SPONSORED BY

ASEAN Foundation

Vietnam Ministry of Agriculture and Rural Development (MARD)

International Union of Food Science and Technology

Bangkok Exhibition Services (Ltd.)

United States Department of Agriculture
CONFERENCE ORGANIZATION

STEERING COMMITTEE

Mrs. Pg. Hjh. Rosidah Pg. Hj. Metussin, Brunei Darussalam
Mr. Sok Meng Se, Cambodia
Mr. Roy Heru Trisnamurti, Indonesia
Ms. Sivilay Naphayvong, Lao PDR
Mrs. Hasimah Binti Hafiz Ahmad, Malaysia

Prof. Dr. Mya Mya Oo, Myanmar
Dr. Alicia O. Lustre, Philippines
Dr. Pho Lay Koon, Singapore
Prof. Dr. Sakarindr Bhumiratana, Thailand
Assoc. Prof. Dr. Nguyen Kim Vu, Vietnam

LOCAL ORGANISING COMMITTEE

Chairperson: Assoc. Prof. Dr. Bui Ba Bong
Secretary General: Assoc. Prof. Dr. Nguyen Kim Vu

Members:

Dr. Le Van Bam, MARD
Prof. Dr.Sc. Le Doan Dien, VAFoST
Dr. Nguyen Huu Dung, VASEP
Mr. Pham Van Hung, MARD
Dr. Trinh Duc Huy, MARD

Dr. Pham Huyen, MOST
Dr.Sc. Bach Quoc Khang, MARD
Mrs. Nguyen Thi Hong Loan, MARD
Dr. Le Van Minh, MARD
Assoc. Prof. Dr. Sc. Phan Thanh Tinh, VIAEP

FOREIGN SCIENTIFIC ADVISORY BOARD

Mrs. Hasimah Binti Hafiz Ahmad, Malaysia Agr. and Rural Development Inst., Malaysia
Prof. Dr. Sakarindr Bhumiratana, King Mongkut's Univ. Techn. Thonbury, Thailand
Dr. Alastair Hicks, FAO Regional Office for Asia and Pacific
Mr. Lim Chee Kian, Oilquip Pacific PTE Ltd., Singapore
Prof. Dr. Bodi Hui, Beijing Agricultural University, P. R. China
Dr. Alicia O. Lustre, National Food Authority, Philippines

Dr. Alan Mortimer, International Union of Food Science and Technology
Prof. Dr. James H. Moy, University of Hawaii, USA
Dr. Minh Nguyen, University of Western Sydney, Australia
Prof. Dr. Upali Samarajeewa, University of Peradeniya, Sri-Lanka
Mr. Roy Heru Trisnamurti, Indonesian Institute of Sciences, Indonesia
Prof. Dr. Peter Raspor, University of Liubljana, Slovenia

LOCAL SCIENTIFIC ADVISORY BOARD

Chairperson: Prof. Dr.Sc. Le Doan Dien

Members:

Dr. Tran Van Chuong, Vietnam Institute of Agr. Eng. and Post-harvest Technology (VIAEP)
Assoc. Prof. Dr. Vu Thi Dao, Food Industries Research Institute (FIRI)
Prof. Dr.Sc. Luu Dzuan, Ho Chi Minh City University of Technology
Dr. Tran Thi Dung, Ministry of Fisheries
Assoc. Prof. Dr. Nguyen Thi Hien, Hanoi University of Technology
Dr. Le Hong Khanh, Ministry of Agriculture and Rural Development (MARD)
Assoc. Prof. Dr. Phan Thi Kim, Vietnam Food Administration (VFA)

Dr. Tu Ngu, National Institute of Nutrition (NIN)
Dr. Dang Kim Son, Center of Information for Agriculture and Rural Development
Dr. Chu Doan Thanh, Research Institute of Fruits and Vegetables (RIFAV)
Assoc. Prof. Dr. Dang Thi Thu, Hanoi University of Technology
Dr. Ha Thanh Toan, Cantho University
Dr. Nguyen Thi Hoa Tram, Food Industries Research Institute (FIRI)
Assoc. Prof. Dr. Nguyen Van Viet, Research Institute of Beverage
SECRETARIAT

