FAKTOR FISIOLOGI TANAMAN TEPI JALAN YANG MENENTUKAN KEMAMPUAN SERAPAN POLUSI UDARA GAS 15NO$_2$

Pangestu Nugrahani*, Nizar Nasrulleh**, Else Louise Sitwo***
*Fakultas Pertanian UPN 'Veteran' Jatim Surabaya
** Departemen Arsitektur Lantak IPB Bogor
*** Pusat Aplikasi Teknologi Isotop dan Radioakti - BATAN

ABSTRAK

FAKTOR FISIOLOGI TANAMAN TEPI JALAN YANG MENENTUKAN KEMAMPUAN SERAPAN POLUSI UDARA GAS 15NO$_2$. Nitrogen dioksida (NO$_2$) merupakan salah satu gas pencemar udara yang berasal dari emisi kendaraan bermotor. Tanaman tepi jalan, memiliki kapasitas sebagai penyaring polutan udara. Potensi tanaman dalam penyaringan gas dari udara dapat diketahui dari proses-proses fisiologi yang terjadi pada daun. Penelitian ini bertujuan untuk mengukur kemampuan tanaman tepi jalan dalam menyaring polutan NO$_2$ dan faktor-faktor fisiologi yang menentukan. Untuk mengetahui penyaringan gas NO$_2$ oleh tanaman dari udara digunakan gas NO$_2$ berlabel 15N (isotop N). Hasil penelitian menunjukkan jumlah serapan terhadap gas 15NO$_2$ bervariasi di antara tanaman yang diteki, dari 2.732 mg hingga 117.770 mg. Tanaman Ajisai Barazoo (Dentexis regia), samar lundo (Phisocellobium dulce), bungor (Lagerstroemia indica) dan gedog-hutan (Polyscias frutescens) memiliki kapasitas serapan 15NO$_2$ yang tinggi (> 30 mg/g). Tanaman bunga kupu-kupu (Bauhinia purpurea) memiliki kapasitas sedang (25.117 mg/g), sedangkan anggur (Vitis rotundifolia), tanjung (Mimusops elengi) dan sawo keluli (Macarilla kauci) memiliki kapasitas serapan rendah (< 15 mg/g). Faktor fisiologi tanaman yang menentukan serapan NO$_2$ adalah luas fotosintesis, lalu transpirasi dan daya hantar stomata. Faktor-faktor ini berhubungan dengan stomata, meskipun kerapatan stomata tidak menentukan serapan NO$_2$ oleh tanaman, demikian juga dengan faktor potensial air tanaman.

Kata Kunci : fisiologi tanaman, polusi udara

ABSTRACT

PHYSIOLOGICAL FACTORS OF STREETSIDE TREES ON ABSORBING 15NO$_2$. Nitrogen dioxide (NO$_2$) is one of the important air pollutants, which is contributed by automobiles. Plants as a streetscape element could play a role in reducing air pollutants. Plant capacity in absorbing gas pollutants was determined by physiological factors. The purpose of this research was to measure the capacity of street side trees on absorbing NO$_2$ pollutants, physiological plant factors affected absorption, and visual quality of plants on the roadside. The 15N-labelled NO$_2$ gas is helpful in measuring the amount of NO$_2$ uptake by plant from the air. The research found that the amount of 15N absorbed by plants varied among investigated tree species, ranging from 2.732 mg/g to 117.770 mg/g. According to the amount of 15N absorption, Delonix regia, Phisocellobium dulce, Lagerstroemia indica and Polyscias frutescens have high absorbing capacity (> 30 mg/g), Bauhinia purpurea has moderate absorbing capacity (25.117 mg/g), and Ficus carica have low absorbing capacity (< 15 mg/g). Physiological factors of the plant such as photosynthetic rates, transpiration rates, and stomatal conductance, affected the absorption of 15NO$_2$. But there was no significant correlation between the water potentials and the stomatal density with the capacity of the plant in absorbing 15NO$_2$.

