MEKANISME PENGHAMBATAN VIRULENSI BAKTERI ENTEROPATOGEN OLEHEKSTRAKRIMPANG JAHE (Zingiber officinale Roscoe)

Oleh:
Lilik Eka Radiati
NRP. 965045

PROGRAM PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2002
ABSTRACT

Lilik Eka Radiati. Mechanism of virulence inhibition of enteropathogenic bacteria by ginger (Zingiber officinale Roscoe) rhizome extract. Under the guidance of Dedi Fardiaz as the chairman, Fransiska-Rungkat Zakaria, Idwan Sudirman and Ratih Dewanti-Hariyadi as advisory committee members.

Fresh ginger is a flavoring ingredient which is commonly applied to most food dishes. It also functions as a non-toxic preservative, and can stimulate, inhibit or kill microbes depending on the dose applied. The principle compounds of ginger are essential oil and non volatile compounds, which have antimicrobial activity and commonly used as traditional medicine.

The objectives of this investigation are: (1) to examine the antimicrobial activity of hexane, dichloromethane and ethanol extracts of ginger against foodborne pathogen such as *Escherichia coli* O157:H7, *Salmonella typhi* and *Vibrio cholerae* O1, (2) to study the inhibition mechanism of bacteria by ginger extract by measuring hydrophobicity changes on the bacterial cell surface, (3) to study the effect of ginger extract on hemolysin activity, (4) to study the effect of ginger extract in blocking cholera toxin binding to receptors of hybridomone and Caco-2 cells.

The investigation consisted of several experiments and analyses. Ginger was extracted with hexane, and the residue was reextracted with dichloromethane, and then with ethanol. The results were three types of extracts which was non polar (hexane), semi polar (dichloromethane) and polar (ethanol). The antimicrobial activity of the extracts were determined by agar diffusion method against *E. coli* O157:H7, *S. typhi* and *V. cholerae* O1 The antimicrobial activity of the dichloromethane extract was higher than hexane and ethanol extracts.

The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined in ginger dichloromethane extract (GDE) that was shown as the most effective antimicrobial extract. The MIC value to *E. coli* O157:H7, *S. typhi* and *V. cholerae* O1 were 10, 10 and 5 mg/ml respectively and the MBC value were 15, 20 and 8 mg/ml respectively. The ability of GDE as antimicrobial caused by the GDE could be due to the nature of the extract that could easily interact with the outer membrane bacterial. The fractionation of the GDE using TLC of silica G60 F245 produced 8 fractions, four of those showed the antimicrobial activity. These compounds are suggested to interact with the membrane compound of the bacteria through hydrophobic interaction.

The hydrophobicity of bacteria was determined using BATH (Bacteria adhesion to hydrocarbon) test. This information was used to explain the inhibition mechanism. All bacteria showed to give positive response to 0.9 ml n-octane exposure, indicating that *E. coli* O157:H7 was categorized as moderate hydrophobic bacteria, while *S. typhi* and *V. cholerae* O1 were categorized as highly hydrophobic bacteria. Ginger water extract and GDE increased hydrophobicity of *E.
coli O157:H7 by 24.40 and 1.65 percent respectively but decreased hydrophobicity of S. typhi by 47.56 and 43.97 percent and V. cholerae O1 by 70.14 and 33.22 percent. This finding shows that one of the inhibition mechanism may be caused by an interaction of phenolic compounds with cell membrane, in which hydrophobic sites of ginger extract modified the hydrophobicity of the bacteria cell surface. The hydrophobicity modification in bacterial cell wall might result inhibition of hemolysin production.

Vibrio cholerae O1 on blood agar showed β-hemolysis activity, while E. coli O157:H7 and S. typhi showed α-hemolysis activity. Ginger water extract inhibited the activity of α-hemolysis and partial inhibited of β-hemolysis but the GDE inhibited both hemolysis activity.

The analysis of V. cholerae O1 hemolysin extract activity in erythrocyte suspension was determined by the hemoglobin release of rabbit erythrocyte at 37°C for 90 minutes incubation. The concentration of 2.5 and 5 µg/ml of hemolysin extract released 16.48 ± 2.22 and 25.40 ± 3.23 percent hemoglobin respectively. The effect of 75 and 150 µg/ml GDE to the 5 µg/ml hemolysin extract inhibited 67.25 ± 1.89 and 57.88 ± 7.60 percent of the activity.

Research was extended to observe the effect of GDE on FITC conjugated cholera toxin binding on the receptor of hybridome and Caco-2 cells. A total of 10^5 cells/ml were incubated with 0-5 µg/ml toxin B-FITC and 25 or 50 µg/ml GDE in RPMI, at 4°C for one hour. Analysis of toxin binding by flow cytometry showed that the addition of GDE inhibited the toxin binding. The binding inhibition respectively were 4.76-15.66 and 12.55-24.60 percent to Caco-2 cells, and 3.55-17.95 and 3.58-27.83 percent to hybridome cells. The inhibition on the toxin binding may be due to modification of the receptor by GDE or interaction of GDE with the toxin.
ABSTRAK

Jahe segar merupakan bahan pemberi citarasa, yang biasanya ditambahkan dalam bahan pangan. Jahe berfungsi sebagai pengawet yang tidak toksik, dapat menstimulir, menghambat atau membunuh mikroba tergantung pada dosis yang digunakan. Senyawa utama pada jahe adalah senyawa minyak atsiri dan non volatil, yang mempunyai aktivitas antimikroba dan digunakan sebagai obat tradisional.

Tujuan penelitian ini adalah: (1) menguji aktivitas antimikroba ekstrak heksan, diklorometan dan etanol jahe terhadap bakteri foodhorn pathogen seperti Escherichia coli 0157:H7, Salmonella typhi dan Vibrio cholerae O1. (2) mempelajari mekanisme penghambatan bakteri terhadap ekstrak jahe dengan mengukur perubahan hidrofobisitas permukaan sel bakteri, (3) mempelajari pengaruh ekstrak jahe terhadap aktivitas hemolisin, (4) mempelajari pengaruh ekstrak jahe terhadap penghambatan pengikatan kolera toksin pada reseptor dari sel hibridoma dan Caco-2.

Konsentrasi minimal penghambat (MIC) dan konsentrasi minimal bakterisidal (MBC) ditentukan pada ekstrak diklorometan, yang menunjukkan antimikroba yang efektif. Nilai MIC pada E. coli 0157:H7, S. typhi dan V. cholerae O1 berturut-turut adalah 10, 10 dan 5 mg/ml, sedangkan MBC berturut-turut 15, 20 dan 8 mg/ml. Kemampuan ekstrak diklorometan sebagai antimikroba disebabkan karena ekstrak tersebut mudah berinteraksi dengan komponen membran bakteri. Fraksinasi terhadap ekstrak diklorometan secara KLT menggunakan silika G60F245 menghasilkan 8 fraksi, 4 fraksi dari fraksi-fraksi tersebut menunjukkan aktivitas antimikroba. Senyawa tersebut digunakan berinteraksi kuat dengan komponen membran bakteri melalui interaksi hidrofobik.

Hidrofobisitas bakteri ditentukan dengan uji BATH (Bacteria adhesion to hydrocarbon). Informasi ini digunakan untuk menerangkan mekanisme penghambatan. Senua bakteri dinyatakan memberikan respon positif terhadap hidrokarbon 0,9 ml n-oktana. E. coli 0157:H7 merupakan hidrofobik moderat, S. typhi dan V. cholerae O1 merupakan hidrofobik kuat. Sari jahe dan ekstrak
24,40 dan 1,65 persen, tetapi menurunkan hidrofobisitas S. typhi sebesar 47,56 dan 43,97 persen dan V. cholerae sebesar 70,14 dan 33,22 persen. Hasil ini menunjukkan bahwa salah satu mekanisme penghambatan mungkin disebabkan oleh interaksi senyawa fenolik dengan sel membran, sedangkan, sisi hidrofobik dari senyawa fenolik tersebut memodifikasi hidrofobisitas permukaan sel bakteri. Modifikasi hidrofobisitas pada dinding sel bakteri mungkin mengakibatkan penghambatan terhadap produksi hemolisin.

Vibrio cholerae pada agar darah menunjukkan aktivitas β-hemolisis, sedangkan E. coli 0157:H7 dan S. typhi menunjukkan aktivitas α-hemolisis. Sari jahe menghambat aktivitas α-hemolisis dan menghambat sebagian terhadap aktivitas β-hemolisis, tetapi ekstrak diklorometan menghambat kedua aktivitas hemolisis tersebut.

Aktivitas ekstrak hemolisin V. cholerae dalam suspensi eritrosit ditentukan berdasarkan hemoglobin yang dibebaskan dari eritrosit kelinci yang diinkubasi pada suhu 37°C selama 90 menit. Konsentrasi 2,5 dan 5 μg/ml ekstrak hemolisin mempunyai aktivitas hemolisis berturut-turut berturut-turut 16,48 ± 2,22 dan 25,40 ± 3,23 persen. Pengaruh 75 dan 150μg/ml ekstrak diklorometan terhadap 5 μg/ml ekstrak hemolisin menghambat 67,25 ± 1,89 dan 57,88 ± 7,60 persen aktivitas.

SURAT PERNYATAAN

Dengan ini saya menyatakan bahwa disertasi yang berjudul:

MEKANISME PENGHAMBATAN VIRULENSI BAKTERI
ENTEROPATOGEN OLEH EKSTRAK RIMPANG
JAHE (Zingiber officinale Roscoe)

Adalah benar merupakan hasil karya saya sendiri dan belum pernah dipublikasikan. Semua sumber data dan informasi yang digunakan telah dinyatakan secara jelas dan dapat diperiksa kebenarannya.

Bogor, Januari 2002

[Signature]

Lilik Eka Radiati
NRP. 965045/IPN
MEKANISME PENGHAMBATAN VIRULENSI BAKTERI ENTEROPATOGEN OLEH EKSTRAK RIMPANG JAHE (Zingiber officinale Roscoe)

Oleh: Lilik Eka Radiati
NRP: 965045

Disertasi
Sebagai salah satu syarat untuk memperoleh gelar
Doktor pada
Program Studi Ilmu Pangan

PROGRAM PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2002
Judul Disertasi: Mekanisme Penghambatan Virulensi Bakteri Enteropatogen Oleh Ekstrak Rimpang Jahe (*Zingiber officinale* Roscoe)

Nama : Lilik Eka Radiati

NIP : 965045/IPN

Program Studi : Ilmu Pangan

Menyetujui:
1. Komisi Pembimbing

[Signature]

Prof. Dr. Ir. H. Dedi Fardiaz, M.Sc.
Ketua

[Signature]

Dr. Ir. Fransiska Rungkat Zakaria, M.Sc
Anggota

[Signature]

Dr. drh. H. Idwan Sudirman
Anggota

[Signature]

Dr. Ir. Ratih Dewanti-Harivadi, M.Sc.
Anggota

Mengetahui:

2. Ketua Program Studi

[Signature]

Prof. Dr. Ir. Betty Sri Laksmi Jenie, MS

[Signature]

Dr. Ir. Sinfra Manuwoto, M.Sc

Tanggal lulus: 16 Januari 2002
RIWAYAT HIDUP

PRAKATA

Tiada kata yang paling pants diaturkan kecuali rasa syukur pada Tuhan Yang Maha Esa atas segala rachmat yang telah diberikan pada kami, sehingga kami dapat menikmati proses belajar di Program Studi Ilmu Pangan, Institut Pertanian Bogor yang saya cintai. Di Program Studi ini kami dipertemukan dengan pembimbing-pembimbing yang kami hormati, dengan bimbingan mereka kami dapat menghiasi dan mewarnai pengetahuan dan tulisan kami yang berjudul "MEKANISME PENGHAMBATAN VIRULENSI BAKTERI ENTEROPATOGEN OLEH EKSTRAK RIMPANG JAHE (Zingiber officinale Roscoe)" yang telah dipertanggungjawabkan pada ujian terbuka program doktor Pascasarjana IPB. Oleh karena itu sepantasnya kami mengucapkan terima kasih atas kesediaan:

Bapak Prof. Dr. Ir. H. Dedi Fardiaz, M. Sc, selaku ketua komisi pembimbing, Ibu Dr. Ir. Fransiska-Rungkat Zakaria, M Sc. Bapak Dr. drh. H. Idwan Sudirman. dan Ibu Dr. Ir. Ratih Dewanti-Hariyadi, M.Sc. sebagai anggota komisi pembimbing.

Diucapkan terimakasih kepada:

1. Ibu Fransiska-Rungkat Zakaria, selaku peneliti utama dalam Tim URGE yang telah memberikan kesempatan untuk mewarnai penelitiannya sehingga kami juga turut menggunakan bantuan dana untuk membiayai penelitian kami dan memberikan jalan untuk melakukan penelitian di Perancis.

2. Alamahhumah Ibu Prof. Dr. Ir. Hj. Sriandri Fardiaz, M.Sc. atas bimbingan dan saran beliau kami dapat merangkai rencana penelitian dan juga bantuan bahan penelitian yang telah diberikan pada kami.

3. Pemerintah Perancis atas bantuan yang telah diberikan kepada kami sehingga kami dapat melakukan penelitian yang berjudul "Effect of ginger (Zingiber officinale Roscoe) dichloromethane extract on toxin binding to receptor on hybridoma and Caco-2 cell. Pada kesempatan ini kami dibimbingan oleh Prof. P. NABET, P. FRANCK, J. CAPIMOUNT, dan F. B. NABET.

4. Yayasan Orbit, Yayasan Toyota Astra dan Yayasan Aji Dharma Bakti yang telah menyumbangkan dana untuk kelancaran penelitian tersebut.

5. Rektor Universitas Brawijaya dan Dekan Fakultas Peternakan yang telah mengijinkan untuk menambah pengetahuan kami dan menerima kembali sebagai kolega.
6. Ibunda Soekmopranoto atas do'a restunya ananda dapat belajar walau perjalanan yang ananda tempuh hampir 66 purnama. Kepada suami dan ananda tercinta Dedi dan Dian, mereka rela menahan kerinduan yang mendalam melepaskan ibunya dengan do'a untuk menjadi laksamana menggali dan menggali pengetahuan agar senantiasa berfikir dan berdikir dan mengantarkan pada "Tholabul ngilmu alakulli faridhothun muslimina wal muslimat" dan terus cap kami berlingkung kepada Allah dengan segala hukumNya.

Atas jasa mereka juga, kami dapat melakukan penelitian ini dan semoga Allah yang membalaskan kebaikan mereka.
DAFTAR ISI

<table>
<thead>
<tr>
<th>Isi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR ISI</td>
<td>ix</td>
</tr>
<tr>
<td>DAFTAR SINGKATAN</td>
<td>xiv</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>xvi</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>xviii</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>xxi</td>
</tr>
<tr>
<td>I. PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>A. LATAR BELAKANG</td>
<td>1</td>
</tr>
<tr>
<td>B. TUJUAN</td>
<td>5</td>
</tr>
<tr>
<td>C. MANFAAT PENELITIAN</td>
<td>6</td>
</tr>
<tr>
<td>D. DAFTAR PUSTAKA</td>
<td>6</td>
</tr>
<tr>
<td>II. TINJAUAN PUSTAKA</td>
<td>10</td>
</tr>
<tr>
<td>A. SENYAWA ANTIMIKROBA DARI BAHAN TANAMAN</td>
<td>10</td>
</tr>
<tr>
<td>1. Golongan Fenolik</td>
<td>10</td>
</tr>
<tr>
<td>2. Golongan Terpenoid</td>
<td>11</td>
</tr>
<tr>
<td>B. MEKANISME PENGHAMBATAN MIKROBA</td>
<td>12</td>
</tr>
<tr>
<td>1. Komponen Bioaktif Senyawa Antimikroba</td>
<td>12</td>
</tr>
<tr>
<td>a. Cincin aromatik</td>
<td>12</td>
</tr>
<tr>
<td>b. Gugus alkil</td>
<td>13</td>
</tr>
<tr>
<td>c. Senyawa tiosulfat</td>
<td>14</td>
</tr>
<tr>
<td>2. Mekanisme Kerja Senyawa Antimikroba</td>
<td>14</td>
</tr>
<tr>
<td>a. Gangguan pembentukan dinding sel</td>
<td>15</td>
</tr>
<tr>
<td>b. Reaksi dengan sel membran</td>
<td>16</td>
</tr>
<tr>
<td>c. Penghambat sintesis protein</td>
<td>16</td>
</tr>
<tr>
<td>d. Gangguan fungsi material genetik</td>
<td>17</td>
</tr>
<tr>
<td>e. Pengkeler logam</td>
<td>18</td>
</tr>
<tr>
<td>C. ANALISIS PENGHAMBATAN MIKROBA</td>
<td>18</td>
</tr>
<tr>
<td>D. TANAMAN JAHE DAN MANFAATNYA</td>
<td>19</td>
</tr>
<tr>
<td>1. Nama dan Asal Tanaman Jahe</td>
<td>20</td>
</tr>
<tr>
<td>2. Manfaat Tanaman Jahe</td>
<td>21</td>
</tr>
<tr>
<td>E. KOMPOSISI KIMIA JAHE</td>
<td>21</td>
</tr>
<tr>
<td>1. Minyak Atsiri</td>
<td>23</td>
</tr>
</tbody>
</table>
2. Oleoresin.. 24
3. Ekstraksi Oleoresin ... 26
 a. Pelarut ekstraksi .. 27
 b. Cara ekstraksi ... 27
 c. Fraksinasi .. 29

G. MIKROBA PATOGEN PADA BAHAN PANGAN 30
1. Salmonella typhi ... 31
2. Escherichia coli O157:H7 32
3. Vibrio cholerae O1 .. 33

H. FAKTOR VIRULENSI BAKTERI 33
1. Plasmid .. 34
2. Struktur Bakteri .. 35
 a. Kapsul dan lapisan lendir 35
 b. Adesin .. 36
3. Toksin ... 38
 a. Enterotoxsin .. 38
 b. Sitotoksin ... 40
 c. Endotoksin .. 41
 d. Hemolisin ... 42
4. Faktor Lingkungan .. 44
 a. Antimikroba dan Fe (Besi) 44
 b. Suhu ... 44

I. RESEPTOR MEMBRAN ... 45
1. Interaksi Toksin dengan Reseptor 46
2. Mekanisme Transduksi Sinyal pada Reseptor 47

J. DAFTAR PUSTAKA ... 49

III. PENGHAMBATAN BAKTERI *E. coli* O157:H7, *S. typhi* DAN *V. cholerae* O1 OLEH EKSTRAK JAHE .. 56

A. ABSTRAK ... 56
B. PENDAHULUAN .. 56
C. METODA PENELITIAN .. 58
 1. Tempat dan Waktu Penelitian 58
 2. Bahan Penelitian ... 58
3. Ekstraksi Jahe ... 59
4. Fraksinasi Ekstrak Jahe 61
5. Analisis Total Fenol 62
6. Uji Aktivitas Antimikroba 62
 a. Metoda difusi agar 62
 b. Metoda pengenceran pada nutrien broth 63
 c. Aktivitas antimikroba sari jahe 64
 - Menentukan kadar oleoresin sari jahe 65
 - Uji aktivitas antimikroba sari jahe 65

D. HASIL PENELITIAN DAN PEMBAHASAN 66
1. Rendemen Oleoresin Jahe pada Setiap Tahap Ekstraksi 66
2. Pengaruh Polaritas Ekstrak Jahe terhadap Aktivitas Antimikroba 68
 a. Ekstrak non polar 69
 b. Ekstrak semi polar 70
 c. Ekstrak polar .. 71
3. Aktivitas Antimikroba Ekstrak Diklorometan Jahe pada Metoda Pengenceran 73
4. Pengaruh Sari Jahe terhadap V. cholerae 75
5. Aktivitas Antimikroba dari Fraksi Ekstrak Diklorometan Jahe 77
 a. Fraksinasi ekstrak diklorometan jahe 77
 b. Aktivitas antimikroba fraksi 1-4 dari ekstrak diklorometan jahe 79

E. KESIMPULAN ... 81

F. DAFTAR PUSTAKA 82

IV. PENGARUH EKSTRAK DIKLOROMETAN DAN SARI JAHE TERHADAP HIDROFOBISITAS BAKTERI E. coli O157:H7, S. typhi DAN V. cholerae O1 ... 85

A. ABSTRAK .. 845
B. PENDAHULUAN .. 85

C. METODA PENELITIAN 88
 1. Tempat dan Waktu Penelitian 88
 2. Bahan Penelitian 88
 3. Uji Hidrofobisitas Bakteri 89

D. HASIL PENELITIAN DAN PEMBAHASAN 91

E. KESIMPULAN ... 97

F. DAFTAR PUSTAKA 97
V. PENGARUH EKSTRAK DIKLOROMETAN DAN SARI JAHE TERHADAP AKTIVITAS HEMOLISIS *HEMOLISIN E. coli* O157:H7, *S. typhi* DAN *V. cholerae* O1 ... 99

A. ABSTRAK ... 99

B. PENDAHULUAN .. 100

C. METODA PENELITIAN .. 101
 1. Tempat dan Waktu Penelitian ... 101
 2. Bahan Penelitian ... 101
 3. Aktivitas Antiheemolisis dari Ekstrak Jahe ... 102
 a. Pembuatan sampel darah defibrinasi ... 102
 b. Persiapan sampel eritrosit kelinci ... 102
 c. Hemolisis pada agar darah ... 103
 d. Hemolisis pada susensi eritrosit ... 103
 - Produksi hemolisin .. 103
 - Analisis berat molekul protein supernatan kultur
 V. cholerae O1 dengan elektroforesis ... 104
 - Menentukan waktu inkubasi optimum terhadap aktivitas
 hemolisin *V. cholerae* O1 pada susensi eritrosit 105
 - Pengaruh ekstrak diklorometan jahe terhadap aktivitas
 hemolisin *V. cholerae* O1 pada susensi eritrosit 105

D. HASIL PENELITIAN DAN PEMBAHASAN .. 106
 1. Aktivitas Hemolisis Bakteri pada Agar Darah 106
 2. Hemolisin *V. cholerae* .. 110
 a. Karakterisasi protein supernatan kultur *V. cholerae* O1 110
 b. Aktivitas hemolisin *V. cholerae* O1 pada Suspensi Eritrosit 111
 3. Pengaruh Ekstrak Diklorometan Jahe terhadap Aktivitas
 Hemolisin *V. cholerae* O1 pada Suspensi Eritrosit 112

E. KESIMPULAN .. 113

F. DAFTAR PUSTAKA .. 114

VI. PENGARUH EKSTRAK DIKLOROMETAN JAHE TERHADAP
 PENGIKATAN TOKSIN KOLERA (*V. cholerae* O1) PADA SEL
 HIBRIDOMA DAN CACO-2 ... 116

A. ABSTRAK ... 116
B. PENDAHULUAN

C. METODA PENELITIAN
 1. Tempat dan Waktu Penelitian
 2. Bahan Penelitian
 3. Ekstrak Diklorometan Jahe
 4. Toxsin Kolera Subunit B terkonjugasi-FITC
 5. Kultur Sel Hibridoma dan Caco-2
 6. Penambahan Ekstrak Jahe pada Kultur Sel
 7. Aplikasi flow cytometry untuk Menentukan Viabilitas Sel
 8. Analisis Ikatan Toxsin B-FITC pada Reseptor dengan flow cytometry
 a. Penjenuhan dan ikatan spesifik toxsin B-FITC pada sel hibridoma dan Caco-2
 b. Analisis penghambatan ekstrak diklorometan jahe terhadap pengikatan toxsin B-FITC pada sel hibridoma dan Caco-2

D. HASIL PENELITIAN DAN PEMBAHASAN
 1. Pengaruh Ekstrak Diklorometan Jahe terhadap Pertumbuhan Sel Hibridoma dan Caco-2
 2. Reseptor Kolera Toxsin B-FFTC pada Hibridoma dan Caco-2
 3. Reseptor Spesifik Toxsin B-FFTC pada Hibridoma dan Caco-2
 4. Pengaruh Ekstrak Diklorometan Jahe terhadap Pengikatan Toxsin B-FFTC pada Sel Hibridoma dan Caco-2

E. KESIMPULAN

F. DAFTAR PUATAKA

VII. PEMBAHASAN UMUM

VIII. KESIMPULAN DAN SARAN
 A. KESIMPULAN
 B. SARAN

LAMPIRAN
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate (adenosin difosfat)</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate (adenosin monofosfat)</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate (adenosil trifosfat)</td>
</tr>
<tr>
<td>BATH</td>
<td>Bacterial Adhesion To Hydrocarbon</td>
</tr>
<tr>
<td>BCC</td>
<td>Balitvet Culture Collection</td>
</tr>
<tr>
<td>BM</td>
<td>Berat Molekul</td>
</tr>
<tr>
<td>BHA</td>
<td>Butylated hydroxyanisole</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumine</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese Hamster Ovary</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>CT</td>
<td>Cholera Toxin (toksin kolera)</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosil monophosphate (denosin monofosfa siklik)</td>
</tr>
<tr>
<td>cGMP</td>
<td>cyclic guanosine monophosphate (guanosin monofosfat siklik)</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid (Asam deoksiribonukleat)</td>
</tr>
<tr>
<td>GDE</td>
<td>Ginger Dichloromethane Extract</td>
</tr>
<tr>
<td>GM1</td>
<td>Monosialosil gangliosida</td>
</tr>
<tr>
<td>Gαs</td>
<td>Guainylnucleotide α subunit stimulating factor</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetra acetate (etilen diamin tetra asetat)</td>
</tr>
<tr>
<td>EPS</td>
<td>Eksopolisakarida</td>
</tr>
<tr>
<td>FLS</td>
<td>Forward Light Scatter</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescence isothiocyanate</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>KCKT</td>
<td>Kromatografi Cair Kinerja Tinggi</td>
</tr>
<tr>
<td>KK</td>
<td>Kromatografi Kolom</td>
</tr>
<tr>
<td>KLT</td>
<td>Kromatografi Lapis Tipis</td>
</tr>
<tr>
<td>LFLS</td>
<td>Log Forward Light Scatter</td>
</tr>
<tr>
<td>L90LS</td>
<td>Log 90º Light Scatter</td>
</tr>
<tr>
<td>LT</td>
<td>Labile Toxin (toksin labil terhadap panas)</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolisakarida</td>
</tr>
<tr>
<td>Md Dalton</td>
<td>Mega Dalton</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum Bactericidal Concentration</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>MIF</td>
<td>Mean of fluorescence Intensity</td>
</tr>
<tr>
<td>NA</td>
<td>Nutrient Agar (nutrien agar)</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide adenin dinucleotide</td>
</tr>
<tr>
<td>NB</td>
<td>Nutrient Broth (nutrien broth)</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>Term</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffer Saline (bufer salin fosfat)</td>
</tr>
<tr>
<td>RILT</td>
<td>Rabbit Ileal Loop Test</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid (asam ribonukleat)</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roosevelt Park Medical Institute</td>
</tr>
<tr>
<td>R_f</td>
<td>Retardation factor</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodesilsulfat poliakrilamid gel elektroforesis</td>
</tr>
<tr>
<td>Toksin-B</td>
<td>Toksin subunit B</td>
</tr>
<tr>
<td>Toksin-A</td>
<td>Toksin subunit A</td>
</tr>
<tr>
<td>ST</td>
<td>Stable Toxin (toksin tahan terhadap panas)</td>
</tr>
<tr>
<td>VT</td>
<td>Vero Toksin</td>
</tr>
<tr>
<td>90LS</td>
<td>90° Light Scatter</td>
</tr>
<tr>
<td>Tabel</td>
<td>Halaman</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1. Komposisi kimia dari 100 g jahe.</td>
<td>22</td>
</tr>
<tr>
<td>2. Mutu jahe dari berbagai daerah di Indonesia.</td>
<td>23</td>
</tr>
<tr>
<td>3. Sifat fisiko kimia minyak atsiri jahe.</td>
<td>24</td>
</tr>
<tr>
<td>4. Komposisi komponen minyak atsiri dari rimpang jahe dan oleoresin...</td>
<td>25</td>
</tr>
<tr>
<td>5. Jumlah toksin kolera yang terkat pada sel dari berbagai hasil pengamatan, data merupakan ekspresi inkubasi 1 μg sel dengan 1 ng toksin</td>
<td>47</td>
</tr>
<tr>
<td>6. Rendemen oleoresin dan total fenol dari hasil ekstraksi bertahap berturut-turut dengan heksan, diklorometan dan etanol</td>
<td>66</td>
</tr>
<tr>
<td>7. Radius areal penghambatan (mm) dari 30 μl ekstrak jahe (konsentrasi 90 mg ekstrak/ml)</td>
<td>69</td>
</tr>
<tr>
<td>8. Pertumbuhan bakteri E. coli O157:H7, S. typhi dan V. cholerae O1, pada media NB yang mengandung ekstrak diklorometan</td>
<td>74</td>
</tr>
<tr>
<td>9. Penghambatan V. cholerae O1 dalam media NB, ditambah 0,5 persen NaCl, inkubasi pada suhu 37°C, 24 jam</td>
<td>76</td>
</tr>
<tr>
<td>10. Nilai Rf fraksi ekstrak diklorometan</td>
<td>78</td>
</tr>
<tr>
<td>11. Radius areal penghambatan (mm) dari 30μl ekstrak dan fraksi ekstrak diklorometan jahe terhadap V. cholerae O1</td>
<td>80</td>
</tr>
<tr>
<td>12. Kriteria hidrofobisitas bakteri</td>
<td>90</td>
</tr>
<tr>
<td>13. Pengaruh ekstrak diklorometan dan sari jahe terhadap hidrofobisitas bakteri pada penambahan 0,9 ml n-oktana</td>
<td>93</td>
</tr>
</tbody>
</table>
15. Pengaruh ekstrak diklorometan jahe terhadap aktivitas 5 ug/ml ekstrak hemolisin \textit{V. cholerae} O1 .. 112

16. Total ikatan, ikatan non spesifik dan spesifik toksin B-FITC pada 10^5 sel/ml hibridoma, pada konsentrasi 40 ug/ml toksin B-tanpa-FITC dengan berbagai konsentrasi toksin B-FITC. .. 128

