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ABSTRACT. The Klee-Minty problem is explored in this paper.
The coordinates formulas of all vertices of the Klee-Minty cube
are presented. The subset representation of the vertices of the
Klee-Minty cube is discussed. How to construct the Klee-Minty
path is showed. It turns out that there are rich structures in the
Klee-Minty path. We explore these structures.
Key words: Klee-Minty cube, Klee-Minty path, Klee-Minty prob-
lem.
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FURTHER EXPLORATION OF
THE KLEE-MINTY PROBLEM.

am PARUHUM SILALAHI

Department of Mathematics,
Faculty of Mathematics and Natural Sciences,

Bogar Agricultural University
Jl. Meranti, Kampus IPB Darmaga, Bogar, 16680 Indonesia

1. INTRODUCTION

The Klee-Minty (KM) problem is a problem that had been presented
by Klee and Minty in [3J. The n-dimensional KM problem is given by:

mm Yn
(1)

subject to PYk-l ~ Yk ~ 1 - PYk-l, k = 1, ... ,n,

where P is small positive number by which the unit cube [O,lJn is
squashed, and Yo = O. The domain (we denote as en), which is called
KM-cube, is a perturbation of the unit cube in R". If p = 0 then
the domain is the unit cube and for p E (O,~) it is a perturbation
of the unit cube which is contained in the unit cube itself. Since the
perturbation is small, the domain has the same number of vertices as
the unit cube, i.e. 2n.

The KM-problem has become famous because Klee and Minty found
a pivoting rule such that the simplex method requires 2n - 1 iterations
to solve the problem (1).

Yk-l ~ Yk ~ 1 - Yk-l
In this paper, we explore the KM problem further. We provides for-

mulas for the coordinates of all vertices of the KM cube, and discuss
the subset representation of the vertices of the KM cube. Then we

41



42 BlB PAI1UHUd SfLALAfll

describe the KM path. V.,Te show that when using the subset represen-
tation, the KM path can easily be constructed by using the so-called
flipping operation. It, turns out that there are rich structures in the
KM path. We explore these structures.

2. VERTICES OF THE KLEE-MINTY CUBE

With the n-dimensional EM problem as defined in (1), we define the
slack vectors 2.. and S according to

2..k=Yk-PYk-l, k=l, ,n, (2)

sk=l-Yk-PYk-l, k=l, ,n. (3)

For any vertex of the KM cube we have either Q.k = 0 or Sk = 0, for each
k. As a consequence, each vertex can be characterized by the subset
of the index set J= {I, 2, ... , n} consisting of the indices k for which
Sk vanishes (and hence 2..k is positive). Therefore, given a vertex v we
define

S; = {k : Sk = O} == {k : 2..k > O} .
Note that the KM cube has 2n vertices. Since 2n is also the number
of subsets of the index set J, each subset S of the index set uniquely
determines a vertex. We denote this vertex as vS. Given S, the co-
ordinates of vS in the y-space can easily be solved from (2) and (3),
because we then have Sk = 0 if k E Sand Q.k = 0 if k ~ S, which yields
n equations in the entries of the vector y. When defining Yo = 0 and
y = vS, one easily deduces that.

{
l-PYk-l, kES,

Yk =
PY k d S.k- L, 'F

Since Yo = 0, we have Y1 E {O,I}. This together with (4) implies that
Yk is a polynomial in P whose degree is at most k - 1. Moreover, the
coefficients of this polynomial take only the values 0, 1 and -1, and
the nonzero coefficients alternate between 1 and -1. Finally if Yk =1= 0
then the lowest degree t.erm has coefficient I.

'vVecan be more specific. Let

(4 )

S = {81' 82, ... , 8m}, 80 = 0 < 81 < 82 < ... < 8m < 8m+1 := n+ l.

Then the entries of yare given by the following lemma. In this lemma
we define an empty sum to be equal to zero.

Lemma 1. One has

YS; = L(-l),+Jp-"-s), 0:::; i:::; m,
j=1

(5)

and
k ~ S. (6)
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Pro o]. If k tt S then the definition of S implies that Si < k < Si+1 for
some i, with 0 ~ i ~m. It follows from (4) that in that case

YSi+l = 1- PYSi+l-l.

At this stage we need to distinguish two cases:
and Si+l - 1 tt S (case II).

