s(t_j) \) : Score of term (\(j = 1, 2, \ldots, m \))
- \(w(p_j) \) : Total passengers score of term
- \(\alpha(t_j) \) : Weight of term (based on interest rate)

KEE algorithm be has as simultaneously finding key terms and key persons in network-based discussions. It formed as a network-based discussion is (1) held for enhancing innovation and creativity towards product conceptualization, (2) based on participants posting and replying messages (3) on online message boards or chat rooms. Those discussions were made several attempts with different focus groups. A discussion is represented by a weighted directed bipartite graph \(G(V, E) \) where \(V \) and \(E \) are sets of nodes and weighted edges, respectively. It demands the operator of exclusive selection. Let \(VP \) be a set of passengers of the discussion on online forum, \(tweeter \), or Facebook and \(VT \) be a set of terms used by the passengers. Thus \(V = VP \cup VT \), \(VP \cap VT = \phi \). Let denote an edge between \(p_i \in VP \) and \(t_j \in VT \) and its weight by \(\beta(p_i, t_j) \) and \(w(t_j) \), respectively. \(W(p_i, t_j) = m \), if the participant \(p_i \) used the term \(t_j \) \(m \) times [14].

C. Quantification Theory Type 1

The QTT1 is a method of qualitative and categorical multiple regression analysis allowed inclusion of independent variables that are categorical [15]. The steps of quantification theory are following:
1. Determine the in-flight meal services attribute \((X_{an}) \) (\(n=1,2,\ldots,7 \)).
2. Define the categories of in-flight meal services attribute \((X_{an}) \). For example, in this case for menu variant there are 3 categories i.e vegetarian, moslem, and kosher \((X_{11}, X_{12}, X_{13}) \).
3. Classify sample based on their attribute categories.
4. Evaluating the passenger’s preferences about samples.
5. Formulating the in-flight meal services by using QTT1 on R language [15]

III. IDENTIFICATION OF PASSENGER’S PERSONALITY TRAITS

A. Preprocessing

Initially we provided data from social media are with loaded passengers posting, tagging or tweeting data about meals or services on large number of data without being limited by time. Besides that, nowadays social media became more popular for people to soulful or give expression to public about what their mind. So, without direct questioner, passenger personality traits can be known from social media based on their posting or comment. Data that derived from social media are unstructured data in the text form and multimedia content. But it isn’t organized well certain in a database. In this case the observed are comments, tags, photos, post on the forum of internationally recognized Airline (for example GA Indonesia) members which is then captured by the HTML5.

HTML5 is a language that used to create web pages and a core technology of internet and basic language of designing. It adds many new syntactical features and tags that indicate website designs with special effects and awesome layouts [16]. The data obtained from cloud computing are enrolled in social media. Cloud provides a virtual computer that provides the ability for the user to operate in accordance with the requirement.

Unstructured data which obtained from social media will be treated into structured data in the form of a column matrix. In the search text in social media, the data is divided into data that provide information such as user profiles and data provide information such as the user transaction. Transaction that occurs can be either an opinion, or tags (like or dislike) of the user. Based on the data structure irregularity text, then the preprocessing process requires some initial stage which basically is to prepare so that the text can be changed to be more structured. Steps are as follows:

1. Tokenizing
2. Filtering

Filtering is the stage of taking important words from the token. The algorithm can stop list (remove unimportant words) or word list (save the important word).
TABLE I. TOKENIZING

