PROSIDING
Pembukaan Nasional dan Seminar
Forum Komunikasi
Perguruan Tinggi Pertanian Indonesia
Bogor, 2-4 September 2013
ISBN 978-979-97511-7-1

PROSIDING
LOKAKARYA NASIONAL DAN SEMINAR
Forum Komunikasi Perguruan Tinggi Pertanian Indonesia
Bogor, 2-4 September 2013

Dipublikasikan Oleh:
Fakultas Pertanian, Institut Pertanian Bogor (2013)

Alamat:
Fakultas Pertanian, IPB
Jln. Meranti, Kampus IPB Dramaga, Bogor 16680
Tel.: +62 251 8629354; +62 251 8629350
Fax.: +62 251 8629352

Diselenggarakan oleh

Fakultas Pertanian
Institut Pertanian Bogor

Forum Komunikasi
Perguruan Tinggi Pertanian Indonesia
TIM PENYUSUN

Dr. Ir. Ernan Rustiadi, MAgr
Prof. Dr. Dadang, MSc.
Dr. Ir. Syarifah Iis Aisyah
Dr. Nurhayati HS Arifin
Dr. Muhamad Syukur, SP, M.Si
Ferryanto Williams, SP, M.Si
Dr. Ir. Suwardi
Dr. Ir. Nizar Nasrullah
Dr. Ir. Pudjianto

TIM TEKNIK LAY OUT DESAIN SAMPUL

Erik Mulyana, SP
Dede Sukaryana
Fauzan Fahrudin
D. Proteksi Tanaman

- Inventarisasi Jamur dan Bakteri Penyebab Penyakit pada Tanaman Aglaonema (Martinius, Jumsu Trisno, Yeni Morika. Jurusan Hama dan Penyebab Tumbuhan Fak. Pertanian UNAND) .. 511
- Biologi Heortia Vitesseoides Moore (Lepidoptera: Crambidae) pada Tanaman Mahkota Dewa (Phaleria Macrocarpa (Scheff.) Boerl.) (Henry Emilia dan Nina Maryana. Departemen Proteksi Tanaman, Faperta IPB) ... 522
- Identifikasi Kutudaun (Hemiptera: Aphididae) pada Tanaman Pangan di Bogor (Siti Fathur Rahmah dan Purnama Hidayat. Departemen Proteksi Tanaman, Faperta. IPB) ... 554
- Studi Jenis dan Kepadaan Populasi Kutudaun (Hemiptera: Aphididae) pada Tanaman Sayuran di Wilayah Bogor (Muhammad Kevin Barmanyanto dan Purnama Hidayat. Mahasiswa Departemen Proteksi Tanaman, Institut Pertanian Bogor) .. 564
- Aktivitas Biologi Campuran Ekstrak Tephrlosia vogelii dan Annona squamosa terhadap Crocidoloma pavonana (Risnawati, Dadang, Djoko Priyono. Departemen Proteksi Tanaman, Faperta. IPB) 587
- Rodentisida Botanis Dioscorea Hispida Dalam Pengendalian Rattus rattus Diardi dan Rattus argentiventer (Swastiko Priyambodo dan Dwi Dinar Murjani. Departemen Proteksi Tanaman, Fakultas Pertanian, IPB) .. 598
- Aktivitas Insektisida Ekstrak Piper aduncum Asal Riau terhadap Larva Crocidoloma pavonea (Yeni Midel Pebrulita, Dadang, Djoko Priyono. Departemen Proteksi Tanaman, Faperta. IPB) .. 605
RODENTISIDA BOTANIS Dioscorea hispida DALAM
PENGENDALIAN Rattus rattus diardi dan Rattus argentiventer

Swastiko Priyambodo dan Dwi Dinari Murjani
Departemen Proteksi Tanaman, Fakultas Pertanian, IPB
Kampus IPB Darmaga, Bogor 16680
swastiko@ipb.ac.id dan swaspri@gmail.com