In case I we must have Si+l -1 = s.. Since (5) holds for YSi it follows
from (7) that

(7)
Si+l - 1 E S (case I)

_ _ _ k-si-1 _ k=s ;
Yk - PYk-l - . t • - P Ysi+l - P YSil

proving (6).
So it remains to prove (5). The proof uses induction with respect to

the index i in (5). Before entering this proof it may be worth noting
that (5) expresses YSi as a polynomial in P of degree s, - Sl. The lowest
degree term occurs for j = i, and hence this term equals (-1 )2i pO = 1.

For i = 0 the sum in (5) becomes empty, whence we obtain Yo = 0,
as it should. This proves that (5) holds if i = O. Now assume that (5)
holds for some i, with 0 ~ i < m. Since Si+l E S, according to (4) we
have

Y. = 1 - py , = 1 - f) ,\,i, (_l)i+jpSi-Sj
S,+I s, r- L....J=1

= 1 - L~=l( -l)i+j pSi+l-sj

= 1+ L~=1(-1)i+l+j pSi+I-Sj .

In case II we may use (6), which gives

Y, _ = pSi+l-l-siy , = pSi+I-1-si ,\,i, (_l)i+jpsi-Sj
8,+1 1 s, L....J=l

= ,\,i, (_l)i+j Si+l-l-SjL....J=1 P ,

whence (7) yields that

I
I

i i+l
YSi-j-1= 1+ I)_1)i+1+j pSi+I-Sj = I)_1)i+1+j pSi+I-Sj ,

j=1 j=l

which completes the proof. o

YSi+1 = 1- P 2~)_1)i+jpSi+l-l-Sj = 1+ I)_l)i+l+jpsi+I-Sj.

j=1 j=1

We conclude that in both cases we have

3. THE KLEE-MINTY PATH

As already mentioned previously, Klee and Minty found a pivoting
rule such that the simplex method requires 2n -1 iterations to solve the
problem (1). This implies that the method passes through all vertices
of the KM cube before finding the optimal vertex (which is of course
the zero vector). We call this path along all vertices the KM path. It



is well known in which order the vertices are visited. This can be easily
described by using the subset representation of the vertices introduced
in the previous section. The. path starts at vertex (0, ... ,0,1) whose
subset is the subset S1 = {n}. Thesubsequent subsets are obtained by
an operation which we call flipping· an index with respect to a subset
S [4]. Given a subset S and an index i, flipping i (with respect to S)
means that we add i to S if i t/:. S, and remove i from S if i E S. Now
let Sk denote the subset corresponding to the k-th vertex on the KM
path. Then Sk+l is obtained from Sk as follows:

• if ISkl is odd, then flip 1;
• if ISkl is even, then flip the element. following the smallest ele-

ment in Si:
Denoting the resulting sequence as Pn, we can now easily construct the
KM path for small values of n:

P1: {I} -t 0
P2: {2} -t {1,2} -7 {I} -t 0
P3: {3} -t {I, 3} -7 {I, 2,3} -t {2, 3} -7 P2

P4: {4} -t {1,4} -t {I,2,4} -7 {2,4} -7 {2,3,4} -t {1,2,3,4}
-t {1,3,4} -t {3,4} -t P3.

Table 1 shows the subsets and the corresponding vectors y for the
KM path for n = 4. The corresponding tables for n = 2 and n = 3 are
subtables, as indicated. Note that if subsets Sand S' differ only in n,
and y = vs and y' = VS', then we have

Yi = y~, 1 ~ i < n, u« + Y:l = L

Obviously, the subsets of two subsequent vertices differ only in one
element. For the corresponding subsets, Sk and Sk+l say, we denote
this element by ik. Then we have Sik = 0 in one of these vertices, and
in the other vertex Sik > 0, or equivalently §.ik = O. On the interior of
the edge connecting these two vertices we will have §.ik > 0 and Sik > O.
If n = 4 then, when following the KM path, the flipping index ik runs
through the following sequence:

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1.
So if n = 4 then the flipping index 8 times equals 1, 4 times 2, 2 times
3, and once 4.

Table 2 shows the slack vector §. and Table 3 the slack vector S [or
each of the vertices. For a graphical illustration (with n = 3) we refer
to Figure 1.

