Jointly organized by:

FACULTY OF ANIMAL SCIENCE, JENDERAL SOEDIRMAN UNIVERSITY, PURWOKERTO
INDONESIA

INDONESIAN NUTRITION AND FEED SCIENCE ASSOCIATION (AINI)
Proceedings International Seminar
The 1st International Seminar and the 7th Biennial Meeting of Indonesian Nutrition and Feed Science Association (Purwokerto, 18-19 July, 2009)

"EMPOWERMENT OF LOCAL FEEDS TO SUPPORT FEED SECURITY"

First Edition
Purwokerto, 2010

Editors:
Ali Agus (Gadjah Mada University)
E. R. Rørskov (Rowett Research Institute-England)
A. R. Alimon (University Putra Malaysia-Malaysia)
Caribu Hadi Prayitno (Jenderal Soedirman University)
Nahwowi Ramli (Bogor Agricultural University)
Juni Sumarmono (Jenderal Soedirman University)
Ning Iriyanti (Jenderal Soedirman University)
Titin Widiyastuti (Jenderal Soedirman University)
Setya Agus Santosa (Jenderal Soedirman University)

Reviewer:
Sri Suhermiyati
Akhmad Sodiq
Suwarno
Nunung Noor Hidayat
Pambudi Yuwono

Jointly Published by:
Faculty of Animal Science, Jenderal Soedirman University (UNSOED)
and
Indonesian Nutrition and Feed Science Association (AINI)

Printed by:
UNSOED-Press
Jl. Prof. Dr. Bunyamin, Grendeng, Purwokerto,
Central Java, INDONESIA 53122
PREFACE

Let us thank to God the Almighty, because of His amazing grace, this proceeding was completed. This book consists of articles presented during The 1st International Seminar and the 7th Biennial Meeting of Indonesian Nutrition and Feed Science Association on the Empowerment of Local Feeds to Support Feed Security are held by the Indonesian Nutrition and Feed Science Association in collaboration with Faculty of Animal Science, UNSOED. The objectives of this event were, among others, to provide a forum for sharing and exchanging information and technology, discussing the way how to attain a sustainable agriculture in supporting animal feed security and also establishing a new contact, renewing friendship and network among participants.

During the two-day meeting, reviewed papers from invited speakers as well scientific papers from the participants were discussed and presented in the sessions of supporting paper and poster presentations. Selected papers were published in the Journal of the Indonesian Nutrition and Feed Science Association (AINI). The meeting was attended by around 250 participants coming from the UK, Malaysia, and Indonesia. They are 96 % from universities, 4 % from research institutes, and the rest from government representatives and private companies. On behalf of the organizing committee, we would like to extend our great appreciation to all parties (sponsor, companies, and institution) for invaluable assistances and supports to the success of this seminar.

Purwokerto, July 2010

Chair of the Organizing Committee
Dr. Sri Suhermiyati
REMARKS OF THE CHAIRMAN OF AINI

Assalamualaikum Wr. Wb.,

AINI that was firstly established in 1996 with the objective to gather all of the animal nutrition and feed scientists in Indonesia permitting the exchange of knowledge and experiences under spirit of brotherhood, to stimulate the advancement of science and technology in nutrition and feed science, thus benefiting to the competitiveness of animal agribusiness. At the beginning, AINI scientific meeting was held, every year (1996, 1997) but due to the economic crisis in 1998, the meeting was held biannually. The first three scientific meetings were held in IPB Bogor (2001), while the next was conducted respectively in UNDIP Semarang (2003), UNIBRAW Malang (2005), and UGM Yogyakarta (2007).

The 2009 meeting is the 7th meeting, organized by AINI members from Purwokerto especially from the Faculty of Animal Science UNSOED with the theme “Empowerment of local feeds to support feed security” The actual meeting is declared as “The 1st International Seminar and 7th biennial meeting of AINI” This International seminar was firstly inspired by the fact that AINI has great potential to do so and it is now to show AINI member’s scientific activities then ever to the stakeholders. Secondly, there is a political will of the government by offering the competitive grant for every profesional association to conduct the international symposium, and recently we have the good news that AINI is announced to get this competitive grant from Directorate General of Higher Education.

I would like also to take this opportunity to share the idea with all you, that AINI as the organization of scientist, to have a international scientific journal is a must. The journal deals with all aspects of nutrition and feed issues in tropical conditions. The Management board of AINI has taken the decision for revitalizing the AINI Journal to become the Journal of Nutrition and Feed Science, internationally recognized, by involving the International committee of lecture as the reviewers. To this end, we need fully your support and encourage the scientists especially the young scientists to publish their work in English. The accomplishment of this task will bring the association more respected in national and international level.

My sincere thanks to the Dean of the Faculty of Animal Science UNSOED, the organizing committee, sponsors, and any parties that can not be listed since we are deeply indebted to all of your effort and sacrifice to the success of this seminar. Our sincere thanks must go to the Directorate General for Higher Education Department of National Education for the grant awarded. For our invited speakers, Prof. Orskov from MLURI UK, Prof. AR Alimon from UPM Malaysia, Prof. Marsetyo, Dr. Didiek J. Rachbani, and Dr. Desianto from Indonesia, we are indebted to your effort and participation. Your views will enlighten and inspire how to empower our local feed resources in sustaining the feed security for the future.