Abstrak

Kata kunci: Umbi gadug racun, tikus rumah, tikus sawah

Pendahuluan

Tikus rumah (Rattus rattus diardi L.) dan tikus sawah (Rattus argentiventer Rob. & Klop.) merupakan dua spesies tikus hama yang berperan sangat penting bagi kehidupan manusia, karena menimbulkan kerusakan yang besar pada berbagai komoditas, yaitu tanaman padi, palawija, perkebunan, dan produk penyimpanan. Kemampuan fisik dan indera tikus yang berkembang
dengan baik, sangat menunjang kehidupannya dan merupakan faktor utama dalam menimbulkan kerusakan pada komoditas dan produk pertanian. Kemampuan mengerang, menggali, memanjang, melompat, berenang, dan menyelam yang baik membuat hewan ini mampu bertahan hidup pada berbagai kondisi, utamanya pada saat kondisi buruk. Dari lima indera tikus, penglihatan adalah indera yang kurang berkembang, akan tetapi keadaan ini ditutupi oleh keempat indera lainnya (penciuman, pendengaran, perasa, dan peraba) yang berkembang dengan sangat baik.

Selain itu, tikus adalah hewan mamalia yang memiliki potensi reproduksi yang paling besar, dengan jumlah anak yang dihasilkan dapat mencapai 12 ekor/kelahiran, khususnya untuk tikus sawah. Hal ini masih ditambah dengan kemampuan post partum oestrus, yaitu mampu birahi segera (1 – 2 hari) setelah melahirkan, di saat masih menyusui anaknya, serta masa menyusui yang singkat (4 minggu) dan masa dewasa seksual yang singkat (2.5 bulan) (Priyambodo 2003).

Berbagai upaya pengendalian telah dilakukan untuk menurunkan populasi dan menekan kerusakan yang ditimbulkannya. Dimulai dari pengendalian dengan manipulasi habitat dengan cara budidaya tanaman yang tidak disukai oleh tikus (sistem legowo, pola tanam, tanam serentak), sanitasi (bertanam bersih), serta pemanfaatan bahan kimia atau fisik untuk mengusir tikus dari suatu habitat. Selain itu, dapat digunakan musuh alami berupa predator untuk habitat pertanian dan perkebunan. Cara terakhir adalah secara kimiai dengan penggunaan bahan kimia yang dapat mematikan tikus atau hanya mengganggu proses fisiologisnya saja (disebut rodentisida). Salah satu alternatif pengendalian tikus secara kimia yang ramah lingkungan adalah pemanfaatan bahan tanaman yang dikenal sebagai rodentisida botanis. Salah satu bahan tanaman yang dikenal sebagai rodentisida botanis adalah umbi gadung racun (Dioscorea hispida) (Sudarmo 2005).

Komposisi umbi gadung racun per 100 g umbi adalah 78 g air, 1.81 g protein, 1.6 g lemak, 18 g karbohidrat, 0.9 g serat, dan 0.7 g abu. Kandungan bahan aktifnya adalah 0.2 – 0.7% diosogen dan 0.044% dioscorine, keduanya dapat menimbulkan kelumpuhan pada sistem saraf pusat (Flach dan Rumawas 1996). Dalam penelitian ini dikembangkan metode pembuatan umpan beracun terhadap tikus dengan membuat formulasi blok (menambahkan parafin) yang banyak dilakukan oleh perusahaan pestisida, dengan tujuan untuk meningkatkan kelahanan bahan racun tersebut terhadap faktor lingkungan fisik di alam.

Tujuan

Penelitian ini bertujuan untuk membuat formulasi rodentisida blok dari bahan tanaman umbi gadung racun, serta pengujian keefektifannya terhadap tikus rumah dan tikus sawah yang mewakili dua habitat tikus yang berbeda.
Bahan dan Metode

Bahan dan Alat

Bahan yang digunakan dalam penelitian ini adalah: Tikus rumah, tikus sawah, pakan tikus (beras), umbi gadung racun, campuran umpan tikus (gula merah, tepung ikan, gula pasir, vetsin, telur, minyak goreng, dan parafin), kandang percobaan (berisi bumbung bambu, gelas minum, dan wadah umpan), timbangan elektronis, dan alat tulis.