Keywords : Plant physiological, air pollutants

PENDAHULUAN

terjadi dalam tanaman terutama daun, antara lain fotosintesa, respirasi, transpirasi dan daya hanter stomata.

Untuk mengetahui penyerapan gas NO₃ dari udara digunakan gas NO₃ berlabel ¹⁵Ν (isotop ¹⁵Ν). Dengan menggunakan gas ini maka Nitrogen yang berasal dari tanah dapat dibedakan dengan Nitrogen yang berasal dari udara. Serapan gas NO₃ dapat diketahui dengan menganalisa kandungan ¹⁵Ν dalam jaringan tanaman (Hadarson dan Danso, 1990; Nasrullah, 1997).

Penelitian ini bertujuan untuk mengukur kemampuan tanaman hijau jaringan dalam menyerap polutan khususnya NO₂ dan faktor-faktor fisiologis yang mempengaruhi. Hipotesis yang diajukan dalam penelitian ini adalah bahwa tanaman yang memiliki laju fotosintesis, laju transpirasi, daya hanter stomata dan potensial air tanaman yang tinggi, memiliki serapan NO₂ tinggi.

BAHAN DAN METODE

Tempat dan Waktu Penelitian

Bahan Penelitian

Jenis yang diteilit adalah tanaman yang dominan dipupukan dalam lanskap hijau jalan perkotaan kota. Survey dilakukan di kota Surabaya pada beberapa ruas jalan kota yang ditentukan dengan sengaja (purposive sampling), dan pengambilan data sekunder dari dana yang terkait. Jenis tanaman yang diteilit meliputi 8 jenis tanaman pokok, yaitu: angsana, asam londo, bunga kupu-kupu, flamboyan, bungur, gledogan bulat, sawo kecil, dan tanjung

Pengukuran Serapan ¹⁵ΝNO₂

Bahan tanaman yang dipupukan dalam penelitian adalah bibit tanaman yang intensif dipelihara hingga mencapai ukuran tinggi 60 - 80 cm, selama lebih kurang 6 bulan. Tanaman diperlakukan dengan pemupukan (exposure) gas ¹⁵ΝNO₂ dengan konsentrasi 3 ppm selama 60 menit di dalam gas chamber (bikli gas). Pemupukan gas ¹⁵ΝNO₂ dilakukan di dua buah bilik gas sebagai ulangan, yang diempatkan dalam Environmental Testing Chamber (Ogawa Seiki 6328). Intensitas cahaya di dalam bilik gas ditetapkan 1000 lux, suhu udara 20°C dan kelembaban udara relatif awal perlakuan 60%. Tanaman yang telah mendapat perlakuan pemupukan gas ¹⁵ΝNO₂, dipisahkan bagian-bagian daun, batang dan akaranya. Masing-masing bagian tanaman dianalisis kadar N-totalnya dengan metode Kjeldhal, dan persen kelimpahan atom ¹⁵Ν sampel dianalisis dengan menggunakan spektrometer emisi (Yaso, N-151).

Pengukuran Laju Fotosintesa, Transpirasi, Daya Hanter Stomata, dan Potensial Air Tanaman

Laju fotosintesa, transpirasi dan daya hanter stomata diukur dengan menggunakan Leaf Chamber Analyzer Type LCA-4. Daun tanaman yang akan dianalisis dimasukkan ke dalam portable leaf chamber yang dihubungkan dengan panel LCA-4 untuk membangun nilai pengukuran. Parameter yang akan diukur diatur dalam LCA-4, sedangkan suhu, kelembaban dan intensitas cahaya diatur dalam Micro Climate Control. Nilai pengukuran selanjutnya akan terproses dalam internal calculation. Pengukuran nilai potensial air total dilakukan dengan menggunakan Pressure Chamber.