Wassalamualaikum Wr. Wb.

Purwokerto, July 2010
Dr. Ali Agus
TABLE OF CONTENTS

KEYNOTE PAPERS

1. **Strategy for the development of feed.** The Director of Non Ruminant Management, Department of Agriculture of Republic of Indonesia

2. **Improving feedstuff supply and quantity with an emphasis on plant and animal breeding multiculture and agroforestry.** E.R. Ørskov, P.J. Goddard, Kustantinah

3. **Strategies to meet feed requirement of smallholder beef cattle toward the acceleration of beef self-sufficiency program.** Marsetyo, Damry, Dahlannudin, Dicky Pamungkas, Esnawan Bodo, Santoso, Takdir Sali

4. **Poultry production and the potency of local raw materials usage in Indonesia.** Desianto

FEEDSTUFF PAPERS

1. **The study of use binders on complete feed block processing on physical and chemical quality.** Emmy Suwanti, Titin Widyastuti and Munasik

2. **Fishmeal quality improvement through antihistamine producer bacteria fermentation.** Ning Iriyanti, Budi Rustomo, Etna Aris R

3. **Amino acid indexes of earthworm and earthworm meal (Lumbricus rubellus) for animal feedstuff.** Ahmad Sotyan, Lusty Istiqomah, Ema Damayanti and Hardi Julendra

4. **The effect of transfer of capsulated omega-3 and l-carnitine suplementation on fatty acid concentration of fresh and grilled goat meat.** Sudibya, Titin Widyastuti and R.S. Santoso

5. **Improving the in vitro nutrient digestibility of ration based on local waste fermented by rumen liquor and enzyme complex.** I Made Mudita, Anak Agung Putu Putra Wibawa, I Wayan Wirawan and Ni Wayan Siti

6. **The evaluation of nutrient quality of ramie leaf silage and hay in complete mixed ration for etawah-crossbreed goat using in vitro technique.** Hutabarat, I.M.L., Mutia, R., Permana, I.G. and Despal

7. **Study of feedstuff storage durability using carbon dioxide gas.** Tri Rahardjo Sutardi

8. **The utilization of microorganisms cultures as starter in ensilage process to increase organoleptic value and chemical composition of sedge grass (Imperata cylindrica) silage.** Ni Gusti Ketut Roni and I Made Mudita

9. **Technical effect and drying time on the quality of ramie (Boehmeria Nivea, L. Gaud) leaf hay.** N.D. Asti, I.G. Permana, Suryahadi and Despal

10. **Acid value and amount of microbe of feedstuff supplemented by antimicrobial agent pseudomonas fluorescens strain fncc-070 during storage.** Titin Widyastuti, Nina Hastiani, Sudibya

11. **Performances of lactating dairy cows fed macerated alfalfa forage as part of complete feed.** Suwamo

12. **Performances of king grass (Pennisetum purpoides) at fourth defoliation under the influence of urea and manure fertilizers.** Eko Hendarto and Suwamo

13. **Fermentation technology on high fiber feedstuffs with Aspergillus niger and lab-cellulolitic mixed (c-lab-m) as ducks rations.** Ali Agus, Erna Winarti, Ade Wicakseno and Rosita

14. **Frecuency of application organic fluid fertilizer on yield, and nutrition concentration of elephant grass of Thailand variety.** Nur Hidayat dan Bahrun

15. **Fermentation of bagasse with Trichoderma viridae and Saccharomyces cerevisiae; its effect on crude fiber and crude protein degradation as in sacco.** Nur Hidayat, dan Caribu Hadi Prayitno

RUMINANT PAPERS

The effect of saponin as deafermenting agent on in vitro ruminal fermentation of forage and concentrate waste. M. Mastika I, I.W. Supartha 2, I.W. Wiranatha and A.W. Puger 104

Effect of tannin on growth performance of beef cattle bull (Bos taurus) fed fermented cocoa (Theobroma cacao L.) waste. Lies Mira Yusiatia and Syamsul Alim 105

Utilization of coconut oil and Jatropha curcas L. seeds waste as protein source in animal feed. Efka Aris Partama and I.G.L.O.Cakra 128

The supplementation of morea plus for increasing performance of Etawah crossbred goats fed diet containing gliricidia green forage. Siti, N. I. G. M. A. Sucipta, I.M. Mudita, I.B.G. and I.M. Mudita 141

The supplementation of morea plus for increasing performance of Etawah crossbred goats fed diet containing gliricidia green forage. Siti, N. I. G. M. A. Sucipta, I.M. Mudita, I.B.G. and I.M. Mudita 141

The effect of chitosan level addition on protein feed source on in vitro rumen microbial degradation activity. Ristianto Utomo, Lies Mira Yusiatia, and Hendra Herdian 198

The use of cellulolytic microbes from cattle rumen fluid to improve in vitro digestibility of fermented robusta coffee pulp (Coffea Canephora Sp.). Lies Mira Yusiatia, Chusnul Hanim and Fatimah Zahra 111

Improving the nutrition quality of complete feeds based on local waste fermented by rumen liquor and enzyme complex. I Made Mudita, Anak Agung Putra Putra Wibawa, I Wayan Wirawan and Ni Wayan Siti 112