Metode

Umpan beracun yang diuji terhadap hewan dasar dibuat melalui beberapa tahap. Tahap pertama adalah pembuatan karamel dengan cara merebus gula jawa yang ditambah air. Tahap kedua adalah penambahan parafin sebagai bahan dasar untuk membentuk umpan blok. Tahap ketiga adalah menyiapkan bahan racun berupa umbi gadung yang dipotong kecil-kecil, kemudian dihancurkan dengan menggunakan blender. Tahap keempat adalah penyapiapan bahan utama umpan beracun yaitu beras dan bahan penyedap umpan yaitu campuran tepung ikan, gula pasir, vetsin, telur, dan minyak goreng. Seluruh bahan tersebut di atas dicampur, dimulai dari karamel, lalu parafin, kemudian beras dan gadung, dan terakhir bahan penyedap umpan. Kemudian bahan-bahan tersebut diolah dengan cara pemanasan di atas kompor. Terakhir, keseluruhan campuran tersebut dimasukkan ke dalam bahan cetakan dengan ukuran 4 cm x 2 cm x 2 cm.

Perlakuan rodentisida yang diuji disusun berdasarkan komposisi umpan sebagai berikut: Karamel 10%, bahan penyedap 10%, parafin 30%, racun terdiri dari lima taraf yaitu 0%, 10%, 20%, 25%, 30%, sedangkan beras mengikuti komposisi racun yaitu 50%, 40%, 30%, 25%, dan 20%.

Pemberian umpan beracun dalam bentuk blok dilakukan selama tiga hari berturut-turut dengan uji tanpa pilihan (no choice test), kemudian dilanjutkan dengan pemberian beras, dan ditunggu waktu kematiannya sampai 14 hari setelah pemberian racun. Tikus uji yang tidak mati sampai dua minggu setelah perlakuan dianggap escape. Ulangan yang digunakan ada 10, sehingga untuk tikus sawah dan rumah masing-masing dibutuhkan 50 ekor. Seluruh data konsumsi tikonversi ke 100 g bobot tubuh tikus uji. Selain itu, dilakukan penimbangan bobot tubuh tikus uji di awal dan akhir pengujian. Data konversi diolah dengan SAS for Windows Ver. 9.1. Uji lanjutan dengan Duncan Multiple Range Test pada taraf α=5%.
Hasil dan Pembahasan

Perlakuan Gadung Racun terhadap Tikus Rumah

Konsumsi tikus rumah terhadap umpan beracun berbentuk blok dan beras pasca perlakuan rodenticida, dan rasio konsumsi racun saat peracunan dengan beras pasca peracunan, serta persentase kematianya dapat dilihat pada Tabel 1.

Tabel 1. Konsumsi tikus rumah terhadap umpan beracun, beras pasca peracunan, rasio, racun/beras dan persentase kematian

<table>
<thead>
<tr>
<th>Konsentrasi Racun (%)</th>
<th>Umpan Beracun (g/100 g b.b.)</th>
<th>Beras Pasca Racun (g/100 g b.b.)</th>
<th>Rasio Racun/Beras (%)</th>
<th>Kematian (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.84 a</td>
<td>8.07 a</td>
<td>109.54</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>5.29 b</td>
<td>6.03 b</td>
<td>87.73</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>5.69 b</td>
<td>8.06 a</td>
<td>70.60</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>3.95 c</td>
<td>6.46 ab</td>
<td>61.15</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>3.99 c</td>
<td>7.72 a</td>
<td>51.68</td>
<td>0</td>
</tr>
</tbody>
</table>

Angka dalam kolom yang sama, yang diikuti dengan huruf yang sama menunjukkan tidak berbeda nyata dalam Uji Selang Ganda Duncan pada taraf α=5%.

Konsumsi tikus rumah terhadap umbi gadung beracun di dalam campuran umpan blok menunjukkan terjadi penurunan dengan meningkatnya konsentrasi racun di dalam umpan. Terdapat perbedaan yang nyata secara statistik antara perlakuan kontrol dibandingkan dengan konsentrasi 10% dan 20% dan juga dibandingkan dengan konsentrasi 25% dan 30%. Peningkatan konsentrasi umbi gadung racun di dalam umpan dapat dideteksi oleh indera perasa tikus rumah yang sangat sensitif dan tidak menyukai rasa tersebut, walaupun umpan beracun telah ditambahkan dengan berbagai bahan pemanis dan penyedap untuk menutup rasa pahit dari racun tersebut.