Metode Penelitian

Penelitian dilakukan dengan metode observasi terhadap seluruh sampel tanaman yang diteilit, dengan ulangan lima kali.

Analysis Data

Data yang diperoleh dari hasil penelitian ini adalah data hasil pengukuran serapan ¹⁵ΝNO₂, data hasil pengukuran laju fotosintesis, laju transpirasi, potensial air, kerapatan stomata, dan daya hanter stomata.

Data hasil pengukuran laju fotosintesis, laju transpirasi, potensial air, kerapatan stomata, dan daya hanter stomata dianalisis dengan menggunakan analisis regresi-korelasi yang dibandingkan dengan jumlah serapan ¹⁵Ν. Jumlah N yang berasal dari gas ¹⁵ΝNO₂ dihitung menurut rumus:

\[
N_{\text{dari } ¹⁵ΝNO₂} = \frac{\% \text{ kelimpahan atom } ¹⁵Ν \text{ sampel}}{\% \text{ kelimpahan atom } ¹⁵Ν \text{ dari gas } ¹⁵ΝNO₂} \times \text{ N total}
\]

dimana:
HASIL DAN PEMBAHASAN
Serapan Polutan Gas NO₂

Kemampuan tanaman dalam menyerap polutan gas NO₂ dari udara ditunjukkan dengan jumlah serapan 15N oleh daun. Dengan asumsi bahwa 15N tidak difixasi oleh akar, maka besarnya serapan dinyatakan dengan tiap unit gram berat kering daun dan tiap unit cm² luas daun (Tabel 1). Hasil pengukuran serapan 15N dalam jaringan tanaman, menunjukkan hasil yang beragam antar spesies. Jumlah serapan 15N pada delapan spesies tanaman yang diteiliti adalah antara 2,723 µg sampai dengan 117,770 µg per gram berat kering daun atau antara 0,032 µg sampai dengan 0,448 µg per cm² luas daun.

<table>
<thead>
<tr>
<th>Spesies</th>
<th>Serapan 15N (µg/g)</th>
<th>Serapan 15N (µg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flamboyan</td>
<td>117,770</td>
<td>0,448</td>
</tr>
<tr>
<td>Bungur</td>
<td>95,387</td>
<td>0,299</td>
</tr>
<tr>
<td>Assam londo</td>
<td>84,190</td>
<td>0,155</td>
</tr>
<tr>
<td>Gledegan bulat</td>
<td>30,247</td>
<td>0,141</td>
</tr>
<tr>
<td>Bunga kupu-</td>
<td>25,117</td>
<td>0,110</td>
</tr>
<tr>
<td>kupu</td>
<td>13,447</td>
<td>0,045</td>
</tr>
<tr>
<td>Angsana</td>
<td>13,167</td>
<td>0,077</td>
</tr>
<tr>
<td>Tanjung</td>
<td>2,723</td>
<td>0,032</td>
</tr>
</tbody>
</table>

Tabel 1. Serapan 15N pada tanaman pohon

Pada Penelitian Nasrullah (1997) dikemukakan bahwa dalam kelompok tanaman dengan serapan tinggi. Termasuk di dalam kelompok tersebut antara lain adalah tanaman flamboyan dan asam londo, yang pada penelitian ini juga merupakan tanaman yang termasuk dalam kelompok tanaman dengan serapan tinggi. Pada penelitian ini tanaman bungur dan gledegan bulat juga memiliki kemampuan serapan tinggi. Tanaman yang memiliki kemampuan serapan 15N tinggi mengambarkan kemampuannya yang tinggi pula dalam mereduksi polutan NO₂ dari udara.

Tanaman angsana yang banyak dipergunakan sebagai pohon tepi jalan di kota Surabaya, terutama termasuk dalam kategori tanaman dengan serapan 15NO₂ rendah (< 15,00 µg/g). Hasil ini sejalan dengan penelitian Nasrullah (1997) yang menyatakan bahwa tanaman angsana yang juga banyak digunakan sebagai elemen lanskap jalan di jakarta dan bogor, termasuk tanaman dengan serapan NO₂ yang tidak tinggi.

