The Comparison of Bathymetric Estimation from Three High Resolution Satellite Imagery

Samsul Bachri
Institute Technology of Bandung (ITB)

Muhammad Banda Selamat
Bogor Agricultural University (IPB)

Vincentius P Siregar
Hasanuddin University (UNHAS)

Sam Wouthuyzen
LIPI

ABSTRACT
This study was using three high resolution satellite imagery to estimate bathymetric condition at shallow water coral reef environment around Pulau Panggang, Jakarta. The Worldview 2 supply 2 m spacial resolution with 8 spectral band, whereas Quickbird 2 produce 2.44 m spatial resolution in 4 spectral band and ALOS produce 10 m spacial resolution with also 4 spectral band. Red band of ALOS and Quickbird have high correlation with sand depth and the lowest are blue bands. Among this bands, Quickbird red band is the highest and its blue band is the lowest. Worldview visible bands may have low sand depth correlation because of noise from ripple wave during acquisition. This study shown that, Quickbird image is proven able to map water depth variation up to 8 metre at reef flat and lagoon area of Panggang island, Jakarta with RMSe is 1.1 metre. The result also shown an opportunity to implement this approach to bathymetric mapping of shallow water area at remote small islands.

Keywords: bathymetric estimation, high resolution imagery

1 Introduction
Water depth (bathymetry) is an important factor to solve various coastal studies such as wave and current modelling, erosion, shoreline stability, sediment propagation, port construction, thermal dispersion and maintenance of navigation routes. Collecting bathymetric data at a remote small islands are an expensive, time consuming and sometimes extremely difficult to conduct. For various reasons like wide area coverage, data dependency on depth and repetition, satellite images can be used to determine shallow water depth on these sites. Sometimes ground truth at selected locations is still needed to validate the bathymetric model produced by satellite imagery.

Depth water images acquired by remote sensing satellites consist of reflectance from water column and also atmosphere. Considering the case of water bodies, there will be significant change in the reflectance due to various parameters including water depth, dissolved matter and sea bed characteristics. Assuming the other two parameters uniform, it is obvious that the intensity of reflected electromagnetic energy will vary inversely with water depth. However, water depth variations are not easily distinguished from bottom color differences. Surface reflection effects add another element of confusion to the interpretation of the images.

The recent satellite imaging development promising a great challenge on this bathymetric mapping. Considering a new spectral band (ranging around ultraviolet to blue wave spectral region - called "coastal" band) on worldview 2 it hoping that visible satellite imaging may be use as an alternative to bathymetric mapping works on low to middle accuracy levels.

The main goal of this study is to evaluate the ability of two high resolution satellite image (eg Worldview and Quickbird) to on water depth mapping. The evaluation will based on depth penetration of visible bands of each satellite.

2 Background Theories
Lyzenga (1978) studies on mapping water depth conclude that the ratio algorithms for water depth and bottom features mapping are relatively simple and give acceptable results in many situations. The ratio algorithm can be develop to shallow water radiance model that involves effects of scattering in the atmosphere, reflection at the water surface as well as the components originating in the water itself. Jupp (1988) develop depth zones theories based on a depth of penetration threshold for each band. Threshold values are determined from the maximum deep-water radiances, and for Landsat TM only six water depth zones or depth values can be derived. Although in some areas
According to Benny and Dawson (1983), there are three assumptions to implement their algorithm: i) light attenuation is an exponential function of depth (equation 1), ii) water quality (the attenuation coefficient, k) does not vary within an image, iii) the color (reflective properties or albedo) of the substrate is constant. Assumption (ii) may or may not be valid for any image but has to be made unless supplementary field data are collected at the time of image acquisition. Assumption (iii) is certainly not true for many areas and will cause dense sea grass beds to be interpreted as deep water. Corrections to the final bathymetry chart could be made if a habitat map exists.