Chairperson: Assoc. Prof. Dr. Nguyen Kim Vu
Executive Secretary: Dr. Nguyen Duy Lam

Members:

Mr. Tran Thanh Binh, MARD
Dr. Pham Cong Dung, MARD
Mr. Nguyen Duy Duc, VIAEP
Mr. Nguyen Thai Duong, VIAEP
Mrs. Pham Thi Hong Hanh, MARD
Mrs. Tran Thi Hoa, VIAEP
Mrs. Do Thi Xuan Huong, MARD
Mrs. Phan Thi Thuy Lan, VIAEP

Mr. Tran Trung Ta, VAFoST
Mrs. Dinh Thi Tam, VIAEP
Dr. Chu Van Thien, VIAEP
Mr. Do Viet Trung, VIAEP
Mr. Nguyen Hoang Truong, MARD
Mr. Vu Dao Tue, VIAEP
Mrs. Pham Duc Viet, VIAEP

Scientific Programme Sub-Committee
Chairman: Dr. Nguyen Duy Lam

Delegate and Hospitality Sub-Committee
Chairman: Mr. Phan The Thao

Hall Arrangement and Exhibition Sub-Committee
Chairman: Mr. Do Viet Trung

Document and Communication Sub-committee
Chairman: Ms. Tran Thi Hoa

Finance Sub-Committee
Chairman: Ms. Phan Thi Thuy Lan
List of Chairpersons of Scientific Sessions