Penelitian terhadap menunjukkan bahwa kemampuan berbagai jenis tanaman pohon tepi jalan untuk mereduksi polutan NO₂ tercatat mencapai 45% - 63% pada konsentrasi awal NO₂ 0,089 ppm. Tanaman tanaman tersebut antara lain bungur, asam kerangi dan bunga kupu-kupu (Departemen Pekerjaan Umum, 1998). Dalam penelitian ini, tanaman angsana yang banyak dipergunakan sebagai pohon tepi jalan di kota Surabaya, ternyata termasuk dalam kategori tanaman dengan serapan 15NO₂ rendah (< 15,00 µg/g). Hasil ini sejalan dengan penelitian Nasrullah (1997) yang menyatakan bahwa tanaman angsana yang juga banyak digunakan sebagai elemen lanskap jalan di jakarta dan bogor, termasuk tanaman dengan serapan NO₂ yang tidak tinggi.

Gas 15NO₂ yang diserap oleh daun, ditranslokasikan ke seluruh bagian tanaman. Hal ini dapat dilihat dari hasil analisis jaringan tanaman yang menunjukkan adanya 15N di dalam jaringan daun, batang dan akar pada semua tanaman yang diteiliti (Gambar 1). Banyaknya 15N
...yang ditranslokasikan ke jaringan lain oleh tiap species tanaman tampaknya berbeda-beda, namun data pada Tabel 3 dan Gambar 1 menunjukkan bahwa jumlah ^{15}N terserap paling banyak berada di dalam jaringan daun, kecuali pada tanaman sawo kecik dan angkasa. Jumlah serapan ^{15}N dalam daun mencapai rata-rata 72,6%, dalam batang 8,3% dan dalam akar 19,1%. Pada semua tanaman yang diteliti, menunjukkan bahwa akumulasi ^{15}N yang terserap ternyata lebih banyak terdapat pada akar daripada batang.

Tabel 2. Serapan ^{15}N berdasarkan rasio berat dan luas daun.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Rasio Berat Kering dan Luas Daun (g/g)</th>
<th>Serapan ^{15}N (µg/g) per Rasio Daun</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sawo Kecik</td>
<td>11.42</td>
<td>2.73</td>
</tr>
<tr>
<td>2</td>
<td>Trenggail</td>
<td>5.83</td>
<td>10.39</td>
</tr>
<tr>
<td>3</td>
<td>Bunga Kupu-kupu</td>
<td>4.44</td>
<td>50.16</td>
</tr>
<tr>
<td>4</td>
<td>Gledogon Bulat</td>
<td>4.51</td>
<td>44.52</td>
</tr>
<tr>
<td>5</td>
<td>Angkasa</td>
<td>3.93</td>
<td>23.81</td>
</tr>
<tr>
<td>6</td>
<td>Flamboyan</td>
<td>3.52</td>
<td>98.30</td>
</tr>
<tr>
<td>7</td>
<td>Bungur</td>
<td>3.28</td>
<td>101.15</td>
</tr>
<tr>
<td>8</td>
<td>Asam Lendo</td>
<td>1.92</td>
<td>133.35</td>
</tr>
</tbody>
</table>

Gambar 1. Alokasi serapan ^{15}N pada bagian tanaman.

Hubungan antara Laju Fotosintesis, Laju Transpirasi, dan Potensial Air Tanaman dengan Serapan $^{15}NO_3$.

Hasil pengukuran terhadap laju fotosintesis, laju transpirasi dan potensial air delapan species tanaman yang diteliti dengan menggunakan leaf chamber analyzer (LCA-4), menunjukkan hasil seperti tertera pada Tabel 4.