4. SEQUENCE OF VERTICES IN THE KLEE-MINTY PATH

One easily observes that for n E {2, 3, 4}, the second half of Pn is
just Pn-1 whereas the first half of Pn arises by reversing the order of the
sequence Pn-1 and adding the element n to each sets in the resulting
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S Yi Y2 Y3 Y4
{4} 0 0 0 1

{1,4} 1 ,p p2 1 _ p3

{1,2,4} 1 I-p p _ p2 1 - p2 + p3
{2,4} 0 1 P 1 _ p2

{2,3,4} 0 1 1-p 1_ P + p2
{1,2,3,4} 1 1 - p ] _ p + p2 1 _ p + p2 _ p3

{1,3,4} 1 p 1 _ p2 1 - (J + p3
{3,4} 0 0 1 I-p
{3} 0 0 1 P

{1,3} 1 p 1 _ p2 P _ p3
{1,2,3} 1 I-p 1 _ p + p2 P _ p2 + p3
{2,3} 0 1 1 - P P _ p2

{2} 0 1 p p2

{1,2} 1 1-p p _ p2 p2 _ p3

{I} 1 p p2 3P
0 0 0 0 0

, ,
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TABLE L The KM path (in the v-space) for n = 4.

sequence. Hence, when denoting the first half of Pn as P::-l we have
for n E {2, 3, 4} that Pn = P::-1 ---t Pn-1. Indeed, when defining Po = 0
then this pattern holds for each n ~ 1, as stated in the following lemma.

Lemma 2. fOT' n ~ 1, one has

(8)

Proof. The proof uses induction with respect to n. We already know
that the lemma holds if n ~ 4. Therefore, (8) holds if n = 1. Suppose
that n ~ 2. Let Sk denote the k-th subset in the sequence Pn-1. By
the induction hypothesis we have S1 = {n - I} and S2n-J = 0. The
first set in Pn is the set {n} = {n} U S2n-J. For 2 ~ k ~ 2n-t, we
consider the set S = Sk U {n} and we show below that its successor
is the set Sk-l U {n}. This will imply that the 2n-l_th set in Pn is
S1 U {n} = {n - 1, n}, whose successor is the set {n - I}, the first set
of Pn-1. This makes clear that it suffices for the proof of the lemma if
we show that for each set Sk in Pn-1 the successor of Sk U {n} is the
set Sk-1 U {n}. This can be shown as follows.

If ISI is even then the successor of S in Pn arises by flipping the
element following the smallest element in S. If this smallest element
equals n -1 then we must have S = {n - 1, n}, and then the successor
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S Q1 S2 ~ ~
{4} 0 0 0 1

{1,4} 1 0 0 ] - 2p3

{l,2,4} 1 1 - 2p - 0 1 - 2p2 + 2p3

{2,4} 0 1 0 1- 2p2
{2,3,4} 0 1 1- 2p 1 - 2p + 2p2

{1,2,3,4} 1 1- 2p 1 - 2p + 2p2 1 - 2p + 2p2 - 2p3

{1,3,4} 1 0 1 - 2p2 1 - 2p + 2p3

{3,4} 0 0 1 1 - 2p
{3} 0 a 1 0

{1,3} 1 a 1 - 2p2 0
{1,2,3} 1 1 - 2p 1 - 2p + 2p2 0
{2,3} 0 1 1 - 2p 0
{2} 0 1 0 0

{l,2} 1 1- 2p 0 0
{I} 1 0 0 0
0 0 0 0 0

TABLE 2. The KM path (in the s-space) for n = 4.

of S is the set {n - 1} = Sl, which is the first element of Pn-1. Other-
wise the smallest element is at most n - 2, and then, since ISkl is odd,
the successor of S is equal to Sk-l U {n}. The latter follows since S
and Sk-1 have the same smallest element and ISk-ll is even.

If ISI is odd then the successor of S in P; arises by flipping l. Since
ISkl is even flipping 1 yields the predecessor of Sk in Pn-1, which is
Sk-1' Hence we find again that the successor of S is Sk-l U {n}. This
completes the proof. 0
According to this lemma, the index i that occurs K times as flipping
index in Pn-1 will occur 2K times in Pn, i.e. K times in P::-1 and K
times in Pn-1. The index n flips only at the last set in P::-1, which gives
the first set in Pn-1. These sets are {n -l,n} \ {OJ and {n -I} \ {O}
respectively. The complement operation of {OJ is applied to adjust
for the case where n = l. As an immediate consequence we have the
following corollary.

Corollary 1. The index i, 1 ~ i ~TL, never flips in Pi, for 0 S; k < i.
It flips for the first time in Pi when applied to the set {i - 1, i} \ {O}J

which yields the set {i - I} \ {O} .