Konsumsi tikus rumah terhadap beras pasca perlakuan peracunan menunjukkan peningkatan dibandingkan dengan konsumsi umpan beracun. Hal ini menunjukkan bahwa tikus rumah tidak menyukai rasa pahit dari umbi gadung racun tersebut, dan sebagai konsekuensinya tikus uji makan lebih banyak saat diberi umpan standar. Pada rasio konsumsi umpan beracun dibandingkan dengan umpan standar, yaitu beras, menunjukkan angka lebih dari 100% hanya pada perlakuan kontrol. Sementara itu pada perlakuan racun menunjukkan angka kurang dari 100% (51). Semakin tinggi konsentrasi racun, maka semakin kecil persentase rasionya. Hal ini menunjukkan bahwa tikus rumah memiliki daya tahan yang tinggi terhadap racun yang ditambah oleh umbi gadung, walaupun secara umum telah mengonsumsi 37.03 ppm diosgenin dan 2.33 ppm dioscorine (Perlakuan 10%), 79.66 ppm diosgenin.
Hoh Cipta Dilindungi Undang-Undang

1. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

2. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

3. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

4. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

5. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

6. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

7. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

8. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

10. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

11. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

12. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

15. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

17. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

18. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

19. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

20. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

22. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

23. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

24. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

25. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

26. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

27. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

29. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

30. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

31. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

32. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

33. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

34. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

35. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

36. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

37. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

38. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

39. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

40. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

41. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

42. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

43. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

44. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

45. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

46. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

47. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

48. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

49. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

50. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

51. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

52. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

53. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

54. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

55. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

56. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

57. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

58. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

59. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

60. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

61. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

62. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

63. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

64. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

65. Dilengkapi dengan abjad huruf baca putih atau huruf berwarna hijau.

Tabel 2. Bobot awal, akhir, rerata, dan perubahan bobot tubuh tikus rumah disajikan pada Tabel 2. Perlu kuan kontrol menunjukkan peningkatan bobot tubuh yang paling besar (11.1 g), sementara itu perlakuan 10% menunjukkan penurunan bobot tubuh yang paling besar (10.8 g). Hal ini dipengaruhi oleh konsumsi beras peracunan yang paling tinggi pada perlakuan kontrol, serta yang paling rendah pada konsentrasi 10%. Selain itu, dengan adanya tiga ulangan tikus yang mati pada perlakuan 10% mengakibatkan penurunan bobot tubuh, karenanya perubahan tikus-tikus tersebut mengalami gangguan fisiologis dalam tubuh. Ketiga perubahan yang lain menunjukkan perubahan bobot tubuh yang ada di antara (2.0 – 5.5 g).

<table>
<thead>
<tr>
<th>Konsentrasi Racun (%)</th>
<th>Bobot Awal (g)</th>
<th>Bobot Akhir (g)</th>
<th>Bobot Rerata (g)</th>
<th>Perubahan Bobot (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.63</td>
<td>108.73</td>
<td>103.18</td>
<td>+ 11.10</td>
<td></td>
</tr>
<tr>
<td>119.80</td>
<td>109.00</td>
<td>114.40</td>
<td>- 10.80</td>
<td></td>
</tr>
<tr>
<td>107.60</td>
<td>109.69</td>
<td>108.65</td>
<td>+ 2.09</td>
<td></td>
</tr>
<tr>
<td>112.38</td>
<td>106.88</td>
<td>109.63</td>
<td>- 5.50</td>
<td></td>
</tr>
<tr>
<td>101.66</td>
<td>106.25</td>
<td>103.96</td>
<td>+ 4.59</td>
<td></td>
</tr>
</tbody>
</table>

Perlakuan Gadung Racun terhadap Tikus Sawah

Konsumsi tikus sawah terhadap umpan beracun berbentuk blok dan beras pasca perlakuan rodentisida, dan rasio konsumsi racun saat peracunan dengan beras pasca peracunan, serta persentase kematianannya dapat dilihat pada Tabel 3.