Tabel 3. Persentase ^{15}N dalam jaringan tanaman.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Daun (%)</th>
<th>Batang (%)</th>
<th>Akar (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flamboyan</td>
<td>97.7</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>Asam Lendo</td>
<td>94.7</td>
<td>1.6</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td>Bungur</td>
<td>89.7</td>
<td>1.0</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>Gledogon Bulat</td>
<td>75.2</td>
<td>7.9</td>
<td>8.9</td>
</tr>
<tr>
<td>5</td>
<td>Bunga Kupu-kupu</td>
<td>71.9</td>
<td>10.0</td>
<td>16.1</td>
</tr>
<tr>
<td>6</td>
<td>Trenggail</td>
<td>83.6</td>
<td>7.6</td>
<td>8.8</td>
</tr>
<tr>
<td>7</td>
<td>Angkasa</td>
<td>32.8</td>
<td>16.2</td>
<td>51.0</td>
</tr>
<tr>
<td>8</td>
<td>Sawo Kecik</td>
<td>33.3</td>
<td>21.3</td>
<td>45.4</td>
</tr>
</tbody>
</table>

Rata-rata 72,6% 8,3% 19,1%

Keberadaan ^{15}N dalam jaringan daun, batang dan akar, menunjukkan bahwa tanaman dapat menyerap polutan NO$_2$ melalui daun dan kemudian ditranslokasikan ke seluruh bagian tanaman. Oleh karena itu, penggunaan isotop ^{15}N untuk penelitian fiksasi N$_2$ dengan pemupukan melalui akar pada tanaman budidaya telah dilakukan secara luas (Harderson dan Danso, 1990), karena akumulasi ^{15}N dapat dideteksi dari biji-bijian hasil panen. Keberadaan ^{15}N di seluruh jaringan tanaman dapat dijadikan indikator keberadaan polutan NO$_2$ yang dapat diserap tanaman.

Tabel 4. Laju fotosintesis, laju transpirasi, dan potensial air tanaman.

<table>
<thead>
<tr>
<th>Speises</th>
<th>Laju Fotosintesis (µ mol m$^{-2}$ detik)</th>
<th>Laju Transpirasi (mol m$^{-2}$ detik)</th>
<th>Potensial Air (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angkasa</td>
<td>6.803</td>
<td>1.567</td>
<td>0.33</td>
</tr>
<tr>
<td>Bungur</td>
<td>2.563</td>
<td>0.941</td>
<td>1.03</td>
</tr>
<tr>
<td>Sawo Kecik</td>
<td>3.181</td>
<td>0.593</td>
<td>1.55</td>
</tr>
<tr>
<td>Bunga Kupu-kupu</td>
<td>7.623</td>
<td>2.352</td>
<td>1.27</td>
</tr>
<tr>
<td>Trenggail</td>
<td>8.435</td>
<td>2.281</td>
<td>0.47</td>
</tr>
<tr>
<td>Gledogon Bulat</td>
<td>4.800</td>
<td>1.604</td>
<td>1.13</td>
</tr>
<tr>
<td>Flamboyan</td>
<td>15.734</td>
<td>3.621</td>
<td>0.60</td>
</tr>
<tr>
<td>Asam Lendo</td>
<td>4.928</td>
<td>1.793</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Tanaman flamboyan yang memiliki leju fotosintesis dan laju transpirasi tinggi, ternyata memiliki serapan yang tinggi pula terhadap gas $^{15}NO_2$. Hubungan yang positif dan cukup nyata [r = 0.2] antara serapan $^{15}NO_2$ dengan laju fotosintesis dan laju transpirasi terjadi pada seluruh tanaman yang diteliti. Nilai koefisien korelasi antara laju fotosintesis dan laju transpirasi dengan serapan $^{15}NO_2$ masing-masing adalah 0.62 dan 0.53.
Fotosintesis adalah proses dimana karbon, hidrogen dan oksigen diasimilasi, sedangkan transpirasi adalah penguapan air dari tumbuhan. Kedua proses ini berhubungan erat dengan membuka dan menutupnya stomata di daun. Molekul air yang berdifusi keluar dari stomata mempengaruhi masuknya molekul CO₂ (Salisbury dan Ross, 1995).