From Lemma 2, for 0 ~ i < n, we can obtain
-n -n-l -i+1P; : Pn-1 --1 Pn-2 --1 ... --1 Pi --1 Pi' (9)
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S .5
1 82 83 .54

{4} 1 1 1 0

{l,4} 0 I - 2p 1 - 2p2 0

{1,2,4} 0 0 1 - 2p + 2p2 0

{2,4} 1 0 1- 2p a
{2,3,4} 1 a a a

{1,2,3,4} a a a a
{1,3,4} a 1- 2p a 0

{3,4} 1 1 a a
{3} 1 1 a 1- 2p

{1,3} 0 1- 2p a 1 - 2p + 2p3

{1,2,3} a a a 1 - 2p + 2p2 - 2p3

{2,3} 1 0 a 1 - 2p + 2p2

{2} 1 0 1- 2p 1- 2p2

{1,2} 0 0 1 - 2p + 2p2 1 - 2p2 + 2p3

{I} a 1- 2p 1 - 2p2 1 - 2p3

(/) 1 1 1 1

TABLE 3. The KM path (in the s-space) for n = 4.

According to Corollary 1, index i is flipped for the first time in Pi,
hence we have the next corollary.

Corollary 2. The index i flips for the last time in Pn at the set
{i - l,i} \ {a}, which yields the set {i - I} \ {O}.

The sequence P::-1 is equal to the sequence which is obtained by
reversing the sequence

P-n-1 p-H1 pn-2 --t ... --t i --t i

and by adding the element n to each sets in the resulting sequence.
Thus the next corollary follows.

Corollary 3. The index i flips JOT the first time in Pn at the set
{i -1,n} \ {a}, which yields the set {i -1,i,n} \ {a}.

Moreover, by letting J, be any subset of J\ {I, ... ,i}, we have the
following corollary.

Corollary 4. The index i flips in Pn when it is applied to either

{i-l,i}\{O}UJi or {i-l}\{O}UJi.

Proof. Let us consider Pn as in (9). The flipping indexes of two sets that
connecting two sequences of sets consecutively are n, n -1, ... , i+1. In

.w ................•••••••••••



{3}

48 BIB PARUHUM SILALAHI

Y3

• 1---~~- /
" I/" ,- ,." 1

/~~ ~ ,.:t'<1 .,J'. / - - - - - - - -.a.::- - - _""::::0...,.,- '"'" _ I
.' ~SL---:"~1{2,3}

.. / /
~t / / / /

;/ / / /

'/ • 1 • / " "
.- / 1 / " ,,"1 r>J--'-:--
y

----1--------'/"'-1' /
1- p2 ~-H.-3-} 1 / I /

1 y~' 1 /" 1 ,/
2 1 / 1 1 /

I-p+p (;r----~----T---- tl,2,3}'/
I-p f.:..----T----;A 1- ~---------; {2}

1 1 / 1 1 1 _--- 1
1 " 1 I 1 -- /'/ I

1 I" -1 ,,1 I --I "1
1 I" 1 0 _-,..1.-- 1 ,," 1
1 r/ -- 1 1 / 1
1 / I 1 I " " • Y2
1 / " I I / "
I / I // I // //
1"/ 1 " 1 I / ,-
I / I / I 1//

P ~----r- --------1- -'--1'
2 / IP - P v_ - - 7~ r - ------- I"

1 /" / ' ./ '{1 2} I "
I " •.. 1' / I' I /

p2 ~"'/-'-{1} I I //
"'0 ;Z- - - _,_- - - - - - - - - - - - - - -1//0 p I-p 1Yl

FIGURE 1. Unit cube (red dashed), KM cube (blue
dashed) and KM path (blue solid) for n = 3.

·1

this case there is no index which is equal to i. In Pi, flipping an index i
is only applied to the set {i - 1, i}\ {O}which yield the set {i - 1}\ {O}.
Let us call the pair of two sets, where an index i is flipped with respect
to one of the sets and another one is its successor, as pair of sets with
flipping index i. Generally, the pairs of sets with flipping index i that
appear in p;+1, k ~ i, definitely equal to pairs of sets which is resulted
from the union of each set of pair of sets with flipping index i in Pk by
{k + 1}. By taking J, as any subset of :1\ {1, ... , i}, we obtain that
the pairs of sets with flipping index i in Pn are {i - 1, i} \ {O}U J, and
{i - 1} \ {O} U J; This implies the corollary. 0

The following corollary expresses how many times the index i is
Ripped in Pn. \Ve have discussed this number for small value of n
previously.