<table>
<thead>
<tr>
<th>Konsentrasi Racun (%)</th>
<th>Umpan Beracun (g/100 g b.b.)</th>
<th>Beras Pasca Racun (g/100 g b.b.)</th>
<th>Rasio Racun/Beras (%)</th>
<th>Kematian (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.71 a</td>
<td>6.23 a</td>
<td>75.60</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3.59 a</td>
<td>4.50 a</td>
<td>79.78</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>4.58 a</td>
<td>4.52 a</td>
<td>101.33</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4.59 a</td>
<td>3.44 a</td>
<td>133.43</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>4.96 a</td>
<td>4.30 a</td>
<td>115.35</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Angka dalam kolom yang sama, yang diikuti dengan huruf yang sama menunjukkan tidak berbeda nyata dalam Uji Selang Ganda Duncan pada taraf $\alpha=5\%$.

602
Konsumsi tikus sawah terhadap umbi gadung beracun di dalam campuran umpan blok menunjukkan terjadi peningkatan dengan meningkatnya konsentrasi racun di dalam umpan. Tidak terdapat perbedaan yang nyata secara statistik antara perlakuan kontrol dibandingkan dengan konsentrasi 10%, 20%, 25%, dan 30%. Hal ini merupakan kebalikan dari hasil yang ditunjukkan oleh tikus rumah. Peningkatan konsentrasi umbi gadung racun di dalam umpan walaupun dapat dideteksi oleh indera perasa tikus sawah yang sangat sensitif dan tidak menyukai rasa tersebut, namun tidak mempengaruhi jumlah umpan beracun yang dikonsumsinya. Selain juga karena pada umpan beracun tersebut telah ditambahkan dengan berbagai bahan pemanis (karamel) dan bahan perekat untuk menutup rasa pahit dari racun tersebut.

Konsumsi tikus sawah terhadap beras pascaperlakuan peracunan menunjukkan jumlah yang relatif sama dibandingkan dengan konsumsi umpan beracun. Hal ini menunjukkan bahwa tikus sawah dapat mentolerir rasa pahit dari umbi gadung racun tersebut, dan sebagai konsekuensinya tikus uji makan dalam jumlah yang sama, saat diberi umpan standar (beras). Pada rasio konsumsi umpan beracun dibandingkan dengan umpan standar (beras) menunjukkan angka kurang dari 100% hanya pada perlakuan kontrol dan 10%. Sementara itu pada perlakuan racun yang lebih tinggi menunjukkan angka lebih dari 100% (101 – 133%). Semakin tinggi konsentrasi racun, justru semakin besar persentase rasionya, hal ini juga kebalikan dari tikus rumah. Kejadian ini menunjukkan bahwa tikus sawah kurang curiga terhadap kehadiran bahan racun ini dalam umpan atau bisa jadi tikus sawah sudah lebih terbiasa (terkondisikan) dengan bahan nabati yang tersedia di lapang.

Persentase kematiannya dari keseluruhan perlakuan ini ditimbulkan dari semua perlakuan konsentrasi racun. Perlakuan 10%, 20%, 25%, dan 30% berturut-turut mematikan tikus uji sebesar 40%, 30%, 70%, dan 40%, sementara itu pada konsentrasi 0% (kontrol) tidak menimbulkan kematiannya (0%). Hal ini juga didukung oleh penelitian Narendra (2005) yang menyatakan bahwa terdapat perbedaan yang nyata antara berbagai konsentrasi umbi gadung dengan kematiannya rata-rata hewan uji.