Blood chemical profile of Priangan ram that ca-pufa, i-pufa, zn-protein and cu-protein administered in feed. Lovita Adriani, U.Hidayat Tanuwiria, and Andi Mushawwi 118

Feeding the level of protein in the diet on rumen volatile fatty acids, methane and carbon-dioxide of the male weaned bali calf. Dicky Pamungkas, Hartutik, Kusmartono and N.H. Krishna 119

The influence of sulfur and ratio of Starbio fermented rice straw and concentrate on rumen bacteria and enzyme complex. I Made Mudita, Anak Agung Putra Putra Wibawa, I Wayan Wirawan and Ni Wayan Siti 112

Dietary supplementation of vitamin e, Andrographis paniculata and turmeric on colour stability of goats meat. M. Karami, A.R. Alimon, A.Q. Sazili and Y.M. Goh 124

The use of cellulosic microbes from cattle rumen fluid to improve in vitro digestibility of fermented robusta coffee pulp (Coffea Canephora Sp.). Lies Mira Yusiatia, Chusnul Hanim and Fatimah Zahra 111

Fuel as protein source in different rate of degradability basal diet of corn waste and coffee pod on rumen fermentation kinetic of beef cattle. Dicky Pamungkas, R. Utomo, N. Nestiyo and M. Winugroho 132

The potential of Jatropha curcas L. seeds waste as protein source in animal feed. Efka Aris Partama and Iwan Irawan 147

The supplementation of morea plus for increasing performance of Etawah crossbred goats fed diet containing gliricidia green forage. Siti, N I G M A Sucipta, I M Mudita, I B G Partama and I G L O Cakra 147

The rate of body fat and protein deposition in weaned sheep during resumption of full feeding. Satrijo Widi Purbojo and Pambudi Yuwono 152

Free fatty acids and rate of glucose utilisation in weaned thin-tailed sheep. Pambudi Yuwono 156

Goat production system related to local feed resources in Banyumas Indonesia. Akhmad Sodiq 161

The influence of sulfur and ratio of Starbio fermented rice straw and concentrate on rumen fermentation products. F.M. Suhartati and Wardhana Suryapratama 165

Ratio of rice straw treated with urea-cassava waste and concentrate on nutrient utilization of fattening local male cattle. Muhamad Bata 172

Nutrient digestibility in Ongole cross breed cattle fed amoniated rice straw and concentrate from several different sources. Novita Hindratiningrum 177

Protein degradation and solubility of Sauropus androgynus (L) Merr. and Arachis hypogoeae as alternative protein sources for lactating goat. Sri Utami, Muhamad Bata, and Imbang Herdoko 183

Effect of lessons on dairy cattle milk quantity and quality of Cepogo KUD members in Boyolali Regency. Triana Yuni Astuti 190

Probiotic in ruminat (study on digestibility and fermentation pattern). Caribu Hadi Prayitno 194

The effect of diet (cattle feed source on in vitro rumen microbial degradation activity. Ristianto Utomo, Lies Mira Yusiatia, and Hendra Herdian 198

The change of reproductive organ of kampung chickens during the laying and incubating periods. Ristiarto Utomo, Budi Prasetyo Widyobroto, Lies Mira Yusanti, R.A. Rihastuti, and I Nyoman Guna Darma

The evaluation of leaf of katuk (Sauropus androgynus) in ration on feed efficiency, meat quality, body fattened, and blood cholesterol of broiler chicken. Tjokorda Gede Belawa Yadnya and Angk. Agung Putu Putra Wirawarta

Effects of Aspergillus oryzae supplementation on rumen fermentation products. Hakim Chaniago, Oktaviani Undon, Yuni Darma, and N. N. Suryanto

Chemical composition and crude fiber rumen degradation of fiber sources concentrate feedstuffs. Ristiarto Utomo, Budi Prasetyo Widyobroto, Lies Mira Yusanti, R.A. Rihastuti, and I Nyoman Guna Darma

NON RUMINANT PAPERS

Analysis on feed of confined ducks in Purwalingga regency. Imam Suswoyo

The use of pollard in ration supplemented with yeast may enhanced performance of broiler and decreased concentration of n-ammonia in its excreta. Eny Puspadi and I. G. N. G. Bidura

The effect of earthworm supplementation in the ration on growth performance, carcass production, and abdominal fatness of broiler. Nanung Danar Dono, Ramadani Damanik, Juliana Pasaribu, and Ali Wibowo

The use of leaf of cassava (Manihot esculenta Crantz) in the ration on performance of the duck in the growth phase. Tjokorda Gede Belawa Yadnya

The quality and quantity of quail egg on the supplementation of local waste fermented with Rhizopus sp. feed. Umi Kalsum and Osfar Sjofian

The use of animal and vegetable oil in the diet of kampong chicken to the performance of fatty acids metabolism. Winarto Hadi and Sri Suhermiyati
GENETICS AND REPRODUCTION PAPERS

Genetics inheritance of production characteristic based on blood protein pattern in Magelang duck. Diddas Dewi Purwantini ... 305

The effect of using steroid hormone precursor on the reproductive quality of male quail. Abyadul Fitriyah, Wihandoyo, Supadmo and Ismaya 310