III
Lemma 3. The index i, 1 ~ i ~n, is flipped in Pn exactly

2n-i times.
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Proof. The index n is Hipped only 1 time in Pn. By using the recursive
pattern of Pn as in Lemma.2 and Coronary 1, in Pn, the index

n - 1 , is flipped 2 times,
n - 2, is flipped 4 times,

n - k , is flipped 2k times,

1 , is flipped 211-1 times.

The lemma follows by taking i = ti - k, 0
When n is given, the set Sk is uniquely determined by k, and vice

versa. Moreover, for each k (2 ~ k: ~ 211), the sets Sk-l and Sk
differ only in one element. This means that the sequence Pn defines
a so-called Gray code. Such codes have been studied thoroughly, also
because of their many applications. 1 It may be worth mentioning some
results from the literature that make the one-to-one correspondence
between k and Sk more explicit. The next proposition is the main
result (Theorem 6(ii)) in [1].2

Proposition 1. One has i E Sk if and only if

l2
n
- k 1J2i + 2 mod 2 = 1. (10)

Given k, by computing the left-hand side expression in (10) for i =
1,2, ... , n we get the set Sk. Conversely, when Sk is given we can
find k (also in ti iterations) by using Corollary 24 in [1]. This goes as
follows. V\Te first form the binary representation b.; ... b2bl of Sk, with
b, = 1 if i E Sk and b, = a otherwise. We then replace b, by a if the
number of 1's in b., ... b2b1 to the left of b, (including b, itself) is even,
and by 1 if this number is odd. The resulting binary n-word an· .. a2al
is the binary representation of some natural number, let it be K. Then
k = 2n - K. For example, let Sk = {2,3} and n = 4. Then

Sk == bn· .. b2b1 = 0110 -t an ... a2al = 0100 == 4 -t k = 24 - 4 = 12, Jl

which is in accordance with Table 1.

lCray codes were first designed to speed up telegraphy, but now have numerous
applications such as in addressing microprocessors, hashing algorithms, distributed
systems, detecting/correcting channel noise and in solving problems such as the
Towers of Hanoi, Chinese Ring and Brain and Spinout.

2Jt simplifies an earlier result ill 12], 118111ely
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5. EDGES OF THE KLEE-MINTY PATH

An edge of the KM path in en is a line segment connecting two
consecutive vertices of the KM path. As before, we represent the k-th
vertex on the KM path by the set Si: The edge connecting Sk and
Sk+1 is denoted as ek. The set of all edges of the n-dimensional KM
path, denoted by En, is therefore given by

,
I'
M

{

y E en : }
ek = 5j = 0 if j E Sk n Sk+l, .

§'j = 0 if j tJ. Sk U Sk+1

Further elaborating (iii) we get the following lemma.

Lemma 4. Let il,; be the flipping element /01' SkI then on er. [or 1 <
j < ik OTI-e has

(12)

2"-1

En = U ek· (11)
k=l

Remember that Sk and Sk+1 differ only in one element, which we denote
as ik. On the interior of the edge connecting these two vertices we have
§.ik > 0 and 5ik > O. For any j =1= ik, we have s, = 0 if j E Sk n Sk+1
and §'j = 0 otherwise. So it follows that if j =1= ik then either §'j = 0 on
ek or 5j = 0 on ek .

For ik =1= 1, we have either §.1 = 0 or 51 = 0, which implies either
Y1 = 0 or Y1 = 1 on ek. Since for any j < ik we have either §'j = 0 or
5j = 0 on ek, we may conclude that Yj is constant on ek· Summarizing,
we may state that on ek we have the following properties:

(i) u, > 0 or s., > 0,
(ii) j =1= ik : 5j = 0 or §'j = 0,

(iii) 1 ~ j < ik : Yj is constant.
Table 4 and Table 5 shows the slack vector §. and 5 on ek for n = 4.
The subtables show §. and 5 for n = 1,n = 2 and n = 3.

We therefore can describe the edge ek as follows

ek = {y E en : for any j =1= ik, Sj = 0 if j E SknSk+1, §'j = 0 otherwise}.
Or, in other words, since

s, U Sk+1 = (SI,; n Sk+1) U {id,
we may write

{
I, j = ik - I,

Yj = 0, otherwise.