17. Total ikatan, ikatan non spesifik dan spesifik toksin B-FITC pada 10^5 sel/ml Caco-2, pada konsentrasi 40 ug/ml toksin B-tanpa-FITC dengan berbagai konsentrasi toksin B-FITC. .. 128
<table>
<thead>
<tr>
<th>Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rumus bangun zingiberen (Guenther, 1952)</td>
<td>12</td>
</tr>
<tr>
<td>2. Reaksi dehidrasi dan degradasi gingerol menjadi zingeron dan</td>
<td>26</td>
</tr>
<tr>
<td>shogaol (Purseglove et al., 1981)</td>
<td></td>
</tr>
<tr>
<td>3. Struktur gangliosida GM₁ terdiri dari (1) galaktosa, (2) N-</td>
<td>46</td>
</tr>
<tr>
<td>asetilgaktosamin, (3) glukosa, (4) asam asetilmuraminik, (5) seramida</td>
<td></td>
</tr>
<tr>
<td>(N-asil spingosin) (Gill, 1978)</td>
<td></td>
</tr>
<tr>
<td>4. Kemungkinan model mekanisme ikatan dan translokasi toksin kolera</td>
<td>48</td>
</tr>
<tr>
<td>pada membran sel eukariot; menggambarkan toksin subunit B</td>
<td></td>
</tr>
<tr>
<td>berikatan dengan GM₁; dari membran sel eukariot dan memfasilitasi</td>
<td></td>
</tr>
<tr>
<td>reaksi enzimatis yag mengakibatkan toksin subunit A dapat</td>
<td></td>
</tr>
<tr>
<td>mencapai bagian hidrofobik membran (Cau dan Seite, 1999)</td>
<td></td>
</tr>
<tr>
<td>5. Rimpang jahe gajah (Zingiber officinale Roscoe)</td>
<td>58</td>
</tr>
<tr>
<td>6. Skema proses ekstraksi jahe</td>
<td>60</td>
</tr>
<tr>
<td>7. Penghambatan (mm) dari 30 µl ekstrak diklorometan jahe</td>
<td>71</td>
</tr>
<tr>
<td>(konsentrasi 90 mg ekstrak/ml) terhadap S. typhi, V. cholerae O₁</td>
<td></td>
</tr>
<tr>
<td>dan E. coli O157:H7</td>
<td></td>
</tr>
<tr>
<td>8. Subkultur V. cholerae O₁ pada media NA, setelah diinkubasi pada</td>
<td>76</td>
</tr>
<tr>
<td>media NB yang masing-masing media mengandung sari jahe setara</td>
<td></td>
</tr>
<tr>
<td>dengan (1) 0, (2) 6, (3) 9 dan (4) 12 mg bubuk/ml</td>
<td></td>
</tr>
<tr>
<td>9. Fraksinasi ekstrak diklorometan jahe pada silica G₆₀ F₂₄₅</td>
<td>78</td>
</tr>
<tr>
<td>dengan larutan pengembang heksan :dietil eter (3:7). Hasil menunjukkan</td>
<td></td>
</tr>
<tr>
<td>F₁(Rₚ 0,15), F₂ (Rₚ 0,19), F₃ (Rₚ 0,30) dan F₄ (Rₚ 0,42) F₅ (Rₚ 0,50)</td>
<td></td>
</tr>
<tr>
<td>F₆ (Rₚ 0,61), F₇ (Rₚ 0,75) dan F₈ (Rₚ 0,89)</td>
<td></td>
</tr>
<tr>
<td>10. Fraksinasi ekstrak diklorometan jahe pada silica G₆₀ F₂₄₅</td>
<td>79</td>
</tr>
<tr>
<td>dengan larutan pengembang heksan :dietil eter (3:7). Pada proses</td>
<td></td>
</tr>
<tr>
<td>pengembangan lebih lanjut. Hasil menunjukkan F₁ (Rₚ 0,15), F₂ (Rₚ 0,19), F₃ (Rₚ 0,30) dan F₄ (Rₚ 0,42)</td>
<td></td>
</tr>
</tbody>
</table>
11. Penghambatan *V. cholerae* O1 dari anak panah bergerak searah jarum jam adalah ekstrak diklorometan jahe (30 μl dari 90 mg ekstrak/ml), kontrol pelarut dan F₁, F₂, F₃, F₄ (30 μl dari 15 mg fraksi/ml). ... 80

12. Pengaruh sari jahe dan ekstrak diklorometan terhadap hidrofobisitas *E. coli* O157:H7 pada hidrokarbon n-oktana ... 91

13. Pengaruh sari jape dan ekstrak diklorometan terhadap hidrofobisitas *S. typhi* pada hidrokarbon n-oktana ... 92

14. Pengaruh sari jahe dan ekstrak diklorometan terhadap hidrofobisitas sel *V. cholerae* O1 pada hidrokarbon n-oktana ... 92

15. Aktivitas hemolisis *S. typhi*, *E. coli* O157:H7, *S. aureus* dan *V. cholerae* O1 pada agar darah (kontrol), area bening menunjukkan adanya hemolisis ... 106

16. Aktivitas hemolisis *V. cholerae* O1, *E. coli* O157:H7, *S. typhi* dan *S. aureus* pada agar darah dengan penggunaan 10 mg/ml sari jahe sebagai pelarut media agar darah dan ekstrak diklorometan konsentrasi 8, 15, 20 dan 20 μg/ml agar darah berturut-turut pada *V. cholerae* O1, *E. coli* O157:H7 dan *S. typhi* dan *S. aureus* ... 108

17. Profil BM protein pada SDS-PAGE: protein supernatan kultur *V. cholerae* O1 (2, 3, 4, 5 dan 7) dan standar BM protein (1 dan 6) .. 110

18. Aktivitas 2,5 dan 5 μg/ml ekstrak hemolisin *V. cholerae* O1 terhadap sel eritrosit pada berbagai lama inkubasi ... 111

19. Sitogram flow cytometry: Log intensitas sinar difraksi (LFLS) meningkat menunjukkan populasi sel hidup (H) dan log intensitas sinar refraksi (90LS) meningkat dengan LFLS menurun menunjukkan populasi sel mati (G); populasi (a) sel hibridoma dan (b) sel Caco-2 ... 121

20. Histogram fluoresens dari toksin B-FITC; (a) populasi sel tanpa toksin B-FITC tidak berfluoresens, (b) populasi sel berfluoresens dengan toksin B-FITC yang terikat pada reseptor, pada penambahan 40 μg/ml toksin-FITC pada hibridoma 10⁶ sel/ml ... 122
21. Pertumbuhan 10^5 sel/ml Caco-2 pada media RPMI 1640, yang mengandung 12.5, 25 dan 50μg/ml ekstrak dinklorometan jahe...

22. Pertumbuhan 10^5 sel/ml hibridoma pada media RPMI 1640, yang mengandung 12.5, 25 dan 50μg/ml ekstrak dinklorometan jahe.

23. Kurva penjenuhan reseptor oleh toksin B-FITC pada hibridoma (a) dan Caco-2 (b).

24. Pengaruh ekstrak dinklorometan jahe 25 dan 50 μg/ml terhadap ikatan toksin-FITC pada 10^5 sel/ml hibridoma; (a) intensitas fluoresensi dan (b) persen penghambatan intensitas fluoresensi.

25. Pengaruh ekstrak dinklorometan jahe 25 dan 50 μg/ml terhadap ikatan toksin-FITC pada 10^5 sel/ml Caco-2; (a) intensitas fluoresens dan (b) persen penghambatan intensitas fluoresens.
<table>
<thead>
<tr>
<th>Lampiran</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rendemen oleoresin dan total fenol hasil ekstraksi bertahap secara</td>
<td>142</td>
</tr>
<tr>
<td>berurutan dengan pelarut heksan, dikiprometan dan etanol</td>
<td></td>
</tr>
<tr>
<td>2. Radius areal penghambatan (mm) dari 30μl (90 mg ekstrak/ml)</td>
<td>143</td>
</tr>
<tr>
<td>ekstrak jahe pada uji difusi agar</td>
<td></td>
</tr>
<tr>
<td>3. Hidrofobisitas E. coli O157:H7 pada n-oktana</td>
<td>144</td>
</tr>
<tr>
<td>4. Hidrofobisitas S. typhi pada n-oktana</td>
<td>145</td>
</tr>
<tr>
<td>5. Hidrofobisitas V. cholerae O1 pada n-oktana</td>
<td>146</td>
</tr>
<tr>
<td>6. Pengaruh 10mg/ml sari jahe terhadap hidrofobisitas E. coli</td>
<td>147</td>
</tr>
<tr>
<td>O157:H7 pada n-oktana</td>
<td></td>
</tr>
<tr>
<td>7. Pengaruh 10mg/ml sari jahe segar terhadap hidrofobisitas S. typhi</td>
<td>148</td>
</tr>
<tr>
<td>pada hidrokarbon n-oktana</td>
<td></td>
</tr>
<tr>
<td>8. Pengaruh 10mg/ml sari jahe segar terhadap hidrofobisitas *V.</td>
<td>149</td>
</tr>
<tr>
<td>cholerae* O1 pada hidrokarbon n-oktana</td>
<td></td>
</tr>
<tr>
<td>9. Pengaruh 15 mg/ml ekstrak diklorometan jahe terhadap</td>
<td>150</td>
</tr>
<tr>
<td>hidrofobisitas E. coli O157:H7 pada hidrokarbon n-oktana</td>
<td></td>
</tr>
<tr>
<td>10. Pengaruh 20 mg/ml ekstrak diklorometan jahe terhadap</td>
<td>151</td>
</tr>
<tr>
<td>hidrofobisitas S. typhi pada hidrokarbon n-oktana</td>
<td></td>
</tr>
<tr>
<td>11. Pengaruh 8 mg/ml ekstrak diklorometan jahe terhadap</td>
<td>152</td>
</tr>
<tr>
<td>hidrofobisitas V. cholerae O1 pada hidrokarbon n-oktana</td>
<td></td>
</tr>
<tr>
<td>12. Hasil analisis berat molekul protein supernatan kultur V. cholerae</td>
<td>153</td>
</tr>
<tr>
<td>O1 pada elektroforesis (SDS-PAGE)</td>
<td></td>
</tr>
<tr>
<td>13. Aktivitas hemolisin 2,5μg protein/ml pada berbagai suhu inkubasi</td>
<td>154</td>
</tr>
<tr>
<td>14. Aktivitas hemolisin 5 μg protein/ml pada berbagai suhu inkubasi</td>
<td>155</td>
</tr>
</tbody>
</table>
15. Pengaruh ekstrak dikelorometan jahe terhadap aktivitas ekstrak hemolisin 25.40% ... 156

16. Proliferasi sel hibridoma pada media RPMI 1640 mengandung 0, 12.5, 25 dan 50 μg/ml ekstrak dikelorometan jahe, jumlah sel (x 10^4 sel/ml) ... 157

17. Proliferasi sel hibridoma pada media RPMI 1640 mengandung 0, 12.5, 25 dan 50 μg/ml ekstrak dikelorometan jahe, jumlah sel (x 10^4 sel/ml) ... 157

18. Saturasi toksin B-FITC pada hibridoma dan Caco-2 158

19. Penghambatan ekstrak dikelorometan jahe terhadap pengikatan toksin B-FITC pada sel hibridoma .. 158

20. Penghambatan ekstrak dikelorometan jahe terhadap pengikatan toksin B-FITC pada sel Caco-2 ... 158

21. Potensi relatif total fenol hasil ekstraksi bertahap terhadap total fenol dalam sari jahe ... 159
I. PENDAHULUAN

A. LATAR BELAKANG

dalam sistem kekebalan, yaitu memberikan respon kekebalan inang terhadap mikroba patogen yang masuk kedalam tubuh. Hal itu disebabkan ekstrak jahe dapat memacu proliferasi limfosit dan menekan limfosit yang mati (Zakaria et al., 1996), meningkatkan aktivitas fagositosis makrofag (Zakaria dan Rajab, 1999), meningkatkan aktivitas sel NK dan proliferasi sel T secara in vitro (Tejasari, 2000).

Menurut Nurrahman et al. (1999), mengkonsumsi sari jahe setiap hari dapat meningkatkan aktivitas sel T dan daya tahan limfosit terhadap stres oksidatif.

Manfaat jahe yang lain adalah sebagai pemberi citarasa dalam minuman tradisional, kembang gula dan sebagai bumbu dalam makanan (Fardiaz et al., 1992; Koswar, 1995). Rasa jahe yang pedas disebabkan oleh komponen bioaktif oleoresin, sedangkan citarasa jahe disebabkan oleh kandungan minyak atsiri. Komponen bioaktif tersebut diketahui dapat berfungsi sebagai bahan pengawet yang tidak toksik, dan dapat menghambat pertumbuhan atau membunuh mikroba namun tergantung dari dosisnya (Mishra dan Dhirendra, 1990; Nychas, 1995; Neinaber et al., 1997 dan Hiserodt et al., 1998).

Pemanfaatan jahe lebih lanjut perlu dilakukan ekstraksi terhadap rimpang jahe. Karena keragaman komponen yang terkandung dalam bahan segar yang dipengaruhi oleh genetik dan lingkungan tempat tumbuh tanaman. Perubahan-perubahan komponen selama penyimpanan dalam bentuk segar serta memenuhi konsentrasi tertentu terhadap senyawa yang diinginkan (Houghton dan Raman, 1998). Ekstrak jahe dapat bekerja sebagai antimikroba secara optimal pada pH 4,0-9,2, dan
kestabilan ekstrak tetap tinggi selama penyimpanan 360 hari (Meena dan Sethi, 1994).

Peranan makanan dan minuman fungsional yang mengandung jahe telah diketahui sebagaimana diuraikan diatas, namun mekanisme ekstrak jahe terhadap penghambatan virulensi bakteri enteropatogen belum banyak diketahui. Oleh karena itu perlu dilakukan penelitian untuk menambah perbendaharaan kasiat jahe dan meningkatkan peranannya.

Peranan ekstrak jahe dalam minuman fungsional dan obat tradisional (Wijayakusuma, 1997) dapat meningkatkan ketahanan tubuh dan mengobati diare. Kasus kejadian diare di negara berkembang menunjukkan 70 persen dari penyakit diare disebabkan oleh konsumsi makanan yang tercemar bakteri. Dari kasus diare tersebut resiko kematian yang disebabkan oleh *Vibrio cholerae* mencapai 0,001-0,010 persen per bulan (Calderwood, 2000). Infeksi oleh *Salmonella* juga perlu diwaspadai karena kebiasaan masyarakat mengkonsumsi telur mentah dan lingkungan yang kurang bersih. *Salmonella* dapat membentuk biofilm yang tahan terhadap sanitaiser, sehingga berpotensi menjadi sumber kontaminasi (Hariyadi, 1999). Kasus keracunan karena *Escherichia coli* O157:H7, yang disebabkan konsumsi daging giling yang dimasak setengah matang di negara maju. Dengan masuknya makanan ala barat seperti hamburger yang dijual oleh pedagang keliling dari pagi hingga sore kemudian disajikan dengan pemasakan yang tidak sempurna, maka perlu diwaspadai kemungkinan keracunan bakteri ini (Fardiaz, 2000). Walaupun skrining *E. coli* O157:H7 pada isolat *E. coli* lokal dengan menggunakan uji aglutinasi memberikan uji
negatif (Hariyadi, 1999), namun *E. coli* O157: H7 telah ditemukan pada limbah rumah potong ayam (Lusiastuti, 1995) dan daging sapi yang di impor dari India di Malasia (Radu et al., 1998).

Bakteri yang berperan menimbulkan penyakit diare diantaranya adalah *V. cholerae*, *S. typhi* dan *E. coli* O157: H7. Virulensi bakteri tersebut berhubungan dengan plasmid, struktur bakteri (kapsul dan fimbrie), produk yang dihasilkan oleh bakteri (toksin dan hemolisin) dan lingkungan (suhu, pH dan antimikroba) (Volk dan Wheeler, 1988).

Endotoksin merupakan faktor virulensi yang bertanggung jawab terhadap terjadinya diare. Secara umum endotoksin mempunyai prinsip struktur molekul sama yaitu terdiri dari subunit A (toksin aktif) dan subunit B (pengikat pada reseptor). Mekanisme toksisitas toksin pada sel target meliputi pengikatan subunit B pada
reseptor, kemudian diikuti aktivasi subunit A, yang masuk kedalam sel dan mengaktivkan adenilat siklase (Holmgren, 1978). Reaksi biologis diantara toksin yang dihasilkan oleh *V. cholerae* O1, *S. typhi* dan *E. coli* O157:H7 pada sel target mempunyai perbedaan, namun mempunyai persamaan pada tahap awal reaksi toksin pada sel target yaitu pengikatan subunit B pada reseptor. Oleh karena itu model pengikatan toksin subunit B pada sel Caco-2 dan Hibridoma dapat digunakan untuk menganalisis salah satu penghambatan virulensi bakteri.

B. TUJUAN PENELITIAN

Tujuan utama penelitian adalah untuk mempelajari penghambatan virulensi bakteri patogen oleh ekstrak jahe. Secara rinci tujuan tersebut diuraikan dan ditunjang oleh beberapa topik penelitian antara lain:

4. Mengetahui penghambatan ekstrak diklorometan jahe terhadap pengikatan toksin kolera (*V. cholerae* O1) terhadap reseptor pada sel Caco2 dan hibridoma sebagai model sel inang.

C. MANFAAT PENELITIAN

Hasil penelitian diharapkan dapat meningkatkan pengetahuan tentang ekstrak jahe dan mendukung secara ilmiah peranan ekstrak jahe sebagai produk pangan yang dapat mengobati diare, penghambatan terhadap virulensi bakteri enteropatogen dan meningkatkan kesehatan. Disamping itu adanya ekstrak jahe dalam bahan pangan yang dapat menghambat pertumbuhan dan virulensi bakteri patogen, dapat meningkatkan keamanan bahan pangan tersebut.

D. DAFTAR PUSTAKA

I. TINJAUAN PUSTAKA

A. SENYAWA ANTIMIKROBA DARI BAHAN TANAMAN

Suatu jenis tamanan, ada yang mengandung senyawa yang dapat bersifat sebagai antimikroba. Senyawa tersebut diproduksi secara biologis oleh tanaman yang dapat menghambat pertumbuhan dan aktivitas mikroba (Nychas, 1995). Senyawa ini dapat bersifat bakterisidal (membunuh bakteri), bakteristatik (menghambat pertumbuhan bakteri), fungisidal (membunuh kapang dan khamir) dan fungistatik (menghambat pertumbuhan kapang dan khamir) (Atlas, 1984).

1. Golongan Fenolik

Senyawa fenolik merupakan substansi yang mempunyai cincin aromatik dengan satu atau lebih substitusi gugus hidroksil dan alkil. Senyawa ini diklasifikasikan menjadi tiga kelompok: golongan fenol sederhana (vanilin, gingerol, shogaol, guaikol dan eugenol); asam fenol (p-kresol, 3-etilfenol, hidrokuinon, asam galat dan siringit) dan turunan asam hidroksinamat (p-kumarin, kafein dan ferulin); dan flavonoid
(antosianin, flavonon, flavanon, flavanonol, flavanol, dan tanin) (Nychas, 1995; Shaidi dan Naczk, 1995).

2. Golongan Terpenoid

Golongan terpenoid dikenal sebagai senyawa utama pada tanaman yang bersifat sebagai penyusun minyak atsiri. Terpenoid mempunyai rumus dasar \((C_5H_8)_n\) atau dengan satu unit isoprene-2 metil-2,3 butadiena. Jumlah \(n\) menunjukkan klasifikasi terpenoid yang dikenal dengan monoterpen, seskuiterpen, diterpen, tetraterpen dan politerpen (Teisser, 1994). Golongan terpenoid yang mempunyai aktivitas antimikroba antara lain adalah borneol, sinueol, pinene, kamfene dan kamfor (Conner, 1993), nerelidol, linalool, indol dan kadinen (Kubo et al., 1993) dan zingiberen (Mishra dan Dhirendra, 1990) dengan rumus bangun (Gambar 1) (Guenther, 1952). Golongan senyawa ini efektif untuk menghambat pertumbuhan *B. subtilis, Staphylococcus aureus* dan *E. coli*.
B. MEKANISME PENGHAMBATAN MIKROBA

Mekanisme penghambatan mikroba oleh senyawa antimikroba yang berasal dari tanaman dibagi menjadi dua bagian yaitu tinjauan berdasarkan komponen bioaktif dari senyawa antimikroba dan mekanisme kerjanya.

1. Komponen Bioaktif Senyawa Antimikroba

Aktivitas senyawa antimikroba dipengaruhi oleh adanya komponen bioaktif yang terkandung dalam senyawa tersebut, sehingga setiap senyawa mempunyai perbedaan aktivitas. Komponen bioaktif tersebut antara lain adalah cincin aromatik, gugus alkil dan senyawa tiosulfinit.

a. Cincin aromatik

Pada umumnya komponen antimikroba rempah-rempah ada dalam oleoresinnya. Komponen bioaktif ini merupakan cincin aromatik dalam bentuk senyawa fenolik,
yang mampu menginaktifkan enzim yang berperan dalam metabolisme sel mikroba. Selain itu senyawa fenolik berperan menurunkan tegangan permukaan sel, merusak membran dan menembus dinding sel serta mendenaturasi protein sitoplasma (Prindle, 1983).

b. Gugus alkil

c. Senyawa tiosulfinit

Senyawa tiosulfinit dapat bereaksi secara spesifik pada gugus S-H protein dari sel bakteri. Senyawa tiosulfinit yang merupakan komponen utama dari bawang putih adalah alisin (allil-2 propenil 1-tiosulfinit). Komponen ini tidak terdapat pada bawang putih utuh, tetapi digenerasi dari prekursor aliin (S-allil-L-sistin-sulfoksida) melalui hidrolisis oleh enzim alinase (Ross et al., 2001).

Senyawa metil dan allil sulfinit adalah turunan alisin yang diperoleh dari proses distilasi uap bawang putih, juga dapat menghambat pertumbuhan *E. coli* dan *S. aurens*. Penghambatan bakteri oleh komponen tersebut kemungkinan karena bakteri ini mengandung banyak senyawa lipoprotein S-H.

2. Mekanisme Kerja Senyawa Antimikroba

Penghambatan mikroba oleh komponen bioaktif secara umum dapat disebabkan oleh 5 faktor yaitu: (a) gangguan pada komponen penyusun sel, terutama komponen penyusun dinding sel, (b) reaksi dengan membran sel yang dapat mengakibatkan perubahan permeabilitas dan kehilangan komponen penyusun sel, (c) penghambatan terhadap enzim esensial yang berperan dalam metabolisme sel, (d) gangguan fungsi material genetik dan (e) pengikat terhadap ion Mg"++" dan Ca"++" (Davidson dan Branen, 1993). Menurut Kanasawa et al. (1995) terjadinya proses tersebut diatas dikarenakan pelekat senyawa antimikroba pada permukaan sel mikroba atau senyawa tersebut berdifusi kedalam sel.
a. Gangguan pembentukan dinding sel

Nychas (1995) menghipotesakan bahwa minyak atsiri dapat menghambat enzim yang terlibat pada produksi energi dan pembentukan komponen struktural, sehingga pembentukan dinding sel bakteri terganggu. Alisin diketahui dapat menghambat enzim yang mempunyai peranan utama dalam metabolisme, baik enzim yang mempunyai gugus S-H maupun beberapa yang tidak mempunyai gugus S-H (Conner, 1993). Enzim sulfidril yang dapat dihambat oleh alisin adalah protein yang mempunyai komponen \(-\text{SO-S}\), tetapi bukan dari kelompok yang mempunyai komponen \(-\text{SO-}, \text{S-S atau } \text{S-}\). Penghambatan terhadap enzim tersebut disebabkan oleh oksidasi gugus tiol menjadi disulfidril pada sisi alosterik enzim, yaitu pada gugus sistein. Selain itu diketahui bahwa alisin mengganggu aliran elektron dalam sistem reduktase disulfidril dan menghambat fungsi reduktase dengan mengoksidasi gugus sulfidril
dalam dinding sel, sehingga dapat mengakibatkan pembentukan dinding sel yang tidak sempurna pada proses pembelahan sel (Nychas 1995).

b. Reaksi dengan membran sel

Komponen bioaktif dapat menyerang membran sitoplasma dan mempengaruhi integritasnya. Kerusakan pada membran ini mengakibatkan peningkatan permeabilitas dan terjadi kebocoran sel, yang diikuti dengan keluarnya materi intraseluler. Mekanisme antimikroba minyak atsiri (karvakrol, sitral dan geraniol) dan fenolik adalah mengganggu lapisan fosfolipid dari membran sel yang menyebabkan peningkatan permeabilitas dan kehilangan unsur pokok yang menyusun sel (Kim et al., 1995). Reaksi antara komponen membran fosfolipid dengan minyak atsiri atau senyawa fenolik mengakibatkan perubahan komposisi asam lemak dan fosfolipid membran, yang diikuti dengan pembengkakan sel. Selanjutnya terjadi kerusakan membran sitoplasma dan mengakibatkan keluarnya kandungan intraseluler yaitu sebanyak 50 persen Na-glutamat-3, 4^{14}C dan 12 persen NaH_{2}^{13}PO_{4} dari \textit{E. coli}. Adanya perembesan bahan yang terkandung dalam sel menunjukkan pertahanan permeabilitas lemah atau rusak, yang selanjutnya menurunkan kandungan ATP sel.

c. Penghambatan sintesis protein

bioaktif yang dapat menghambat sintesis protein bakteri. Komponen bioaktif tersebut bereaksi dengan komponen sel ribosom 50S yang membentuk komplek pada tahap inisiasi (tahap awal sintesis protein), sehingga menstimulasi pembacaan yang salah, selanjutnya terjadi penyimpangan dalam ribosom, yang mengakibat sintesis protein dilanjutkan dengan pasangan yang tidak tepat dan akhirnya mengganggu pembentukan protein.

d. Gangguan fungsi material genetik

Komponen bioaktif dapat mengganggu pembentukan asam nukleat (DNA dan RNA) dan berakibat mengganggu transfer informasi genetik. Hal ini disebabkan oleh komponen bioaktif yang berinteraksi dengan: (1) benang helik ganda DNA, sehingga mencegah replilasi dan transkripsi, (2) polimerase yang mengakibatkan aktivitas enzim yang berperan pada biosintesis DNA dan RNA juga terhambat, sehingga menghambat pertumbuhan dan pembelahan sel (Volk dan Wheeler 1988).
e. Pengkelat logam

Komponen bioaktif dapat berfungsi sebagai pengkelat logam. Komponen ini banyak ditemukan pada senyawa antimikroba dari antibiotik seperti tetrasiklin dan EDTA. Kemampuan senyawa pengekelat logam antara lain dapat mengikat Mg"+ dan Ca"+, yang mengakibatkan fungsi membran terluar sel bakteri bermuatan negatif terganggu (Nikaido, 1996).

C. ANALISIS PENGHAMBATAN MIKROBA

Penghambatan mikroba oleh suatu senyawa antimikroba dinyatakan dengan nilai MIC (Minimum Inhibitory Concentration) yaitu konsentrasi terkecil yang dapat menghambat pertumbuhan bakteri lebih dari 90 persen, sedangkan minimal konsentrasi yang dapat membunuh bakteri 99,9 persen atau lebih dari inokulum asal selama inkubasi 24 jam dinyatakan dengan nilai MBC (Minimum Bactericidal Concentration) (Baron et al., 1995; Carson dan Riley, 1995). Nilai MIC dan MBC senyawa antimikroba dari ekstrak rempah-rempah maupun tanaman lainnya berbeda-beda bergantung pada jenis mikroba dan senyawa antimikroba.

Senyawa antimikroba yang diisolasi dari buah jambu monyet (Anacardium occidentale) yaitu nerolidol dapat menghambat pertumbuhan Streptococcus mutan pada konsentrasi 25 μg/ml, sedangkan linalool pada konsentrasi 1.600 μg/ml. Jika penggunaannya dicampur yaitu satu persen nerolidol dan 64 persen linalool, maka nilai MIC menjadi 12,5 μg/ml. Peningkatan aktivitas penghambatan dari campuran kedua
komponen tersebut memperlihatkan adanya sifat sinergis dari kedua antimikroba tersebut terhadap *Streptococcus* (Kubo et al., 1993).

Komponen fenolik dalam ekstrak teh yaitu α-terpineol dan linalool, dapat membunuh *E. coli* masing-masing pada MIC dan MBC 0,06 mg/ml (Carson dan Riley, 1995). Antimikroba sejenis antibiotik siprofloksasin dan tobramisin masing-masing menghambat pertumbuhan *Pseudomonas cepacia* pada MIC 6,25 μg/ml dan 50 μg/ml (McKenney et al., 1994). Nilai MIC senyawa antimikroba yang lebih rendah menunjukkan bakteri lebih rentan terhadap komponen tersebut.

D. TANAMAN JAHE DAN MANFAATNYA

Tanaman jahe (*Zingiber officinale*) termasuk famili temu-temuan (*Zingiberaceae*), yaitu suatu tanaman rumput-rumputan berbatang semi dan tumbuhnya tegak dengan tinggi 30-100 cm, bahkan ada yang mencapai 120 cm (Sastrapraja, 1977). Tanaman jahe mempunyai batang semi yang diselubungi plepah daun, daun berwarna
hijau, bunga berwarna kekuningan dengan bibir bunga berwarna ungu. Rimpang jahe yang merupakan batang, tumbuh didalam tanah dan bercabang tidak teratur.

1. Nama dan Asal Tanaman Jahe

Tanaman jahe berasal dari daerah tropis Cina Selatan yang sekarang banyak dibudidayakan di Australia, Sri Lanka, Cina, Mesir, Yunani, India, Indonesia, Jamaika, Jepang, Meksiko, Nigeria dan Pakistan. Tanaman ini tumbuh pada ketinggian 30-600 m diatas permukaan laut dan juga dapat tumbuh diatas ketinggian 1500 m (Anonim, 1992) dan tumbuh subur pada tanah yang gembur, mempunyai persediaan humus yang cukup serta sistem pengairan yang baik.
2. Manfaat Tanaman Jahe

E. KOMPOSISI KIMIA JAHE

lemak dalam minyak jahe terutama adalah linoleat, oleat, kaprilat, kaprat, laurat
miristat, pentadekanoat, heptadekanoat, stearat dan arakidonat.