The effect of non genetic factors on milk production at dairy cattle breeding centre of Baturraden. R. Singgih Sugeng Santosa ... 318

Accurate of estimation of milk production with test interval method and centering date method to real milk production in dairy cattle selection. A.T. Ari Sadewo and Setya Agus Santosa ... 324

The effect of breed and concentrate levels on sperm quality of rams. Dadang Mulyadi Saleh ... 330

Effect of various levels of egg yolk on semen quality and fertility of native chicken spermatozoa. Setiyanto, and Dadang Mulyadi Saleh ... 335

Application of technology to improve of ewes reproduction and lamb production performance in fat tail sheep. Mas Yedi Sumaryadi, Agus Priyono, Budi Haryanto, and Herry Soeprapto ... 339

PRODUCTION, POST-HARVEST AND SOCIO-ECONOMICS PAPERS

Technical efficiency ratio (TER) of dairy farming in Banyumas regency. Rahayu Widiyanti and Ari Mastuti .. 346

Daily weight gain performance and carcass quality of Indonesian indigenous sheep fed supplements containing treated cassava peel. R. Singgih Sugeng Santosa ... 355

The erythrocyte and packed cell volume (PCV) of broiler chicken which is reared on different litters. S.J.A. Setyawati .. 357

Isolation and identification of antihistamine “histamine methyl transferase” producer rumen bacteria. Ning Irijayin, Budi Rustomo and Efka Aris R. .. 35

The influence of farmer’s characteristic to increase knowledge and interest goat farmer through comic about marginal area for cultivated forage plant. Krismiwati Muatip .. 36

Applied of analytical hierarchy process for development strategy analysis of small-scale poultry feed industry in Sidenreng-Rappang regency, South Sulawesi. Jasmal A Syamsu and Irsyam Syamsuddin .. 36

Prospectus analysis of halal gelatin agro-industrial from split hides at leather tanning factory in Indonesia. Syarifuddin Nur and Suhartijono .. 37

Effects of dipping time in organic acids on total viable count and quality of broiler carcasses. F. Husein Priyatno, Kustinus Hanzoro Djoko Rahardjo and Juni Sumarmono .. 37

Changes in internal quality parameters of edible-coated shell eggs during storage. Juni Sumarmono and Bambang Sedar Santosa .. 38

The effect of additives and time of ensilage on characteristics and quality of ramie (Boehmeria nivea, Gaud.) leave silages. Safarina, S.N., Jayadi, S., Permana, I.G. and Despal .. 38

The correlation between floor space and sanitation of cage with mastitis disease occurrence on the dairy cattle. Sri Hastuti .. 39

Empowerment of dairy cow livestock in enhancing well being of rural community in Kecamatan Baturraden. Tri Sugiyanto .. 40
Find out the most critical capital investment required at an integrated beef cattle farming in Purbalingga. Nunung Noor Hidayat and Sri Mastuti ... 409

Assessment of group dynamic and individual potencies of Batur sheep farmer to improve their productivity in Kabupaten Banjar negara. Novie Andri Setianto ... 415

The effectiveness of *Morinda citrifolia*, *Curcuma xanthoriza* and *Curcuma domestica* extract for immunostimulatory titer antibody Newcastle Disease and avian influenza on broiler. Sufriyanto, M. Indradji and Supriyanto ... 420

Farmers perception on the artificial insemination (AI) program in Banyumas. Moch. Sugianto and Krismiwati Muatip ... 426

Immunity response of double dose ND-vaccinated parent *pelung* day old chicken. Dwi Prabowo 432

Contributions of husbandry sector to regional domestic income Cilacap region. Pramono Hariadi 435

PERFORMANCES OF BROILERS FED CORN-SOYA-PALM KERNEL MEAL DIETS SUPPLEMENTED WITH DL-METHIONINE

by

J. Jachja, Sumiati, M. Ridla, I.G. Permana, T. Toharmat, and N. Ramli

Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Bogor Agricultural University, Bogor

ABSTRACT

Palm kernel meal, a by-product of the Indonesian palm oil industry, is a potential alternative of feed ingredient for poultry. The present experiment was designed to evaluate the efficacy of Sumitomo’s DL-methionine supplementation in diet containing palm kernel meal based diets in broiler chicks in Indonesia. One thousand and two hundred day old chicks were allocated into 30 groups and five experimental diets. The experimental diets were as follows: a deficient in methionine diet (basal diet); deficient in methionine diets supplemented with three different levels of methionine; and a corn-soy diet as control positive diet. Metabolizable energy and nitrogen retention were determined in thirty healthy broilers of 35 day old. The chicks were assigned to one of five dietary treatments. Palm kernel meal was possible to be included in the ration of broiler chicks. Supplementation of DL-methionine increased feed intake and tended to increase body weight gain and final live weight. The supplementation of DL-methionine increased nutrient absorption and fat deposition. However high level supplementation up to 0.327% tended to stimulate over growth of intestinal villi.

Keywords: palm kernel meal, DL-methionine, fat deposition, broiler

INTRODUCTION

Palm kernel meal, a by-product of the Indonesian palm oil industry, is a potential alternative of feed ingredient for poultry. Palm kernel meal (PKM) is the by-products obtained after extraction of oil from the kernel of palm fruits. Since it is produced in large amounts, the PKM become a potentially inexpensive feed ingredient for Indonesian poultry. However, the PKM is deficient in methionine.