Nilai potensial air tanaman menggambarkan status air di dalam jaringan tanaman. Data pada Tabel 4 menunjukkan nilai potensial air tanaman antara -1.53 sampai dengan -0.33 MPa pada saat pengukuran, dimana suhu, kelembaban udara dan kandungan air tanah dalam kondisi seragam.

Hasil analisis korelasi antara nilai potensial air dengan serapan ¹⁵N, ternyata memiliki nilai koefisien korelasi yang sangat rendah (r = 0.16) serta tidak nyata pada selang kepercayaan 80% (α = 0.2). Menurut Salisbury dan Ross (1995) potensial osmotik yang lebih negatif mendorong sel penjaga menyerap air, sehingga stomata membuka. Namun defisit air akan menurunkan fotosintesis walaupun potensial air daun masih cukup tinggi. Penurunan fotosintesis per satuan luas daun erat hubungannya dengan menutupnya stomata.

Stomata dan Hubungannya dengan Serapan ¹⁵N

Tabel 5 memperlihatkan hasil pengukuran kerapatan dan daya hantar stomata. Hasil analisis korelasi diantara keduaanya sangat rendah (r = 0.04), namun daya hantar stomata memiliki korelasi yang cukup tinggi (r = 0.64) dengan serapan ¹⁵N. Dengan demikian dapat diduga bahwa selain faktor kerapatan stomata, daya hantar stomata merupakan faktor yang mempengaruhi serapan NO₂. Daya hantar stomata menunjukkan seberapa besar stomata membuka dan menutup. Daya hantar stomata ini berbanding langsung dengan transpirasi bila H₂O yang diukur, dan fotosintesis bila CO₂ yang diukur (Salisbury dan Ross, 1995).

<table>
<thead>
<tr>
<th>Spekies</th>
<th>Kerapatan stomata (buah / mm²)</th>
<th>Daya hantar stomata (mol / m² / detik)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqsa</td>
<td>37</td>
<td>0.176</td>
</tr>
<tr>
<td>Bungur</td>
<td>54</td>
<td>0.104</td>
</tr>
<tr>
<td>Sawo kecik</td>
<td>109</td>
<td>0.094</td>
</tr>
<tr>
<td>Bunga kupu-kupu</td>
<td>20</td>
<td>0.269</td>
</tr>
<tr>
<td>Tanjung</td>
<td>35</td>
<td>0.224</td>
</tr>
<tr>
<td>Giodogan bulat</td>
<td>43</td>
<td>0.193</td>
</tr>
<tr>
<td>Flamboyan</td>
<td>86</td>
<td>0.519</td>
</tr>
<tr>
<td>Asam lendo</td>
<td>81</td>
<td>0.101</td>
</tr>
</tbody>
</table>

KESIMPULAN

1. Tanaman pohon tepi yang diteliti mampu menyerap gas NO₂ dengan tingkat serapan tinggi adalah tanaman flamboyan, bungur, asam lendo, dan giodogan bulat; tingkat serapan sedang adalah tanaman bunga kupu-kupu; sedangkan tingkat serapan rendah adalah tanaman tanjung, angsa dan sawo kecik.
2. Faktor fisiologis tanaman yang menentukan serapan ¹⁵NO₂ adalah laju fotosintesis, laju transpirasi, dan daya hantar stomata.
3. Ada korelasi positif yang nyata antara serapan ¹⁵NO₂ dengan laju fotosintesis, laju transpirasi dan daya hantar stomata.
4. Nilai potensial air tanaman tidak menunjukkan korelasi positif yang nyata dengan serapan ¹⁵NO₂ oleh tanaman, demikian juga faktor kerapatan stomata.

DAFTAR PUSTAKA