Tabel 1. Komposisi kimia dari 100 g jahe segar

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air (g)</td>
<td>76.17</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>1.50</td>
</tr>
<tr>
<td>Lemak (g)</td>
<td>1.00</td>
</tr>
<tr>
<td>Karbohydrat (g)</td>
<td>10.1</td>
</tr>
<tr>
<td>Kalsium (mg)</td>
<td>21.00</td>
</tr>
<tr>
<td>Forfor (mg)</td>
<td>39.00</td>
</tr>
<tr>
<td>Besi (mg)</td>
<td>4.30</td>
</tr>
<tr>
<td>Vitamin A (SI)</td>
<td>30.00</td>
</tr>
<tr>
<td>Niasin (mg)</td>
<td>0.80</td>
</tr>
<tr>
<td>Vitamin C (mg)</td>
<td>4.00</td>
</tr>
<tr>
<td>Serat kasar (g)</td>
<td>7.53</td>
</tr>
<tr>
<td>Total abu (g)</td>
<td>3.70</td>
</tr>
<tr>
<td>Natrium (mg)</td>
<td>6.00</td>
</tr>
<tr>
<td>Kalium (mg)</td>
<td>5.70</td>
</tr>
<tr>
<td>Oleoresin (%)</td>
<td>3.50</td>
</tr>
<tr>
<td>Minyak atsiri (%)</td>
<td>2.60</td>
</tr>
</tbody>
</table>

*Amitrudin (1985)

Sifat khas jahe disebabkan oleh adanya minyak atsiri dan oleoresin. Minyak atsiri
menyebabkan jahe berbau harum dan oleoresin menyebabkan jahe mempunyai rasa
pedas. Sampai saat ini tingkat keharuman dan kepedasan digunakan untuk menentukan
mutu jahe. Kandungan senyawa tersebut dipengaruhi oleh kondisi tanah dan varietas
(Tabel 2) Berdasarkan kandungan minyak atsiri, jahe merah yang berasal dari
Bengkulu dan Kalimantan mempunyai mutu yang lebih baik daripada jahe yang lain.
Tabel 2. Mutu jahe kering dari berbagai daerah di Indonesia*

<table>
<thead>
<tr>
<th>Jenis jahe</th>
<th>Daerah asal</th>
<th>Kandungan</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Putih kecil</td>
<td>Bengkulu</td>
<td>6.70</td>
<td>2.14</td>
<td>10.50</td>
</tr>
<tr>
<td>Putih kecil</td>
<td>Sukabumi</td>
<td>12.60</td>
<td>3.05</td>
<td>7.20</td>
</tr>
<tr>
<td>Putih kecil</td>
<td>Cipanas</td>
<td>10.60</td>
<td>3.22</td>
<td>8.90</td>
</tr>
<tr>
<td>Putih kecil</td>
<td>Bali</td>
<td>11.60</td>
<td>2.71</td>
<td>7.80</td>
</tr>
<tr>
<td>Putih besar</td>
<td>Bogor</td>
<td>8.60</td>
<td>1.12</td>
<td>9.70</td>
</tr>
<tr>
<td>Jahe besar</td>
<td>Cianjur</td>
<td>13.90</td>
<td>1.62</td>
<td>6.60</td>
</tr>
<tr>
<td>Jahe Kuning</td>
<td>Jambi</td>
<td>19.40</td>
<td>2.12</td>
<td>-</td>
</tr>
<tr>
<td>Jahe kuning</td>
<td>Maguun</td>
<td>12.20</td>
<td>1.60</td>
<td>9.00</td>
</tr>
<tr>
<td>Jahe merah</td>
<td>Bengkulu</td>
<td>6.50</td>
<td>3.92</td>
<td>15.90</td>
</tr>
<tr>
<td>Jahe merah</td>
<td>Kalimantan</td>
<td>7.80</td>
<td>3.96</td>
<td>7.40</td>
</tr>
</tbody>
</table>

*Rusli (1986)

1. Minyak Atsiri Jahe

Tabel 3. Sifat fisikokimia minyak atsiri jahe*

<table>
<thead>
<tr>
<th>Karakteristik</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grafitasi spesifik pada 55°C</td>
<td>0,871-0,882</td>
</tr>
<tr>
<td>Putaran optik</td>
<td>-30°10 - -40°20</td>
</tr>
<tr>
<td>Indek refraksi</td>
<td>1,4876-11,4917</td>
</tr>
<tr>
<td>Bilangan asam</td>
<td>1,1-3,7</td>
</tr>
<tr>
<td>Bilangan penyabunan</td>
<td>0,9-11,2</td>
</tr>
</tbody>
</table>

2. Oleoresin

Oleoresin jahe mempunyai nama komersial gingerin. Oleoresin merupakan komponen jahe non volatil, yang mempunyai titik didih lebih tinggi daripada komponen volatil yang menyusun minyak atsiri. Oleoresin memberi rasa pedas dan mempunyai rasa seperti rempah-rempah aslinya (Furia, 1978). Oleoresin jahe merupakan cairan kental berwarna kuning yang dengan sifat-sifat sebagai berikut: larut dalam alkohol, petroleum eter dan sedikit larut dalam air dengan berat jenis 1,026-1,045, indek refraksi 1, 515-1,525, titik didih 235-240 °C, pH 3-5.

Komposisi kuantitatif oleoresin bergantung pada jenis pelarut yang digunakan, dan secara umum tersusun dari beberapa komponen yaitu: (1) resin yang terlarut dalam pelarut organik (gingerol, zingeron dan shogaol), yang merupakan senyawa turunan fenol dan keto fenol, (2) minyak atsiri dan (3) senyawa lain seperti asam lemak non volatil.

Oleoresin hasil ekstraksi alkohol mengandung minyak atsiri yang bersifat polar (Tabel 4). Minyak atsiri yang mempunyai ikatan rangkap, seperti zingiberen sebagian
akan terekstraksi dengan pelarut alkohol, karena senyawa ini mempunyai ikatan rangkap yang mudah terpolarisasi sehingga menimbulkan efek sedikit polar. Komponen minyak atsiri seperti kamfena dan β-felandren merupakan komponen yang sangat mudah menguap, sehingga mudah hilang bersama proses penguapan pelarut (Khirzuddin, 1991).

Tabel 4. Komposisi komponen minyak atsiri dari rimpang jahe dan oleoresin*

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Rimpang jahe</th>
<th>Oleoresin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minyak atsiri (%v/vb)</td>
<td>1,8900</td>
<td>19,6300</td>
</tr>
<tr>
<td>Indek bias minyak 20°C</td>
<td>1,4893</td>
<td>1,4957</td>
</tr>
<tr>
<td>Komponen citarasa**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamfena</td>
<td>6,4707</td>
<td>-</td>
</tr>
<tr>
<td>β-Felandren</td>
<td>1,9325</td>
<td>0,5507</td>
</tr>
<tr>
<td>Limonen</td>
<td>6,0256</td>
<td>0,4299</td>
</tr>
<tr>
<td>Linalool</td>
<td>0,8486</td>
<td>1,4592</td>
</tr>
<tr>
<td>Borneol</td>
<td>3,0019</td>
<td>-</td>
</tr>
<tr>
<td>Geraneol</td>
<td>Puncak tak memisah</td>
<td></td>
</tr>
</tbody>
</table>

* Khirzuddin (1991)
** Analisis dengan kromatografi gas

Rasa pedas dari senyawa gingerol akan hilang atau rusak bila dipanaskan dengan larutan KOH 2 persen. Zingeron terdapat didalam rimpang jahe akan bertambah jika terjadi dekomposisi gingerol oleh pemanasan diatas 200°C melalui reaksi “retro-aldol” (Purseglove et al., 1981). Komponen ini juga mempunyai rasa pedas, kepedasan zat ini akan hilang bila bereaksi dengan KOH 5 persen dan menurun selama penyimpanan. Shogaol dan zingeron merupakan hasil dehidrasi dan degradasi gingerol, seperti yang terlihat pada struktur kimia komponen tersebut (Gambar 2). Reaksi dehidrasi dan
degradasi berlangsung lambat pada suhu kamar dan lebih lambat pada suasana asam.
Dan jika reaksi berlanjut akan terbentuk polimer yang tidak mempunyai rasa pedas
(Spiro dan Kandiah, 1990).

Gambar 2. Reaksi dehidrasi dan degradasi gingerol menjadi zingeron dan shogaol (Purseglove et al., 1981)

3. Ekstraksi Oleoresin

Ekstraksi adalah tahapan pemisahan suatu senyawa dengan matriknya menjadi senyawa terlarut untuk tujuan identifikasi komponen maupun komersial (Houghton dan Raman, 1998). Pentingnya mendapatkan ekstrak senyawa tertentu disebabkan; (1) keragaman komponen yang terkandung dalam bahan segar yang dipengaruhi oleh genetik dan lingkungan tempat tumbuh tanaman, (2) adanya perubahan-perubahan komponen selama penyimpanan dalam bentuk segar, dan (3) memenuhi konsentrasi tertentu terhadap senyawa yang diinginkan. Metode ekstraksi meliputi ekstraksi cairan-cairan dan cairan padatan dengan menggunakan teknik rendam, counter-current

a. Pelarut ekstraksi

Pemilihan pelarut yang akan dipakai dalam proses ekstraksi, harus memperhatikan sifat kandungan senyawa yang akan diisolasi. Sifat yang penting adalah polaritas dan gugus polar dari suatu senyawa. Dengan mengetahui sifat senyawa yang akan diekstraksi dapat dipilih pelarut yang sesuai berdasarkan polaritas. Senyawa polar lebih mudah larut dalam pelarut polar dan senyawa non-polar lebih mudah larut dalam pelarut non-polar. Derajat polaritas bergantung pada ketetapan dielektrik, makin besar tetapan dielektrik makin polar pelarut tersebut (Houghton dan Raman, 1998).

Secara umum tahapan ekstraksi terdiri atas persiapan bahan mentah, kontak bahan dengan pelarut, pemisahan ampas dengan materi terekstraksi dan pemisahan pelarut.

b. Cara ekstraksi

Houghton dan Raman (1998) mengemukakan bahwa secara umum proses ekstraksi terdiri atas tiga macam yaitu maserasi, refluks dan perkolasi. Ekstraksi dapat dilakukan secara berturut-turut mulai dengan menggunakan pelarut non polar (n-heksan, sikloheksan, toluen dan kloroform) lalu menggunakan pelarut yang semi polar
(diklorometan, dietil eter dan etil asetat), kemudian dengan pelarut polar (metanol, etanol dan air). Ekstraksi secara bertahap seperti ini akan diperoleh ekstrak awal (ekstrak kasar) yang mengandung berturut-turut senyawa non polar, semi polar dan polar.

Cara ekstraksi diatas dapat dilakukan secara dingin untuk senyawa yang tidak tahan panas atau menggunakan pemanasan untuk senyawa yang tahan panas. Penggunaan suhu panas dapat mempercepat ekstraksi senyawa yang dinginkan, karena pemanasan memperbesar kelarutan. Ekstraksi dengan pelarut non polar biasanya diperlukan untuk menghilangkan senyawa yang bersifat lemak atau minyak sebelum diekstraksi dengan pelarut yang sesuai.

Oleoresin jahe dapat diperoleh dengan cara ekstraksi terhadap tepung jahe kering dengan pelarut organik. Menurut Spiro et al. (1990) ekstraksi oleoresin dari rimpang jahe menggunakan diklorometan lebih cepat daripada menggunakan etanol maupun dengan isopropanol. Penggunaan pelarut aseton menghasilkan oleoresin yang pekat (Rusli, 1986), tetapi secara tidak spesifik juga akan terekstrak bahan lilin selain oleoresin (Chen et al., 1986). Sebagai contoh adalah ekstraksi jahe jamaika dengan maserasi selama 6 jam pada suhu 30°C menggunakan pelarut organik aseton, diklorometan dan etanol diperoleh oleoresin 4-5 persen (b/b) dari jahe kering. Dari oleoresin tersebut diperoleh kandungan gingerol berturut-turut 0,96, 0,93 dan 0,83 persen (b/b) dari jahe kering (Spiro dan Kandiah, 1990)
c. Fraksinasi

Teknik kromatografi untuk pemisahan suatu campuran komponen dipengaruhi oleh sifat kelarutan dari komponen yang bersangkutan didalam larutan pengembangnya, interaksi komponen dengan bahan fase diam dan pelarut dengan fase gerak (Houghton dan Raman, 1998).

Kromatografi lapis tipis merupakan metode pemisahan yang cepat dengan peralatan sederhana dan banyak parameter percobaan yang dapat divariasikan untuk mendapatkan pemisahan yang baik. Kromatografi lapis tipis merupakan sistem pemisahan adsorpsi dan partisi. Lapisan yang memisahkan terdiri atas fase diam ditempatkan pada penyangga berupa plat gelas, logam atau lapisan yang cocok. Campuran yang akan dipisahkan berupa larutan yang dispotkan pada plat, sehingga menghasilkan bercak atau pita awal, kemudian plat tersebut dikembangkan dengan larutan pengembang yang cocok. Pemisahan terjadi selama peresapan secara kapiler,
kemudian terbentuk spot-spot yang terpisah. Jika spot tidak tampak dapat dilihat
 dengan bantuan sinar ultraviolet atau dengan menggunakan uap iodium (Houghton
dan Raman, 1998).

Analisis komponen bioaktif yang mempunyai rasa pedas pada jahe yang
dilakukan dengan metode KLT silika G60 F245 menunjukkan bahwa komponen ini
adalah gingerol, zingeron dan shogaol, yang masing-masing mempunyai nilai Rf
(Retardation factor) 0,15-0,22, 0,24-0,27 dan 0,40-0,45 (Chen et al., 1986),
sedangkan nilai Rf 0,45-0,72 merupakan fraksi minyak atsiri. Nilai Rf dari komponen
gingerol, zingeron dan shogaol tersebut sama seperti yang diperoleh oleh Wikandari
(1994).

G. MIKROBA PATOGEN PADA BAHAN PANGAN

Apek mikrobiologis dalam bahan pangan mempunyai peranan yang sangat
penting karena bahan pangan dapat merupakan salah satu perantara timbulnya
penyakit. Gangguan kesehatan, khususnya gangguan pada saluran pencernaan yang
berkaitan dengan konsumsi bahan pangan diklasifikasikan sebagai penyakit
berperantara makanan (foodborne diseases).

Frazier dan Westhoff (1987) menggolongkan penyakit tersebut menjadi: (1)
Gangguan akibat mengkonsumsi toksin bakteri yang terbentuk dalam bahan pangan
(intoksikasi pangan) dan (2) Gangguan karena masuknya bakteri kedalam tubuh
melalui makanan (infeksi pangan).

Penyakit yang disebabkan oleh bakteri yang masuk kedalam tubuh melalui
makanan diklasifikasikan kedalam dua kelompok: (a) infeksi dimana makanan tidak
menunjang pertumbuhan patogen, tetapi sekedar membawa patogen, misalnya penyebab tuberkulosis (*M. tuberculosis*), bruselosis (*Brucella abortus*), dipteri (*Corynebacterium diphtheriae*), disentri (*Campylobacter*), kolera (*V. cholerae*) dan hepatitis. (b) infeksi dimana makanan berfungsi sebagai media kultur untuk pertumbuhan bakteri patogen hingga mencapai jumlah yang memadai untuk menimbulkan infeksi bagi pengkonsumsi makanan tersebut, misalnya infeksi *Salmonella* spp, *Listeria monocytogenes*, *V. parahaemolitcicus* dan *E. coli* enteropatogenik (Frazier dan Westhoff, 1987).

Beberapa contoh bakteri yang berhubungan dengan gangguan kesehatan berperan antara makanan yang mengakibatkan diare diantaranya adalah *V. cholerae*, *S. typhi* dan *E. coli O157:H7*.

1. *Salmonella typhi*

Salmonella typhi dapat menyebabkan demam tipoid pada dosis infeksi kurang lebih 10⁴ cfu (Naughton et al., 1996). Gejala yang ditimbulkannya berupa pusing, muntah dan diare yang diikuti dengan suhu tubuh yang tinggi, sedangkan *Septisemia* yaitu ditemukannya bakteri *S. typhi* dalam darah, terjadi setelah 10 hari terinfeksi.
Sebagai sumber penularan bakteri melalui bahan pangan yang berasal dari unggas, air, debu dan lingkungan lainnya (Robert et al., 1996).

2. *Escherichia coli* O157:H7

Escherichia coli O157:H7 menghasilkan verotoksin yang bersifat sitolitik sehingga menyebabkan kolitis hemorrargik dan sindrom hemolitik uremik. Kolitis hemorrargik menyebabkan kram perut yang diikuti dengan diare berdarah setelah waktu inkubasi 3-8 hari, sedangkan hemolitik uremik menyebabkan gagal ginjal, anemia dan trombositopenia atau penurunan platelet darah (Ongureno et al., 1996; Venkateswaran et al., 1997). Sumber penularan bakteri ini adalah feses ternak, sehingga penularan bakteri dapat melalui produk peternakan antara lain daging rusa, sapi, unggas dan susu. (Fischer et al., 2000).
3. *Vibrio cholerae*

Vibrio cholerae termasuk famili *Vibrionaceae*. merupakan bakteri Gram negatif yang berbentuk batang pendek kadang berbentuk koma, fakultatif anaerobik dan motil dengan flagela polar. Tumbuh optimum pada suhu 37°C dan juga dapat tumbuh pada kisaran suhu 10-43°C, pH 7,6, NaCl 0,5 persen dan aw 0,98 (Roberts et al., 1996).

Bakteri *V. cholerae* menghasilkan enterotoksin yang dapat menyebabkan diare berair. Bakteri tersebut banyak ditemukan didalam bahan pangan mentah, susu dan produk susu, serta bahan pangan hasil laut, menyebabkan produk ini dapat menjadi sumber penularan bakteri (Doyle, 1989). Adanya kontaminasi *V. cholerae* didalam makanan dan minuman, menunjukkan keadaan sanitasi yang kurang baik (Fardiaz, 1993)

H. FAKTOR VIRULENSI BAKTERI

1. Plasmid

Patogenesis *S. typhi* bersifat invasif kedalam jaringan epitel dan pada salmonelosis yang kronis ditemukan bakteri berada di kantung empedu dan hati, selanjutnya bakteri ini akan dikeluarkan dari tempat tersebut secara periodik. Sifat invasif pada *Salmonella* bergantung pada keberadaan plasmid dengan BM 40-60 MDalton, yang menyandikan pembentukan protein sitoskeleton seperti aktin, vinkulin, vimentin dan enzim. Pembentukan protein ini terjadi dalam waktu 30-60 menit pada sisi apikal bakteri yang berhubungan dengan sisi masuknya bakteri pada epitel (Partillo, 2000).

Sifat invasif juga dimiliki oleh *E. coli* enteroinvasif yang bergantung pada plasmid BM 120-140 MDalton. Adanya plasmid ini mengakibatkan bakteri dapat masuk kedalam jaringan epitel, berkembang biak didalam sel kolon dan menimbulkan diare disentri yang diikuti respon inflamasi serta luka pada mukosa.

Sifat virulensi dari *V. cholera* O1 berhubungan dengan keberadaan plasmid dengan BM 44 MDalton, yang menyandikan produksi protein membran luar BM 86 kDalton (Pedersen *et al*., 1997). Plasmid dengan BM 44 MDalton pada *V. anguillarum* O1 menyandikan protein BM 70-75 kDalton, yang diduga merupakan proteinase dan hemolisin. Penyuntikan *V. anguillarum* O1 secara intraperitonel pada ikan salmon membuktikan bahwa adanya plasmid tersebut meningkatkan virulensi *V. anguillarum* O1 dengan menurunkan nilai LD₅₀ yaitu dari 10⁷ sel menjadi 10³ sel (Pedersen *et al*., 1997).

2. Struktur Bakteri

Bakteri mempunyai beberapa struktur yang mendukung virulensinya antara lain adalah kapsul, lapisan lendir dan adesin. Struktur bakteri tersebut menyebabkan bakteri dapat berinteraksi dan melekat pada inang dengan membentuk suatu matrik atau ikatan hidrofobik, sehingga dapat mendistribusikan faktor virulensi yang lain seperti toksin.

a. Kapsul dan lapisan lendir

Beberapa bakteri mempunyai komponen yang merupakan polisakarida, polipeptida atau komplek polisakarida-polipeptida pada bagian luar dinding sel. Komponen ini disebut kapsul jika terdapat dalam bentuk yang kompak dan jika dalam bentuk yang lebih lunak serta mudah lepas disebut lendir (Fardiaz, 1992).

non fimbrie (Finlay dan Falkow,1997).

Fimbrie memiliki berbagai mekanisme penempelan pada sel inang. Seperti *Salmonella* dan *E. coli* mempunyai fimbrie tipe-1 yang memfasilitasi bakteri tersebut
dapat berikatan dengan fibronectin (glikoprotein) dan bakteri menempel pada vili usus, kemudian toksin yang dihasilkan dapat berinteraksi dengan sel epitel. *Vibrio cholerae* mempunyai fimbrie tipe-IV yang dapat berikatan dengan glikokalik dari mukosa. Selanjutnya bakteri ini menghasilkan musinase dan mendegradasi glikoprotein yang menyusun glikokalik tersebut, yang mengakibatkan bakteri dapat masuk kedalam lapisan mukosa dan toksin yang dihasilkan dapat berinteraksi dengan sel epitel. Finlay dan Falkow (1997), walaupun toksin kolera sendiri dapat menyebabkan penyakit, namun keberadaan fimbrie tipe-IV sangat diperlukan untuk penyebaran toksin kedalam sel epitel. Fimbrie tipe IV dari *V. cholerae* selain sebagai faktor adesin untuk fungsi virulensi, juga berfungsi sebagai alat biogenesis alternatif (Finlay dan Falkow, 1997).

Adanya beberapa faktor adesin bakteri memungkinkan meningkatkan patogenesitas bakteri tersebut, karena menyebabkan bakteri dapat menempel pada sel inang.
3. Toksin

Toksin adalah suatu senyawa biokimia yang dihasilkan oleh bakteri yang dapat mengakibatkan gangguan pada fungsi normal sel dan kerusakan pada jaringan. Berdasarkan pada lokasi keberadaannya, toksin dibedakan menjadi eksotoksin dan endotoksin dan berdasarkan pada reaksi biologis terhadap sel inang dibedakan menjadi sitotoksin dan enterotoksin. Eksotoksin merupakan toksin protein yang disekresikan oleh bakteri kedalam media pertumbuhannya, sedangkan endotoksin adalah toksin yang diekspresikan oleh komponen dinding sel lipopolisakarida. Enterotoksin adalah toksin yang langsung disekresikan didalam saluran pencernaan dan menyerang sel target yang mengakibatkan respon sekresi pada sel, sehingga terjadi diare berair tanpa inflamasi. Sitotoksin adalah toksin yang mengakibatkan diare yang diikuti kerusakan jaringan dan respon inflamasi (Doyle, 1989).

Beberapa toksin yang berkaitan dengan virulensi bakteri penyebab penyakit pada saluran pencernaan antara lain:

a. Enterotoksin

Telah diketahui bahwa diare dapat disebabkan oleh V. cholerae O1, S. typhi dan E. coli enterotoksinigenik dan yang berperan menimbulkan penyakit ini adalah enterotoksin yang dihasilkan.

Dua toksin S. typhi yang menyebabkan diare adalah enterotoksin dan sitotoksin. Enterotoksin dari Salmonella ini merupakan eksotoksin dengan BM 90-110 kDalton yang terdiri atas dua subunit A dan B. Enterotoksin ini merupakan toksin
Kapsul merupakan sisi virulensi spesifik dari bakteri (K-antigen), yang mempunyai fungsi antifagositosis terhadap sel pertahanan inang, dimana kapsul mencegah terjadinya kontak antara bakteri dengan sel fagosit, hal ini disebabkan oleh sifat ionik dan hidrofilik dari polisakarida penyusun kapsul (Rick dan Silver, 1996). Selain itu kapsul juga melindungi bakteri dari aktivasi komplemen (antibody-independent) yang dapat melisis sel bakteri dan opsonofagositosis. Lapisan lendir sebagai antigen M pada bakteri berfungsi melindungi sel dari kekeringan.

b. Adesin

Adesin merupakan faktor penempelan bakteri pada reseptor spesifik dan berkolonisasi bakteri dengan sel inang. Senyawa ini menentukan virulensi bakteri, namun tidak semua senyawa adesin dapat merupakan faktor virulensi yang penting. Secara garis besar faktor adesin dibedakan menjadi dua golongan yaitu fimbrie dan non fimbrie (Finlay dan Falkow, 1997).

Fimbrie memiliki berbagai mekanisme penempelan pada sel inang. Seperti Salmonella dan E. coli mempunyai fimbrie tipe-1 yang memfasilitasi bakteri tersebut

Enterokotksin LT dari *Salmonella* dan *E. coli* dapat dinetralisir oleh antitoksin kolera, dimungkinkan ketiga toksin tersebut mempunyai sisi aktif yang sama dan mekanisme toksisitas yang sama pula yaitu mengaktivasi adenilat siklas, walaupun produksi LT *Salmonella* dan toksin kolera (CT: *cholera toxin*) disandhi oleh gen kromosom (Partillo, 2000), sedangkan LT *E. coli* enterokotksigenik disandhi oleh plasmid (Donnenberg dan Nataro, 2000).

(cAMP) didalam sel, yang bertanggungjawab terhadap transpor ion didalam sel vili dan crypt dari mukosa usus, sehingga terjadi sekresi Cl⁻ kedalam lumen usus dan penghambatan penyerapan Na⁺ (Holmgren, 1978; Robert et al., 1996).

Mekanisme toksisitas enterotoksin ST dari E. coli mengaktifkan guanilat siklase yang dapat mengakibatkan akumulasi siklik guanosil 3', 5' monofosfat (cGMP) didalam sel epitel, tetapi tidak pada jaringan lain, sehingga terjadi sekresi cairan elektrolit non Cl⁻ dan mungkin bikarbonat. Sel epitel memberi respon reaksi adenilat siklase terhadap enterotoksin ST setelah 6 jam kontak, sedangkan respon terhadap LT terjadi setelah 18 jam kontak, sehingga gejala yang ditimbulkan oleh ST akan lebih cepat daripada LT (Doyle, 1989).

b. Sitotoksin

Patogenesis E. coli O157:H7 diketahui bahwa ekstrak bakteri dan isolat supernatan kultur dapat melisis sel Vero, tetapi tidak berpengaruh terhadap sel CHO dan adrenal (Y-1). Toksin tersebut dapat dinetralisir oleh antiserum dari kelinci yang
diimunisasi dengan toksin shiga, sehingga diduga isolat dan kultur supernatan tersebut merupakan Shiga like toxin atau verotoksin-1 (VT-1). Verotoksin-1 ini mempunyai struktur molekul yang terdiri atas subunit A (BM 29-31 kDalton) dan subunit B (BM 5-6 kDalton) (Doyle, 1989; Donnenberg dan Nataro, 2000).

c. Endotoksin

Dinding sel bakteri Gram negatif terdiri atas peptidoglikan, yang dilapisi oleh protein, lipid dan lipopolisakarida (LPS). Komponen LPS dapat bersifat toksik, tetapi
tidak semua LPS bersifat toksik. Sebagai contoh adalah LPS dari bakteri *E. coli* yang secara normal ada didalam kolon tidak bersifat toksik, karena komponen pada bagian core polisakarida penyusun LPS tersebut tidak sempurna. Perubahan struktur LPS pada bakteri dapat dilihat dari perubahan pelisisan bakteri oleh bakteriofage. Mutasi bakteri fage-4 menjadi fage-7 dapat mengakibatkan bakteri virulen menjadi tidak virulen (Cox dan Waalcook, 1994).

d. Hemolisin

Toksin bakteri yang lain adalah toksin yang dapat menyisip pada membran plasma sel inang, dengan membentuk pori atau saluran sehingga mengakibatkan sel

Pengaruh 200–500 µg hemolisin pada RILT (*rabbit ileal loop test*) memberikan respon positif yaitu menyebabkan akumulasi cairan usus mengandung darah, sehingga hemolisin juga disebut enteropatogenik toxin. Hemolisin yang diperoleh dari filtrat kultur *E. coli* dapat menyebabkan perubahan pada CHO (Wadstrom, 1978).

4. Faktor Lingkungan

a. Antimikroba dan Fe (besi)

Antimikroba dapat mengakibatkan perubahan morfologi dan produksi faktor virulensi. Contohnya adalah penggunaan siprifloksasin pada konsentrasi sub-MIC terhadap P. cepacia yang meningkatkan produksi eksopolisakarida (EPS) dari 0,1 mg/unit sel menjadi 7 mg/unit sel pada kondisi media tanpa Fe, dan 11 mg/unit sel pada media mengandung Fe, sedangkan adanya tobramisin dalam media menghasilkan 1 mg/unit sel pada media yang mengandung Fe dan 0,5 mg pada media tanpa Fe (McKenney et al., 1994). Selain itu siprifloksasin dapat menurunkan hidrofobisitas P. cepacia pada media mengandung Fe maupun tidak mengandung Fe, sedangkan tobramisin dapat menurunkan hidrofobisitas pada media tanpa Fe, tetapi meningkatkan hidrofobisitas pada media mengandung Fe. Penurunan hidrofobisitas P. cepacia disebabkan produksi EPS dan komponen siderophore, yang merupakan protein membran bakteri berfungsi sebagai pengatur penyerapan Fe. Jadi penggunaan antibiotik pada konsentrasi sub-MIC dapat meningkatkan virulensi karena peningkatan EPS. Peran EPS sebagai faktor virulensi bakteri adalah berfungsi sebagai proteksi terhadap fagositosis dan meningkatkan ketahanan terhadap antimikroba (Gordon et al., 1988).

b. Suhu

Suhu lingkungan dapat mempengaruhi virulensi strain bakteri yang potensial menyebabkan infeksi. Sebagai contoh, Salmonella mutan yang sensitif terhadap suhu
sulit untuk mengekspresikan virulensinya didalam saluran pencernaan mamalia, tetapi tidak pada inang yang bersifat poikilotermik (Doyle, 1989).