DL-methionine produced by different private enterprises is available commercially in the form of liquid and solid product. The efficacy of the product is especially in improving feed conversion ratio in poultry. Supplementation of DL-methionine synthetic produced by Sumitomo Chemical Co, Ltd in the corn-soy based diets improved broiler performances (Jachja et al., 2007). Regarding to the usage of palm kernel meal in poultry diets recently, it is essential for Sumitomo Chemical Co, Ltd Japan to evaluate the efficacy of its DL-methionine in poultry fed corn-soy-palm kernel meal based diets in Indonesia. Objectives: 1. To evaluate the chemical composition including the methionine content of palm kernel meal produced in Indonesia. 2. To investigate the efficacy of supplementation of Sumitomo DL-methionine in improving performances of broilers fed corn-soy-palm kernel meal based diet in Indonesia. 3. To evaluate metabolizable energy value and protein utilization including methionine of corn-soy-palm kernel meal based diets supplemented with DL-methionine. Output: 1. Methionine status of palm kernel meal in Indonesia; 2. Establishment of the optimum level of Sumitomo DL-methionine supplemented in the broiler’s corn-soy-palm kernel meal based diet; 3. Establishment of the optimum level of palm kernel meal to substitute corn as energy source in the broiler’s diets.
MATERIALS AND METHOD

Location:
The feeding and metabolism trials were conducted in the Faculty of Animal Science, Bogor Agricultural University, Bogor-Indonesia.

Materials:
Two thousand of one day old chicks (DOC) of ROSS strain were purchased from Cibadak Farm, Co. Ltd. Indonesia. The diets were obtained and mixed in a small feed Mill. The chicks were kept in colony cages for feeding trial and in metabolic cages for metabolism trial. Each cage was facilitated with feeders and drinkers.

Evaluation of Feedstuffs Chemical Composition
Samples of PKM produced obtained from palm oil industry were analyzed for their chemical composition including their amino acids content. Data obtained along with the data of other feedstuffs were used in ration formulation and considering the supplementation level of DL-methionine in the diets.

Diets Preparation:
The treatment diets used for feeding and metabolism trials were formulated according to the nutrient requirement of poultry (NRC, 1994) based on corn-soy-palm kernel meal. The treatment diets consisted of 10 diets, i.e.;
1. Broiler starter diets: (S0) a deficient in methionine diet; (S1, S2, S3) deficient in methionine diets supplemented with three different levels of methionine (0.147, 0.237 and 0.327 %); and (S4) based on corn-soya diet as control positive diet
2. Broiler finisher diets: (F0) a deficient methionine diet as basal diet; (F1) basal diet + 0.058 % DL-methionine; (F2) basal diet + 0.118 % DL-methionine; (F3) basal diet + 0.178 % DL-methionine; (F4) corn-soy based diet supplemented with 0.06% of DL-methionine as positive control. The animals were kept individually in metabolic cages. Metabolizable energy and nitrogen retention including methionine utilization were determined according to the modified Farrell method (1978).

Statistical Analysis:
Data from completely randomized design of feeding and metabolism trials were analyzed statistically using analysis of variance (ANOVA) according to the procedure of SAS.
RESULTS AND DISCUSSION

I. Chemical Composition of Palm Kernel Meal

The experimental diets were composed of six main ingredients. Crude protein and amino acids content of the main ingredients of the experimental diets is presented in Table I. Protein and amino acid content of ice bran, MBM, CGM, corn and soybean meal were in the normal range. Palm kernel meal had higher protein and amino acids content than both rice bran and corn, but it had lower protein and amino acids content than MBM, CGM and soybean meal.

2. Efficacy of Sumitomos DL-methionine Supplementation in Corn-soy-palm Kernel Meal Based Diets in Improving the Performances of Broilers Chicks.

Mean of body weight gain, final body weight, feed conversion ratio and feed intake of starter (1-21 days) and finisher (22-42 days) broilers fed diets supplemented with different level of DL-methionine are presented in Table 2. Supplementation of 0.327% DL-methionine to the deficient methionine diet containing palm kernel meal improved (P<0.01) feed intake during starter and finisher period of broilers. However the response of feed intake on the DL-methionine supplementation at level 0.147% and feeding corn-soy based diet was inconsistency. Broiler chicks offered corn-soy based diet indicated lower feed intake compared to the diet containing palm kernel meal diet supplemented with 0.327% DL-methionine. Supplementation of DL-methionine to the basal diet did not affect feed conversion ratio (FCR) during the starter period. However, during finisher period, supplementation of DL-methionine had a tendency in improvement (P<0.3) of feed conversion as 6.90 and 10.92% for F2 and F4, respectively compared to FCR of the chickens fed F0 diet. Café and Waldroup (2006) reported that the methionine level had no significant effect on feed conversion at 16 days of age of the chickens, however at 35, 42 and 49 days of age, supplementation of methionine in the basal diet improved feed conversion.

Table 1. Chemical composition of palm kernel meal and other ingredients composing diets supplemented methionine and offered to broiler chicks.