Edge §.l §.2 §.J ~
{4} - {1,4} (0, 1) 0 0 (1-2p3,1)

{1,4} - {1,2,4} 1 (0,1 - 2p) 0 (1 - 2p2 + 2p3, 1 - 2p3)
{1,2,4} - {2,4} (0, 1) (1-2p,1) 0 (1 - 2p2, 1 - 2p2 + 2p3)
{2,4} - {2,3,4} 0 1 (0,1 - 2p) (1 - 2p + 2p2, 1 - 2p2)

{2,3,4} - {1,2,3,4} (0, 1) (1-2p,1) (1 - 2p, 1 - 2p + 2p2) (1 - 2p + 2p2 - 2p3, 1 - 2p + 2p2)
{1,2,3,4} - {1,3,4} 1 (0,1-2p) (1 - 2p + 2p2, 1 - 2p2) (1 - 2p + 2p3, 1 - 2p + 2p2 - 2p3)

{1,3,4} - {3,4} (0, 1) 0 (1- 2p2, 1) (1 - 2p, 1 - 2p + 2p3)
{3, 4} - {3} 0 0 1 (0,1-2p)
{3} - {1,3} (0, 1) 0 (1-2p2,1) 0

{1,3} - {I, 2, 3} 1 (0,1-2p) (1-2p+2p2,1-2p2) 0
{l,2,3} - {2,3} (0,1) (1-2p,1) (1 - 2p, 1 - 2p + 2p2) 0

{2, 3} - {2} 0 1 (0,1-2p) 0
{2} - {I, 2} (0, 1) (1-2p,1) 0 0
{1,2}-{1} 1 (0,1 - 2p) 0 0

{I} - 0 (0, 1) 0 0 0

'-:s:
::t>

<or.-
e:
zo
tv

G
l':u:
L-J
'7-w
t!r:
,,,,;,
o
c

"'"",
G'c...:

TABLE 4. Edges of the KM path (in s-space) for n = 4.

~



I,

Edge 81 82 83 84
{4} - {1,4} (0,1) (1-2p,l) 11 - 2p2, 1) 0

{1,4} - {1,2,4} 0 (O,l-2p) (1 - 2p + 2p2,l- 2p2) 0
{1,2,4} - {2,4} (0,1) 0 (1 - 2p, 1 - 2p + 2p2) 0
{2,4} - {2,3,4} 1 0 (O,l-2p) 0

{2,3,4} - {1,2,3,4} (0,1) 0 0 0
{1,2,3,4}- {1,3,4} 0 (O,l-2p) 0 0

{1,3,4} - {3,4} (0,1) (1-2p,l) 0 0
{3,4} - {3} 1 1 0 (O,l-2p)
{3} - {1,3} (0,1) (1-2p,l) 0 (1- 2p, 1 - 2p + 2p3)

{1,3} - {1,2,3} 0 (O,l-2p) 0 (1- 2p + 2p3, 1 - 2p + 2p2 - 2p3)
{1,2,3} - {2,3} (0,1) 0 0 (1- 2p + 2p2 - 2p3, 1 - 2p + 2p2)

{2,3} - {2} 1 0 (0,1-2p) (1- 2p + 2p2, 1 - 2p2)
{2} - {1,2} (0,1) 0 (1 - 2p, 1 - 2p + 2p2) (1- 2p2, 1 - 2p2 + 2p3)
{1,2} - {I} 0 (O,l-2p) (1 - 2p 2p2,l- 2p2) (1- 2p2 + 2p3, 1 - 2p3)

{l}-0 (0,1) (1-2p,l) (1- 2p2,l) (1- 2p3, 1)
TABLE 5. Edges of the KivI path (in 8-space) for n = 4.
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Proof. The only different element in Sk and Sk+ 1 definitely is the index
ik that we flip in the set,sk' According to Corollary 4, the only different
element ik happens in pair of sets {ik - 1, id \ {O} U s.; and {ik - I} \
{O} U Jik, where Jik is any subset of :1\ {I, ... , id . This means that
on the edge connecting Sk and Sk+l we have

.§.l = 0, .§.2 = 0, ... , .§.ik-2 = 0, Sik-l = O.

From s, = 0 we get YI = O. Then subsequently we get Y2 = 0, ... , Yik-2 =
0, Yik-l = 1 from .§.2 = 0, ... , .§.ik-2 = 0, Sik-l = 0, which proves the
lemma. 0

One may use Table 1 to verify Lemma 4 for n ~ 4.
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