I. RESEPTOR MEMBRAN

Secara umum reseptor merupakan makromolekul yang terdapat pada membran sel inang, yang berfungsi mengenali dan mengikat molekul diluar sel yang disebut ligan (Cau dan Seite 1999). Reseptor dikategorikan menjadi dua berdasarkan lokasi reseptor yaitu reseptor intraseluler (berlokasi didalam sel) dan reseptor ekstraseluler (berlokasi pada plasma membran). Reseptor intraseluler pada sel inang berfungsi mengikat ligan yang bersifat hidrofobik (hormon dan steroid) dan reseptor pada plasma membran berfungsi mengikat ligan yang bersifat hidrofilik.

Berdasarkan mekanisme terhadap efek yang dihasilkan oleh adanya sinyal yang diberikan, reseptor membran plasma dibedakan menjadi tiga kelompok yaitu: (1) Reseptor tipe I, mempunyai aktivitas enzimatik yang mengaktifkan tirosin kinase dan mengakibatkan terjadinya reaksi fosforilasi berantai didalam sel. Contoh reseptor ini adalah reseptor insulin dan hormon pertumbuhan. (2) Reseptor tipe II memberikan
sinyal terhadap membuka dan menutupnya saluran spesifik terhadap ion tertentu yaitu Na⁺, K⁺ dan Cl⁻, sehingga memberikan perubahan ionic didalam sel. Sebagai contoh asetil kolin yang merupakan reseptor dari nikotin. Interaksi antara reseptor dengan nikotin dapat mengakibatkan saluran Na⁺ dan K⁺ membuka. (3) reseptor tipe III, merupakan reseptor yang bekerja sama dengan protein G, yang dapat mengaktifkan enzim plasma dan saluran ionik (Cau dan Seite, 1999).

1. Interaksi Toksin dengan Reseptor

Gambar 3. Struktur GM₁ pada membran sel inang terdiri atas (1) Galaktosa; (2) N-asetilgalaktosamin; (3) Glukosa; (4) Asam N-asetilnuraminik; (5) seramida (N-asilspringosin) (Gill, 1978)
Interaksi ligan-reseptor mempunyai lima karakteristik yaitu: afinitas tinggi, jumlah reseptor yang terbatas, spesifik, interaksi reversibel dan transkonformasi dari reseptor. Sebagai contoh CT mempunyai afinitas tinggi terhadap GM₁, untuk membentuk ikatan ligan-reseptor memerlukan waktu 2-4 detik dan transmembran dari toksin subunit A memerlukan waktu 30 detik. Tabel 5 menunjukkan hubungan jaringan dengan jumlah reseptor toksin kolera, Gill (1978) menjelaskan bahwa mukosa usus kecil mempunyai reseptor yang lebih banyak daripada jaringan yang lain.

Tabel 5. Jumlah toksin kolera yang terikat pada sel dari berbagai hasil pengamatan. Data merupakan ekspresi inkubasi 1 μg sel dengan 1 ng toxin

<table>
<thead>
<tr>
<th>Jaringan</th>
<th>Jumlah molekul toksin kolera yang terikat per sel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mukosa usus kecil (manusia)</td>
<td>15.000</td>
</tr>
<tr>
<td>Mukosa usus kecil rusa</td>
<td>2.600.000</td>
</tr>
<tr>
<td>Otak marmut</td>
<td>1.000.000</td>
</tr>
<tr>
<td>Adiposa tikus</td>
<td>20.000</td>
</tr>
<tr>
<td>Limfosit tikus</td>
<td>40.000</td>
</tr>
<tr>
<td>Eritrosit tikus</td>
<td>50.000</td>
</tr>
<tr>
<td>Eritrosit manusia</td>
<td>60</td>
</tr>
</tbody>
</table>

(Gill, 1978)

2. Mekanisme Transduksi Sinyal pada Reseptor

Interaksi enterotoksin dengan reseptor memberikan sinyal terhadap komponen sel dengan mekanisme seperti pada reseptor tipe III, yang secara skematis dapat dilihat pada Gambar 4. Sebagai contoh adalah toksin kolera dimana subunit B sebagai sisi yang terikat pada reseptor, sedangkan subunit A masuk kedalam membran plasma
secara penetrasi langsung, karena mempunyai aktivitas ADP-ribosiltransferase NAD-dependen dan berpasangan dengan protein G didalam sitosol (Holmes et al., 1990). Protein G merupakan protein polimer yang terdiri atas subunit α, β, dan γ. Sinyal intermediat dari protein G menginduksi Gα memisah dari Gβγ, selanjutnya mengakibatkan perubahan ADP menjadi GTP. Protein subunit Gα merupakan sisi

![Diagram](image)

1. Saluran ionik membuka
2. Adenil siklas aktif
3. cAMP meningkat → fosforilasi meningkat

Gambar 4. Kemungkinan model mekanisme ikatan dan translokasi toksin kolera pada membran sel eukariot, menggambarkan toksin subunit B berikatan dengan GM₁ dari membran sel eukariot dan memfasilitasi reaksi enzimatisik yang mengakibatkan toksin subunit A dapat mencapai bagian hidrofobik membran (Cau dan Seite, 1999)
yang dapat berikatan dengan guainlnukleotida dan mengaktifkan ATPase, karena adanya toksin kolera yang berikatan dengan Go mengakibatkan enzim ATPase terhambat sehingga tidak terjadi hidrolisis GTP menjadi GDP dan adenilat siklase tetap aktif. Akibatnya cAMP meningkat, selanjutnya Na⁺ dan cairan meningkat dalam epitel sel. Sekresi cairan kedalam lumen usus meningkat, sedangkan penyerapan air dan Na⁺ didalam kolon terhambat sehingga terjadi diare berair (Montecucco et al., 1991; Cau dan Seiite, 1999)

J. DAFTAR PUSTAKA

III. PENGHAMBATAN BAKTERI E. coli O157:H7, S. typhi DAN V. cholerae O1 OLEH EKSTRAK DIKLOROMETAN DAN SARI JAHE

A. ABSTRAK

Telah diketahui bahwa ekstrak jahe dapat berfungsi sebagai antimikroba. Penelitian ini dilakukan untuk mengetahui pengaruh polaritas ekstrak jahe terhadap aktivitas antimikroba dan menentukan nilai MIC dan MBC. Fraksinasi dilakukan secara KLT terhadap ekstrak jahe yang mempunyai aktivitas antimikroba yang relatif tinggi terhadap E. coli O157:H7, S. typhi dan V. cholerae O1.

Hasil ekstraksi rimpang jahe secara bertahap dengan n-heksan, diklorometan dan etanol dihasilkan ekstrak non polar, semi polar dan polar. Aktivitas antimikroba dari ekstrak tersebut secara difusi pada nutrien agar menunjukkan bahwa semua ekstrak dapat menghambat pertumbuhan bakteri E. coli O157:H7, S. typhi dan V. cholerae O1. Secara umum ekstrak diklorometan mempunyai penghambatan relatif yang lebih tinggi daripada ekstrak heksan dan etanol. Radius penghambatan oleh ekstrak tersebut adalah 6,6 mm terhadap V. cholerae O1; 5,3 mm terhadap E. coli O157:H7 dan 4,5 mm terhadap S. typhi. Nilai MIC ekstrak diklorometan pada metoda pengenceran dalam NB yaitu 10, 10 dan 5 mg/ml berturut-turut terhadap E. coli O157: H7, S. typhi dan V. cholerae O1, dengan nilai MBC berturut-turut pada konsentrasi 15, 20 dan 8 mg/ml.

Vibrio cholerae O1 merupakan bakteri yang paling rentan terhadap ekstrak jahe. Penggunaan sari jahe sebesar 12 mg/ml dapat menghambat pertumbuhan V. cholerae O1 sebesar 73,85 persen.

Fraksinasi ekstrak diklorometan secara KLT pada silika G60 F254 dengan ketebalan 0,25 mm yang menggunakan larutan pengembang heksan dan dicileter dengan perbandingan 3:7, dihasilkan 8 fraksi. Fraksi 1 dan 2 adalah gingerol, fraksi 3 adalah zingeron dan fraksi 4 adalah shogaol, keempat fraksi ini mempunyai aktivitas antimikroba terhadap V. cholerae O1. Sedangkan fraksi 5-8 dilarut pengamatan penelitian ini.

B. PENDAHULUAN

Ekstrak jahe mengandung komponen bioaktif non volatil dan minyak atsiri, yang telah diketahui dapat menghambat pertumbuhan bakteri. Menurut Lienne (1981), sari jahe dapat menghambat aktivitas E. coli pada konsentrasi 60 mg/ml, S. thompson
pada konsentrasi 80 mg/ml dan *V. cholerae O1* pada konsentrasi 7 mg/ml Hasil penelitian Undriyani (1987) menyatakan bahwa bubuk jahe sebanyak 2 mg/ml bersifat bakterisidal terhadap bakteri Gram positif *Micrococcus varians*, *Leuconostoc sp* dan *B. subtilis*, sedangkan pada bakteri Gram negatif bubuk jahe hanya bersifat bakteristatik.

Minyak atsiri dari ekstrak jahe juga diketahui dapat menghambat pertumbuhan *Aspergillus niger* pada konsentrasi 2,1 μl/ml (Hill *et al.*, 1997). Didalam ekstrak kayu manis juga terdapat 0,5 – 1,0 persen minyak atsiri, terutama sinamaldehyde hingga 65-75 persen. Sinamaldehyde tersebut dapat menghambat *Aspergillus sp* (Mahmoud, 1994).

Uraian diatas menunjukkan bahwa ekstrak jahe mengadung beberapa macam senyawa yang mempunyai aktivitas antimikroba yang berbeda, antara lain adalah minyak atsiri yang diketahui bersifat fungistatik dan senyawa non volatil yang
dilaporkan bersifat bakteristatik. Oleh karena itu tahap penelitian ini bertujuan: mengetahui pengaruh polaritas ekstrak jahe terhadap aktivitas antimikroba pada *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1 secara difusi agar; menentukan nilai MIC dan MBC ekstrak jahe; fraksinasi ekstrak jahe secara KLT; dan pengujian aktivitas antimikroba dari fraksi tersebut.

C. METODA PENELITIAN

1. Tempat dan Waktu Penelitian

2. Bahan Penelitian

Bahan percobaan yang digunakan adalah rimpang jahe (*Zingiber officinale* Roscoe), berumur 10 bulan yang diperoleh dari kebun Tanaman Rempah dan Obat BALITRO Bogor (Gambar 5). Bakteri yang digunakan adalah: *S. typhi* ATCC 0029.

![Gambar 5. Rimpang jahe gajah (*Zingiber officinale* Roscoe)]
V. cholerae O1 BBC 2143 (BALITVET, Bogor), dan E. coli O157:H7 ATCC 43889 (Lab. Mikrobiologi TPG, IPB, Bogor).

Peralatan yang digunakan adalah penggiling jahe, rotavapor, KLT silika gel G₅₀ F₂₄₅, (0,25 dan 0,50 mm) (E-Merck), inkubator aerobik, pengering beku, sentrifus dan otoklaf.

3. Ekstraksi Jahe

Tujuan ekstraksi adalah untuk mendapatkan ekstrak jahe dengan polaritas yang berbeda, yang menggunakan pelarut heksan, diklorometan dan etanol. Rimpang jahe dipersiapkan secara berurutan: jahe dicuci bersih kemudian ditiriskan, dibekukan, digiling halus dan dikering bekukan, selanjutnya dilakukan ekstraksi.

Gambar 6. Skema proses ekstraksi jahe
4. Fraksinasi Ekstrak Jahe

Fraksinasi ekstrak jahe semua dilakukan dengan metode kromatografi pada KLT silika G_{60} F_{254} dengan ketebalan 0,25 dan 0,5 mm. Fraksinasi ini diharapkan menghasilkan ekstrak jahe yang lebih spesifik (Chen et al., 1986). Fraksi ditetapkan dengan uap I_{2} dan atau dilakukan penyinaran dibawah sinar UV pada \lambda 254 dan 366 nm.

1. Cara kerja: Sebanyak 3-5 ml ekstrak diklorometan jahe diteteskan diatas plat KLT, kemudian plat tersebut ditempatkan didalam wadah yang telah jenuh dengan pelarut pengembang yang terdiri dari heksan dan dietil eter dengan perbandingan 3:7, dan dibiaran selama 4 jam sampai pelarut mencapai tinggi maksimum. Plat diambil, kemudian dibiaran diudara selama 10-15 menit hingga pelarut hilang. Selanjutnya alat dimasukkan kedalam wadah yang mengandung uap I_{2} dan atau menggunakan sinar UV. Kemudian memberi tanda pada noda yang timbul pada plat dan menghitung nilai R_{f}.

Untuk mendapatkan fraksi ekstrak jahe dengan batas yang jelas dan memudahkan isolasi fraksi, maka dilakukan pengembangan pelarut KLT lebih lanjut. Pengerokan pada daerah nodal dengan diameter 5-7 mm, selanjutnya preparat ini dimasukkan kedalam erlenmeyer 50 ml, ditambah 10 ml diklorometan, dimaserasi selama 30 menit sebanyak 3 kali, lalu filtrat ditampung pada tabung reaksi yang telah ditimbang terlebih dahulu. Setelah pelarut diuapkan, maka diperoleh fraksi ekstrak diklorometan jahe.
5. Analisis Total Fenol

Total fenol dalam ekstrak jahe ditentukan dengan modifikasi metoda Folin-Denis (AOAC, 1980; Apriyanto et al., 1988). Sebanyak 2 mg ekstrak jahe (heksan, diklorometan dan etanol) dilarutkan dalam 5 ml alkohol 35 persen dan penambahan air dilakukan untuk pengenceran ekstrak.

Sebanyak 1 ml ekstrak jahe ditambah 1 ml pereaksi Folin-Denis, campuran didiamkan selama 3 menit, selanjutnya ditambah 1 ml Na$_2$CO$_3$ jenuh dan ditambah air hingga volume menjadi 5 ml Suspesi disaring dengan kertas saring. Selanjutnya filtrat diukur absorbansinya pada λ 725 nm dan total fenol dihitung menggunakan kurva standar vanilin. Total fenol diperoleh dengan mengalikan faktor 322/152 terhadap jumlah vanilin pada nilai absorbansi yang sama.

6. Uji Aktivitas Antimikroba

a. Metoda difusi agar

Tujuan penelitian pada tahapan ini adalah untuk mengetahui aktivitas antimikroba dari ekstrak heksan, diklorometan dan etanol terhadap E. coli O157:H7, S. typhi dan V. cholerae O1. Masing-masing ekstrak jahe dilarutkan dalam larutan bufer pengencer yang mengandung 0,75 persen Tween 80. Perlakuan ini diperlukan karena penggunaan ekstrak jahe yang relatif kecil dan untuk mendapatkan difusivitas komponen jahe yang lebih baik.

Aktivitas antimikroba dari ekstrak jahe dilakukan dengan uji difusi pada agar cawan menurut Jin et al. (1996). Adanya aktivitas antimikroba dapat dilihat
berdasarkan areal penghambatan terhadap kultur bakteri, yaitu terbentuknya areal bening disekeliling zat antimikroba. Radius areal yang diukur dalam mm digunakan sebagai satuan penghambatan. Sebagai media pertumbuhan digunakan media nutrien agar (NA) (Difco). Sebanyak 20 ml agar diinkulasi dengan kultur bakteri sehingga mengandung bakteri 5×10^5 cfu/ml, selanjutnya dibuat beberapa sumur pada agar dengan diameter 5 mm. Pada tiap-tiap sumur ditetesi dengan 30 µl ekstrak jahe (konsentrasi 90 mg ekstrak/ml). Tiap-tiap sampel dibuat secara duplo dan diulang 3 kali. Setelah ditetesi dengan ekstrak jahe, cawan diinkubasi pada suhu 4°C selama 2 jam, supaya terjadi pre-difusi. Selanjutnya cawan diinkubasi pada suhu 37°C selama 24 jam dan setelah waktu inkubasi areal penghambatan diamati.

Hasil yang diperoleh dianalisis keragamannya dan dilanjutkan dengan uji beda nyata terkecil diantara perlakuan (Box et al., 1978).

b. Metoda pengenceran pada nutrien broth

Ekstrak diklorometan jahe mempunyai aktivitas antimikroba terbaik pada uji difusi agar, diuji lebih lanjut untuk menentukan MIC dan MBC dari ekstrak jahe tersebut terhadap *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1 dengan metode pengenceran (Carson dan Riley, 1995; Baron et al., 1995). Nilai MIC adalah konsentrasi yang terendah yang dapat menurunkan kemampuan tumbuh bakteri lebih besar dari 90 persen dan MBC adalah minimal konsentrasi antimikroba yang dapat membunuh bakteri sama dengan atau lebih besar dari 99,9 persen terhadap inokulum asal.
Ekstrak diklorometan yang digunakan dalam tahap ini dilarutkan dalam larutan bufer pengencer yang mengandung 0,75 persen Tween 80. Selanjutnya ekstrak tersebut ditambahkan kedalam tabung kultur yang mengandung 9 ml media NB (Nutrient broth). Campuran tersebut dibuat sehingga mengandung ekstrak jahe dengan konsentrasi yaitu 0, 5, 10, 12,5, 15 mg/ml untuk uji terhadap E. coli O157:H7; 0, 5, 10, 15, 20 mg/ml untuk uji terhadap S. typhi dan 0, 5, 6, 7, 8 mg/ml untuk uji terhadap V. cholerae O1. Tabung yang berisi berbagai konsentrasi ekstrak jahe diinokulasi dengan bakteri sehingga setiap tabung berisi 5,0 x 10⁵ cfu/ml. Kultur diinkubasi pada suhu 37°C selama 24 jam. Selanjutnya subkultur dilakukan pada media NA dan pengamatan pertumbuhan bakteri (cfu/ml) setelah diinkubasi pada 37°C selama 24 jam.

Persentase penghambatan pertumbuhan bakteri ditentukan dengan modifikasi metoda Cappaso et al. (1995), yang dinyatakan sebagai: 100 - \(\frac{Z_a}{Z_b} \times 100 \), dimana \(Z_a \) adalah jumlah bakteri cfu/ml dalam perlakuan penambahan ekstrak jahe, sedangkan \(Z_b \) adalah jumlah bakteri cfu/ml dalam kontrol (inokulum asal).

c. Aktivitas antimikroba sari jahe

Konsumsi jahe sebagai tambahan dalam minuman sehari-hari secara tradisional biasanya dilakukan dengan perebusan atau pemarutan terhadap rimpang jahe segar. Oleh karena itu pada tahapan penelitian ini dicoba menguji aktivitas antimikroba sari jahe terhadap V. cholerae O1.
Menentukan kadar oleoresin sari jahe

Sebanyak 10 g parutan jahe segar ditambah 100 ml air, kemudian didihkan selama 5 menit, disaring dengan kain saring dan keseluruhan filtrat yang di peroleh dikering bekukan. Setelah itu sari jahe kering ditimbang untuk menentukan rendemen oleoresin dan total fenol. Analisis total fenol bubuk sari jahe ini dilakukan dengan metoda AOAC (1980) dan Apriyantono et al. (1988).

Uji aktivitas antimikroba sari jahe

Sari jahe yang digunakan merupakan filtrat dari 6, 9 dan 12 g parutan jahe segar, yang masing-masing ditambah 100 ml air, kemudian didihkan selama 5 menit, selanjutnya disaring dengan kain saring. Masing-masing filtrat digunakan sebagai pelarut NB, ditambah 0,5 persen NaCl dan disterilisasi pada suhu 121°C selama 20 menit. Pembuatan media NB seperti ini, masing-masing media mengandung bubuk jahe setara dengan 6, 9 dan 12 mg bubuk jahe/ml. Setiap 20 ml media tersebut dinokulasi V. cholerae O1, konsentrasi akhir bakteri \(6.5 \times 10^5\) cfu/ml. Kultur diinkubasi pada suhu 37°C selama 24 jam rotasi 150 rpm. Subkultur dilakukan pada media NA dan diinkubasi pada suhu 37°C selama 24 jam. Persentase penghambatan dihitung seperti pada metoda pengenceran diatas (Cappaso et al., 1995), yang dinyatakan sebagai: 100 - (\(Z_b \times 100/Z_a\)), dimana \(Z_a\) adalah jumlah bakteri cfu/ml dalam perlakuan penambahan ekstrak jahe, sedangkan \(Z_b\) adalah jumlah bakteri cfu/ml dalam kontrol (inokulum asal).
D. HASIL PENELITIAN DAN PEMBAHASAN

1. Rendemen Oleoresin Jahe pada Setiap Tahap Ekstraksi

Jahe yang telah dikering bekukan diekstraksi secara bertahap dengan cara masing-masing. Ekstraksi pertama menggunakan pelarut heksan menghasilkan komponen terlarut yang bersifat non polar. Ekstraksi kedua dilakukan terhadap residu heksan dengan menggunakan diklorometan menghasilkan komponen terlarut semi polar.

Ekstraksi ketiga dilakukan terhadap residu diklorometan dengan etanol menghasilkan komponen terlarut polar. Ketiga hasil ekstrak kasar tersebut merupakan oleoresin berwarna kecoklatan dan mempunyai karakteristik aroma jahe pada umumnya.

Rendemen oleoresin dan kandungan total fenol pada masing-masing ekstrak dapat dilihat pada Tabel 6 dan Lampiran 1.

Tabel 6. Rendemen oleoresin dan kadar total fenol dari hasil ekstraksi bertahap berturut-turut dengan heksan, diklorometan dan etanol

<table>
<thead>
<tr>
<th>Pelarut</th>
<th>Oleoresin (% b/b) jahe kering</th>
<th>Total fenol (% b/b) oleoresin<sup>1</sup></th>
<th>Oleoresin (% b/b) jahe segar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heksan</td>
<td>3,23 ± 0,25</td>
<td>1,23 ± 0,21</td>
<td>-</td>
</tr>
<tr>
<td>Diklorometan</td>
<td>3,46 ± 0,15</td>
<td>12,05 ± 1,93</td>
<td>-</td>
</tr>
<tr>
<td>Etanol</td>
<td>2,16 ± 0,31</td>
<td>3,64 ± 0,56</td>
<td>-</td>
</tr>
<tr>
<td>Sari jahe<sup>2</sup></td>
<td>-</td>
<td>1,34 ± 0,06</td>
<td>10,00 ± 1,00</td>
</tr>
</tbody>
</table>

¹Pengukuran dengan standar vanilin pada percobaan 3 ulangan
²Sari jahe diperoleh dari 10 g parutan jahe segar ditambah 100 ml air. direbus selama 5 menit. disaring dan filtrat merupakan sari jahe.
Ekstraksi dengan pelarut heksan menghasilkan rendemen oleoresin yang hampir sama dengan ekstraksi menggunakan pelarut diklorometan yaitu \(3,23 \pm 0,25 \) persen ekstrak heksan dan \(3,46 \pm 0,15 \) persen ekstrak diklorometan, sedangkan ekstraksi terakhir dengan etanol menghasilkan \(2,16 \pm 0,31 \) persen. Berdasarkan polaritas ekstrak jahe, hasil pengamatan menunjukkan bahwa didalam ekstrak heksan, diklorometan, etanol dan sari jahe mengandung komponen bioaktif yang berbeda. Rendemen ekstrak heksan sebagian besar merupakan minyak jahe. Amirrudin (1985) melaporkan bahwa ekstraksi rimpang jahe dengan pelarut heksan diperoleh 25-27 persen minyak atsiri, yang merupakan hidrokarbon terpen, selain itu kemungkinan terekstraksi bahan non minyak seperti lilin dan sterol. Ekstrak heksan mengandung senyawa fenolik sebesar \(1,23 \pm 0,21 \) persen, keberadaan senyawa tersebut dimungkinkan karena adanya ikatan rangkap pada gugus alkil senyawa fenolik, sehingga mudah terpolarisasi dan menimbulkan efek sedikit non polar yang mengakibatkan sebagian dari senyawa fenolik larut dalam pelarut non polar (Khirzuddin, 1991).

Ekstrak diklorometan mengandung total fenol sebesar \(12,05 \pm 1,93 \) persen. Konsentrasi fenolik tersebut lebih tinggi dibandingkan dengan ekstrak heksan dan etanol. Senyawa fenolik yang terdapat dalam rimpang jahe merupakan senyawa aromatik dengan gugus alkil yang mempunyai panjang rantai karbon bervariasi yaitu \(C_{12} - C_{16} \), komponen alkil tersebut memberikan sifat semi polar sehingga mudah terekstraksi oleh pelarut diklorometan.
Etanol merupakan pelarut polar, sehingga senyawa fenolik yang lebih polar akan terekstraksi oleh etanol dan diperoleh total fenol sebesar 3,64 ± 0,56 persen. Selain itu senyawa yang tidak terekstraksi oleh pelarut heksan dan dikerometan akan terekstrak dengan pelarut etanol. Senyawa tersebut adalah karbohidrat, protein, dan minyak atsiri yang bersifat polar termasuk golongan hidrokarbon teroksigenasi (alkohol, aldehid, aset, ester dan ezer).

Penggunaan jahe segar dalam minuman maupun sebagai salah satu komponen jamu mencapai 6-10 persen. Sari jahe yang dibuat dengan cara pemarutan terhadap 10 g rimpang jahe segar ditambah 100 ml air dan diikuti dengan perebusan dihasilkan rendemen 10,00 ± 1,00 persen bubuk sari jahe dari jahe segar. Bubuk sari jahe ini mempunyai aroma jahe dan rasa pedas dengan total fenol 1,34 persen (Lampiran 1). Tingginya rendemen sari jahe kemungkinan disebabkan adanya karbohidrat dan protein dan senyawa fenolik dalam sari jahe ada dalam matriks dengan karbohidrat dan protein yang memberikan sifat polar sehingga fenolik ikut terekstraksi bersama senyawa tersebut.

2. Pengaruh Polaritas Ekstrak Jahe terhadap Aktivitas Antimikroba

Radius areal penghambatan ekstrak tersebut secara rinci dapat dilihat pada Lampiran 2.

Tabel 7. Radius areal penghambatan (mm) dari 30 μl ekstrak jahe (konsentrasi 90 mg ekstrak/ml)

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>Ekstrak jahe dengan pelarut</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heksan</td>
<td>Diklorometan</td>
<td>Etanol</td>
</tr>
<tr>
<td>S. typhi</td>
<td>2,3 ± 0,3a</td>
<td>4,5 ± 0,4c</td>
<td>2,9 ± 0,3a</td>
</tr>
<tr>
<td>E. coli</td>
<td>2,4 ± 0,5a</td>
<td>5,3 ± 0,8c</td>
<td>3,4 ± 0,5b</td>
</tr>
<tr>
<td>V. cholerae O1</td>
<td>3,3 ± 0,5b</td>
<td>6,6 ± 0,5d</td>
<td>4,8 ± 0,3c</td>
</tr>
</tbody>
</table>

Superskrip yang berbeda menunjukkan perbedaan nyata pada (P< 0,01).

a. Ekstrak non polar

Ekstrak heksan mempunyai penghambatan relatif lebih rendah dibandingkan dengan ekstrak yang lain yaitu 2,4 ± 0,5 mm pada E. coli O157:H7, 2,3 ± 0,3 mm pada S. typhi, dan 3,3 ± 0,5 mm pada V. cholerae O1. Rendahnya penghambatan ini dikarenakan kandungan senyawa fenilik yang lebih rendah daripada ekstrak diklorometan, sehingga ekstrak heksan tidak cukup untuk berdifusi lebih melebar dan menghambat pertumbuhan bakteri.

b. Ekstrak semi polar

Senyawa yang bertanggungjawab sebagai antimikroba dalam ekstrak diklorometan adalah senyawa semi polar yang merupakan senyawa fenolik (Hiseroedt, 1998). Ekstrak diklorometan memberikan penghambatan 4,5 ± 0,4 mm pada *S. typhi*, 5,3 ± 0,8 mm pada *E. coli* O157:H7 dan 6,6 ± 0,5 mm pada *V. cholerae* O1 (Gambar 7). Konsentrasi fenolik dalam ekstrak diklorometan cukup tinggi untuk berdifusi dan menghambat pertumbuhan bakteri. Kemampuan senyawa semi polar untuk menghambat pertumbuhan bakteri berkaitan dengan komponen dinding sel bakteri yang tidak bersifat absolut hidrofobik maupun absolut hidrofilik. Kanasawa *et al.* (1995) suatu senyawa yang mempunyai polaritas optimum akan mempunyai
Gambar 7. Penghambatan dari 30μl ekstrak diklorometan jahe (konsentrası 90 mg ekstrak/ml) terhadap *S. typhi*, *V. cholerae* O1 dan *E. coli* O157:H7.

c. Ekstrak polar

Ekstrak polar yang dihasilkan dari ekstraksi jahe dengan pelarut etanol menghasilkan total fenol sebesar 3,64 ± 0,56 persen yang lebih tinggi daripada
ekstrak non polar yang mengandung total fenol 1,23 ± 0,21 persen. Ekstrak polar
dan non polar berturut-turut memberikan penghambatan terhadap S. typhi sebesar
2,9 ± 0,3 mm dan 2,3 ± 0,3 mm, yang sacara statistik tidak menunjukkan perbedaan
yang nyata (P< 0,01). Hal ini menunjukkan bahwa S. typhi merupakan bakteri yang
lebih tahan terhadap senyawa fenolik atau kemungkinan lain aktivitas antimikroba
fenolik dalam ekstrak polar dihambat oleh adanya protein yang ikut terekstraksi.

Beberapa peneliti melaporkan bahwa keberadaan minyak dalam ekstrak non
polar dan protein dalam ekstrak polar merupakan faktor yang mempengaruhi aktivitas
antimikroba dari senyawa fenolik (Nychas, 1995). Seperti efek antimikroba dari B1A
(Butylated hydroxyanisole) dan TBHQ (Mono tertiary butylhydroquinone) dihambat
oleh adanya kasein dan minyak jagung. Penghambatan tersebut karena senyawa
antimikroba berikatan dengan komponen minyak atau protein melalui ikatan
hidrofobik (Rico-Munoz dan Davidson 1983).

