The Joint Meeting of the 5th Conference and Congress of Asian Society of Veterinary Pathology (ASVP) 2011 & The 10th Scientific Symposium of Indonesia Society of Veterinary Pathology (ISVP) 2011

"The role of veterinary pathology in animal health for improving eco-health"

Organized by:

IPB International Convention Center Bogor, Indonesia
Organizing Committee of Joint Meeting of the 5th Symposium and Congress of Asian Society of Veterinary Pathology (ASVP) and the 10th Scientific Symposium of Indonesian Society of Veterinary Pathology (ISVP) express sincere gratitude to

PT. ALPHA ANALYTICAL INDONESIA
PT. PANDU BIOSAINS
PT. INDOTECH SCIENTIFIC

for the great contributions as a main sponsor of the meeting.
Proceedings

The Joint Meeting of Conference and Congress of Asian Society of Veterinary Pathology (ASVP) 2011 & The 10th Scientific Symposium of Indonesian Society of Veterinary Pathology (ISVP) 2011

The Role of Veterinary Pathology Animal Health for Improving Eco-Health

IPB International Convention Centre
Bogor, Indonesia, November 2011

Hosted by Faculty of Veterinary Medicine
Bogor Agricultural University 2011
Invited Speaker

OPS 1 TGF-beta Niche Regulation for Better Therapy
jin-Kyu Park¹, Eun-Mi Lee¹,², Ah-Young Kim¹,², Song-Young You¹,², Seon-Young Han¹,², Eun-Joo Lee¹,², and Kyu-Shik Jeong³²

OPS 2 Pathological findings and Molecular characteristics of PRRSV isolated from infected in North of Vietnam
Nguyen Thi Lan¹, Nguyen Huu Nam¹, Nguyen Ba Hien¹, Le Huynh Thanh Phuong², Nguyen Thi Hoa², Ryoji Yanaguchi²

OPS 3 Rat Tumor Models and their Applications, Particularly for Renal and Hepatic Fibrosis
Jyoji Yanada

OPS 4 Vascular Pathology Associated with Experimental
Pasteurella multocida serotype: B:2 Infection in Calves
S. Jasni. E.M. Amna, M. Zainuri-Saud, Z. Zakaria, S.S. Arshad,
A.R. Omar and T. I. Azmi

OPS 5 Challenges in safety evaluation of biomaterials, biomedical devices and engineered tissue constructs
Ty Anilkumar, R Deepa and M.Jaseer

OPS 6 Diagnostic Classification and Detection of Minimal Residual Disease (MRD) in Canine Lymphoma
A. Rungsipipat, N. Manachai, J. Chayapong, S. Wangnaitham and S. Techangamsawan

OPS 7 The Development of Porcine Reproductive and Respiratory Syndrome Virus Vaccine
Min-Yuan Chia², Hui-Ting Chan³, Yi-Yin Do⁴, Pung-Ling Huang⁴, Victor Fei Pang⁴, Chian-Ren Jeng³

Participant

P 01 Pathology and Veterinary Pathology Challenge-Future Perspective
I.I. Al Sultan

P 02 Ultra structural Characteristic of Blood Cells in Giants Freshwater Stingray (Himantura choaphyra)
A. Saitasuna, Y. Mathura, N. ChanSue

P 03 Analysis of P53 and PCNA Expression in the Genital and Extra genital CTVT Microarray

P 04 Comparing Expression of HERR-2 in Malignant Feline Mammary Tumors using Tissue Microarray

P 05 Investigation of the Death of Java Rhinoceros (Rhinoceros sondaicus) in Ujung Kulon National Park
Adhi Rachmat Sudrajat Hariyadi, Handayani, Agus Priyambudi, Ridwan Setiawan

P 06 Pathogenicity of a Pathogenic Filed Isolate NDV/Bali-1/07 in Commercial Chicken Strain ISA brown
Anak Agung Awi Mirah Adil, Made Kardeno, Nyoman Mantik Astawa, Yoshihiro Hayashi, Yasunobu Matsunoto
P 07 Immunohistochemical Characterization of Macrophages and Myofibroblasts in Biliary Cirrhosis due to Liver Fluke (Fasciola spp) Infestation in Cattle
H.M. Golbar, V. Juniantito, C. Ichikawa, M. Tanaka, T. Izawa, M. Kuwamura, O.J. Yamate