Data ini menunjukkan bahwa tikus sawah memiliki daya tahan yang relatif rendah terhadap racun dari umbi gadung, yaitu diosgenin dan dioscorine. Konsumsi diosgenin dan dioscorine dari masing-masing perlakuan berturut-turut adalah 23.13 ppm dan 1.58 ppm (Perlakuan 10%), 64.12 ppm dan 4.03 ppm (Perlakuan 20%), 80.33 ppm dan 5.05 ppm (Perlakuan 25%), serta 104.16 ppm dan 6.55 ppm (Perlakuan 30%). Konsentrasi racun yang terendah tidak menunjukkan kematian tikus uji yang terendah, sementara itu konsentrasi racun yang tertinggi juga tidak menunjukkan kematian tikus uji yang tertinggi. Konsentrasi racun 25% menunjukkan kematian hewan uji yang paling besar (30%). Hal ini sangat dipengaruhi oleh faktor ketahanan individu-individu tikus uji terhadap paparan racun diosgenin dan dioscorine.

Bobot awal, akhir, rerata, dan perubahan bobot tubuh tikus sawah disajikan pada Tabel 4. Hanya pada perl akuan kontrol yang menunjukkan sedikit peningkatan bobot tubuh (+ 0.4 g). Se mentara itu, pada perlakuan racun...
menunjukkan penurunan bobot tubuh, dengan kisaran 8.5 g (Perlakuan 30%) sampai dengan 24.5 g (25%). Hal ini dipengaruhi oleh konsumsi beras pasca peracun yang paling rendah pada perlakuan 25%, menunjukkan penurunan bobot tubuh yang terbesar. Selain itu, dengan adanya tujuh ulangan tikus yang mati pada perlakuan 25% mengakibatkan penurunan bobot tubuh yang nyata, karena tikus-tikus tersebut mengalami gangguan fisiologis dalam tubuh.

Tabel 4. Bobot awal, akhir, rerata, dan perubahan bobot tubuh tikus sawah

<table>
<thead>
<tr>
<th>Konsentrasi Racun (%)</th>
<th>Bobot Awal (g)</th>
<th>Bobot Akhir (g)</th>
<th>Bobot Rerata (g)</th>
<th>Perubahan Bobot (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.33</td>
<td>100.73</td>
<td>100.53</td>
<td>+ 0.40</td>
</tr>
<tr>
<td>10</td>
<td>102.93</td>
<td>84.44</td>
<td>93.69</td>
<td>- 18.49</td>
</tr>
<tr>
<td>20</td>
<td>107.46</td>
<td>90.77</td>
<td>99.12</td>
<td>- 16.69</td>
</tr>
<tr>
<td>25</td>
<td>109.28</td>
<td>84.80</td>
<td>97.04</td>
<td>- 24.48</td>
</tr>
<tr>
<td>30</td>
<td>110.56</td>
<td>102.00</td>
<td>106.28</td>
<td>- 8.56</td>
</tr>
</tbody>
</table>

Uji Pilihan Umpam Blok dan Beras

Untuk menguji preferensi tikus uji terhadap bentuk umpan, dilakukan pengujian dengan pilihan antara bentuk formulasi blok dengan formulasi beras (tanpa parafin). Dengan menggunakan empat ekor tikus sawah dan konsentrasi 25% (paling efektif), didapatkan hasil bahwa bentuk formulasi beras (5.23 g) masih lebih disukai dibandingkan dengan bentuk formulasi blok (1.02 g).

Kesimpulan

Konsumsi tikus rumah terhadap umpan beracun menunjukkan penurunan dengan meningkatnya konsentrasi racun. Tikus rumah relatif tahan terhadap racun ini, kematiannya (30%) hanya terdapat pada konsentrasi 10%. Bobot tubuh hewan uji mengalami penurunan dan peningkatan.

Konsumsi tikus sawah relatif sama atau sedikit meningkat dengan meningkatnya konsentrasi racun. Tikus sawah relatif tidak tahan terhadap racun ini, kematiannya dengan kisaran dari 30% (konsentrasi 20%) sampai 70% (konsentrasi 25%). Bobot tubuh hewan uji mengalami penurunan.

Bentuk formulasi beras masih lebih disukai dibandingkan bentuk blok. Umbi gadung racun lebih efektif ditujukan terhadap tikus sawah dibandingkan dengan tikus rumah. Perlu dilakukan pengujian lanjutan pada kondisi lapang.

Daftar Pustaka