Fenomena diatas dapat dikaitkan dengan yang ditemukan oleh Kurita et al
(1981) yang menyatakan bahwa komponen fenolik mempunyai cincin aromatik yang
mampu menginaktivkan enzim esensial dalam mikroba. Selain itu Prindle (1983)
mengatakan bahwa senyawa fenolik berperan untuk menurunkan tegangan permukaan
sel mikroba. Gugus OH dari fenol dapat bersifat racun bagi protoplasma sel, dapat
menembus dan merusak dinding sel serta mendenaturasi protein enzim dalam
sitoplasma dengan membentuk ikatan hidrogen pada sisi aktif enzim (Mahmoud,
1994). Dilaporkan oleh Kim et al. (1995) bahwa senyawa fenolik dapat
menginaktivkan atau merusak material genetik.

Peningkatan konsentrasi senyawa fenolik dalam ekstrak jahe diikuti dengan peningkatan penghambatan terhadap bakteri, walaupun peningkatan senyawa fenolik tidak diikuti peningkatan penghambatan secara proporsional terhadap bakteri uji, karena aktivitas antimikroba ekstrak jahe tersebut dipengaruhi oleh difusivitas ekstrak antimikroba dalam media NA.

3. Aktivitas Antimikroba Ekstrak Diklorometan Jahe pada Metoda Pengenceran

Ekstrak diklorometan mempunyai aktivitas antimikroba yang relatif lebih tinggi daripada ekstrak heksan dan etanol secara difusi pada media NA (Tabel 6). Pengujian lebih lanjut terhadap ekstrak diklorometan dilakukan untuk menentukan nilai MIC dan MBC terhadap E. coli O157:H7, S. typhi dan V. cholerae O1 dengan metode kontak pengenceran pada media NB yang mengandung 0.75 persen Tween
80. Nilai MIC disajikan pada Tabel 8. Berturut-turut nilai MIC ekstrak diklorometan jahe pada *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1 adalah 10, 10 dan 5 mg/ml. Mengacu pada nilai MIC maka *V. cholerae* O1 merupakan bakteri yang lebih sensitif daripada *E. coli* O157:H7 dan *S. typhi* sepadan dengan hasil pengujian secara difusi agar. *E. coli* O157:H7 dan *S. typhi* menunjukkan nilai MIC yang sama, namun jika

Tabel 8. Pertumbuhan bakteri *E. coli*, *S. typhi* dan *V. cholerae* O1 pada media NB yang mengandung ekstrak diklorometan

<table>
<thead>
<tr>
<th>Jenis bakteri</th>
<th>Konsentrasi Ekstrak diklorometan (mg/ml)</th>
<th>Jumlah bakteri (cfu/ml)</th>
<th>% Penghambatan relatif terhadap jumlah bakteri awal</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli O157:H7</td>
<td>0</td>
<td>2.8 x 10^5</td>
<td>2.06 x 10^3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.2 x 10^5</td>
<td>4.10 x 10^3</td>
</tr>
<tr>
<td></td>
<td>10*</td>
<td>0.9 x 10^5</td>
<td>7.05 x 10^3</td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>1.3 x 10^5</td>
<td>5.60 x 10^3</td>
</tr>
<tr>
<td></td>
<td>15**</td>
<td>1.5 x 10^5</td>
<td>0.60 x 10</td>
</tr>
<tr>
<td>S. typhi</td>
<td>0</td>
<td>2.2 x 10^5</td>
<td>4.85 x 10^3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.0 x 10^5</td>
<td>7.80 x 10^3</td>
</tr>
<tr>
<td></td>
<td>10*</td>
<td>1.5 x 10^5</td>
<td>9.50 x 10^3</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.2 x 10^5</td>
<td>8.10 x 10^3</td>
</tr>
<tr>
<td></td>
<td>20**</td>
<td>2.5 x 10^5</td>
<td>7.00 x 10</td>
</tr>
<tr>
<td>V. cholerae O1</td>
<td>0</td>
<td>1.9 x 10^5</td>
<td>1.8 x 10^3</td>
</tr>
<tr>
<td></td>
<td>5*</td>
<td>2.1 x 10^5</td>
<td>2.0 x 10^3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.5 x 10^5</td>
<td>11 x 10^2</td>
</tr>
<tr>
<td></td>
<td>8**</td>
<td>1.7 x 10^5</td>
<td>0.4 x 10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.2 x 10^5</td>
<td>Tidak tumbuh</td>
</tr>
</tbody>
</table>

* Nilai MIC ekstrak diklorometan
** Nilai MBC

dilihat dari penghambatan lebih lanjut yaitu untuk memberikan 99,9 persen penghambatan pada *E. coli* O157:H7 diperlukan konsentrasi ekstrak diklorometan 15 mg/ml, sedangkan *S. typhi* diperlukan 20 mg/ml. Ini menunjukkan bahwa *S. typhi* merupakan bakteri yang lebih resisten dari kedua bakteri tersebut. Hasil penelitian ini
sepadan dengan hasil penelitian Lienni (1981) yang melaporkan bahwa konsentrasi 60 mg/ml sari jahe dapat menghambat aktivitas E. coli, konsentasi 80 mg/ml sari jahe menghambat pertumbuhan S. thompson dan konsentrasi 7 mg/ml sari jahe menghambat V. cholerae.

Vibrio cholerae O1 terlihat lebih rentan dibanding dengan E. coli O157:H7 dan S. typhi. Hal ini disebabkan struktur penyusun komponen terluar dan dinding sel suatu bakteri bervariasi tergantung pada spesies. Vibrio cholerae O1 mempunyai fosfolipid yang menonjol pada membran luar sel, sehingga molekul non polar dan polar dapat masuk berdifusi melalui interaksi dengan fosfolipid dan gugus O-karbon dari LPS pada bakteri tersebut memberikan muatan negatif yang lebih kecil daripada bakteri yang lain, serta jaringan murein yang lemah (Subhra et al., 1996).

4. Pengaruh Sari Jahe terhadap V. cholerae O1

Pengujian secara difusi sumur pada 30 μl sari jahe tidak menunjukkan adanya penghambatan. Ini mungkin disebabkan konsentrasi senyawa fenolik terlalu rendah dan kemungkinan keberadaan senyawa fenolik dalam sari jahe tersebut terikat dalam matrik pati dan senyawa lainnya, sehingga tidak berdifusi. Oleh karena itu untuk menganalisis aktivitas antimikroba dari minuman sari jahe, menggunakan pendekatan analisis pada konsentrasi sari jahe layak minum terhadap Vibrio cholerae O1 dengan metode kontak. Gambar 8. menunjukkan subkultur V. cholerae O1 pada media NA setelah diinkubasi pada media NB yang masing-masing media tersebut menggandung sari jahe setara dengan 6, 9 dan 12 mg bubuk/ml. Tabel 9 menunjukkan konsentrasi
12 mg/ml sari jahe dapat menghambat 73,84 persen pertumbuhan *V. cholerae* O1 relatif terhadap jumlah bakteri awal. Konsentrasi sari jahe pada penelitian yang

![Gambar 8. Subkultur V. cholerae O1 pada media NA setelah diinkubasi pada media NB yang masing-masing media mengandung sari jahe setara dengan (1) 0, (2) 6, (3) 9 dan (4) 12 mg bubuk/ml.](image)

Tabel 9. Penghambatan *V. cholerae* O1 oleh sari jahe dalam media NB yang ditambah 0,5 persen NaCl, inkubasi pada 37°C, 24 jam.

<table>
<thead>
<tr>
<th>Konsentrasi sari jahe (mg/ml)</th>
<th>Jumlah bakteri awal dalam kultur (cfu/ml)</th>
<th>Jumlah bakteri setelah inkubasi (cfu/ml)</th>
<th>% Penghambatan relatif terhadap jumlah bakteri pada inoculum awal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6,5 x 10⁵</td>
<td>1,74 x 10⁸</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>..</td>
<td>1,50 x 10⁸</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>..</td>
<td>7,05 x 10⁵</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>..</td>
<td>1,70 x 10⁵</td>
<td>73,85</td>
</tr>
</tbody>
</table>

- Tidak ada penghambatan
dilaporkan oleh Lienni (1981) yaitu untuk menghambat pertumbuhan *V. cholerae* diperlukan 7 mg/ml bubuk sari jahe. Perbedaan konsentrasi ini mungkin disebabkan adanya perbedaan dalam mempersiapkan sari jahe, strain bakteri dan jumlah kultur awal.

Berdasarkan pembuatan sari jahe dalam penelitian ini, yang berperan sebagai antimikroba adalah fenolik, karena protein zingibain yang bersifat proteolitik, yang terdapat dalam sari jahe terdenaturasi pada proses pemanasan dan sterilisasi pada persiapan sari jahe. Kemungkinan senyawa fenolik dalam sari jahe adalah gingerol, zingeron dan shogaol, karena sari jahe mempunyai rasa pedas dan aroma jahe pada umumnya.

5. Aktivitas Antimikroba dari Fraksi Ekstrak Diklorometan Jahe

a. Fraksinasi ekstrak diklorometan jahe

Ekstrak diklorometan yang mengandung fenolik tinggi telah diketahui mempunyai aktivitas antimikroba yang lebih tinggi daripada ekstrak heksan dan etanol. Fraksinasi terhadap ekstrak diklorometan jahe bertujuan untuk mendapatkan fraksi-fraksi yang lebih spesifik sehingga dapat menduga senyawa yang berperan menghambat pertumbuhan bakteri.

diklorometan (Gambar 8) menghasilkan 8 fraksi dengan nilai \(R_f \) disajikan pada Tabel 10. Pengembangan pelarut lebih lanjut terhadap plat KLT (Gambar 9) menghasilkan

Gambar 9. Fraksinasi ekstrak diklorometan jahe: (A) ekstrak diklorometan yang dispotkan pada silika \(G_60 \ F_{254} \) dengan larutan pengembang heksan:diethyl eter (3:7). Hasil menunjukkan fraksi \(F_1 \) (\(R_f \ 0,15 \)), \(F_2 \) (\(R_f \ 0,19 \)), \(F_3 \) (\(R_f \ 0,30 \)) dan \(F_4 \) (\(R_f \ 0,42 \)), \(F_5 \) (\(R_f \ 0,50 \)), \(F_6 \) (\(R_f \ 0,61 \)), \(F_7 \) (\(R_f \ 0,75 \)) dan \(F_8 \) (\(R_f \ 0,89 \)).

Tabel 10. Nilai \(R_f \) fraksi ekstrak diklorometan

<table>
<thead>
<tr>
<th>Fraksi</th>
<th>(R_f) hasil Penelitian (^1)</th>
<th>(R_f) bioaktif pembanding (^2)</th>
<th>Jenis komponen bioaktif</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0,89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,42</td>
<td>0,40-0,45</td>
<td>Shogaol</td>
</tr>
<tr>
<td>3</td>
<td>0,30</td>
<td>0,21-0,27</td>
<td>Zingeron</td>
</tr>
<tr>
<td>2</td>
<td>0,19</td>
<td>0,15-0,22</td>
<td>Giagerol</td>
</tr>
<tr>
<td>1</td>
<td>0,15</td>
<td>0,15-0,22</td>
<td>Gingerol</td>
</tr>
</tbody>
</table>

\(^1\) Nilai \(R_f \) ekstrak jahe pada KLT silika \(G_{60} \ F_{254} \) dengan larutan pengembang heksan:diethyl eter (3:7) (Chen et al. 1986)

\(^2\) Nilai \(R_f \) ekstrak diklorometan pada silika \(G_{60} \ F_{254} \) dengan larutan pengembang heksan:diethyl eter (3:7)

Gambar 10. Fraksinasi ekstrak diklorometan jahe: (A) ekstrak diklorometan yang dispotkan pada silica G_{60} F_{245} dengan larutan pengembang heksan:dietil eter (3:7) pada proses pengembangan lebih lanjut. Hasil menunjukkan fraksi F_1 (R_f 0,15), F_2 (R_f 0,19), F_3 (R_f 0,30) dan F_4 (R_f 0,42).

b. Aktivitas antimikroba fraksi 1-4 dari ekstrak diklorometan jahe

Aktivitas antimikroba fraksi 1-4 ekstrak diklorometan secara difusi agar terhadap *V. cholerae* O1 disajikan pada Gambar 11. Setiap fraksi mempunyai aktivitas antimikroba dan fraksi F_1 dan F_2 mempunyai penghambatan yang lebih besar daripada fraksi yang lain (Tabel 11). Penghambatan ini mungkin disebabkan gingerol mempunyai struktur molekul dengan rantai alkil yang jenuh dengan panjang rantai yang cukup optimum untuk menyiap pada membran sel hingga berinteraksi dengan komponen non polar membran (Kanasawa et al., 1995), sehingga lebih efektif sebagai

Gambar 11. Penghambatan *V. cholerae* O1 dari anak panah bergerak searah jarum jam adalah ekstrak diklorometan jahe (30 µl dari 90 mg ekstrak/ml), kontrol pelarut dan F₁, F₂, F₃, F₄ (30 µl dari 15 mg fraksi/ml).

Tabel 11. Radius Areal penghambatan (mm) dari 30 µl ekstrak dan fraksi ekstrak diklorometan jahe terhadap *V. cholerae* O1

<table>
<thead>
<tr>
<th>Ekstrak jahe</th>
<th>Konsentrasi (mg/ml)</th>
<th>Radius areal penghambatan (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eks. diklorometan</td>
<td>90</td>
<td>8,0</td>
</tr>
<tr>
<td>Fraksi 1 (R_f 0,15)</td>
<td>15</td>
<td>7,0</td>
</tr>
<tr>
<td>Fraksi 2 (R_f 0,19)</td>
<td>15</td>
<td>6,5</td>
</tr>
<tr>
<td>Fraksi 3 (R_f 0,30)</td>
<td>15</td>
<td>5,5</td>
</tr>
<tr>
<td>Fraksi 4 (R_f 0,42)</td>
<td>15</td>
<td>4,0</td>
</tr>
</tbody>
</table>
Fraksi 4 yang merupakan shogaol diketahui mempunyai aktivitas antimikroba yang lebih rendah daripada gingerol, yang dimungkinkan karena berhubungan dengan adanya ikatan rangkap pada ratai alkil. Sedangkan zingeron mempunyai rantai alkil pendek untuk dapat menyiap pada bagian hidrofobik bakteri.

E. KESIMPULAN

Dari serangkaian pengamatan terhadap aktivitas antimikroba ekstrak jahe, diketahui bahwa polaritas ekstrak mempengaruhi aktivitas antimikroba dan ekstrak semipolar dari hasil ekstraksi dengan diklorometan menunjukkan aktivitas yang relatif lebih tinggi terhadap *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1. Nilai MIC ekstrak tersebut berturut-turut terhadap *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1 adalah 10, 10 dan 5 mg/ml, sedangkan nilai MBC adalah 15, 20 dan 8 mg/ml.

Pengujian dengan metoda kontak dalam nutrien broth, menunjukkan bahwa sari jahe juga dapat menghambat pertumbuhan *V. cholerae* O1. Penghambatan ini disebabkan adanya komponen fenolik dalam sari jahe yang terimobilisasi dengan komponen polar lainnya, sehingga terlarut dalam air yang merupakan pelarut polar.

Fraksinasi terhadap ekstrak diklorometan menghasilkan 8 fraksi, berdasarkan kriteria analisis Chen et al. (1986), dapat dinyatakan bahwa F₁ dan F₂ adalah gingerol, F₃ adalah zingeron dan F₄ adalah shogaol. Keempat fraksi dapat menghambat pertumbuhan bakteri *V. cholerae* O1. Gingerol mempunyai konsentrasinya lebih tinggi daripada kedua fraksi, juga mempunyai aktivitas antimikroba yang lebih tinggi. Sedangkan fraksi 5-8 diluar pengamatan penelitian ini.
F. DAFTAR PUSTAKA

AOAC. 1980. Methods of Analysis. 3rd eds. AOAC. Washington, DC.

IV. PENGARUH EKSTRAK DIKLOROMETAN DAN SARI JAHE TERHADAP HIDROFOBISITAS BAKTERI

E. coli O157:H7, S. typhi DAN *V. cholerae O1*

A. ABSTRAK

Hidrofobisitas merupakan salah satu sifat permukaan sel yang merefleksikan komposisi komponen yang terkandung dalam membran luar sel bakteri. Perubahan yang terjadi pada komponen membran luar sel dapat mengakibatkan perubahan hidrofobisitas.

Penelitian ini bertujuan untuk mengetahui pengaruh ekstrak diklorometan dan sari jahe terhadap hidrofobisitas sel *E. coli O157:H7, S. typhi* dan *V. cholerae O1*. Hidrofobisitas permukaan sel bakteri ditentukan dengan metoda BATH (*Bacterial adhesion to hydrocarbons*) pada 0,9 ml hidrokarbon n-oktana. Hasil pengamatan menunjukkan bahwa hidrofobisitas masing-masing spesies berturut-turut adalah 44,30, 57,17 dan 70,52 persen, dengan nilai tersebut *E. coli O157:H7* digolongkan bakteri hidrofobik moderat, sedangkan *S. typhi* dan *V. cholerae O1* digolongkan bakteri hidrofobik kuat.

Penambahan ekstrak diklorometan jahe pada konsentrasi 15 mg/ml pada *E. coli O157:H7* menyebabkan peningkatkan hidrofobisitas 1,65 persen, 20 mg/ml pada *S. typhi* menurunkan hidrofobisitas 43,97 persen dan 8 mg/ml pada *V. cholerae O1* menurunkan 33,22 persen. Sedangkan penambahan sari jahe konsentrasi 10 mg/ml meningkatkan hidrofobisitas *E. coli O157:H7* 24,40 persen, menurunkan hidrofobisitas *S. typhi* 47,56 persen dan *V. cholerae O1* 70,14 persen. Penambahan kedua macam ekstrak tersebut mempunyai kolecenderan hampir sama yaitu meningkatkan hidrofobisitas pada *E. coli O157:H7* dan menurunkan hidrofobisitas *S. typhi* dan *V. cholerae O1*.

B. PENDAHULUAN

Kemampuan bakteri berkolonisasi dengan sel epitel merupakan tahap awal infeksi (Lee dan Yii, 1996) dan sarana penting dalam hal virulensi suatu bakteri, karena bakteri yang tidak mempunyai kemampuan untuk melekat pada sel epitel akan keluar melalui proses peristalsis (Cree dan Nobel, 1995). Secara biologis pelekatan
bakteri pada sel epitel diperlukan untuk melawan mekanisme peristalsis usus, yang ditimbulkan karena penolakan bakteri oleh epitel (Rosenberg and Sar, 1990).

Perubahan hidrofobisitas pada bakteri dapat terjadi selama proses morfogenesis dan adanya senyawa yang bersifat antimikroba (Rosenberg and Sar, 1990). Pada proses morfogenesis, sel bakteri E. coli muda mempunyai sifat hidrofobik yang lemah yaitu mempunyai hidrofobisitas 5 persen, pertambahan umur bakteri meningkatkan sifat hidrofobik hingga mencapai 60 persen dan sifat hidrofobik ini konstan setelah umur 90 menit.

Antimikroba dapat menurunkan atau meningkatkan hidrofobisitas bakteri tergantung dari spesies bakteri dan senyawa antimikroba. Dari fenomena ini Rosenberg and Sar (1990) mempostulasikan perubahan hidrofobisitas bakteri sebagai berikut: (1) Penurunan hidrofobisitas dapat terjadi karena reseptor antimikroba pada bakteri, yang merupakan sisi peptida hidrofobik yang berinteraksi dengan
antimikroba yang berikatan secara non kovalen. Penurunan hidrofobisitas dapat disebabkan oleh bakteri kehilangan komponen ekstraseluler yang bersifat anfipatik. (2) Peningkatan hidrofobisitas terjadi karena perubahan struktur membran terluar sel adesin yang membentuk fibril. Peningkatan hidrofobisitas juga disebabkan oleh adanya antimikroba yang dapat berpenetrasi kedalam sel. Adanya protein enzim, seperti lisozim dapat menyebabkan hidrolisis pada polisakarida dinding sel sehingga lipoprotein kontak dengan lingkungan. Dengan terbukanya lipoprotein ini dapat meningkatkan hidrofobisitas bakteri.

Berdasarkan acuan dan fenomena diatas perubahan hidrofobisitas yang meningkat atau menurun menunjukkan perubahan pada komponen luar bakteri dan mengakibatkan perubahan sisi pengikatan bakteri pada epitel, sehingga mengurangi interaksi bakteri dengan sel epitel sehingga mengakibatkan virulensi bakteri tersebut melemah.

BATH yang menggunakan n-oktana dan kromatografi memberikan interpretasi yang sama

Tujuan penelitian ini untuk mengetahui pengaruh ekstrak diklorometan jahe dan sari jahe terhadap perubahan hidrofobitas bakteri *E. coli* O157:H7, *S. typhi* dan *V. cholerae*.

C. METODE PENELITIAN

1. Tempat dan Waktu Penelitian

2. Bahan Penelitian

Sebagai bakteri uji digunakan *E. coli* O157:H7 ATCC 43889, *S. typhi* ATCC 0029 dan *V. cholerae* O1 BBC 2123. Kultur bakteri ditumbuhkan pada NB, khusus untuk media pertumbuhan *V. cholerae* O1 ditambah 0,5 persen NaCl. Kultur diinkubasi pada suhu 37°C selama 18 jam.

Bahan antimikroba yang digunakan adalah ekstrak diklorometan (mengandung DMSO konsentrasi akhir 0,75 persen). Tween 80 tidak digunakan sebagai pengemulsi ekstrak diklorometan karena dapat menghambat adesi bakteri pada n-oktana (Rosenberg dan Doyle, 1990). Sari jahe diperoleh dari 10 g parutan jahe segar ditambah 100 mL air kemudian dididihkan selama 5 menit, selanjutnya disaring, filtrat ini digunakan sebagai pelarut NB. Konsentrasi sari jahe dalam media NB setara
dengan 10 mg/ml. Alat yang digunakan adalah *spectronic* 20 (Bausch and Lomb, New York USA).

3. Uji Hidrofobisitas Bakteri

Penentuan hidrofobisitas bakteri dilakukan dengan modifikasi BATH pada hidrokarbon n-oktana dengan cara Jones *et al.* (1991) dan Lee dan Yi (1996) sebagai berikut: Sebanyak 4,8 ml suspensi bakteri yang mengandung 10⁶ cfu/ml disentrifus pada 1900 g selama 15 menit. Supernatant kultur dibuang dan pelet bakteri ditambah 4,8 ml NB yang mengandung ekstrak diklorometan. Didalam 4,8 ml NB yang ditambahkan pada pelet bakteri *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1 masing-masing berturut-turut mengandung 20, 15 dan 8 mg/ml ekstrak diklorometan. Pada perlakuan lain digunakan 10 mg/ml sari jahe sebagai pelarut NB, kemudian 4,8 ml media NB ditambahkan kedalam pelet bakteri. Kontrol hidrofobisitas digunakan penambahan 1,07 ml bufer fosfat dan 3,73 ml media NB pada pelet bakteri, sehingga volume akhir menjadi 4,8 ml. Selanjutnya suspensi bakteri tersebut diinkubasi pada suhu 37°C selama 30 menit. Kultur bakteri dipisahkan dengan cara sentrifus pada 1900 g selama 15 menit. Pelet yang terbentuk dicuci satu kali dengan PBS steril, diresuspensikan dalam PBS menjadi 4,8 ml.

Setiap 4,8 ml suspensi bakteri 10⁶ cfu/ml ditambahkan pada seri volume hidrokarbon 0,3, 0,6, 0,9, 1,2 dan 1,5 ml n-oktana dalam tabung yang tahan asam. Kemudian tabung divortex dengan kecepatan konstan selama satu menit, dan diekuilibrasi pada suhu kamar selama 15 menit, sehingga terjadi pemisahan. Fase air
diambil secara perlahan-lahan menggunakan pipet pasteur, kemudian absorbansi diukur pada \(\lambda \) 600 nm. Hidrofobitas ditentukan berdasarkan persentase OD (optical density) pada fase air. Persen hidrofobitas = 100 - \((A \times 100/A_0) \), dimana A adalah OD dari suspensi bakteri pada fase air setelah kontak dengan n-oktana dan \(A_0 \) merupakan OD suspensi tanpa penambahan n-oktana yang mempunyai nilai hidrofobitas setara dengan 0 persen. Keseimbangan volume n-oktana dengan suspensi bakteri ditentukan dengan membuat grafik dengan variabel volume hidrokarbon dan persen hidrofobitas. Nilai hidrofobitas ditentukan berdasarkan pengamatan dengan tiga ulangan.

Tabel 12. Kriteria hidrofobitas bakteri

<table>
<thead>
<tr>
<th>Jenis uji</th>
<th>Nilai</th>
<th>Kriteria hidrofobitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentasi garam</td>
<td>0,0-1,0 mol/lt</td>
<td>Kuat</td>
</tr>
<tr>
<td>Salt Aggregation</td>
<td>1,0-2,0 mol/lit</td>
<td>Moderat</td>
</tr>
<tr>
<td>Test (SAT)</td>
<td>2,0-4,0 mol/lit</td>
<td>Lemah</td>
</tr>
<tr>
<td></td>
<td>>4,0 mol/lit</td>
<td>Negatif</td>
</tr>
<tr>
<td>Nitrocelulosa Filter</td>
<td>>75%</td>
<td></td>
</tr>
<tr>
<td>(NCF)</td>
<td>50-75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td><50%</td>
<td></td>
</tr>
<tr>
<td>BATH</td>
<td>>50%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-50%</td>
<td></td>
</tr>
<tr>
<td></td>
<td><20%</td>
<td></td>
</tr>
</tbody>
</table>

Santos et al., (1990)
jika perlakuan ekstrak jahe mempunyai hidrofobisitas lebih besar daripada kontrol maka perlakuan ekstrak jahe dapat meningkatkan hidrofobisitas (+) dan nilai perubahan hidrofobisitas lebih kecil berarti ekstrak jahe menurunkan hidrofobisitas (-).

D. HASIL PENELITIAN DAN PEMBAHASAN

Ekspresi afinitis bakteri pada hidrokarbon n-oktana dapat dilihat pada Gambar 12-14 (Lampiran 3-11). Semua bakteri uji memberikan respon positif terhadap n-oktana. Analisis hidrofobisitas secara BATH menurut kriteria Santos et al. (1990) (Tabel 12), menunjukkan bahwa nilai hidrofobisitas bakteri lebih besar dari 50 persen dapat digolongkan bakteri hidrofobik kuat, nilai hidrofobisitas 20-50 persen digolongkan hidrofobik moderat, dan nilai hidrofobisitas kurang dari 20 persen digolongkan hidrofobik lemah.

Gambar 12. Pengaruh sari jahe dan ekstrak diklorometan terhadap hidrofobisitas *E. coli* O157:H7 pada hidrokarbon n-oktana
Gambar 13. Pengaruh sari jahe dan ekstrak diklorometan terhadap hidrofobisitas S. typhi pada hidrokarbon n-oktana

Gambar 14. Pengaruh sari jahe dan ekstrak diklorometan terhadap hidrofobisitas V. cholerae O1 pada hidrokarbon n-oktana

Pengaruh ekstrak jahe terhadap hidrofobisitas secara kuantitatif ditentukan pada penambahan 0,9 ml n-oktana dapat dilihat pada Tabel 13. Pada perlakuan kontrol yaitu hasil pemisahan bakteri dengan bufer menunjukkan bahwa E. coli O157:H7 mempunyai afinitas terhadap hidrokarbon sebesar 44,30 persen, S. typhi
sebesar 57,17 persen dan *V. cholerae* O1 sebesar 70,52 persen. Ini menggambarkan bahwa *E. coli* O157:H7 tergolong bakteri hidrofobik moderat, sesuai dengan pernyataan Lachica (1990), sedangkan *S. typhi* dan *V. cholerae* O1 dapat digolongkan pada bakteri yang bersifat hidrofobik kuat.

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>Antimikroba</th>
<th>% Hidrofobisitas</th>
<th>% Δ hidrofobisitas relatif terhadap buffer</th>
<th>Konsentrasi antimikroba</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>Buffer</td>
<td>44,30 ± 1,92</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O157:H7</td>
<td>Sari jahe</td>
<td>68,70 ± 3,92</td>
<td>(+) 24,40</td>
<td>10 mg/ml</td>
</tr>
<tr>
<td></td>
<td>Eks. dikerometan</td>
<td>45,95 ± 3,56</td>
<td>(+) 1,65</td>
<td>15 mg/ml</td>
</tr>
<tr>
<td>S. typhi</td>
<td>Buffer</td>
<td>57,17 ± 6,42</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sari jahe</td>
<td>9,61 ± 0,53</td>
<td>(-) 47,56</td>
<td>10 mg/ml</td>
</tr>
<tr>
<td></td>
<td>Eks. dikerometan</td>
<td>13,20 ± 1,12</td>
<td>(-) 43,97</td>
<td>20 mg/ml</td>
</tr>
<tr>
<td>V. cholerae</td>
<td>Buffer</td>
<td>70,52 ± 3,02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O1</td>
<td>Sari jahe</td>
<td>0,38 ± 0,75</td>
<td>(-) 70,14</td>
<td>10 mg/ml</td>
</tr>
<tr>
<td></td>
<td>Eks. dikerometan</td>
<td>37,03 ± 1,41</td>
<td>(-) 33,22</td>
<td>8 mg/ml</td>
</tr>
</tbody>
</table>

Sari jahe maupun ekstrak dikerometan dapat meningkatkan hidrofobisitas *E. coli* O157:H7 berturut-turut sebesar 24,40 dan 1,65 persen, sebaliknya ekstrak tersebut dapat menurunkan hidrofobisitas *S. typhi* sebesar 47,56 dan 43,97 persen dan *V. cholerae* O1 sebesar 70,14 dan 33,22 persen.

pada *E. coli* banyak mengandung fosfatidiletanolamin yang mengandung asam amino polar dan LPS dengan komponen polisakarida yang relatif lebih tinggi, sehingga *E. coli* mempunyai sifat hidrofobik moderat. Sifat hidrofobik pada *V. cholerae* O1 diekspresikan oleh adanya fimbrie (Lachica, 1990), yang dimediasi oleh adanya protein 20,5 kDalton dan protein ini mengandung asam amino lisin dan asam amino non polar (leusin dan isoleusin). Hidrofobisisa *S. typhi* berhubungan dengan faktor adesin yang disintesis melalui sistem "Novo", karena penghambatan pada sintesis protein tersebut mengakibatkan penurunan hidrofobisisa *S. typhi* (Rosenberg dan Sar, 1990).