<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Rice bran</th>
<th>MBM</th>
<th>CGM</th>
<th>Yellow corn</th>
<th>Soybean meal</th>
<th>Palm kernel meal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Protein (%)</td>
<td>10.68</td>
<td>43.28</td>
<td>63.52</td>
<td>7.90</td>
<td>47.78</td>
<td>16.58</td>
</tr>
<tr>
<td>Aspartic acid (%)</td>
<td>0.99</td>
<td>4.33</td>
<td>4.50</td>
<td>0.64</td>
<td>6.16</td>
<td>1.35</td>
</tr>
<tr>
<td>Glutamic acid (%)</td>
<td>1.52</td>
<td>6.96</td>
<td>16.26</td>
<td>1.69</td>
<td>10.19</td>
<td>3.33</td>
</tr>
<tr>
<td>Serine (%)</td>
<td>0.48</td>
<td>2.03</td>
<td>3.74</td>
<td>0.43</td>
<td>2.65</td>
<td>0.67</td>
</tr>
<tr>
<td>Histidine (%)</td>
<td>0.26</td>
<td>1.00</td>
<td>1.37</td>
<td>0.24</td>
<td>1.34</td>
<td>0.26</td>
</tr>
<tr>
<td>Glucose (%)</td>
<td>0.54</td>
<td>6.26</td>
<td>2.11</td>
<td>0.35</td>
<td>2.15</td>
<td>0.78</td>
</tr>
<tr>
<td>Threonine (%)</td>
<td>0.40</td>
<td>1.99</td>
<td>2.34</td>
<td>0.30</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>Arginine (%)</td>
<td>0.79</td>
<td>3.75</td>
<td>2.30</td>
<td>0.44</td>
<td>3.93</td>
<td>1.74</td>
</tr>
<tr>
<td>Alanine (%)</td>
<td>0.62</td>
<td>3.80</td>
<td>6.00</td>
<td>0.61</td>
<td>2.10</td>
<td>0.67</td>
</tr>
<tr>
<td>Tyrosine (%)</td>
<td>0.36</td>
<td>1.28</td>
<td>3.86</td>
<td>0.37</td>
<td>1.94</td>
<td>0.36</td>
</tr>
<tr>
<td>Methionine (%)</td>
<td>0.10</td>
<td>0.47</td>
<td>1.61</td>
<td>0.12</td>
<td>0.62</td>
<td>0.29</td>
</tr>
<tr>
<td>Valine (%)</td>
<td>0.53</td>
<td>2.23</td>
<td>3.12</td>
<td>0.41</td>
<td>2.30</td>
<td>0.82</td>
</tr>
<tr>
<td>Phenylalanine (%)</td>
<td>0.45</td>
<td>1.93</td>
<td>4.50</td>
<td>0.44</td>
<td>2.65</td>
<td>0.68</td>
</tr>
<tr>
<td>Isoleucine (%)</td>
<td>0.35</td>
<td>1.60</td>
<td>2.79</td>
<td>0.31</td>
<td>2.28</td>
<td>0.60</td>
</tr>
<tr>
<td>Leucine (%)</td>
<td>0.68</td>
<td>3.37</td>
<td>10.92</td>
<td>0.98</td>
<td>3.81</td>
<td>1.05</td>
</tr>
<tr>
<td>Lysine (%)</td>
<td>0.49</td>
<td>3.14</td>
<td>1.13</td>
<td>0.25</td>
<td>3.24</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Proceedings International Seminar AINI, Purwokerto 18-19 July 2009 228
Table 2. Mean of feed intake, body weight gain, final body weight and feed conversion ratio of starter and finisher broilers fed different level of methionine

<table>
<thead>
<tr>
<th>Treatment diets</th>
<th>Feed intake (g/bird)</th>
<th>Body weight gain (g/bird)</th>
<th>Final body weight (g/bird)</th>
<th>Feed conversion ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter period (0-21 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0</td>
<td>1013.96± 15.79</td>
<td>594.22± 65.32</td>
<td>634.55± 65.20</td>
<td>1.67± 0.09</td>
</tr>
<tr>
<td>S1</td>
<td>1022.76± 22.13</td>
<td>566.42± 20.91</td>
<td>607.20± 21.45</td>
<td>1.74± 0.03</td>
</tr>
<tr>
<td>S2</td>
<td>998.12± 18.91</td>
<td>551.65± 20.68</td>
<td>592.25± 21.38</td>
<td>1.72± 0.04</td>
</tr>
<tr>
<td>S3</td>
<td>1069.82± 26.21</td>
<td>599.01± 21.00</td>
<td>639.59± 21.34</td>
<td>1.69± 0.05</td>
</tr>
<tr>
<td>S4</td>
<td>1077.92± 20.38</td>
<td>589.52± 37.33</td>
<td>629.79± 37.46</td>
<td>1.74± 0.11</td>
</tr>
<tr>
<td>Finisher period (22-42 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0</td>
<td>2481.06± 106.61</td>
<td>825.06± 49.75</td>
<td>1459.61± 88.94</td>
<td>3.15± 0.29</td>
</tr>
<tr>
<td>F1</td>
<td>2533.54± 65.91</td>
<td>864.15± 103.92</td>
<td>1471.35± 94.16</td>
<td>3.11± 0.49</td>
</tr>
<tr>
<td>F2</td>
<td>2458.69± 130.08</td>
<td>874.09± 111.94</td>
<td>1466.33± 97.94</td>
<td>2.93± 0.19</td>
</tr>
<tr>
<td>F3</td>
<td>2652.93± 143.67</td>
<td>931.14± 250.01</td>
<td>1570.73± 261.86</td>
<td>3.23± 0.57</td>
</tr>
<tr>
<td>F4</td>
<td>2464.56± 113.84</td>
<td>895.93± 30.57</td>
<td>1525.72± 49.17</td>
<td>2.81± 0.09</td>
</tr>
</tbody>
</table>