Even Jupp's method had same assumptions as Benny and Dawson's, but actually he made quiet different step to map water depth from satellite images. Jupp's method may implement by doing these steps: 1) the calculating depth of penetration (DOP) zones, 2) the interpolating depths within DOP zones, and 3) the calibrating depth within DOP zones.

Lyzenga's method applies water column correction to compensate the effect of variable depth (bathymetry) from different substrate. A transformation using natural logarithms will linearise the effect of depth on bottom reflectance. Theoretically, each bottom type should be represented by a parallel line, the gradient of which is the ratio of the attenuation coefficients for each band \((k_1/k_j)\). It may say, for one of bottom type (e.g. sand), all pixels must lie along the same regression line. Those pixels further up the line have greater reflectance and are found in shallower water. Those pixels nearest the y-intercept are found in deeper water.

The y-intercept can be used as an index of bottom type. Relative depth can be inferred by the position of a pixel along a line of gradient \(k_i/k_j\). Depth varies along the line so that the shallowest (brightest) pixels have the highest values, the deepest (darkest) pixels the lowest. Once the gradient \(k_i/k_j\) is known, the axes of the bi-plot can be rotated through the angle \(\theta\), so that the new y-axis lies parallel to \(k_i/k_j\). Positions of pixels along this new y-axis are indicative of depth.

Water depth calculated by an image is depth beneath a temporary water surface. This depth will depend on the height of the tide at the time of satellite overpass. Field depth data will also have been collected at different times of the day, at different points in the tidal cycle. Image and field depths must be unificated by reducing to depth datum. This tidal datum is normally calculated from the Lowest Astronomical Tide (LAT) level (the lowest point that the tide ever recedes to).

Similarly, the depth of water, \(z\), measured in the field with an echo-sounder is equal to the depth below datum plus tidal height. The tidal
height for each depth recording, must therefore be calculated and subtracted from the measured depth to give the depth of water below datum. Thus it is essential to record the time when each calibration depth is measured so that it can be corrected to datum later.

3 Methodology

The data for this study were collecting at Panggang island and its vicinity. The island may reach by boating around half an hour heading to the north from Jakarta. The equipments used during survey (January, 2012) were:
- 1 unit GPS MAP Sounder (freq. 50 kHz and 200 kHz)
- 1 unit Automatic Data Logger + software
- 1 unit laptop core2 duo
- 1 unit boat with 5 HP outboard engines
- 1 unit tide pole
- 1 unit steel chain with rope for transducer calibration
- 1 unit digital camera for documentation

Due to sea wave characteristics, some corrections must be apply to water depth measured. These corrections are: 1) equipment default correction, this value obtained by transducer calibration, and 2) tide correction, which obtained by tidal observation coincident with sounding work. The relationship between depth measured, depth corrected and its corrected values is shown in Figure 1.

Figure 1. Corrections to Depth Measured

Three different satellite images were use for this study. The images description are shown at Table 1 and 2. The visualization of natural composite image from three satellites are shown in Figure 2.

Table 1. Satellite images used in this study

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Bands</th>
<th>Spatial Resolution</th>
<th>Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worldview 2</td>
<td>8</td>
<td>2.07 m</td>
<td>October 19, 2011</td>
</tr>
<tr>
<td>Quickbird 2</td>
<td>4</td>
<td>2.44 m</td>
<td>September 28, 2008</td>
</tr>
<tr>
<td>ALOS</td>
<td>4</td>
<td>15 m</td>
<td>September</td>
</tr>
</tbody>
</table>

Table 2. Sensor characteristics of Worldview, Quickbird and ALOS AVNIR 2 satellites (modified from Digital Globe, 2010 and JAEA, 2008)