P 08 Expression of Metallothionein Protein in Malignant Feline Mammary Tumors by Using Tissue Microarray

P 09 Genetic Characterization and Phylogenetic Analysis of Thai Canine Distemper Virus (CDV) Isolates
S. Techangamsuan, N. Charoensival, A. Radmanakitanon, A. Rungsipipat

P 10 In Vitro Antimicrobial Activity of Saccharomyces cerevisiae Against Streptococcus agalactiae Isolated from Nile Tilapia
K. Pipitiwi, P. Kayansumrung, C. Rodkhwim, A. Pompornpisit, N. Sirivarut

P 11 Necrotizing Granulomatous Lesions of Uterus in a Dog by Nematode Larvae in the family of Onchocercidae

P 12 Phylogenetic and RFLP analysis of Canine Distemper Virus Fusion (F) Gene from Domestic Dogs in Thailand
A. Radmanakitanon, N. Charoensival, J. Keawcharoen, K. Oraveerakul, K. Sunwanakorn, Y. Poovorawan, S. Techangamsuan

P 13 Immunohistochemical Detection of Macrophages and Myofibroblasts in rat Model of Bleomycin-Induced Scleroderma
Vetnizah Juniantito, Chisa Ichikawa, Takeshi Izawa, Mitsu Kusamurai, Gyoty Yamate

P 14 High Pathogenic Avian Influenza Infection in Wild Birds of Korea.
Oum-Kyong Moon, Woo-Hee Park, Kyung-Hyun Lee, In-Soon Rooh, Moon-Young Rhyoo, Hye-Ryong Kim, You Chan Bae, O-Soo Lee

P 15 Ganglioneuritis of Indonesian Abalone
Dewi Ratih Agungpriyono, Musar Sabangkit, Agus Sunarto

P 16 Canine Multiple Epithelioid Hemangiomata in Labial Mucosa
E.M. Lee, AY. Kim, E.J. Lee, BS. Joo, S.Y. You, S.Y. Han, Y.H. Yoon, KS. Jeong

P 17 Histopathological Changes and Apoptosis Detection in Canine Myxomatous Mitral Valve Disease Using Tissue Microarray Technique
T. Jiranantasak, A. Rungsipipat, S. Disatian

P 18 Case Report: Infectious Canine Hepatitis and Colibacilosis in Malayan Sun Bear (Helarctos Malayanus)
Agustin Indrawati

P 19 Generation of Hepatocellular Carcinoma animal Model in Sparagae Dowley Rats
Agus Setiyono, Indrayumi Prahasuti, Elpita Br Tarigan, Akterono Dwi Budiyati, Andi Utama

P 20 Case Report: Ovarian Lipoma in a Dog

P 21 Decreased Myostatin Moves Up Fetal Myogenesis in Somatic Cell Nuclear Transfered Dog
P 22 Ceruminous Adenocarcinoma with Psammoma Bodies in External Auditory Canal of a Dog
AY. Kim, EM. Lee, SY. You, SY. Han, YH. Yoon, KS. Jeong

P 23 Production and Characterization of Pseudoclonal Anti Domain-I Alpha-Fetoprotein Antibody
Agus Setiyono, Elpita Br Tarigan, Indriayani Prahastuti, Akterono Dai Buhyati, Andi Utama

P 24 Pesticide Poisoning in Korean Wild Birds from 2008 to 2011
Oum-Kyoung Moon, Moon-Young Ryhoo, Kyung-Hyun Lee, In-Soon Roh, Woo-Hee Park, Dong-Gyu Kim, Jin-Young Shin, Hyun-Jeong Kwon, Chae-mi Lim, O-Soo Lee

P 25 The Effect of Blackseed (Nigella sativa) Oil Extracts on Mice (Mus musculus) Testicle Histopathology.
A. Rahmi, D.R. Agungpriyono, S. Estuningsih

P 26 Splenic Angiomyxoma in a Dog: The First Reported Case
BS. Jo, AY. Kim, EM. Lee, SY. You, SY. Han, EJ. Lee, JH. Park, AL. Moon, YH. Yoon, KS. Jeong