<table>
<thead>
<tr>
<th>Opinion on Forum</th>
<th>Token Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA 189, KNO-C01 on 31 March. Flight operated by 737-800 with registration number</td>
<td>Nice, friendly</td>
</tr>
<tr>
<td>PK GFR. This aircraft already had the sky interior onboard. Flight attendants were</td>
<td>greeted, passenger</td>
</tr>
<tr>
<td>nice and friends and greeted the passenger with traditional salam garuda. After</td>
<td>with, traditional</td>
</tr>
<tr>
<td>takeoff there was a hot meal service for this 2 hours journey. The meal had 2</td>
<td>salam, garuda</td>
</tr>
<tr>
<td>choices: beef rendang with rice or fried fish with rice. I had a brief and tasty</td>
<td>after</td>
</tr>
<tr>
<td>body. After the meal service the FA distributed an ice cream for dessert. This</td>
<td>Nice, tasty</td>
</tr>
<tr>
<td>aircraft had PTV AVOD with desert movies, short films, music, and games. Will</td>
<td>飛 again</td>
</tr>
<tr>
<td>fly with Garuda again.</td>
<td></td>
</tr>
</tbody>
</table>

3. Stemming

This process is the stage looking for the root word of each word filtering results. The process results in filtering and stemming stages as follows:

TABEL. II RESULT OF FILTERING AND STEMMING

<table>
<thead>
<tr>
<th>Filter</th>
<th>Stemming</th>
<th>Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nice</td>
<td>Funny</td>
<td>P1</td>
</tr>
<tr>
<td>traditional</td>
<td>unique impression</td>
<td></td>
</tr>
<tr>
<td>tasty</td>
<td>variant</td>
<td></td>
</tr>
</tbody>
</table>

B. Identification passenger’s personality traits by using Key Element Extraction

In this step, KEE algorithm was used to identify the personality of passengers. Data that has been preprocessed, therefore it will be analyze score of each passenger S (pi). These values were then grouped following the rules:

1. If S (pi) > (Min S (pi) + 2 Range S (pi) / 3), participant’s personality traits is variety seeking

2. If (Min S (pi) + 2 Range S (pi) / 3) <= S (pi) <= (Min S (pi) + Range S (pi) / 3), participant’s personality traits is seeking variety selective

3. If S (pi) < (Min S (pi) + Range S (pi) / 3), participant’s personality traits is neophobia

Personalities traits are psychological factors are important in influencing consumption patterns. This factor leads to passenger characteristics that influence consumption behavior. There are 2 types of passengers that food neophobia personality and variety seeking [8].

Food neophobia is a term used for people who are reluctant to try new foods and digest where feelings are more dominated for selecting food. Human beings are omnivores will try a variety of food sources but at some point will be careful to digest food is toxic and dangerous. Therefore, neophobia food can be conceptualized relative would have a preference for food that is more familiar than the new food. Other personality types that affect the selection of food are variety seeking passengers. Variety seeking is the term used for the personality of the person who likes looking for something that is diverse (diversity) and different as a good choice in service and food. This type has the flexibility to adopt the food they consume [8].

By understanding the personality types of passengers, the airline could determine the pattern of food and service to be provided. In this study, consumers were divided into three types namely personality trait neophobia, variety-seeking selective, variety seeking. Data has been taken from social media, personality known as passenger behavior like or do not like new thing that be unstructured data input. In this paper used hypothetical data. Assuming that there were 100 participants who comment, posting, or retweet on forum of Internationally recognized Airline (for example, GA Indonesia) about in flight meal services. α is weighted of the term which obtained by using expert system software. The greater the value of α indicates that the word is more important and relevant with the personality traits.

In Table III, it was found there were 17 passengers which have personality traits neophobia, 60 passengers were variety seeking selective and the other were variety seeking. In other word, if we generate this data as dashboard of passenger’s personality traits are represented on Figure 2. Based on that dashboard, airline business can predict the in flight meal services that will they serve.
In this case, the formulation design obtained by using services. In this case, the formulation design obtained by using are served. The attributes about meals are including:

Knowing attributes of in-flight meal services is an important step that should be done if we will formulate its personality traits were being guidance to design in flight meal services. In this case, the formulation design obtained by using Quantification theory type 1 (QTT 1).