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Worldview 2</th>
<th>Quickbird 2</th>
<th>AVNIR 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal</td>
<td>400 - 450</td>
<td>430 - 545</td>
<td>420 - 500</td>
</tr>
<tr>
<td>Blue</td>
<td>450 - 510</td>
<td>466 - 620</td>
<td>520 - 600</td>
</tr>
<tr>
<td>Green</td>
<td>510 - 580</td>
<td>585 - 625</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>585 - 625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>630 - 690</td>
<td>590 - 610</td>
<td></td>
</tr>
<tr>
<td></td>
<td>690 - 710</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td>Red Edge</td>
<td>705 - 745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Near IR</td>
<td>770 - 895</td>
<td>715 - 890</td>
<td></td>
</tr>
<tr>
<td></td>
<td>895 - 1040</td>
<td>810 - 918</td>
<td></td>
</tr>
<tr>
<td>Near IR</td>
<td>860 -</td>
<td>860 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1040</td>
<td>1040</td>
<td></td>
</tr>
</tbody>
</table>

Creating Depth of Penetration (DOP) Zones (Jupp, 1988)

Digital Number data require either dark pixel subtraction or some other form of atmospheric correction. All infrared bands removed and land areas masked out.

1) choose an area of deep water with properties we believe to be typical for the area
2) Calculate the maximum, minimum and mean deep water pixel for each band. Let the minimum in band i be $L_{i \text{ deep min}}$, the maximum $L_{i \text{ deep max}}$ and the mean $L_{i \text{ deep mean}}$
3) if a pixel value in band i, L_i, is $>L_{i \text{ deep max}}$ then some light in band i is being reflected from the seabed to the sensor. The depth is therefore less than the maximum depth of penetration, denoted by z_i for band i. If, for the same pixel, L_i, is $>L_{i \text{ deep max}}$, then the depth of that pixel is between z_i and z_e.
4) a few error pixels will have higher values in some band, which should not happen in theory. They may be coded to zero and filtered out of the final depth image.
Interpolating DOP Zones
1) DOP images then may be used to make DOP zone masks for all bands. All pixels within DOP zone 1 coded to a value of 1 and all other pixels in the image to 0, and repeating with other DOP zones.
2) Multiply the original image by each DOP zone masks. Data in pixels outside the DOP zone will be recorded to 0.
3) Estimate \(L_{\text{max}} \) and \(L_{\text{min}} \) for each DOP zone. \(X_{\text{min}} \) and \(X_{\text{max}} \) can then be calculated since \(L_{\text{deep}} \) is known. The \(A_i \) can then be calculated from equation 3 and 4.
\[
x_2 = \frac{X_{2\text{max}} - X_{2\text{min}}}{2(z_2 - z_3)} \quad \text{eq. 3}
\]
\[
x_2 = X_{2\text{min}} + 2k_2z_2 \quad \text{eq. 4}
\]
4) Using equation 5 to assign depth for each pixel in each DOP. This will produces separate interpolated DOP depth images. These are added together to produce a depth image for the area of interest.

Calibration of DOP zones
1) Depth data typically consist of echo sounder readings at a series of positions. Calculate which sites lie within each DOP and plot frequency distribution histograms of known depths in each DOP.
2) Jupp indicates that the point of intersection between histograms is the best decision value for the depth separating each DOP zone.
3) new values of \(Z_j \), \(k_i \) and \(A_i \) are calculated and equation 5 written to assign depths to each pixel in each DOP.

Accuracy Assessment
Simple regression between depth pair of data could be implement to estimate how accurate this method in water depth mapping. The regression equation also will portray the level of confidence of the final bathymetric map for area of interest.

4 Result and Discussion
Geomorphologic zonation at coral reef environment usually associated to depth profile. Hence it presentation is spatially easy to detect by moderate satellite resolution such Landsat, SPOT and ASTER. According to Mumby and Harborne (1999) geomorphic zone has clear boundary between them due to depth differences so it is easy to identified by using visible band combination from satellite images. Blanchon (2011) could recognize reef flat, reef lagoon, reef front and reef slope from high resolution Quickbird satellite image.