Note: Means with different superscript differ (P<0.01); S0= a deficient methionine or basal diet offered during starter period; S1= basal diet + 0.147% DL-methionine; S2= basal diet + 0.237% DL-methionine; S3= basal diet + 0.327% DL-methionine; S4= corn-soy based diet supplemented with 0.148% of DL-methionine as positive control; F0= a deficient methionine diet as the basal diet offered during finisher period; F1= basal diet + 0.058% DL-methionine; F2= basal diet + 0.118% DL-methionine; F3= basal diet + 0.178% DL-methionine; F4= corn-soy based diet + 0.06% of DL-methionine as positive control diet.

The feed intake of broiler chicks in the present study was in the normal range compared to standard feed intake of the commercial Ross 308 (998.12-1077.92 g/bird versus 1069 g/bird). Supplementation of DL-methionine at level of 0.327% (S3), and 0.178% (F3) in broiler diets containing palm kernel meal was appropriate to maintain the normal feed intake. The low feed intake of basal diet might be due to amino acids deficiency, esp. methionine. Pesti et al. (2005) reported that when an amino acid deficient, the birds are likely to decrease their consumption if the deficiency was severe. Feed consumption of laying hens and broilers increased due to DL-Methionine supplementation (Bunchasak and Silapasorn, 2005; Bunchasak and Keawarun, 2006).

Supplementation of DL-methionine was likely to improved the nutrient utilization of palm kernel meal. Chicks fed diets supplemented with DL-methionine in the finisher period tended more efficient in utilizing the diet based on corn-soy-palm kernel meal. Pesti et al. (1999) reported that there was improvement in feed conversion ratio when DL-Methionine was added to the basal diet. However, there was no different in body weight, final body weight and feed conversion ratio among the treatments during starter and finisher period. The chicks offered basal diet containing palm kernel meal supplemented with DL-methionine at level of 0.327% tended to have higher body weight gain and final body weight. Final body weight of the chickens fed S3, F1, F2, and F3 diets were 0.8, 0.8, 0.5, and 7.6% higher than that fed S0 diet, respectively. Palm kernel meal indicated good nutritive value when it is included in the diet of broiler chicks. Supplementation of DL-methionine to the corn-soy-palm kernel based diet did not improve final body weight of chicks during starter as well as finisher period. However, there was a tendency in improvement of final body weight of chicks fed corn-soy-palm kernel diets supplemented with DL-methionine except for the chickens fed S1 and S2 diets.

3. Viscera Weight and Histological Appearance of intestine
Viscera weight of the broiler chicks fed diets supplemented with DL-methionine are indicated in Table 3. Supplementation of DL-methionine tended to increase liver weight, abdominal fat, reduced limp and jejunum size of broiler chicks fed diets supplemented with DL-methionine. The results indicated that DL-methionine improved the nutrient absorption and stimulate nutrient metabolism and deposition.

Histopathological appearance of intestine in broilers chicks fed different level of DL-methionine was indicated in Table 4. Deficient methionine diet reduced size of villi. Supplementation of DL-methionine stimulated the growth of villi. The over growth of villi was observed in broiler chicks fed diet supplemented with 0.327% DL-methionine. The supplementation of DL-methionine at high level also stimulated the growth of coccidian.