Knowing attributes of in-flight meal services is an important step that should be done if we will formulate its design. In this paper, discussing 7 attribute on scope of our problem. Not only about meals but also about how these meals are served. The attributes about meals are including:

a. Menu variant (X₁)
Menu variant (X₁) has 3 categories which usual be on the market that is vegetarian (X₁1) that meals haven’t an animal protein; Moslem (X₁2) that meals haven’t alcohols and insurable as halal food; and Kosher (X₁3) that food for person that have interdiction.

b. Originality (X₂)
In this case, originality that mean place where are the meals come from. Based on point of departure, Originality only derived as 2 categories namely foreign country (X₂1) and old country (X₂2).

c. Appearances (X₃)
Presentation of our meals with appetite for its consumption. So, airline business must pay attention about appearance. This attribute have 2 categories namely unique (X₃1) such as using banana’s leaf or another materials that refer to local wisdom; and standard (X₃2) such as using the dishes standard.

The attributes about service are including:

a. Suitability (X₄)
Suitability decipherable as level of conformity between the images of menu and meals that be served. If they are similar then belonging to suitable category (X₄1), and inversely as different category (X₄₂).
b. Cordiality (X3)
In this paper, cordiality is about attitude of flight stewardess when they offer the menu. They only greeting (X31) or they give more information (X32).

c. Punctually (X4)
Meals must be served on right time. Punctually has 3 categorizes that are quarter time earlier (X41), middle time (X42), or quarter time finish (X43).

d. Responsibility (X7)
Responsibility derived as slow respond (X71) and quick respond (X72).

<table>
<thead>
<tr>
<th>Type</th>
<th>Menu Variant</th>
<th>Originality</th>
<th>Appearance</th>
<th>Suitability</th>
<th>Cordiality</th>
<th>Punctually</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>X2</td>
<td>X3</td>
<td>X4</td>
<td>X5</td>
<td>X6</td>
<td>X7</td>
</tr>
<tr>
<td>1</td>
<td>Vegetarian</td>
<td>foreign country</td>
<td>Unique</td>
<td>Suitable</td>
<td>Greeting</td>
<td>quarter time earlier</td>
<td>Slow respond</td>
</tr>
<tr>
<td>2</td>
<td>Moslem</td>
<td>Old country</td>
<td>Standard</td>
<td>Different</td>
<td>More information</td>
<td>middle time</td>
<td>Quick respond</td>
</tr>
<tr>
<td>3</td>
<td>Kosher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this paper, we use hypothetical data. Assumed that we are collecting 15 samples, and then we classify the sample based on type (categories each attributes) that be defined on table 4. And then, we evaluated their passenger’s preferences per each personality traits.

Respondents that are used on this case as many 15 people per each personality traits. In other words, we totally collect 45 data passengers’ preferences by using semantic differential questioners. This questioner has range 1-7 (1 indicated unlike and 7 indicated like so much). The result of preferences from 15 respondents furthermore averaged. Data classify and evaluating of samples is shown on table 5.

<table>
<thead>
<tr>
<th>No sample</th>
<th>CLASSIFICATION OF IN FLIGHT MEAL SERVICES</th>
<th>PASSENGER’S PREFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X1</td>
<td>X2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Data as result from questioner became an input for formulating QTT1 on R software. By using QTT1, we design of in-flight meal services. On Figure 4 represented dashboard design formulation each passenger’s personality traits and table 6 are shown the coefficients each categories and PCC (Partial Correlation Coefficient) each attribute of in-flight meal services. From dashboard, we know rapidly the recommendation of developing the design formulation in flight meal that suitable with passenger’s personality traits. Every value in each category shows the influence level of attributes. We recommended the highest value of category score in each attribute. By implementation of this system, we developed in-flight meals services based on personality traits by real timely. Recommendations of design formulation are represented on table 7.