Keragaman komponen penyusun dinding sel, komponen terlarur membran dan komponen yang memberikan fungsi terhadap sifat hidrofobik bakteri menyebabkan setiap spesies dan strain menegakpresikan hidrofobisisa yang berbeda.

Perlakuan 10 mg/ml sari jahe dan ekstrak diklorometan sebesar 15 mg/ml pada *E. coli* O157:H7, 20 mg/ml pada *S. typhi* dan 8 mg/ml pada *V. cholerae* O1 mempunyai kecenderungan yang sama yaitu meningkatkan hidrofobisisa *E. coli* O157:H7 dan menurunkan hidrofobisisa *S. typhi* dan *V. cholerae* O1 (Tabel 13). Jones et al. (1991) juga melaporkan hasil penelitiannya yaitu penambahan 2,0 persen taurolidin meningkatkan hidrofobisisa 5,13 persen pada *E. coli* dan 15,65 persen pada *Staphylococcus saprophyticus*, sedangkan 0,075 persen klorheksidin asetat menurunkan hidrofobisisa 24,69 pada *E. coli* dan meningkatkan 36,72 persen pada *S. saprophyticus*. Peningkatan dan penurunan hidrofobisisa pada bakteri yang disebabkan adanya senyawa fenolik ekstrak jahe dipengaruhi oleh spesies bakteri.

Perubahan hidrofobisitas pada perlakuan sari jahe lebih besar daripada ekstrak diklorometan (Tabel 13). Penggunaan 10 mg/ml sari jahe tersebut setara dengan
dengan kandungan fenol 0,134 mg/ml. Sedangkan ekstrak diklorometan setara dengan 8-20 mg/ml oleoresin dengan kandungan fenol 0,96-2,41 mg/ml. Ini menunjukkan bahwa pada perlakuan sari jahe ada senyawa lain yang berpotensi mempengaruhi hidrofobisitas bakteri yang kemungkinan adalah protein dan karbohidrat. Komponen protein dan karbohidrat dapat menutupi sisi hidrofilik dari bakteri, walaupun protein dalam sari jahe telah terdenaturasi dan karbohidrat telah mengalami gelasi. Interaksi ini seperti yang diuraikan oleh Duncan-Hewitt (1990) yaitu interaksi terjadi seperti halnya penambahan satu persen SDS dapat meningkatkan hidrofobisitas pada B. cereus, yang dikarenakan SDS menutupi sisi hidrofobisitas. Peningkatan hidrofobisitas bakteri tersebut juga dapat disebabkan karena penambahan enzim lisozim yang dapat menghilangkan peptidoglikan.

E. KESIMPULAN

F. DAFTAR PUSTAKA

V. PENGARUH EKSTRAK DIKLOROMETAN DAN SARI JAHE
TERHADAP AKTIVITAS HEMOLISIN E. coli O157:H7,
S. typhi DAN V. cholerae O1

A. ABSTRAK

Hemolisin merupakan salah satu faktor virulensi yang sekresinya dikoordinasi oleh protein membran sel bakteri. Penelitian sebelumnya membuktikan bahwa ekstrak dikelorometan dan sari jahe dapat mengakibatkan perubahan hidrofobisitas bakteri, yang memungkinkan terjadinya perubahan struktur membran sel, sehingga pertumbuhannya terhambat.

Tujuan penelitian ini untuk mengetahui pengaruh ekstrak dikelorometan dan sari jahe terhadap aktivitas hemolisin E. coli O157:H7, S. typhi dan V. cholerae O1 dan ekstrak hemolisin V. cholerae O1.

Pada media agar darah V. cholerae O1 dan S. aureus mempunyai aktivitas β-hemolisis sedangkan S. typhi dan E. coli O157:H7 mempunyai aktivitas α-hemolisis. Penggunaan 10 mg/ml sari jahe sebagai pelarut media agar darah dapat menghambat aktivitas hemolisin S. typhi dan E. coli O157:H7 dan menghambat secara parsial aktivitas hemolisin V. cholerae dan S. aureus. Penambahan ekstrak dikelorometan jahe 8, 15 dan 20 mg/ml media agar dilakukan berturut-turut pada kultur V. cholerae O1, E. coli O157:H7 dan S. typhi dapat menghambat aktivitas hemolisin pada semua spesies bakteri tersebut. Hasil ini menunjukkan V. cholerae O1 mempunyai aktivitas hemolisin lebih kuat dari E. coli O157:H7 dan S. typhi.

Konsentrasi hemolisin 5 µg protein/ml dalam 5 x 10⁵ sel/ml suspensi eritrosit menghasilkan aktivitas hemolisis sebesar 25,40 persen. Konsentrasi 37,5; 75 dan 150 µg/ml ekstrak dikelorometan jahe dalam suspensi eritrosit yang mengandung 5 µg/ml ekstrak hemolisin menghasilkan aktivitas hemolisin berturut-turut 19,37, 8,32 dan 12,32 persen.

Ekstrak dikelorometan dan sari jahe dapat menghambat virulensi bakteri melalui penghambatan terhadap produksi dan aktivitas hemolisin.
B. PENDAHULUAN

Hemolisin merupakan polipeptida hidrofilik yang mengandung sedikit sistein dan kaya akan glisin dan mempunyai sisi hidrofobik sebagai sisi pembentuk pori pada fosfatidilkolin dan spingomielin dari membran eritrosit (Ludwig dan Goebel, 1991: Tomita dan Kamia, 1997).

Supernatan kultur *V. cholerae* non toksigenik yang ditumbuhkan dalam NB mempunyai pengaruh yang mematikan pada tikus dan bila supernatan tersebut diinjeksikan secara intravena dapat mengakibatkan akumulasi cairan usus (Singh et
Berdasarkan analisis genetik, bakteri mempunyai gen yang menyandikan protein membran luar sel yang mengkoordinasi produksi protein supernatan kultur, dan analisis pada agar darah memungkinkan protein tersebut adalah hemolisin.

Penelitian ini bertujuan untuk mengetahui pengaruh sari jahe dan ekstrak diklorometan terhadap aktivitas hemolisin \textit{E. coli} O157:H7, \textit{S. typhi} dan \textit{V. cholerae} O1 dan pengaruh ekstrak diklorometan jahe terhadap aktivitas ekstrak hemolisin \textit{V. cholerae} O1.

\textbf{C. METODE PENELITIAN}

1. Tempat dan Waktu Penelitian

2. Bahan Penelitian

Bakteri yang digunakan dalam penelitian ini diantaranya adalah \textit{S. aureus}, \textit{V. cholerae} O1 BCC 2143, \textit{S. typhi} ATCC 0029 dan \textit{E. coli} O157:H7 ATCC 43889.
Sari jahe diperoleh seperti penelitian sebelumnya dengan konsentrasi sari jahe dalam media NB setara dengan 10 mg/ml, ekstrak diklorometan, kantong selofan "Viking" (cut off BM 10 kDalton) dan perkol. Peralatan yang digunakan adalah spectronic 20 (Bausch and Lomb, New York, USA) dan butiran gelas parrel.

3. Aktivitas Antihemolisis Ekstrak Jahe

a. Pembuatan sampel darah defibrinasi

Pengambilan sampel darah dari 3 ekor kelinci dilakukan menggunakan kanula (jarum), sehingga diperoleh 30 ml, sampel darah dimasukkan dalam erlenmeyer yang telah berisi butiran gelas parrel, darah diputar perlahan-lahan sehingga terbentuk gumpalan fibrin. Selanjutnya cairan dituang pada wadah yang lain untuk dipisahkan dengan fibrin. Cairan darah defibrinasi digunakan sebagai sampel darah selanjutnya.

b. Persiapan sampel eritrosit kelinci

Sebanyak 5 ml sampel darah defibrinasi disentrifus pada 700 g selama 5 menit, supernatant dibuang dan sel darah diresuspensi dengan bufer Hapes (10 mM Hapes, 150 mM NaCl, pH 7.2) menjadi 10 ml. Pemisahan eritrosit dilakukan secara sentrifus menggunakan graden densitas perkol 1,077 g/ml. Sebanyak 4 ml suspensi sel darah diletakkan diatas 4 ml larutan perkol, selanjutnya disentrifus 700 g selama 20 menit, eritrosit dengan densitas 1,092 g/ml berada pada bagian bawah tabung. Eritrosit dicuci dengan menambahkan bufer Hapes dan digunakan untuk analisis selanjutnya (Burdon dan van Kripenberg, 1988).
c. Hemolisis pada agar darah

Media agar darah basal dipersiapkan mengandung 5 % (v/v) darah kelinci defibrinasi. Perlakuan ekstrak jahe dipersiapkan sebagai berikut. (1) Agar darah basal dilarutkan dalam sari jahe ditambah 5 % (v/v), sehingga konsentrasi akhir sari jahe menjadi 10 mg/ml dalam media. (2) Media agar darah dengan ekstrak diklorometan 8, 15 dan 20 mg/ml agar diinokulasi secara berturut-turut dengan *V. cholerae* O1, *E. coli* O157:H7 dan *S. typhi*. Bakteri diinokulasikan pada media agar darah dengan metoda tusuk, kemudian diinkubasi pada suhu 37°C selama 48 jam. Adanya eritrosit lisis dapat dilihat pada areal bening yang ditimbulkan disekitar koloni. β-hemolisis membentuk areal bening yang sempurna (++) dan α-hemolisis membentuk areal bening parsial (+) (Welch dan Maxcy, 1979 dan Atlas, 1984).

d. Hemolisis pada suspensi eritrosit.

Produksi hemolisin

Pada media agar darah diketahui bahwa *V. cholerae* O1 mempunyai aktivitas hemolisis yang lebih kuat daripada *E. coli* O157:H7 dan *S. typhi*, oleh karena itu bakteri ini digunakan untuk memproduksi hemolisin dalam kultur cair. *Vibrio cholerae* O1 ditumbuhkan pada media yang mengandung (% b/v): Yeast extract 1; K₂HPO₄ 1; feri amonium sitrat 0,005; MgSO₄ 0,05; NaCl 0,5; dektrosa 1 dan pH 7,2 dengan penyetara pH 1 N HCl. Kultur ditumbuhkan pada suhu 37°C selama 18 jam pada inkubator bergoyang 120 rpm. Supernatan diperoleh dengan cara
Pemekatan hemolisin dilakukan dengan menambah ammonium sulfat pada supernatan hingga kejenuhan 70 persen. Endapan yang terbentuk dipisahkan dengan cara sentrifus 1900 g selama 20 menit, selanjutnya endapan didialis pada suhu 4°C selama 12 jam. Konsentrasi protein ditentukan menurut metode Bradford dengan standar protein menggunakan BSA.

Analisis berat molekul protein supernatan kultur *V. cholerae* O1 dengan elektroforosis

Analisis elektroforesis terhadap kultur supernatan *V. cholerae* O1 dilakukan menggunakan piranti elektrofotesis SDS gel poliakrilamid (SDS-PAGE) gradien 10-15%, dengan ukuran gel 40 x 50 x 1 mm (PhastGel, Pharmacia). Gel poliakrilamid mengandung bufer 0,112 M asetat, 0,112 M Tris, pH 6,5. Bufer eluenn digunakan bufer strip dalam 3% agarose yang mengandung 0,20 M trisin, 0,20 M Tris, 0,55% SDS pH 8,1. Standar molekul digunakan protein kit yang terdiri atas beberapa protein dengan BM yang berbeda dan mengandung kromoprotein (Pharmacia). Sebanyak 2 μl sampel dan standar molekul diletakkan pada sumur yang ada pada gel SDS-PAGE. Selanjutnya listrik dialirkan pada sistem elektroforesis (PhastSytem) menggunakan 180 V, 9,8 mA dan 1,7 w pada suhu 16°C, proses pemisahan memerlukan waktu selama 30 menit.
Menentukan waktu inkubasi optimum terhadap aktivitas hemolisin \(V. \) cholerae O1 pada suspensi eritrosit

Sebanyak 5 ml \((3,5 \times 10^6 \text{ sel})\) sel eritrosit dalam bufer Hepes \((10 \text{ mM Hepes, } 150 \text{ mM NaCl, pH 7,2})\), ditambahkan 280 dan 700 \(\mu l\) \((50 \mu g/ml)\) ekstrak hemolisin pada masing-masing tabung, selanjutnya volume disetarakan menjadi 7 ml dengan menambahkan bufer Hepes, sehingga konsentrasi hemolisin menjadi 2,5 dan 5 \(\mu g/ml\). Kontrol positif 5 ml eritrosit ditambah 1 ml \(\text{NH}_4\text{OH}\) konsentrasi akhir 0,03 M, hasil pelisisan ini dianggap setara dengan 100 persen hemolisis. Suspensi eritrosit diinkubasi pada suhu 37\(^\circ\)C selama 0, 30, 60, 90 dan 120 menit. Kemudian suspensi disentrifus 700 \(g\) selama 5 menit, absorbasi supernatant diukur pada \(\lambda\) 540 nm. Persen hemolisis dihitung berdasarkan: \(\frac{A_{\text{Sampel}} - A_{\text{Kontrol positif}}}{A_{\text{Kontrol positif}}} \times 100\) persen. Persen hemolisis merupakan persen perubahan absorbansi supernatant yang diakibatkan eritrosit lisis selama waktu inkubasi tertentu. (Bratt dan Clavell, 1972).

Pengaruh ekstrak diklorometan jahe terhadap aktivitas hemolisin \(V. \) cholerae O1 pada suspensi eritrosit

Sebanyak 5 ml \((3,5 \times 10^6 \text{ sel})\) sel eritrosit dalam bufer Hepes \((10 \text{ mM Hepes, } 150 \text{ mM NaCl, pH 7,2})\), ditambah 0, 175, 350 dan 700 \(\mu l\) ekstrak jahe \((1,5 \text{ mg/ml dalam } 0,75\% \text{ DMSO})\) dan ditambahkan 700 \(\mu l\) \((50 \mu g/ml)\) ekstrak hemolisin secara bersamaan, selanjutnya volume disetarakan menjadi 7 ml dengan menambahkan bufer hepes, sehingga konsentrasi akhir ekstrak jahe menjadi 0, 37,5; 75 dan 150 \(\mu g/ml\) dalam suspensi eritrosit (Hill \textit{et al.}, 1997). Suspensi diinkubasi
pada suhu 37°C selama 90 menit. Kemudian suspensi disentrifus 700 g selama 5 menit, selanjutnya supernatant ditentukan absorbansinya pada \(\lambda \) 540 nm. Persen hemolisis ditentukan dengan cara seperti pada sebelumnya. Pengamatan dilakukan dengan tiga kali ulangan.

D. HASIL PENELITIAN DAN PEMBAHASAN

1. Aktivitas Hemolisin Bakteri pada Agar Darah

Aktivitas hemolisin *V. cholerae* O1 dan *S. aureus* pada media agar darah menunjukkan β-hemolisis (+ +), sedangkan *E. coli* O157:H7, *S. typhi* menunjukkan α-hemolisis (+) (Gambar 15).

![Gambar 15. Aktivitas hemolisin *S. typhi*, *E. coli* O157:H7, *S. aureus* dan *V. cholerae* O1 pada agar darah (kontrol). Areal bening menunjukkan adanya hemolisis.](image-url)
Penggunaan sari jahe 10 mg/ml mengandung 0,134 mg/ml fenolik sebagai pelarut media agar darah menghasilkan areal bening parsial disekeliling koloni S. aureus (+) dan V. cholerae O1 (+) yang berarti adanya penurunan intensitas areal bening dibandingkan dengan kontrol dan tidak menunjukkan areal bening disekitar koloni S. typhi (-), E. coli O157:H7 (-) (Tabel 14).

Tabel 14. Aktivitas hemolisin V. cholerae O1, E. coli O157:H7, S. typhi dan S. aureus pada media agar darah

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>Kontrol</th>
<th>Sari jahe</th>
<th>Ekstrak diklorometan</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>V. cholerae O1</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>S. typhi</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

++ : β hemolisis
+ : α hemolisis
- : tidak terjadi hemolisis

Konsentrasi 8, 15 dan 20 mg/ml ekstrak diklorometan dalam media agar darah berturut-turut mengandung senyawa fenol setara dengan 0,96, 1,80 dan 2,41 mg/ml. Adanya ekstrak diklorometan dalam media agar darah tidak menghasilkan areal bening (-) disekeliling koloni V. cholerae O1, E. coli O157:H7 dan S. typhi (Gambar 16). Penurunan intensitas areal bening dan tidak adanya areal bening disekitar koloni bakteri kemungkinan adanya penghambatan produksi atau aktivitas hemolisis. Penghambatan hemolisis sebagian pada penggunaan sari jahe disebabkan oleh rendahnya konsentrasi fenol dalam sari jahe.

Pada penelitian sebelumnya sari jahe mengakibatkan peningkatan hidrofobisitas pada *E. coli* O157:H7 yang lebih tinggi daripada ekstrak diklorometan, dan juga mengakibatkan penurunan hidrofobisitas *S. typhi* dan *V. cholerae* O1 yang lebih tinggi daripada ekstrak diklorometan. Tingginya perubahan hidrofobisitas ini tidak diikuti dengan penghambatan produksi atau aktivitas hemolisin secara proporsional. Adanya beberapa mekanisme perubahan hidrofobisitas, seperti yang dipostulasikan oleh Rosenberg dan Sar (1990), memungkinkan senyawa yang membentuk ikatan hidrofobik dengan bakteri bersifat surfaktan, sehingga tidak memberikan pengaruh yang nyata terhadap fisiologi bakteri, khususnya produksi hemolisin. Sedangkan ekstrak diklorometan dengan kandungan fenolik yang tinggi memberikan perubahan hidrofobisitas yang rendah, namun mengakibatkan menghambat produksi atau

2. Hemolisin *V. cholerae* O1

a. Karakterisasi protein supernatan kultur *V. cholerae* O1

Gambar 17. Profil BM protein pada SDS-PAGE: protein supernatan kultur *V. cholerae* O1 (2,3,4,5 dan 7) dan standar BM protein (1 dan 6).
b. Aktivitas hemolisin *V. cholerae* O1 pada suspensi eritrosit

Aktivitas hemolisin pada 5×10^5 sel/ml eritrosit kelinci dapat dilihat dari peningkatan absorbansi supernat susensi eritrosit pada λ 540 nm. Hemolisin mempunyai aktivitas hemolisis optimum pada suhu incubasi 37°C selama 90 menit (Gambar 18). Peningkatan lama incubasi hingga 120 menit dapat meningkatkan absorbansi supernat eritrosit, tetapi peningkatan tersebut tidak nyata dan cenderung konstan. Konsentrasi 2,5 dan 5 µg/ml ekstrak hemolisin menghasilkan aktivitas hemolisis berturut-turut sebesar 16.48 ± 2.22 dan 25.40 ± 3.23 persen.

![Graph showing hemolysis activity](image)

Gambar 18. Aktivitas 2,5 dan 5 µg/ml ekstrak hemolisin *V. cholerae* O1 terhadap sel eritrosit pada berbagai lama incubasi

Konsentrasi hemolisin lebih kecil dari 2,5 µg/ml dengan lama waktu incubasi 90 menit tidak menunjukkan adanya perubahan absorbansi yang nyata, ini dimungkinkan karena pembentukan pori hemolisin pada sel membran tidak cukup untuk
mengakibatkan sel lisis. Demikian pula penggunaan konsentrasion ekstrak hemolisin lebih besar dari 5 μg/ml tidak memberikan peningkatan yang nyata, karena reseptor pada eritrosit telah jenuh (Lampiran 13-14). Hemolisis maksimum pada reaksi antara hemolisin dan eritrosit memerlukan perbandingan konsentrasi yang optimum antara hemolisin dengan sel target.

3. Pengaruh Ekstrak Diklorometan Jahe terhadap Aktivitas Hemolisin V. cholerae O1 pada Suspensi Eritrosit

Tabel 15 menunjukkan 75 dan 150 μg/ml ekstrak diklorometan jahe dapat menghambat aktivitas hemolisin 5 μg/ml, dengan nilai penghambatan berturut-turut 67,25 ± 1,89 dan 57,88 ± 7,60 persen. Konsentrasi 150 μg/ml ekstrak diklorometan mempunyai nilai penghambatan yang lebih rendah daripada penambahan 75 μg/ml ekstrak (Lampiran 15).

| Konsentrasi Ekstrak jahe | % Hemolisis | %Penghambatan hemolisis relatif terhadap aktivitas hemolisis
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 μg/ml</td>
<td>25,40 ± 3,22</td>
<td>0%</td>
</tr>
<tr>
<td>37,5μg/ml</td>
<td>19,37 ± 0,48</td>
<td>23,73 ± 1,89</td>
</tr>
<tr>
<td>75μg/ml</td>
<td>8,32 ± 0,48</td>
<td>67,25 ± 1,87</td>
</tr>
<tr>
<td>150 μg/ml</td>
<td>12,32 ± 3,15</td>
<td>57,88 ± 7,60</td>
</tr>
</tbody>
</table>

Tabel 15. Pengaruh ekstrak diklorometan jahe terhadap aktivitas 5 μg/ml ekstrak hemolisin V. cholerae O1*
Penghambatan aktivitas hemolisin oleh 75 μg/ml ekstrak diklorometan kemungkinan disebabkan senyawa fenolik dan minyak atsiri yang berinteraksi dengan fosfotidikolin dan spingomielin dari membran eritrosit. Interaksi ini mengakibatkan perubahan reseptor hemolisin, tetapi tidak mempengaruhi fluidisasi membran eritrosit karena bersifat surfaktan yang meilindungi sel. Konsentrasi 150 μg/ml ekstrak diklorometan memperlihatkan penurunan terhadap penghambatan hemolisis dibandingkan dengan 75 μg/ml ekstrak diklorometan. Pada konsentrasi 150 μg/ml ekstrak diklorometan, kemungkinan senyawa fenolik tidak hanya berinteraksi dengan reseptor hemolisin, tetapi juga berinteraksi dengan protein membran (Nychas 1995).

Adanya gugus OH dan alkil dari senyawa fenolik dapat berdistribusi pada fase polar dan non polar, yang kemungkinan juga berinteraksi dengan protein membran dan berakibat menurunkan tegangan permukaan yang selanjutnya menyebabkan lisis eritrosit. Seperti halnya oleoropein (fenolik glukosida) dan hasil hidrolisisnya, β-3,4-dihidroksipeniletil alkohol, asam eilenolik dan oleoropen aglikon dapat menyebabkan hemolisis pada eritrosit manusia (Nychas 1995).

E. KESIMPULAN

Pada media agar darah, sari jahe dapat menghambat aktivitas atau produksi α-hemolisin E. coli O157:H7 dan S. typhi, disamping itu juga menghambat sebagian aktivitas atau produksi β hemolisin V. cholerae O1 dan S. aureus. Sedangkan ekstrak diklorometan dapat menghambat aktivitas atau produksi α- dan β-hemolisin dari bakteri tersebut.
Pengujuan lebih lanjut, 75 μg/ml ekstrak diklorometan dapat menghambat 67,25 persen aktivitas hemolisis dari 5 μg/ml ekstrak hemolisin V. cholerae O1 pada 5 x 10^5 sel/ml susupensi eritrosit. Penghambatan produksi dan aktivitas hemolisin ini berarti menghambat salah satu faktor virulensi bakteri.

F. DAFTAR PUSTAKA

VI. PENGARUH EKSTRAK DIKLOROMETAN JAHE TERHADAP PENGIKATAN TOKSIN KOLERA (V. cholerae O1) PADA SEL HIBRIDOMA DAN CACO-2

A. ABSTRAK

Toksin kolera merupakan faktor utama yang bertanggungjawab terhadap diare berair. Penelitian sebelumnya menyatakan bahwa ekstrak jahe menghambat pertumbuhan E. coli O157: H7, S. typhi dan V. cholerae O1 dan mengakibatkan perubahan hidrofobisitas bakteri serta menghambat aktivitas hemolisin V. cholerae O1. Penelitian ini bertujuan untuk mengetahui penghambat pengikatan toksin kolera pada sel hibridoma dan Caco-2 oleh ekstrak diklorometan jahe.

Analisis pengikatan toksin B-FITC pada sel hibridoma dan Caco-2 dilakukan dengan metoda flow cytometry. Interaksi sel hibridoma maupun Caco-2 pada 10^5 sel/ml dengan toksin B-FITC konsentrasi 0-5μg/ml, yang diikubasi pada suhu 4°C selama satu jam menunjukkan ikatan spesifik toksin B-FITC sebesar 44,44 ± 3,49 persen pada hibridoma dan 94,58± 1,83 persen pada sel Caco-2.

Penggunaan 25 dan 50 μg/ml ekstrak diklorometan jahe pada kultur sel hibridoma berturut-turut menunjukkan penghambatan pengikatan toksin B-FITC sebesar 4,76-15,66 persen dan 12,96-24,60 persen, sedangkan pada sel Caco-2 menunjukkan penghambatan pengikatan toksin B-FITC sebesar 3,55-17,95 persen dan 3,58-27,83 persen.

B. PENDAHULUAN

Toksin kolera merupakan salah satu faktor virulensi dari V. cholerae O1 yang bertanggungjawab terhadap terjadinya diare. Toksin terdiri atas subunit A (toksin-A) yang bersifat toksik dikelilingi oleh lima molekul subunit B (toksin-B) yang berfungsi sebagai sisi toksin yang menempel pada reseptor dari permukaan sel inang (Holmgren, 1978).
Penempelan toksin-B (ligan) pada reseptor terjadi karena adanya interaksi dari molekul yang mempunyai struktur yang cocok (Duncan-Hewitt, 1990), interaksi ini distabilkan oleh ikatan: (1) elektrostatis antara sisi yang mempunyai muatan ionik berlawanan, seperti rantai asam amino yang mempunyai gugus samping NH₃⁺ dari lisin dengan gugus –COO⁻ dari asam amino glutamat. (2) Ikatan hidrogen adalah ikatan yang dibentuk antara gugus hidrofil molekul, dan (3) ikatan hidrofobik yaitu ikatan yang dibentuk oleh gugus non polar molekul.

Penggunaan sel Caco-2 sebagai model sel untuk penelitian tentang pengikatan toksin kolera pada reseptor memenuhi kriteria sebagai sel epitel, karena merupakan turunan alur adenokarsinoma kolon manusia dan mempunyai reseptor spesifik terhadap toksin kolera. Secara in vitro sel tersebut tumbuh sebagai monolayer, yang mempunyai morfologi dan fungsi diferensiasi serta karakteristik enterosit (Crociani et al. 1995). Analisis pengikatan toksin kolera pada sel Caco-2 dapat dilakukan dengan metoda flow cytometry dan mikroskopis, melalui suatu pelabelan pada toksin dengan menggunakan senyawa berfluoresens. Adanya perubahan intensitas fluoresens yang terukur dapat menunjukkan adanya perubahan ikatan toksin dengan sel Caco-2.

Penelitian ini bertujuan untuk mengetahui pengaruh ekstrak diklorometan jahe terhadap pengikatan toksin kolera-B terkonjugasi-FITC (fluorescence isothiocyanat) (B-FITC) pada sel hibridoma dan Caco-2.
C. METODA PENELITIAN

1. Tempat dan Waktu Penelitian

2. Bahan Penelitian

Bahan penelitian yang digunakan adalah sel hibridoma dan enterosit Caco-2 yang diperoleh dalam keadaan beku dari Laboratorium Biokimia, Universitas Henri Poincare. Media RPMI (Roosevelt Park Medical Institute) 1640 yang mengandung 4 mM L-glutamin dan pH fenol merah (Boehringer, M12-702, Mannheim, German) dan serum anak sapi (Jacques Boy, Reims, France).

Peralatan yang digunakan antara lain: Inkubator CO₂ (Jouan E.G. 115 IR), sentrifus (Jouan CR. 3000), laminar flow (Glass 100 GELAIR) dan EPICS XL flow cytometry (Coultronics Margency, France) dan mikroskop (Diaphon-NIKON).

3. Ekstrak Diklorometan Jahe

Ekstrak diklorometan jahe, yang telah dihilangkan residu pelarutnya dengan gas nitrogen, dilarutkan dalam DMSO, yang kemudian diencerkan dengan PBS sehingga diperoleh konsentrasi akhir 4 mg/ml ekstrak jahe dengan 0,75 persen DMSO dalam bufer PBS.
4. Toksin Kolera Subunit B terkonjugasi-FITC

Toksin kolera subunit B-terkonjugasi-FITC (fluorescence isothiocyanat) (B-FITC) dan toksin kolera subunit B tanpa konjugasi (Sigma). Sebanyak 0,5 mg protein toksin dilarutkan dalam 2,5 ml PBS, sehingga didapat konsentrasi akhir 200 µg/ml.

5. Kultur Sel Hibridoma dan Caco-2

Sel hibridoma atau Caco-2 ditumbuhkan dalam tabung kultur 50 cm² (Plastik Nunclon-Delta) yang berisi media RPMI 1640 yang mengandung 4 mM L-glutamin, dengan indikator pH fenol merah dan 10 persen serum anak sapi. Kultur diinkubasi pada suhu 37°C, 5 persen CO₂, 95 persen udara dengan kelembaban 99 persen. Media kultur diganti setiap dua hari. Sel pada fase pertumbuhan eksponensial dengan densitas minimum 10⁶ sel/ml digunakan sebagai sample. Sel Caco-2 digunakan setelah tripsinasi dengan 1,25 persen tripsin pada 37°C selama 5 menit.

Cara menghitung viabilitas sel yaitu mengambil 100 µl kultur ditambah 100 µl tripian biru, lalu diteteskan pada hemasitometer. Dibawah mikroskop, sel hidup memberikan penampakan yang bersinar dan yang mati berwarna biru. Setiap kotak besar dari hemasitometer mempunyai volume 10⁻³ ml, sehingga jumlah sel terhitung dikelikan dengan faktor pengenceran dan 10⁴ sel/ml. Pengamatan ini dilakukan dengan duplo 3 kali ulangan.
6. Penambahan Ekstrak Jahe pada Kultur Sel

Kurva pertumbuhan hibridoma atau Caco-2 diperoleh dari menginkubasi sel \(10^5\) sel/ml dengan berbagai konsentrasi 12,5, 25, 50 \(\mu g/ml\) ekstrak diklorometan jahe dalam tabung kultur 50 cm\(^2\) (Plastik Nunclon-Delta) yang mengandung 9 ml RPMI 1640. Pengamatan setiap hari terhadap proliferasi sel dilakukan dengan penambahan tripan biru pada sampel sel dan penghitungan menggunakan hemasitometer. Selanjutnya kultur dinkubasi hingga 4 hari.