The crossectional and top view of coral reef environment at Panggang island is shown at Figure 3. The water depth profile is provided by echo sounding and already reduced to tidal datum. From this figure we could recognize some geomorphic zonation, such as reef crest, reef flat and lagoon. Note the lagoon is almost 15 metre depth, whereas reef flat depth is only around 1 to 2 metre.
It is obvious that bottom substrate like sand have good relationship with depth variation. Common substrates in reef environment are sand, seagrasses and coral reef. We evaluate sand relationship with water depth by extracting its correspondence digital value from ALOS, Quickbird and worldview images. Figure 3 shows us that, even Worldview has great spatial resolution compare to ALOS and Quickbird, but in this case it has very low coefficient determination hence not representative to bathymetric image processing.

Red band of ALOS and Quickbird have high correlation with sand depth and the lowest are blue bands. Among this bands, Quickbird red band is the highest and its blue band is the lowest. From this fact we may get a brief description that if use Jupp’s algorithm to predict bathymetry from ALOS images, we may have three DOP (depth penetration zone) because its three bands have good relationship with sand depth. Meanwhile, if use Quickbird image, we only have two DOP which are from green and red bands only.
We re-evaluate worldview image due its low sand depth correlation value and found that the image also record ripple wave during acquisition. So this noise may affected every digital number of visible bands we use and contribute to low value of sand depth correlation.

Considering to sand depth correlation values, we decide to use Quickbird image to produce bathymetric image by implement Jupp’s algorithm. The Jupp’s algorithm parameters are shown at Table 2. The DOP (depth penetration values) of band 2 is actually acting as boundary level for depth more than 2 metre, whereas DOP of band 3 was use for delineating depth area less than 2 metre. Ki and Ai coefficient are needed to solve depth estimation by using equation 5. The result of Jupp’s algorithm implementation is shown in Figure 5.

Table 2. Summary of Jupp Parameters for Quickbird image

<table>
<thead>
<tr>
<th>Parameters</th>
<th>band</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOP 2</td>
<td>42 - 53</td>
</tr>
<tr>
<td>DOP 3</td>
<td>8 - 131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>band</th>
</tr>
</thead>
<tbody>
<tr>
<td>ki</td>
<td>0.114536, 0.034657</td>
</tr>
<tr>
<td>Ai</td>
<td>5.045528, 1.386294</td>
</tr>
</tbody>
</table>
To measure the accuracy of this bathymetric map, some point was carried out on both field depth values and bathymetric image. The pair of depth values then plotted in to cartesian diagram to get a general formulation of the regression. The determination coefficient describes the reliability of the model, the bigger the value the more reliable is (Figure 7a).

In statistical view, this model is able to describe almost 78 percent of any values given in data set. This means if we get a value say 2 meter from bathymetric image, then we should note that the real value maybe around 1 to 3 meters depth. The predicted water depth profile shown in Figure 7b, where it gives a more clear explanation about the accuracy of bathymetric image. The root mean square error (RMSe) for each pair of water depth (image and field) is around 1.1 metre for a maximum 9 metre depth.

The final product from Jupp’s algorithm is not just bathymetric image as shown in Figure 5. By draping its raster image to bathymetric countour (Figure 6) then we get some kind of digital bathymetric terrain model (Figure 8). So then we may say that for the sake of simplicity, this methodology can be very valuable for bathymetric mapping especially in surf zone area where conventional method is hard to implement.
5 Conclusion
In clear shallow water coral reef areas (e.g. remote small island), the optic sensor of satellite imagery promises an opportunities as a source of bathymetric mapping technology. This study shown that, Quickbird image is proven able to map water depth variation up to 9 metre at reef flat and lagoon area of Panggang island, Jakarta. Eventough the RMSe is 1.1 metre, but the portrayal of bathymetric terrain may give a valuable information for some application such as sea current modelling, predicting fish juvenil migration along seagrass and coral reef habitat.

REFERENCES

JAEA. 2008. ALOS Data Users Handbook. Revision C. Earth Observation Research and Application Center