Figure 3. Dashboard Design Formulation Each Passenger’s Personality Traits
TABLE VI DESIGN FORMULATION OF IN-FLIGHT MEAL SERVICES EACH PERSONALITY TRAITS

<table>
<thead>
<tr>
<th>Attribute of In-flight meal services</th>
<th>Neophobia</th>
<th>Variety Seeking Selective</th>
<th>Variety Seeking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories</td>
<td>PCC</td>
<td>Categories</td>
<td>PCC</td>
</tr>
<tr>
<td>x1</td>
<td>-2,136</td>
<td>0,480</td>
<td>0,877</td>
</tr>
<tr>
<td>x1.1</td>
<td>0,011</td>
<td>-0,501</td>
<td>-0,477</td>
</tr>
<tr>
<td>x1.2</td>
<td>0,796</td>
<td>-0,079</td>
<td>1,470</td>
</tr>
<tr>
<td>x2</td>
<td>0,514</td>
<td>0,262</td>
<td>1,456</td>
</tr>
<tr>
<td>x2.1</td>
<td>-0,343</td>
<td>-0,971</td>
<td>0,404</td>
</tr>
<tr>
<td>x2.2</td>
<td>-0,746</td>
<td>0,461</td>
<td>0,754</td>
</tr>
<tr>
<td>x3</td>
<td>0,853</td>
<td>-0,861</td>
<td>2,131</td>
</tr>
<tr>
<td>x3.1</td>
<td>-0,391</td>
<td>0,366</td>
<td>0,860</td>
</tr>
<tr>
<td>x4</td>
<td>0,783</td>
<td>-1,735</td>
<td>0,088</td>
</tr>
<tr>
<td>x4.1</td>
<td>-0,142</td>
<td>0,120</td>
<td>-0,113</td>
</tr>
<tr>
<td>x4.2</td>
<td>0,213</td>
<td>-0,170</td>
<td>-1,265</td>
</tr>
<tr>
<td>x5</td>
<td>-1,001</td>
<td>0,431</td>
<td>0,399</td>
</tr>
<tr>
<td>x5.1</td>
<td>1,165</td>
<td>-1,239</td>
<td>3,164</td>
</tr>
<tr>
<td>x5.2</td>
<td>-0,478</td>
<td>0,675</td>
<td>-1,772</td>
</tr>
<tr>
<td>x6</td>
<td>-1,126</td>
<td>0,564</td>
<td>-0,529</td>
</tr>
<tr>
<td>x6.1</td>
<td>1,689</td>
<td>0,793</td>
<td>1,220</td>
</tr>
<tr>
<td>Constant</td>
<td>3,615</td>
<td>4,427</td>
<td>4,185</td>
</tr>
<tr>
<td>R</td>
<td>-0,477</td>
<td>0,741</td>
<td>0,214</td>
</tr>
<tr>
<td>R²</td>
<td>0,473</td>
<td>0,907</td>
<td>0,719</td>
</tr>
</tbody>
</table>

TABLE VII DESIGN OF IN-FLIGHT MEAL SERVICES EACH PERSONALITY TRAITS

<table>
<thead>
<tr>
<th>Design</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
<th>X7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neophobia</td>
<td>kosher</td>
<td>old country</td>
<td>standard</td>
<td>different</td>
<td>more information</td>
<td>middle time</td>
<td>slow respond</td>
</tr>
<tr>
<td>Variety seeking selective</td>
<td>vegetarian</td>
<td>old country</td>
<td>unique</td>
<td>suitable</td>
<td>more information</td>
<td>quarter time finish</td>
<td>quick respond</td>
</tr>
<tr>
<td>Variety seeking</td>
<td>kosher</td>
<td>foreign country</td>
<td>standard</td>
<td>different</td>
<td>greeting</td>
<td>quarter time early</td>
<td>quick respond</td>
</tr>
</tbody>
</table>

V. CONCLUSION

Passenger’s personality traits have a powerful relationship with in-flight meal services. Our finding revealed the personality traits as neophobia, variety seeking selective, and variety seeking. Designed formulation of in-flight meal services are different both in menu variant, originality, appearance, suitability, cordiality, punctually and responsibility. Implementation of this systems support the airline business could contribute for decision making to formulate passenger’s requirement in flight meal services. Our recommendation are integrated this system with current booking and membership database systems.

REFERENCES