P 27 A Case of Hemangiosarcoma in a Jindo Dog
AL. Moon, AY. Kim, EM. Lee, SY. You, SY. Han, EJ. Lee, BS. Joo, JH. Park, KS. Jeong

P 28 Foot and Mouth Disease Virus Infection in Young Korean Black Goat (Capra hircus) in Korea
Kyung-Hyun Lee, In-Soon Roh, Woo-Hee Park, Moon-Young Ryhoo, Young-Joon Ko, Jong-Hyeon Park, Oum-Kyoung Moon, O-Soo Lee

P 29 Acute Severe Melena Caused by Salmonella Paratyphi C Infection in Javan Slow Loris Nycticebus Javanicus (A Case Report)
Intan Citreningsputri, Sharmini JP, Karwele I.S., Wendi P

P 30 A Case of Bacterial Septicaemia in a Malayan Tapir (Tapiro indicaus)
Sriyanto, S. Shahirudin, M. Zainri-Saad

P 31 Effect of Garlic (Allium sativum L.) to the Immunity of Carp Fish (Cyprinus carpio) Infected by Edwardsiella tarda
Kurniai, Syarifuddin Tato

P 32 The Application of Immunohistochemistry to Detect Prion Protein (Prp) of Bovine Spongiform Encephalopathy (BSE) in Feedlot Cattle to Anticipate BSE Emergence in Indonesia
Rini Damayanti

P 33 Mammary Adenocarcinoma with Pan-Cytokeratin and Alpha Estrogen Recepto Immunohistochemical Detection in Captive African Hedgehog (Atelerix albiventris)
Katriya Chankon, Komkiew Pinpinai, Paisan Tienthai, Nopadon Pirarat

P 34 The Suspect Aflatoxicosis in Toxicity Case Caused by Aspergillus Fungi
Wahyu, Hadi Purnama W.

P 35 Gross Pathology Report of a Wild-Born Captive Sumatran Rhino (Diceros bicornis sumatrensis), Torgamba
DR. Agungpriyono, M. Subangkit, S. Estuningsih, D. Candra, Andriansyah

P 36 Pulmonary Lesions of an Aged Sumatran Rhinoceros
Wiwin Winarsih, Vetsizah Junianto, Dewi Ratih Agungpriyono, Dadan D. Subrata

P 37 Widespread Fibrosis Due to Uremia in an Aged Sumatran Rhinoceros (Diceros bicornis sumatrensis)
Vetsizah Junianto, Agus Setiyono, Bambang Pontjo Priosoeryanto, Andriansyah
PANCREATIC BETA CELLS EVALUATION AFTER TREATED BY Phaleria macrocarpa (Mahkota Dewa) FRUIT EXTRACT IN DIABETIC MONKEY

E. Sulistiawati1, I. H. Suparto1,2, M. Bintang1, I. Indraswari1, S.A. Prabandari1

1Primate Research Center, Bogor Agricultural University
2Department of Chemistry and 3Department of Biochemistry Faculty of Mathematics and Natural Science, Bogor Agricultural University

Keyword: Phaleria macrocarpa, Diabetes Mellitus, Macaca fascicularis

Introduction

Phaleria macrocarpa, is a medicinal plant originated from Papua. Empirically, it is capable to control various health problems including diabetes mellitus. There is growing evidence that excess generation of highly reactive free radicals largely due to oxidative stress (hyperglycemia) causing increase blood level. This further exacerbates the development and progression of diabetes and its complications. Based on previous studies, Phaleria macrocarpa contained antioxidant of phenolic glycoside (Oshimi, et al., 2008) and lignans pinoresinol, lariciresinol, and matairesinol (Saufi et al., 2008). The aim of this study was to evaluate the number of beta cell pancreas and to detect antigen-antibody reaction of beta cells after treated Phaleria macrocarpa fruit extract in diabetic monkey (DM) induced with streptozotocin (STZ).

Materials and Methods

Pancreatic tissues from fifteen diabetic adults male Macaca fascicularis were collected at necropsy and preserved in 4% paraformaldehyde as fixative solution. Each pancreatic tissues were trimmed at three different areas; caput, corpus and cauda, processed for immunohistochemical staining, then evaluated and calculated under microscope. Monkeys were induced by single intravenous injection of STZ (55 mg/kg BW) to be DM. All DM were divided randomly into three groups (n = 5 animals). First group, DM treated only with distilled water as control, second and third groups were treated with Phaleria macrocarpa fruit extract of 1000 and 500 mg/kg BW, respectively. All experimental procedure on these animals were conducted in compliance with the guideline established by the Institutional Animal Care and Use Committee.