Table 3. Viscera weight of the broiler chicks fed diets with and without supplementation of DL-methionine.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Liver (%)</th>
<th>Kidney</th>
<th>Heart</th>
<th>Lymph</th>
<th>Bill duct</th>
<th>Abdominal Fat</th>
<th>Pancreas</th>
<th>Duodenum</th>
<th>Jejunum</th>
<th>Ileum</th>
<th>Cecum</th>
<th>Colon</th>
<th>Total Intestines</th>
</tr>
</thead>
<tbody>
<tr>
<td>FO</td>
<td>2.21±0.29</td>
<td>0.44±0.11</td>
<td>0.42±0.05</td>
<td>0.18±0.05</td>
<td>0.06±0.02</td>
<td>1.33±0.20</td>
<td>0.15±0.02</td>
<td>0.41±0.08</td>
<td>1.28±0.21</td>
<td>1.04±0.14</td>
<td>0.39±0.07</td>
<td>0.14±0.04</td>
<td>12.35±2.65</td>
</tr>
<tr>
<td>FI</td>
<td>2.29±0.31</td>
<td>0.33±0.11</td>
<td>0.44±0.06</td>
<td>0.18±0.06</td>
<td>0.07±0.01</td>
<td>0.95±0.67</td>
<td>0.19±0.02</td>
<td>1.25±0.16</td>
<td>1.25±0.16</td>
<td>0.97±0.25</td>
<td>0.49±0.20</td>
<td>0.15±0.03</td>
<td>11.05±4.01</td>
</tr>
<tr>
<td>F2</td>
<td>2.35±0.32</td>
<td>0.40±0.12</td>
<td>0.47±0.07</td>
<td>0.16±0.05</td>
<td>0.07±0.03</td>
<td>1.45±0.64</td>
<td>0.17±0.02</td>
<td>1.20±0.11</td>
<td>1.05±0.21</td>
<td>0.97±0.25</td>
<td>0.41±0.09</td>
<td>0.14±0.04</td>
<td>10.70±2.25</td>
</tr>
<tr>
<td>F3</td>
<td>2.41±0.33</td>
<td>0.43±0.14</td>
<td>0.47±0.05</td>
<td>0.14±0.06</td>
<td>0.05±0.03</td>
<td>1.91±0.27</td>
<td>0.16±0.06</td>
<td>1.18±0.11</td>
<td>0.98±0.07</td>
<td>0.33±0.04</td>
<td>0.33±0.04</td>
<td>0.13±0.03</td>
<td>10.21±2.79</td>
</tr>
<tr>
<td>F4</td>
<td>2.32±0.35</td>
<td>0.41±0.07</td>
<td>0.49±0.08</td>
<td>0.15±0.06</td>
<td>0.09±0.03</td>
<td>1.37±0.30</td>
<td>0.16±0.06</td>
<td>0.42±0.16</td>
<td>0.10±0.26</td>
<td>0.17±0.14</td>
<td>0.42±0.27</td>
<td>0.17±0.09</td>
<td>10.69±1.79</td>
</tr>
</tbody>
</table>

Table 4. Histopathological appearance of intestine in broilers chicks fed different level of DL-methionine.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Histological Appearance of Intestine</th>
</tr>
</thead>
<tbody>
<tr>
<td>FO</td>
<td>Long and slim villi, villi was reduced in size</td>
</tr>
<tr>
<td>FI</td>
<td>Long, slim and dense villi, cripta lieberkun increased (Figure 1)</td>
</tr>
<tr>
<td>F2</td>
<td>Large villi, lot of line, villi epithel was pooled, coccidian was detected</td>
</tr>
<tr>
<td>F3</td>
<td>Slim villi</td>
</tr>
</tbody>
</table>

1. Energy and Protein Utilization of Corn-soy-palm Kernel Meal Based Diet

Metabolizable energy and protein utilization of experimental diet offered to the broiler chicks during finisher period was indicated in Tabel 3. Basal diet supplemented with DL-methionine at level of 0.327% indicated the lowest Metabolizable Energi (ME) value and nitrogen retention value. Apparent metabolizable energy (AME), true metabolizable energy (TME), nitrogen corrected apparent (NCAME) and true (NCTME) metabolizable energy of the others treatment were similar. The result indicated that high level of DL-methionine supplementation in palm kernel meal containing diet up to 0.327% resulted in reduction in nitrogen retention, due to imbalance dietary amino acid content. It was likely that the basal diet containing palm kernel meal had already contained balance amino acids.
Table 5. Mean of energy and protein utilization in broilers chicks fed different level of DL-methionine

<table>
<thead>
<tr>
<th>Treatment diets</th>
<th>A-ME (kcal/kg DM)</th>
<th>T-ME (kcal/kg as fed)</th>
<th>T-ME (kcal/kg DM)</th>
<th>NCA-ME (kcal/kg DM)</th>
<th>NCT-ME (kcal/kg DM)</th>
<th>Nitrogen Retention (g/ekor/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>4430±48</td>
<td>3984±30</td>
<td>4528±34</td>
<td>4222±27</td>
<td>3048±131</td>
<td>9.35±2.38</td>
</tr>
<tr>
<td>F1</td>
<td>4396±61</td>
<td>4010±56</td>
<td>4558±64</td>
<td>4216±33</td>
<td>2944±156</td>
<td>8.51±1.36</td>
</tr>
<tr>
<td>F2</td>
<td>4394±40</td>
<td>4054±86</td>
<td>4608±99</td>
<td>4201±23</td>
<td>2818±174</td>
<td>7.93±3.89</td>
</tr>
<tr>
<td>F3</td>
<td>4205±207</td>
<td>3942±32</td>
<td>4481±35</td>
<td>4078±135</td>
<td>3095±260</td>
<td>5.02±3.36</td>
</tr>
<tr>
<td>F4</td>
<td>4430±19</td>
<td>4007±15</td>
<td>4555±17</td>
<td>4246±15</td>
<td>2975±64</td>
<td>11.23±0.70</td>
</tr>
</tbody>
</table>

Note: Apparent metabolizable energy (AME), true metabolizable energy (TME), nitrogen corrected apparent (NCAME) and true (NCTME).

CONCLUSION

Palm kernel meal was possible to be included in the ration of broiler chicks. Supplementation of DL-methionine increased feed intake and tended to increased body weight gain and final live weight. The supplementation of DL-methionine increased nutrient absorption and fat deposition. However, high level DL-methionine supplementation up to 0.327% tended to stimulate overgrowth of intra small villi.

REFERENCES