7. Aplikasi flow Cytometry untuk Menentukan Viabilitas Sel

Gambar 19. Sitogram flow cytometry. Log intensitas sinar difraksi (LFLS) meningkat menunjukkan populasi sel hidup (H) dan log intensitas sinar refraksi (90LS) meningkat dengan LFLS menurun menunjukkan populasi sel mati (G). Populasi (a) sel hibridoma dan (b) sel Caco-2.

8. Analisis Ikatan Toksin B-FITC pada Receptor dengan Flow Cytometry

Penggunaan FITC sebagai label pada toksin-B, memungkinkan adanya ikatan toksin B-FITC dengan sel hibridoma dan Caco-2 dapat dideteksi dengan metoda flow cytometry. Isotiosianat mempunyai emisi fluoresens hijau λ 543 nm, pada histogram monometrik (1024 skala logaritma), yang dieksesikan sebagai nilai tengah intensitas fluoresens (MIF: mean intensity of fluorescence; $MIF = e^{(\ln 1000/1024) \times x}$), dimana x adalah nilai tengah puncak logaritma (Gambar 20).
Gambar 20. Histogram fluoresens dari toksin B-FITC; (a) populasi sel tanpa toksin B-FITC, tidak berfluoresens, (b) populasi sel berfluoresens dengan toksin B-FITC yang terikat pada reseptor, penambahan 40 μg/ml toksin-FITC pada 10⁶ sel/ml sel hibridoma.

a. Perjenuhan dan ikatan spesifik toksin B-FITC pada sel hibridoma dan Caco-2

Kurva ikatan toksin B-FITC diperoleh dengan menginkubasi 10⁵ sel/ml hibridoma atau Caco-2 dengan berbagai konsentrasi 0,00, 0,01, 0,10, 0,50 dan 5,00 μg/ml toksin B-FITC dalam media RPMI pada suhu 4°C selama 1 jam. Nilai tengah fluoresens tiap konsentrasi toksin subunit B-FITC adalah ikatan total toksin B-FITC pada hibridoma atau Caco-2 (Al-Rubeai dan Emery, 1993).

Ikatan non spesifik diperoleh dari menginkubasi 10⁵ sel/ml hibridoma atau Caco-2 pada konsentrasi 40 μg/ml toksin B tanpa-FITC dengan masing-masing konsentrasi 0, 0,05, 0,10, 0,50, 1,00 dan 5,00 μg/ml toksin-FITC dalam suspensi sel. Kultur diikubasi pada suhu 4°C selama 1 jam, kemudian kultur disentrifus 300 g.
pada 4°C selama 5 menit dan pelet sel dicuci dua kali dengan 1 ml PBS. Selanjutnya pelet sel diresuspendikan dalam 1 ml PBS dan segera dianalisis pada flow cytometry.

Ikatan spesifik adalah terikatnya toksin pada spesifik reseptor yang terdapat pada membran sel hibridoma maupun pada Caco-2. Karakteristik spesifik antara lain adalah mempunyai afinitas tinggi terhadap reseptor dan pada konsentrasi yang sedikit akan memberikan respon fluoresens. Ikatan ini dapat ditentukan dengan metoda inkubasi kompetitif antara toksin B-FITC pada konsentrasi yang terbatas dengan toksin-B tanpa-FITC pada konsentrasi yang berlebih. Penambahan secara bersamaan antara toksin tersebut akan memberikan fluoresens pada kultur, dimana nilai fluoresens ini dikategorikan sebagai ikatan non spesifik toksin B-FITC pada hibridoma dan Caco-2. Dengan demikian nilai persen ikatan spesifik toksin B-FITC merupakan selisih dari total ikatan dengan ikatan non spesifik dibagi total ikatan dikalikan 100 persen. Inkubasi kultur dilakukan pada suhu 4°C untuk menghindari terjadinya internalisasi toksin B-FITC pada sel hibridoma atau Caco-2 karena pengaruh suhu.

b. Analisis penghambatan ekstrak diklorometan jahe terhadap pengikatan toksin B-FITC pada sel hibridoma dan Caco-2

Sebanyak 10⁵ sel/ml hibridoma dan Caco-2 ditambah 25 dan 50 μg/ml ekstrak diklorometan jahe dan berbagai konsentrasi 0, 0,01, 0,05, 0,10, 0,50 dan 5,00 μg/ml toksin B-FITC (konsentrasi akhir) dalam media RPMI 1640. Kultur diinkubasi pada 4°C selama 1 jam. Selanjutnya kultur disentrifus pada 300 g, 4°C selama 5 menit dan
pelet sel dicuci dua kali dengan 1ml PBS, kemudian pelet sel diresuspendikan dalam 1ml PBS dan segera dianalisis pada flow cytometry.

Penghambatan ekstrak jahe terhadap pengikatan toksin B-FITC pada sel hibridoma dan Caco-2 ditentukan berdasarkan penurunan intensitas fluoresen sel tersebut. % penghambatan : \[
\frac{\text{MIF(toksin-B-FITC) - MIF(toksin-B-FITC + jahe))}}{\text{MIF(toksin-B-FITC)}} \times 100\%.
\]

D. HASIL PENELITIAN DAN PEMBAHASAN

1. Pengaruh Ekstrak Diklorometan Jahe terhadap Pertumbuhan Sel Hibridoma dan Caco-2

Kultur hibridoma dan Caco-2 yang ditumbuhkan pada media RPMI, 10 persen FCS, yang mengandung 12,5, 25 dan 50 μg/ml ekstrak diklorometan jahe. Pertumbuhan kultur ini selama 4 hari dapat dilihat pada Gambar 21-22 (Lampiran 16 dan 17).

Gambar 21. Pertumbuhan 10^5 sel/ml Caco-2 pada media RPMI 1640, yang mengandung 12,5, 25 dan 50 μg/ml ekstrak diklorometan jahe.
Gambar 22. Pertumbuhan \(10^5\) sel/ml hibridoma pada media RPMI 1640 yang mengandung 12.5, 25 dan 50 \(\mu\)g/ml ekstrak diklorometan jahe.

Pada umumnya kurva pertumbuhan terdiri atas 4 fase yaitu fase adaptasi pada hari ke 0-1, proliferasi eksponensial pada hari ke 1-3, stasioner dan penurunan pada hari ke 4. Penambahan ekstrak diklorometan jahe menyebabkan penurunan pertumbuhan kedua jenis sel dibanding kontrol tetapi dapat menekan jumlah sel yang mati.

Hasil pengamatan ini sesuai dengan hasil penelitian yang dilakukan oleh Surh (1999) bahwa ekstrak jahe terutama gingerol mempunyai pengaruh antiproliferasi pada sel HL-60. Hal ini disebabkan gingerol dapat menghambat penyerapan Ca\(^{++}\) pada kondisi fosforilasi mikrosom. Data tersebut dapat menduga bahwa gingerol menghambat penyerapan Ca\(^{++}\) pada fase pertumbuhan, tetapi pada kondisi tidak fosforilasi dapat meningkatkan penyerapan Ca\(^{++}\). Sehingga pada fase pertumbuhan
tetap (stasioner) gingerol mempunyai aktivitas mempertahankan keseimbangan Ca\(^{++}\)
dan dapat menekan sel yang mati (Antipenko et al., 1999).

Dijelaskan lebih lanjut bahwa Ca\(^{++}\) mempunyai peranan penting dalam
pengaturan intraseluler dan mempunyai fungsi sebagai pembawa pesan kedua untuk
molekul ekstraseluler. Hal ini ditunjukkan bahwa penyuntikan intraseluler dengan
sejumlah kecil Ca\(^{++}\) dapat mengakibatkan sel otot berkontraksi, sehingga dapat
dikatakan bahwa gingerol dapat mempertahankan keseimbangan penyerapan dan
pengeluaran Ca\(^{++}\) pada plasma membran tanpa fosforilasi.

2. Reseptor Kolera Toksin B-FITC pada Hibridoma dan Caco-2

Analisis terhadap populasi sel hidup dan mati dengan flow cytometry
(Gambar 21) memungkinkan untuk melihat pengikatan toksin B-FITC pada populasi
sel yang hidup saja. Kriteria terjadinya ikatan antara toksin B-FITC pada reseptor
permukaan sel hibridoma dan Caco-2 dengan metoda flow cytometry berdasarkan pada
peningkatan intensitas fluorescent permukaan sel. Gambar 23 menunjukkan kejenuhan
reseptor toksin pada hibridoma dan Caco-2. Peningkatan konsentrasi 0-5 ug/ml toksin
B-FITC pada kultur sel hibridoma dan Caco-2 meningkatkan intensitas fluorescent, yang
menunjukkan bahwa kedua jenis sel ini mempunyai reseptor toksin kolera (Lampiran
18). Kejenuhan toksin B-FITC pada hibridoma kemungkinan terjadi pada konsentrasi
0,5-1 \(\mu\)g/ml toksin B-FITC, dan peningkatan intensitas fluorescent pada penambahan
diatas 1-5 \(\mu\)g/ml toksin B-FITC kemungkinan karena adanya ikatan yang tidak
spesifik dari toksin B-FITC pada hibridoma (Gambar 23a). Konsentrasi 1-5 µg/ml toksin B-FITC terlihat dapat menjenuh semua pada sel Caco-2 (Gambar 23b).

Gambar 23. Kurva penjenuhan reseptor oleh toksin B-FITC pada sel hibridoma (a) dan Caco-2 (b)

3. Reseptor Spesifik Toksin B-FITC pada Hibridoma dan Caco-2

Analisis ikatan spesifik toksin B-FITC pada reseptor hibridoma dan Caco-2 dapat dilihat pada Tabel 16 dan 17 (Lampiran 19-20). Penambahan konsentrasi toksin B-tanpa FITC secara berlebihan pada analisis ikatan spesifik toksin-reseptor bertujuan untuk memblok keseluruhan reseptor pada permukaan membran sel hibridoma dan Caco-2, sehingga fluoresens yang dihasilkan merupakan fluoresens dari toksin B-FITC yang terikat secara tidak spesifik. Penambahan toksin B-FITC pada berbagai konsentrasi 0-5 µg/ml terhadap hibridoma dan Caco-2, yang diasumsikan sebagai total ikatan menghasilkan intensitas fluoresens yang lebih tinggi pada Caco-2 daripada
Tabel 16. Total ikatan, ikatan non spesifik dan spesifik dari toksin B-FITC pada 10^5 sel/ml hibridoma, pada konsentrasi 40 ug/ml toksin B-tanpa-FITC dengan berbagai konsentrasi toksin B-FITC

<table>
<thead>
<tr>
<th>Toksin-FITC (ug/ml)</th>
<th>Nilai tengah intensitas fluoresens</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ikatan total</td>
<td>Ikatan non spesifik</td>
</tr>
<tr>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,05</td>
<td>0,54</td>
<td>0,30</td>
</tr>
<tr>
<td>0,10</td>
<td>0,73</td>
<td>0,40</td>
</tr>
<tr>
<td>0,50</td>
<td>0,83</td>
<td>0,42</td>
</tr>
<tr>
<td>1,00</td>
<td>0,91</td>
<td>0,51</td>
</tr>
<tr>
<td>5,00</td>
<td>1,26</td>
<td>0,75</td>
</tr>
</tbody>
</table>

Tabel 17. Total ikatan, ikatan non spesifik dan spesifik toksin B-FITC pada 10^5 sel/ml Caco-2, pada konsentrasi 40 ug/ml toksin B tanpa-FITC dengan berbagai konsentrasi toksin B-FITC

<table>
<thead>
<tr>
<th>Toksin-FITC (ug/ml)</th>
<th>Nilai tengah intensitas fluoresens</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ikatan total</td>
<td>Ikatan non spesifik</td>
</tr>
<tr>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,05</td>
<td>32,91</td>
<td>1,93</td>
</tr>
<tr>
<td>0,10</td>
<td>48,51</td>
<td>1,92</td>
</tr>
<tr>
<td>0,50</td>
<td>76,21</td>
<td>3,07</td>
</tr>
<tr>
<td>1,00</td>
<td>79,51</td>
<td>3,84</td>
</tr>
<tr>
<td>5,00</td>
<td>81,91</td>
<td>6,87</td>
</tr>
</tbody>
</table>
hibridoma, ini berarti jumlah reseptor toksin B-FITC lebih banyak pada Caco-2, dengan stereospsifik (kespesifik) ikatan toksin B-FITC pada Caco-2 sebesar 94,58 ± 1,83 persen dan pada hibridoma sebesar 44,62 ± 3,49 persen.

4. Pengaruh Ekstrak Diklorometan Jahe terhadap Pengikatan Toksin B-FITC pada Sel Hibridoma dan Caco-2

Pengaruh 25 dan 50 µg/ml ekstrak diklorometan jahe terhadap pengikatan 0-5 µg/ml toksin B-FITC pada 10⁵ sel hibridoma dan Caco-2 dalam 1 ml RPMI disajikan pada Gambar 24 dan 25. Ekstrak diklorometan jahe dalam kultur hibridoma dan Caco-2 dapat menurunkan terikatnya toksin B-FITC (Gambar 24a dan 25a) dengan persentase penghambatan dapat dilihat pada Gambar 24b dan 25b.

Gambar 24. Pengaruh ekstrak diklorometan jahe 25 dan 50 µg/ml terhadap ikatan toksin B-FITC pada sel hibridoma 10⁵ sel/ml; (a) intensitas fluoresens dan (b) persen penghambatan intensitas fluoresens.

Gambar 25. Pengaruh ekstrak diklorometan jahe 25 dan 50 μg/ml terhadap ikatan toksin-FITC pada 10^5 sel/ml Caco-2; (a) intensitas fluoresens dan (b) persen penghambatan intensitas fluoresens.

Penghambatan ekstrak diklorometan jahe terhadap ikatan toksin B-FITC pada hibridoma dan Caco-2, mungkin disebabkan karena ekstrak jahe memodifikasi receptor toksin. Menurut (Nychas, 1995) senyawa fenolik dan minyak atsiri dapat berinteraksi dengan fosfolipid, protein dan oligosakarida yang merupakan komponen membran sel. Komponen yang terdapat dalam ekstrak diklorometan jahe seperti gingerol, shogaol, zingeron dan minyak atsiri dapat berinteraksi dengan GM1 yang
merupakan reseptor pada permukaan sel (Gill, 1978), sehingga toksin-FITC tidak mempunyai sisi pemenelan pada sel. Penggunaan 50 μg/ml ekstrak diklorometan jahe dalam suspensi 10^5 sel/ml belum cukup untuk menghambat keseluruhan toksin B-FITC, yang berarti konsentrasi ini tidak cukup untuk menjenuhi reseptor. Penggunaan ekstrak jahe dengan konsentrasi diatas 50 μg/ml tidak dilakukan karena penggunaan ekstrak jahe pada penelitian ini dibatasi pada konsentrasi minimal yang mempengaruhi penurunan proliferasi sel hibridoma dan Caco-2. Oleh karena itu penggunaan konsentrasi diklorometan jahe pada analisis pengikatan toksin B-FITC menggunakan batas konsentrasi tersebut.

Penghambatan ikatan toksin B-FITC pada sel hibridoma dan Caco-2 kemungkinan disebabkan karena interaksi senyawa fenolik yang terkandung dalam ekstrak jahe dengan protein toksin, sehingga toksin B-FITC tersebut tidak dapat mengenali reseptornya. Senyawa fenolik tidak hanya berinteraksi dengan reseptor toksin B-FITC pada hibridoma dan Caco-2, tetapi dapat berinteraksi dengan komponen lain, seperti fosfolipid, protein dan lipoprotein. Sedangkan kolera toksin lebih spesifik pada gangliosida GM₁, sehingga peluang komponen jahe untuk dapat berikatan dengan gangliosida GM₁ lebih rendah dibandingkan GM₁ dengan toksin B-FITC.

Menurut Gill (1978) reseptor toksin pada sel eukariot lebih banyak pada sel usus kecil daripada sel limfosit, sehingga turunannya akan membawa sifat sel primer. Caco-2 yang merupakan turunan sel enterosit mempunyai reseptor toksin kolera lebih
banyak dan spesifik daripada hibridoma, sehingga penghambatan terhadap ikatan
toksin pada reseptor cenderung lebih rendah pada Caco-2 daripada hibridoma.

E. KESIMPULAN

Ekstrak diklorometan jahe dapat menghambat pengikatan toksin B-FITC pada
reseptor yang terdapat pada permukaan sel hibridoma dan Caco-2. Ini berarti ekstrak
diklorometan jahe menghambat faktor virulensi bakteri melalui kemungkinan
mekanisme interaksi komponen ekstrak jahe dengan reseptor atau interaksi dengan
toksin B-FITC.

F. DAFTAR PUSTAKA

Marcel Dekker, Inc. Hongkong.

and ellagic acid with the cardiac sarcoplasmic reticulum Ca++ ATPase. J.

bifidobacteria strains to human enterocyte-like Caco-2 cell and comparison

Rosenberg. Eds. Microbial Cell Surface Hydrophobicity. American
Society for Microbiology. Washington. D.C.

New york.

Methods of Food Preservation. Blackie Academic and Profesional.
London.
VII. PEMBAHASAN UMUM

Hasil ekstraksi bertahap pada rimpang jahe (*Zingiber officinale* Roscoe) dengan menggunakan pelarut berturut-turut yaitu heksan, diklorometan dan etanol diperoleh rendemen ekstrak non polar 3,23 ± 0,25 persen, semi polar 3,47 ± 0,15 persen dan polar 2,16 ± 0,31 persen (b/b) dari jahe kering. Ketiga ekstrak tersebut mempunyai kandungan total fenol berturut-turut sebesar 1,23 ± 0,21, 12,05 ± 1,93 dan 3,64 ± 0,56 persen (b/b) dari berat ekstrak. Secara difusi pada agar cawan, ekstrak diklorometan mempunyai penghambatan relatif yang lebih tinggi daripada ekstrak heksan dan etanol terhadap *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1. Pada media NB ekstrak diklorometan mempunyai nilai MIC berturut-turut 10, 10 dan 5 mg/ml dan MBC berurut-turut 15, 20 dan 8 mg/ml terhadap *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1. Penghambatan ekstrak diklorometan terhadap bakteri tersebut disebabkan karena kandungan fenolik yang relatif tinggi dibanding dengan ekstrak heksan dan etanol.

Fraksinasi terhadap ekstrak diklorometan dengan metoda KLT pada silika G60 F254 menghasilkan delapan fraksi. Fraksi 1-4 dari kedelapan fraksi berturut-turut mempunyai nilai Rf F1: 0,15, F2: 0,19, F3 0,30 dan F4 0,42. Mengacu pada hasil penelitian Chen *et al.* (1986) dan Wikandari (1994) sebagai fraksi pembanding dapat dinyatakan bahwa F1 dan F2 adalah gingerol, F3 adalah zingeron dan F4 adalah shogaol dan fraksi-fraksi ini pada difusi agar mempunyai aktivitas antimikroba terhadap *V. cholerae* O1.
Penghambatan pertumbuhan bakteri oleh fraksi ekstrak diklorometan meyakinkan bahwa senyawa yang berperan menghambat pertumbuhan *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1 dalam ekstrak diklorometan adalah senyawa fenolik, karena peningkatan konsentrasi total fenol didalam ekstrak diikuti dengan peningkatan penghambatan terhadap bakteri.

Vibrio cholerae O1 merupakan bakteri yang relatif rentan daripada *E. coli* O157:H7 dan *S. typhi* terhadap senyawa fenolik yang terdapat dalam ekstrak diklorometan. Kerentanan *V. cholerae* O1 terhadap senyawa fenolik juga dapat dilihat dari penggunaan sari jahe. Sari jahe 12 mg/ml yang setara dengan total fenol 0,16 mg/ml dalam media pertumbuhan dapat menghambat 73,85 persen pertumbuhan *V. cholerae* O1.

Kerentanan *V. cholerae* O1 tersebut dikarenakan struktur membran luar sel memiliki fosfolipid yang menonjol, O-oligosakarida memberikan muatan negatif yang rendah dan senyawa murein yang lemah (Subhra *et al.*, 1996), sehingga senyawa fenolik dari ekstrak jahe dapat dengan mudah berinteraksi, dan kemungkinan dapat berdifusi masuk kedalam sel. Selanjutnya mengakibatkan bakteri terhambat pertumbuhannya atau mati. Ketahanan *E. coli* O157:H7 dan *S. typhi* terhadap ekstrak jahe dikarenakan bakteri tersebut mempunyai LPS dengan komponen O-polisakarida pada sisi proksimal lebih tinggi daripada *V. cholerae* (Nikaido, 1996), karena komponen ini memberikan muatan negatif yang lebih besar.

Secara umum mekanisme sensitifitas bakteri *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1 terhadap ekstrak diklorometan jahe mungkin dikarenakan kemampuan
senyawa fenolik yang mempengaruhi struktur membran luar sel bakteri. Pengaruh senyawa fenolik ini terlihat dari peningkatan hidrofobisitas *E. coli* O167:H7 dan penurunan hidrofobisitas *S. typhi* dan *V. cholerae* O1. Perubahan hidrofobisitas pada bakteri ini menunjukkan adanya perubahan struktur permukaan sel bakteri, sehingga menurunkan pertahanan sel dan memungkinkan senyawa fenolik berdifusi dan berinteraksi dengan komponen sel, seperti enzim yang berperan dalam metabolisme dan selanjutnya menghambat pertumbuhan bakteri.

Komponen permukaan sel bakteri menurut Lachica (1990) berfungsi mengkoordinasi pembentukan protein ekstraseluler, adanya perubahan pada komponen permukaan ini dapat menghambat produksi hemolisin.

Selain itu secara *in vitro* aktivitas ekstrak hemolisin *V. cholerae* O1 dapat dihambat oleh ekstrak diklorometan jahe. Penghambatan tersebut mungkin disebabkan ekstrak jahe dapat berinteraksi dengan fosfatidilkolin dan spingomielin yang
merupakan reseptor dari hemolisin pada sel eritrosit dan interaksi fenolik dengan hemolisin.

Faktor virulensi yang lain dari *V. cholerae* O1 adalah enterotoksin (CT). Dalam penelitian ini sebagai model sel inang digunakan sel hibridoma dan Caco-2 dan toksin kolera yang digunakan adalah toksin B-FITC. Penambahan ekstrak diklorometan jahe dapat menghambat pengikatan toksin B-FITC pada sel hibridoma lebih tinggi daripada penghambatan pengikatan pada Caco-2. Hal ini dikarenakan ikatan spesifikasi toksin yang rendah pada hibridoma. Penghambatan tersebut dapat dikatakan relatif rendah karena konsentrasi ekstrak jahe yang digunakan terlalu rendah untuk menjenuhi reseptor yang ada. Namun penggunaan ini terbatas pada minimal konsentrasi ekstrak jahe yang mengurangi proliferasi sel inang.

Komponen yang terkandung dalam ekstrak jahe dapat mengakibatkan perubahan hidrofobisitas pada bakteri, yang berarti menyebabkan perubahan pada membran terluar bakteri dan kemungkinan memodifikasi faktor adesin, sehingga menghambat pembentukan faktor adesin, yang selanjutnya menghambat adesi bakteri pada epitel. Penghambat produksi hemolisin, aktivitas hemolisin dan pengikatan kolera toksin oleh komponen ekstrak jahe menunjukkan penghambatan terhadap virulensi bakteri.

Aplikasi penggunaan ekstrak jahe bergantung pada tujuan penggunaannya. Penggunaan sari jahe dalam minuman tradisional mencapai 6-10 persen jahe segar dalam bahan, konsentrasi ini setara dengan fenolik 0,134 mg/ml bahan. Bedasarkan rendemen dan kandungan total fenol, sari jahe mempunyai potensi relatif 21,63.
persen lebih tinggi daripada ekstrak diklorometan, dan 6 persen lebih tinggi daripada total fenol kumulatif ekstrak heksan, diklorometan dan etanol (Lampiran 21). Sari jahe tidak mempunyai masalah dalam aplikasinya, baik sebagai tambahan dalam bahan pangan maupun sebagai komponen obat tradisional.

Penggunaan komponen bioaktif rimpang jahe yang lebih tinggi, yang diperlukan sebagai komponen ramuan obat, sangat diperlukan untuk menggunakan hasil ekstraksi. Pengunaan ekstrak diklorometan dan heksan dalam bahan pangan diperlukan pengemulsi. karena ekstrak diklorometan dan heksan sulit bercampur.
VIII. KESIMPULAN DAN SARAN

A. KESIMPULAN

Ekstraksi terhadap rimpang jahe secara bertahap dengan pelarut heksan, diklorometan dan etanol menunjukkan bahwa ekstrak diklorometan mempunyai penghambatan relatif lebih tinggi daripada ekstrak heksan dan etanol terhadap *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1. Ekstrak diklorometan mempunyai nilai MIC 10, 10 dan 5 mg/ml dan MBC 15, 20 dan 8 mg/ml berturut-turut pada *E. coli* O157:H7, *S. typhi* dan *V. cholerae* O1. Dari nilai MIC dan MBC, *V. cholerae* O1 merupakan bakteri yang rentan. Kerentanan *V. cholerae* juga dapat dilihat dari penghambatan bakteri ini oleh sari jahe yang mengandung fenol setara dengan 0,134 mg/ml.

Fraksinasi ekstrak diklorometan diperoleh delapan fraksi, nilai *Rf* keempat fraksi sebagai berikut: F1: 0,15, F2: 0,19, F3: 0,30 dan F4: 0,42, dimana fraksi-1,2 adalah ginggerol, fraksi-3 adalah zingeron dan fraksi-4 adalah shogaol dan keempat fraksi tersebut mempunyai aktivitas antimikroba terhadap *V. cholerae* O1. Penghambatan bakteri tersebut kemungkinan melalui mekanisme perubahan hidrofobisitas sel bakteri.

Pada media agar darah sari jahe kemungkinan dapat menghambat sebagian produksi dan aktivitas hemolisin *V. cholerae* O1 tetapi menghambat total produksi dan aktivitas hemolisis *E. coli* O157:H7 dan *S. typhi*, sedangkan diklorometan jahe dapat menghambat produksi dan aktivitas hemolisin pada semua bakteri uji. Ekstrak
diklorometan juga menghambat terikatnya toksin kolera B-FITC pada reseptor pada sel hibridoma dan Caco-2.

Adanya perubahan hidrofobisitas sel bakteri, kemungkinan penghambatan produksi hemolisin, penghambatan aktivitas hemolisin dan penghambatan pengikatan toksin B-FITC pada sel hibridoma dan Caco-2 oleh ekstrak jahe merupakan sebagian mekanisme penghambatan virulensi bakteri.

Secara umum ekstrak jahe dapat digunakan untuk mengatasi masalah pencernaan seperti infeksi saluran pencernaan yang disebabkan oleh bakteri enteropatogen.

B. SARAN

Dari hasil penelitian ini disarankan untuk melakukan penelitian lebih lanjut tentang pengaruh ekstrak jahe terhadap komponen permukaan sel bakteri, secara mikroskopis maupun analisis komponen, sehingga dapat melengkapi peranan ekstrak jahe pada perubahan hidrofobisitas.

Pendugaan terhadap penghambatan produksi hemolisin oleh ekstrak jahe memerlukan dukungan penelitian lebih lanjut, yaitu mengkultur bakteri dalam media yang mengandung ekstrak jahe dan selanjutnya menganalisis produksi hemolisin dan protein ekstraseluler lainnya.

Pendugaan terhadap pengikatan komponen ekstrak jahe pada komponen sel hibridoma dan Caco-2 memerlukan dukungan penelitian lebih lanjut yaitu menganalisis interaksi komponen ekstrak jahe dengan sel inang maupun dengan toksin
dan hemolisin, sehingga dapat memberikan sumbangan dan melengkapi informasi tentang mekanisme interaksi tersebut.