Results

Pancreatic beta cells of the Langerhans Islets distributed randomly in three different areas, caput, corpus, and cauda pancreas. The mean of number beta cells on the caput pancreas of the control DM was higher than both of treated DM group. While the mean of the number beta cells on the corpus and cauda pancreas of DM which had received extract of 500 mg/kgBW was higher than the control and animals with 1000 mg/kgBW (Figure 1).

Immunohistochemical staining method showed various color intensity which depends on the concentration of antigen-antibody binding, tissue preparation and other factors. In this study, the brown color intensity indicated the amount of insulin that secreted by pancreatic beta cells. Factors affecting the color intensity of the antibody-antigen binding specificity closely related to the concentration of primary antibody used in the process. Optimization of anti-insulin concentration was performed and revealed that the concentration of 1:1500 was the optimal concentration with unstained background, supported by Gobel (2011).

Based on the data of the color intensity of pancreatic beta cell evaluation, the caput pancreas of the control DM had the lowest of color intensity compared to both treated groups. Corpus and cauda areas of animals treated with 500 mg/kg BW showed higher intensity compared to the other groups (Figure 2).

Discussion

Detection of pancreatic beta cells in Langerhans Islet by immunohistochemistry indicate the presence of beta cell damage in diabetes mellitus. Pancreatic tissue of untreated animals had lowest pancreatic beta cell compared to treated animals. This may be caused by advanced beta cell damaged due to cytotoxic effect of STZ. Glucose uptake through glucose transporters (GLUT-2) caused the STZ into beta cells, resulting in DNA alkylation. DNA was fragmented so that activating poly (ADP-ribose) synthetase, the enzyme that polymerizes to form the ADP-ribose poly (ADP-ribose), and activation of the ATP and NAD+ reduction. Decreased production of ATP and NAD+ led to the opening of K+ channels and the plasma membrane hyperpolarization. Furthermore, closure of the gate voltage reduced Ca2+ concentration and insulin secretion resulting in beta cell death (Elsner et al. 2000).
Fruit extract improved total number of β cell, modestly higher in the lowest dosage (500 mg/kg BW). This was supported by Suparto et al. (2010), that *Phaleria macrocarpa* fruit extract increased insulin secretion on diabetic cynomolgus monkeys. This fruit extract was already available in the market with dosage of 500 mg/capsule. It revealed that dose of 500 mg/kgBW was more appropriate to improve hyperglycemic condition or to reduce blood glucose level.

Pancreatic β cells distribution in three different areas of untreated animals showed that the caput and the corpus pancreas had higher β cells than the cauda pancreas. In the highest dosage, the corpus area showed higher numbers of β cells than in the caput and caudal pancreas. Total number of β cells for the lowest dosage showed higher number in the corpus and the cauda compared to caput pancreas. This result was supported by Darmiarti (2000), that the distribution of diabetic pancreas β cells located at the periphery of the islets of Langerhans. However, according to Sundler and Hakanson (1988), β cell distribution differed from each species and the composition of the islets of Langerhans differed from each area of the pancreas. The Langerhans islets located in the cauda pancreas seemed to have tendency to be more numerous.

The color intensity of pancreatic β cells were highest in treated animal with 500 mg/kg BW. This result was also indicated by increasing in the number of pancreatic β cells. A dark brown color on the Langerhans Islets was resulted from the affinity of anti-insulin with high insulin and vice versa. Affinity of antibody was the strength of the bond of a side of antibody binding (paratop) with antigenic determinants (epitopes) (Vara 2005). So, it can be stated that the number of pancreatic β cells was directly proportional to the color intensity obtained from the reaction of antigen and antibody binding by immunohistochemical staining methods.

Conclusion

Phaleria macrocarpa fruit extract with dosage of 500 mg/kgBW orally was the best dose to improve pancreatic beta cells damage in DM.

Acknowledgement

This study was partly supported by the Ministry of Research and Technology Fund (RT2009-1388) and partly by internal research funds of Primate Research Center of Bogor Agricultural University.

References