Untuk meningkatkan kesehatan dianjurkan mengkonsumsi ekstrak jahe setiap hari, dengan catatan kecukupan gizi terpenuhi.
LAMPIRAN
Lampiran 1. Rendemen oleoresin dan total fenol hasil ekstraksi bertahap secara berurutan dengan pelarut heksan, diklorometan dan etanol

<table>
<thead>
<tr>
<th>Tahap ekstraksi (pelarut)</th>
<th>Rendemen oleoresin (% b/b jahe kering)</th>
<th>Total fenol (% b/b oleoresin)</th>
<th>Rendemen oleoresin (% b/b jahe segar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Heksan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulangan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.0</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.2</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Rata-rata</td>
<td>3.23 ± 0.25</td>
<td>1.23 ± 0.21</td>
<td></td>
</tr>
<tr>
<td>2. Diklorometan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulangan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>10.15</td>
<td></td>
</tr>
<tr>
<td>Rata-rata</td>
<td>3.87 ± 0.76</td>
<td>12.05 ± 1.93</td>
<td></td>
</tr>
<tr>
<td>3. Etanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulangan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.9</td>
<td>3.92</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Rata-rata</td>
<td>2.16 ± 0.31</td>
<td>3.64 ± 0.56</td>
<td></td>
</tr>
<tr>
<td>Sari jahe*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulangan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.34</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.28</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.40</td>
<td>9</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>1.34 ± 0.06</td>
<td>10 ± 1.0</td>
<td></td>
</tr>
</tbody>
</table>

* Sari jahe: filtrat yang diperoleh dari 10 g parutan jahe ditambah 100 ml air, dididihkan selama 5 menit, disaring dengan kain saring.
Lampiran 2. Radius areal penghambatan (mm) dari 30 μl (konsentrasi 90 mg ekstrak/ml) ekstrak jahe pada uji difusi agar

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>Ekstrak Heksan</th>
<th>Ekstrak Diklorometan</th>
<th>Ekstrak Etanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. typhi</td>
<td>2,5</td>
<td>4,5</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>4,5</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>5,0</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>2,5</td>
<td>4,0</td>
<td>3,0</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>2,0</td>
<td>5,5</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>5,5</td>
<td>4,0</td>
</tr>
<tr>
<td></td>
<td>2,5</td>
<td>4,0</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>2,5</td>
<td>6,0</td>
<td>3,6</td>
</tr>
<tr>
<td>V. cholerae</td>
<td>3,0</td>
<td>6,0</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>4,0</td>
<td>6,5</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>7,0</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>7,0</td>
<td>4,5</td>
</tr>
</tbody>
</table>
Lampiran 3. Hidrofobisitas *E. coli* O157:H7 pada n-oktana

<table>
<thead>
<tr>
<th>Bakteri Vol. (ml)</th>
<th>n-oktana (ml)</th>
<th>OD A<sub>600</sub> Terukur</th>
<th>OD A<sub>600</sub> Kontrol</th>
<th>OD A<sub>600</sub> Terkoreksi</th>
<th>% OD A<sub>600</sub></th>
<th>% Hidrofobisitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulangan 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,8</td>
<td>0,0</td>
<td>0,239</td>
<td>0,000</td>
<td>0,239</td>
<td>100,00</td>
<td>0,00</td>
</tr>
<tr>
<td>4,8</td>
<td>0,3</td>
<td>0,213</td>
<td>0,018</td>
<td>0,195</td>
<td>81,59</td>
<td>18,41</td>
</tr>
<tr>
<td>4,8</td>
<td>0,6</td>
<td>0,212</td>
<td>0,029</td>
<td>0,183</td>
<td>76,57</td>
<td>23,43</td>
</tr>
<tr>
<td>4,8</td>
<td>0,9</td>
<td>0,155</td>
<td>0,021</td>
<td>0,134</td>
<td>56,07</td>
<td>43,94</td>
</tr>
<tr>
<td>4,8</td>
<td>1,2</td>
<td>0,141</td>
<td>0,011</td>
<td>0,130</td>
<td>54,39</td>
<td>45,61</td>
</tr>
<tr>
<td>4,8</td>
<td>1,5</td>
<td>0,093</td>
<td>0,011</td>
<td>0,082</td>
<td>34,31</td>
<td>65,69</td>
</tr>
<tr>
<td>Ulangan 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,8</td>
<td>0,0</td>
<td>0,274</td>
<td>0,000</td>
<td>0,273</td>
<td>100,00</td>
<td>0,00</td>
</tr>
<tr>
<td>4,8</td>
<td>0,3</td>
<td>0,246</td>
<td>0,018</td>
<td>0,230</td>
<td>83,94</td>
<td>16,06</td>
</tr>
<tr>
<td>4,8</td>
<td>0,6</td>
<td>0,224</td>
<td>0,029</td>
<td>0,195</td>
<td>71,18</td>
<td>28,82</td>
</tr>
<tr>
<td>4,8</td>
<td>0,9</td>
<td>0,168</td>
<td>0,021</td>
<td>0,147</td>
<td>53,65</td>
<td>46,37</td>
</tr>
<tr>
<td>4,8</td>
<td>1,2</td>
<td>0,155</td>
<td>0,011</td>
<td>0,144</td>
<td>52,55</td>
<td>47,45</td>
</tr>
<tr>
<td>4,8</td>
<td>1,5</td>
<td>0,132</td>
<td>0,011</td>
<td>0,121</td>
<td>44,16</td>
<td>55,84</td>
</tr>
<tr>
<td>Ulangan 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,8</td>
<td>0,0</td>
<td>0,263</td>
<td>0,000</td>
<td>0,263</td>
<td>100,00</td>
<td>0,00</td>
</tr>
<tr>
<td>4,8</td>
<td>0,3</td>
<td>0,232</td>
<td>0,018</td>
<td>0,214</td>
<td>81,37</td>
<td>18,63</td>
</tr>
<tr>
<td>4,8</td>
<td>0,6</td>
<td>0,225</td>
<td>0,029</td>
<td>0,196</td>
<td>74,53</td>
<td>25,48</td>
</tr>
<tr>
<td>4,8</td>
<td>0,9</td>
<td>0,172</td>
<td>0,021</td>
<td>0,151</td>
<td>57,41</td>
<td>42,59</td>
</tr>
<tr>
<td>4,8</td>
<td>1,2</td>
<td>0,139</td>
<td>0,011</td>
<td>0,128</td>
<td>48,67</td>
<td>51,33</td>
</tr>
<tr>
<td>4,8</td>
<td>1,5</td>
<td>0,100</td>
<td>0,011</td>
<td>0,089</td>
<td>33,84</td>
<td>66,16</td>
</tr>
</tbody>
</table>
Lampiran 4. Hidrofobitas S. typhi pada n-oktana

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>n-oktana</th>
<th>OD A₆₆₀</th>
<th>% OD A₆₆₀</th>
<th>% Hidrofobitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol. (ml)</td>
<td>(ml)</td>
<td>Terukir</td>
<td>Kontrol</td>
<td>Terkoreksi</td>
</tr>
<tr>
<td>Ulangan 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.197</td>
<td>0.000</td>
<td>0.197</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.111</td>
<td>0.018</td>
<td>0.093</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.096</td>
<td>0.029</td>
<td>0.067</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.102</td>
<td>0.021</td>
<td>0.081</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.109</td>
<td>0.011</td>
<td>0.098</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.112</td>
<td>0.011</td>
<td>0.101</td>
</tr>
<tr>
<td>Ulangan 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.250</td>
<td>0.000</td>
<td>0.250</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.150</td>
<td>0.018</td>
<td>0.132</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.150</td>
<td>0.029</td>
<td>0.121</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.148</td>
<td>0.021</td>
<td>0.125</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.141</td>
<td>0.011</td>
<td>0.130</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.141</td>
<td>0.011</td>
<td>0.130</td>
</tr>
<tr>
<td>Ulangan 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.210</td>
<td>0.000</td>
<td>0.210</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.120</td>
<td>0.018</td>
<td>0.102</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.094</td>
<td>0.029</td>
<td>0.066</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.099</td>
<td>0.021</td>
<td>0.078</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.074</td>
<td>0.011</td>
<td>0.063</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.105</td>
<td>0.011</td>
<td>0.094</td>
</tr>
<tr>
<td>Bakteri</td>
<td>n-oktana</td>
<td>Vol. (ml)</td>
<td>OD A_{600} Terukur</td>
<td>OD A_{600} Kontrol</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Ulangan 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td></td>
<td>0.255</td>
<td>0.000</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td></td>
<td>0.129</td>
<td>0.018</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td></td>
<td>0.101</td>
<td>0.029</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td></td>
<td>0.102</td>
<td>0.021</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td></td>
<td>0.060</td>
<td>0.011</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td></td>
<td>0.053</td>
<td>0.011</td>
</tr>
<tr>
<td>Ulangan 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td></td>
<td>0.235</td>
<td>0.000</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td></td>
<td>0.119</td>
<td>0.018</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td></td>
<td>0.101</td>
<td>0.029</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td></td>
<td>0.093</td>
<td>0.021</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td></td>
<td>0.058</td>
<td>0.011</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td></td>
<td>0.057</td>
<td>0.011</td>
</tr>
<tr>
<td>Ulangan 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td></td>
<td>0.242</td>
<td>0.000</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td></td>
<td>0.134</td>
<td>0.018</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td></td>
<td>0.097</td>
<td>0.029</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td></td>
<td>0.084</td>
<td>0.021</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td></td>
<td>0.067</td>
<td>0.011</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td></td>
<td>0.049</td>
<td>0.011</td>
</tr>
</tbody>
</table>

146
Lampiran 6. Pengaruh 10 mg/ml sari jahe terhadap hidrofobisitas E. coli pada n-oktana

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>n-oktana</th>
<th>Vol. (ml)</th>
<th>OD A_{600}</th>
<th>% OD A_{600}</th>
<th>% Hidrofobisisas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Terukur</td>
<td>Kontrol</td>
<td>Terkoreksi</td>
<td></td>
</tr>
<tr>
<td>Ulangan 1</td>
<td></td>
<td>4.8</td>
<td>0.368</td>
<td>0.000</td>
<td>0.368</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.3</td>
<td>0.386</td>
<td>0.018</td>
<td>0.368</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.6</td>
<td>0.147</td>
<td>0.029</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.9</td>
<td>0.131</td>
<td>0.021</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.2</td>
<td>0.305</td>
<td>0.011</td>
<td>0.294</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.5</td>
<td>0.327</td>
<td>0.011</td>
<td>0.316</td>
</tr>
<tr>
<td>Ulangan 2</td>
<td></td>
<td>4.8</td>
<td>0.0</td>
<td>0.375</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.3</td>
<td>0.393</td>
<td>0.018</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.6</td>
<td>0.179</td>
<td>0.029</td>
<td>0.150</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.9</td>
<td>0.155</td>
<td>0.021</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.2</td>
<td>0.312</td>
<td>0.011</td>
<td>0.301</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.5</td>
<td>0.334</td>
<td>0.011</td>
<td>0.323</td>
</tr>
<tr>
<td>Ulangan 3</td>
<td></td>
<td>4.8</td>
<td>0.0</td>
<td>0.350</td>
<td>0.350</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.3</td>
<td>0.307</td>
<td>0.018</td>
<td>0.289</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.6</td>
<td>0.119</td>
<td>0.029</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.9</td>
<td>0.120</td>
<td>0.021</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.2</td>
<td>0.221</td>
<td>0.011</td>
<td>0.210</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.5</td>
<td>0.290</td>
<td>0.011</td>
<td>0.279</td>
</tr>
</tbody>
</table>
Lampiran 7. Pengaruh 10 mg/ml sari jahe terhadap hidrofobisitas *S. typhi* pada hidrokarbon n-oktana

<table>
<thead>
<tr>
<th>Bakteri Vol. (ml)</th>
<th>n-oktana (ml)</th>
<th>Terakur</th>
<th>Kontrol</th>
<th>Terkoreksi</th>
<th>% OD A<sub>560</sub></th>
<th>% Hidrofobisitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ungaran 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.326</td>
<td>0.000</td>
<td>0.326</td>
<td>100.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.332</td>
<td>0.018</td>
<td>0.314</td>
<td>96.32</td>
<td>3.68</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.319</td>
<td>0.029</td>
<td>0.290</td>
<td>88.96</td>
<td>11.04</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.315</td>
<td>0.021</td>
<td>0.294</td>
<td>90.18</td>
<td>9.82</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.321</td>
<td>0.011</td>
<td>0.310</td>
<td>95.09</td>
<td>4.91</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.311</td>
<td>0.011</td>
<td>0.300</td>
<td>92.02</td>
<td>7.98</td>
</tr>
<tr>
<td>Ungaran 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.300</td>
<td>0.000</td>
<td>0.300</td>
<td>100.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.318</td>
<td>0.018</td>
<td>0.300</td>
<td>100.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.269</td>
<td>0.029</td>
<td>0.240</td>
<td>80.00</td>
<td>20.00</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.294</td>
<td>0.021</td>
<td>0.273</td>
<td>91.00</td>
<td>9.00</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.287</td>
<td>0.011</td>
<td>0.276</td>
<td>92.00</td>
<td>8.00</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.289</td>
<td>0.011</td>
<td>0.278</td>
<td>92.66</td>
<td>7.34</td>
</tr>
<tr>
<td>Ungaran 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.310</td>
<td>0.000</td>
<td>0.310</td>
<td>100.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.328</td>
<td>0.018</td>
<td>0.310</td>
<td>100.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.302</td>
<td>0.029</td>
<td>0.273</td>
<td>88.96</td>
<td>11.94</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.300</td>
<td>0.021</td>
<td>0.279</td>
<td>90.18</td>
<td>9.82</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.293</td>
<td>0.011</td>
<td>0.282</td>
<td>90.18</td>
<td>9.82</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.296</td>
<td>0.011</td>
<td>0.285</td>
<td>91.94</td>
<td>8.06</td>
</tr>
</tbody>
</table>
Lampiran 8. Pengaruh 10 mg/ml sari jahe terhadap hidrofobisitas *V. cholerae* O1 pada hidrokarbon n-oktana

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>n-oktana</th>
<th>OD Akon</th>
<th>% OD Akon</th>
<th>% Hidrofobisitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol. (ml)</td>
<td></td>
<td>Terukur</td>
<td>Kontrol</td>
<td>Terkoreksi</td>
</tr>
<tr>
<td>Ulangan 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.255</td>
<td>0.000</td>
<td>0.255</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.286</td>
<td>0.029</td>
<td>0.257</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.275</td>
<td>0.021</td>
<td>0.234</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.266</td>
<td>0.011</td>
<td>0.255</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.178</td>
<td>0.011</td>
<td>0.167</td>
</tr>
<tr>
<td>Ulangan 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.265</td>
<td>0.000</td>
<td>0.265</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.293</td>
<td>0.029</td>
<td>0.264</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.283</td>
<td>0.021</td>
<td>0.262</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.274</td>
<td>0.011</td>
<td>0.263</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.157</td>
<td>0.011</td>
<td>0.146</td>
</tr>
<tr>
<td>Ulangan 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.262</td>
<td>0.000</td>
<td>0.262</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.290</td>
<td>0.029</td>
<td>0.261</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.284</td>
<td>0.021</td>
<td>0.263</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.267</td>
<td>0.011</td>
<td>0.256</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.149</td>
<td>0.011</td>
<td>0.138</td>
</tr>
</tbody>
</table>
Lampiran 9. Pengaruh 15 mg/ml ekstrak diklorometan jahe terhadap hidrofobisitas *E. coli* O157:H7 pada hidrokarbon n-oktana

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>n-oktana (ml)</th>
<th>OD A_{600}</th>
<th>% OD A_{600}</th>
<th>% Hidrofobisitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulangan 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.355</td>
<td>0.000</td>
<td>100.00</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.324</td>
<td>0.018</td>
<td>86.20</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.286</td>
<td>0.029</td>
<td>72.39</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.207</td>
<td>0.021</td>
<td>52.39</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.175</td>
<td>0.011</td>
<td>46.20</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.096</td>
<td>0.011</td>
<td>23.94</td>
</tr>
<tr>
<td>Ulangan 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.358</td>
<td>0.000</td>
<td>100.00</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.326</td>
<td>0.018</td>
<td>86.03</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.305</td>
<td>0.029</td>
<td>77.09</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.229</td>
<td>0.021</td>
<td>58.10</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.176</td>
<td>0.011</td>
<td>46.09</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.108</td>
<td>0.011</td>
<td>27.09</td>
</tr>
<tr>
<td>Ulangan 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.362</td>
<td>0.000</td>
<td>100.00</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.316</td>
<td>0.018</td>
<td>82.32</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.291</td>
<td>0.029</td>
<td>72.37</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.208</td>
<td>0.021</td>
<td>51.66</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.166</td>
<td>0.011</td>
<td>42.82</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.102</td>
<td>0.011</td>
<td>25.14</td>
</tr>
</tbody>
</table>
Lampiran 10. Pengaruh 20 mg/ml ekstrak diklorometan jahe terhadap hidrofobisitas *S. typhi* pada hidrokarbon n-oktana

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>n-oktana</th>
<th>OD A_{500}</th>
<th>% OD A_{500}</th>
<th>% Hidrofobisitas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vol. (ml)</td>
<td>(ml)</td>
<td>Terukur</td>
<td>Kontrol</td>
</tr>
<tr>
<td>Ulangan 1</td>
<td>4.8</td>
<td>0.0</td>
<td>0.329</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.3</td>
<td>0.347</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.6</td>
<td>0.337</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.9</td>
<td>0.202</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.2</td>
<td>0.206</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.5</td>
<td>0.206</td>
<td>0.011</td>
</tr>
<tr>
<td>Ulangan 2</td>
<td>4.8</td>
<td>0.0</td>
<td>0.300</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.3</td>
<td>0.315</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.6</td>
<td>0.319</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.9</td>
<td>0.282</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.2</td>
<td>0.191</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.5</td>
<td>0.188</td>
<td>0.011</td>
</tr>
<tr>
<td>Ulangan 3</td>
<td>4.8</td>
<td>0.0</td>
<td>0.324</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.3</td>
<td>0.336</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.6</td>
<td>0.339</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.9</td>
<td>0.304</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.2</td>
<td>0.206</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.5</td>
<td>0.202</td>
<td>0.011</td>
</tr>
</tbody>
</table>
Lampiran 11. Pengaruh 8 mg/ml ekstrak diklorometan jahe terhadap hidrofobisitas *V. cholerae* O1 pada hidrokarbon n-oktana

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>n-oktana</th>
<th>OD A<sub>600</sub></th>
<th>% OD A<sub>600</sub></th>
<th>% Hidrofobisitas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vol. (ml)</td>
<td>(ml)</td>
<td>Terukur</td>
<td>Kontrol</td>
</tr>
<tr>
<td>Ulangan 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.275</td>
<td>0.000</td>
<td>0.275</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.292</td>
<td>0.018</td>
<td>0.274</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.234</td>
<td>0.029</td>
<td>0.205</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.190</td>
<td>0.021</td>
<td>0.169</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.171</td>
<td>0.011</td>
<td>0.160</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.158</td>
<td>0.011</td>
<td>0.148</td>
</tr>
<tr>
<td>Ulangan 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.280</td>
<td>0.000</td>
<td>0.280</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.292</td>
<td>0.018</td>
<td>0.274</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.242</td>
<td>0.029</td>
<td>0.213</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.198</td>
<td>0.021</td>
<td>0.177</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.173</td>
<td>0.011</td>
<td>0.162</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.167</td>
<td>0.011</td>
<td>0.156</td>
</tr>
<tr>
<td>Ulangan 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.0</td>
<td>0.260</td>
<td>0.000</td>
<td>0.260</td>
</tr>
<tr>
<td>4.8</td>
<td>0.3</td>
<td>0.275</td>
<td>0.018</td>
<td>0.257</td>
</tr>
<tr>
<td>4.8</td>
<td>0.6</td>
<td>0.227</td>
<td>0.029</td>
<td>0.198</td>
</tr>
<tr>
<td>4.8</td>
<td>0.9</td>
<td>0.188</td>
<td>0.021</td>
<td>0.167</td>
</tr>
<tr>
<td>4.8</td>
<td>1.2</td>
<td>0.145</td>
<td>0.011</td>
<td>0.135</td>
</tr>
<tr>
<td>4.8</td>
<td>1.5</td>
<td>0.150</td>
<td>0.011</td>
<td>0.139</td>
</tr>
</tbody>
</table>
Lampiran 12. Hasil analisis berat molekul protein supernatan kultur *V. cholerae* O1 pada elektroferosis (SDS-PAGE)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,00</td>
<td>14,06</td>
<td>13,44</td>
<td>14,06</td>
<td>14,04</td>
<td>14,38</td>
<td>13,44</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15,00</td>
<td>29,86</td>
<td>24,77</td>
<td>24,77</td>
<td>24,77</td>
<td>25,00</td>
<td>20,23</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25,00</td>
<td>65,83</td>
<td>65,00</td>
<td>64,17</td>
<td>64,17</td>
<td>26,00</td>
<td>29,22</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>37,00</td>
<td>139,50</td>
<td>136,80</td>
<td>139,50</td>
<td>139,50</td>
<td>139,50</td>
<td>43,79</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50,00</td>
<td>200,00</td>
<td>194,40</td>
<td>194,40</td>
<td>194,40</td>
<td>194,40</td>
<td>66,67</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>75,00</td>
<td>244,40</td>
<td>238,90</td>
<td>233,30</td>
<td>244,40</td>
<td>244,40</td>
<td>94,44</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>100,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>150,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>250,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlakuan</td>
<td>RBC (ml)</td>
<td>NHLOH (ml)</td>
<td>Hepes (ml)</td>
<td>Ekstrak Hemolisin (ml)</td>
<td>Inkubasi (menit)</td>
<td>A₄₅₀</td>
<td>% Hemolisis</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Kontrol + Blanko</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1,72</td>
<td>0</td>
<td>0,256</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>0</td>
<td>0,058</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ulangan 1</td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>30</td>
<td>0,067</td>
<td>5,51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>60</td>
<td>0,100</td>
<td>11,79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>90</td>
<td>0,112</td>
<td>14,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>120</td>
<td>0,111</td>
<td>13,89</td>
<td></td>
</tr>
<tr>
<td>Ulangan 2</td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>30</td>
<td>0,056</td>
<td>3,42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>60</td>
<td>0,116</td>
<td>14,83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>90</td>
<td>0,127</td>
<td>16,92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>120</td>
<td>0,120</td>
<td>15,59</td>
<td></td>
</tr>
<tr>
<td>Ulangan 3</td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>30</td>
<td>0,063</td>
<td>4,75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>60</td>
<td>0,134</td>
<td>18,25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>90</td>
<td>0,135</td>
<td>18,44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1,72</td>
<td>0,28</td>
<td>120</td>
<td>0,135</td>
<td>18,44</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 14. Aktivitas hemolisin 5 μg protein/ml pada berbagai suhu inkubasi

<table>
<thead>
<tr>
<th>Periksaan</th>
<th>RBC (ml)</th>
<th>NH_{2}OH (ml)</th>
<th>Hepes (ml)</th>
<th>Ekstrak Hemolisin (ml)</th>
<th>Inkubasi (menit)</th>
<th>A_{660}</th>
<th>% Hemolisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol + Blanko</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1.38</td>
<td>0.70</td>
<td>60</td>
<td>0.525</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1.38</td>
<td>0.70</td>
<td>0</td>
<td>0.040</td>
<td>0</td>
</tr>
<tr>
<td>Ulangan 1</td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>30</td>
<td>0.110</td>
<td>13.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>60</td>
<td>0.184</td>
<td>27.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>90</td>
<td>0.192</td>
<td>28.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>120</td>
<td>0.192</td>
<td>28.95</td>
<td></td>
</tr>
<tr>
<td>Ulangan 2</td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>30</td>
<td>0.109</td>
<td>13.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>60</td>
<td>0.148</td>
<td>20.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>90</td>
<td>0.149</td>
<td>22.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>120</td>
<td>0.147</td>
<td>20.38</td>
<td></td>
</tr>
<tr>
<td>Ulangan 3</td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>30</td>
<td>0.100</td>
<td>11.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>60</td>
<td>0.132</td>
<td>17.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>90</td>
<td>0.162</td>
<td>24.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.38</td>
<td>0.70</td>
<td>120</td>
<td>0.168</td>
<td>29.38</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 15. Pengaruh ekstrak diklorometan jahe terhadap aktivitas ekstrak hemolisin 25,40 %

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>RBC (ml)</th>
<th>NH,OH (ml)</th>
<th>Hapes (ml)</th>
<th>Ekstrak Hemolisin (ml)</th>
<th>Ekstrak jahe (ml)</th>
<th>A<sub>540</sub></th>
<th>Hemolisis (%)</th>
<th>%Penghambatan hemolisis relatif thd 25,40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol +</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0,175</td>
<td>0,525</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Blanko</td>
<td>5</td>
<td>1</td>
<td>1,125</td>
<td>0,700</td>
<td>0,175</td>
<td>0,070</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Eks. Diklorometan (37,5 ug/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1,125</td>
<td>0,700</td>
<td>0,175</td>
<td>0,164</td>
<td>18,86</td>
<td>25,75</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1,125</td>
<td>0,700</td>
<td>0,175</td>
<td>0,172</td>
<td>19,43</td>
<td>23,45</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1,125</td>
<td>0,700</td>
<td>0,175</td>
<td>0,174</td>
<td>19,81</td>
<td>22,00</td>
</tr>
<tr>
<td>Blanko</td>
<td>5</td>
<td></td>
<td>0,950</td>
<td>0,700</td>
<td>0,350</td>
<td>0,069</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Eks. Diklorometan (75 ug/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td>0,950</td>
<td>0,700</td>
<td>0,350</td>
<td>0,113</td>
<td>8,38</td>
<td>67,00</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
<td>0,950</td>
<td>0,700</td>
<td>0,350</td>
<td>0,110</td>
<td>7,81</td>
<td>69,25</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td></td>
<td>0,950</td>
<td>0,700</td>
<td>0,350</td>
<td>0,115</td>
<td>8,76</td>
<td>65,50</td>
</tr>
<tr>
<td>Blanko</td>
<td>5</td>
<td></td>
<td>0,600</td>
<td>0,700</td>
<td>0,700</td>
<td>0,072</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Eks. Diklorometan (150 ug/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td>0,600</td>
<td>0,700</td>
<td>0,700</td>
<td>0,121</td>
<td>9,33</td>
<td>63,25</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
<td>0,600</td>
<td>0,700</td>
<td>0,700</td>
<td>0,154</td>
<td>15,62</td>
<td>38,50</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td></td>
<td>0,600</td>
<td>0,700</td>
<td>0,700</td>
<td>0,135</td>
<td>12,00</td>
<td>52,75</td>
</tr>
</tbody>
</table>
Lampiran 16. Proliferasi sel hibridoma pada media RPMI 1640 mengandung (0, 12,5, 25 dan 50 μg/ml) ekstrak diklorometan jahe, jumlah sel (x 10⁴ sel/ml)

<table>
<thead>
<tr>
<th>Lama inkubasi</th>
<th>Jumlah sel hidup</th>
<th>Jumlah sel mati</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Konsentrasi ekstrak jahe</td>
<td>Konsentrasi ekstrak jahe</td>
</tr>
<tr>
<td></td>
<td>0μg/ml</td>
<td>12,5μg/ml</td>
</tr>
<tr>
<td>0 hari</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 hari</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2 hari</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>3 hari</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>63</td>
<td>69</td>
</tr>
<tr>
<td>4 hari</td>
<td>116</td>
<td>86</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>114</td>
<td>78</td>
</tr>
<tr>
<td>12 hari</td>
<td>84</td>
<td>62</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>85</td>
<td>66</td>
</tr>
</tbody>
</table>

Lampiran 17. Proliferasi sel Caco-2 pada media RPMI 1640 mengandung (0, 12,5, 25 dan 50 μg/ml ekstrak diklorometan jahe), jumlah sel (x 10⁴ sel/ml)

<table>
<thead>
<tr>
<th>Lama inkubasi</th>
<th>Jumlah sel hidup</th>
<th>Jumlah sel mati</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Konsentrasi ekstrak jahe</td>
<td>Konsentrasi ekstrak jahe</td>
</tr>
<tr>
<td></td>
<td>0μg/ml</td>
<td>12,5μg/ml</td>
</tr>
<tr>
<td>0 hari</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 hari</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2 hari</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>26,5</td>
<td>20</td>
</tr>
<tr>
<td>3 hari</td>
<td>62</td>
<td>45</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>50</td>
<td>47</td>
</tr>
<tr>
<td>4 hari</td>
<td>106</td>
<td>86</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>103</td>
<td>77,5</td>
</tr>
<tr>
<td>12 hari</td>
<td>88</td>
<td>87</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>87</td>
<td>87</td>
</tr>
</tbody>
</table>
Lampiran 18. Penjenuhan reseptor oleh toksin B-FITC pada hibridoma dan Caco-2

<table>
<thead>
<tr>
<th>Konsentrasi Toksin B-FITC (µg/ml)</th>
<th>MIF pada Caco-2</th>
<th>MIF pada hibridoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0.05</td>
<td>32,91</td>
<td>0,54</td>
</tr>
<tr>
<td>0.10</td>
<td>48,80</td>
<td>0,73</td>
</tr>
<tr>
<td>0.50</td>
<td>76,21</td>
<td>0,83</td>
</tr>
<tr>
<td>1,00</td>
<td>79,51</td>
<td>0,91</td>
</tr>
<tr>
<td>5,00</td>
<td>81,91</td>
<td>1,26</td>
</tr>
</tbody>
</table>

Lampiran 19. Penghambatan ekstrak diklorometan jahe terhadap pengikatan toksin B-FITC pada sel hibridoma

<table>
<thead>
<tr>
<th>Konsentrasi</th>
<th>Konsentrasi ekstrak diklorometan jahe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toksin B-FITC (µg/ml)</td>
<td>0 µg/ml</td>
</tr>
<tr>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>0.05</td>
<td>0,54</td>
</tr>
<tr>
<td>0.10</td>
<td>0,73</td>
</tr>
<tr>
<td>0.50</td>
<td>0,83</td>
</tr>
<tr>
<td>1,00</td>
<td>0,91</td>
</tr>
<tr>
<td>5,00</td>
<td>1,26</td>
</tr>
</tbody>
</table>

Lampiran 20. Penghambatan ekstrak diklorometan jahe terhadap pengikatan toksin B-FITC pada sel Caco-2

<table>
<thead>
<tr>
<th>Konsentrasi</th>
<th>Konsentrasi ekstrak diklorometan jahe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toksin-FITC (µg/ml)</td>
<td>0 µg/ml</td>
</tr>
<tr>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>0.05</td>
<td>32,91</td>
</tr>
<tr>
<td>0.10</td>
<td>48,80</td>
</tr>
<tr>
<td>0.50</td>
<td>76,21</td>
</tr>
<tr>
<td>1,00</td>
<td>79,51</td>
</tr>
<tr>
<td>5,00</td>
<td>81,91</td>
</tr>
</tbody>
</table>
Lampiran 21. Potensi relatif total fenol hasil ekstraksi bertahap terhadap total fenol dalam sari jahe

<table>
<thead>
<tr>
<th>Analisis</th>
<th>Jahe segar</th>
<th>Jahe kering (freeze drying)</th>
<th>Potensi relatif (% total fenol terhadap total fenol dalam sari jahe)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kandungan</td>
<td>Total fenol (% b/b jahe segar)</td>
<td>Total fenol (mg)</td>
</tr>
<tr>
<td>Berat jahe (g)</td>
<td>100,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahan kering (%)</td>
<td>13,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kadar air (%)</td>
<td>86,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendemen oleoresin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sari jahe (%)</td>
<td>10,00</td>
<td>1,34</td>
<td>134</td>
</tr>
<tr>
<td>Rendemen oleoresin ekstraksi bertahap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Heksan (g)</td>
<td></td>
<td>0,27</td>
<td>1,23</td>
</tr>
<tr>
<td>- Diklorometan (g)</td>
<td></td>
<td>0,87</td>
<td>12,05</td>
</tr>
<tr>
<td>- Etanol (g)</td>
<td></td>
<td>0,82</td>
<td>2,16</td>
</tr>
<tr>
<td>Total fenol (mg)</td>
<td></td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Potensi relatif total fenol (%)</td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>