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Chairman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plenary S1</td>
<td>Opening Ceremony Speaker</td>
<td></td>
</tr>
<tr>
<td>Plenary S2</td>
<td>Dr. Alan D. Mortimer, IUFoST
Mrs. Khatijah Idris, Malaysia</td>
<td></td>
</tr>
<tr>
<td>Plenary S3</td>
<td>Prof. Dr. Cheri-Ho Lee, Korea
Prof. Dr. Le Doan Dien, Vietnam</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>Gen technology, GMF and Biosafety</td>
<td>Prof. Dr. Paul Baumgartner, Australia
Assoc. Dr. Dang Thi Thu, Vietnam</td>
</tr>
<tr>
<td>S2</td>
<td>Novel food biotechnology and biochemistry</td>
<td>Prof. Dr. Dietmar Haltrich, Austria
Assoc. Prof. Dr. Nguyen Thi Hien, Vietnam</td>
</tr>
<tr>
<td>S3 (A)</td>
<td>Nutrition and supplementary nutrients (Part A)</td>
<td>Prof. Dr. Bodi Hui, R. P. China
Prof. Dr. Nagendra Shah, Australia</td>
</tr>
<tr>
<td>S3 (B)</td>
<td>Nutrition and supplementary nutrients (Part B)</td>
<td>Prof. Dr. Seung Ja Koo, Korea
Assoc. Prof. Dr. Nguyen Cong Khan, Vietnam</td>
</tr>
<tr>
<td>S4</td>
<td>Advanced technologies for food processing</td>
<td>Prof. Dr. James H. Moy, USA
Assoc. Prof. Dr. Vu Thi Dao, Vietnam</td>
</tr>
<tr>
<td>S5</td>
<td>Functional and health food</td>
<td>Prof. Dr. Jin Zongliang, R. P. China
Mrs. Hasimah Binti Hafiz Ahma, Malaysia</td>
</tr>
<tr>
<td>S6</td>
<td>Post-harvest technology</td>
<td>Dr. Jun-Ho Lee, Korea
Dr. Chu Doan Thanh, Vietnam</td>
</tr>
<tr>
<td>S7</td>
<td>Food engineering</td>
<td>Prof. Dr. Abdul Salam Babji, Malaysia
Dr. Le Hong Khanh, Vietnam</td>
</tr>
<tr>
<td>S8</td>
<td>Emerging food packaging technologies</td>
<td>Minh H. Nguyen Australia
Dr. Ha Thanh Toan, Vietnam</td>
</tr>
<tr>
<td>S9</td>
<td>Applied microbiology for food production</td>
<td>Chairman: Dr. Roy Heru Trisnamurti, Indonesia
Assoc. Prof. Dr. Pham Van Viet, Vietnam</td>
</tr>
<tr>
<td>S10</td>
<td>Food safety issues (Part A)</td>
<td>Prof. Dr. Upali Samarajeewa, Sri Lanka
Dr Nguyen Thi Khanh Tram, Vietnam</td>
</tr>
<tr>
<td>S11</td>
<td>Food safety issues (Part B)</td>
<td>Prof. Dr. Peter Raspor, Slovenia
Dr. Tran Thi Dung, Vietnam</td>
</tr>
<tr>
<td>S12</td>
<td>Food ingredients and analysis</td>
<td>Prof. Dr. Jinap Selamat, Malaysia
Dr. Guo Shuntang, R. P. China</td>
</tr>
<tr>
<td>S13 (A)</td>
<td>Food quality control and food quality assurance issues (Part A)</td>
<td>Prof. Dr. Kasipathy Kailasapathy, Australia
Assoc. Prof. Dr. Ngo Tien Hien, Vietnam</td>
</tr>
<tr>
<td>S13 (B)</td>
<td>Food quality control and food quality assurance issues (Part B)</td>
<td>Prof. Dr. Sakarindr Bhumiratana, Thailand
Dr. Tu Ngu, Vietnam</td>
</tr>
<tr>
<td>S14 (A)</td>
<td>Pesticide residues and mycotoxins monitoring in Vietnam (Part 1)</td>
<td>Assoc. Prof. Dr. Nguyen Kim Vu, Vietnam
Prof. Dr. Julius J. Menn, USA</td>
</tr>
<tr>
<td>S14 (B)</td>
<td>Pesticide residues and mycotoxins monitoring in Vietnam (Part 2)</td>
<td>Assoc. Dr. Dam Quoc Tru, Vietnam
Prof. Dr. I-M. Larsson-Kovach, USA</td>
</tr>
<tr>
<td>S15</td>
<td>Appropriate technologies for food storage and processing</td>
<td>Dr. M.L.D.L. Francisco, Philippines
Mr. Lim Chee Kian, Singapore</td>
</tr>
<tr>
<td>S16</td>
<td>Technology transfer to small and medium enterprises</td>
<td>Mrs. Pg Hjh Rosidah Pg Hj Metussin, Brunei Darussalam
Dr. Alastair Hicks, FAO</td>
</tr>
<tr>
<td>S17</td>
<td>Waste/by-product upgrading and treatment</td>
<td>Dr. Hanny Wijaya Indonesia
Dr. Nguyen Thi Hoai Tram, Vietnam</td>
</tr>
<tr>
<td>S18</td>
<td>Food regulatory systems, trends and strategies</td>
<td>Dr. R. L. Esguerra Philippines
Dr. Pho Lay Koon, Singapore</td>
</tr>
<tr>
<td>S19</td>
<td>Human Resource for food science and technology</td>
<td>Chairman: Prof. Dr. Luu Dzuan, Vietnam
Dr. Colin Cheterman, Australia</td>
</tr>
</tbody>
</table>
THE EFFECT OF SECANG WOOD (CAESALPINIA SAPPAN LINN) EXTRACTS ON THE MOUSE SPLENOCYTES AND K-562 CELLS PROLIFERATION

Endang Prangdimurti, Dede R. Adawiyah, and Rini S. Puspaningrum
Department of Food Technology and Human Nutrition, Faculty of Agricultural Technology, Bogor Agriculture University, Kampus IPB Darmaga PO Box 220 Bogor 16002 Indonesia
E-mail: foodtech@indo.net.id

Abstract: Secang wood is used as a raw material in many traditional medicines and healthy drinks. The specific component brazilin, an isoflavone, is known to have antioxidative and antibacterial activities. Phenolic compounds which have antioxidative activity are expected that it can protect cell from damage and death. On the other hand, some of the phenolic compounds had been proven that it had antiproliferative activity and toxic effect to cancerous cell. The aim of this research was to know the effects of secang wood extracts on the cell proliferation in vitro, especially mouse splenocyte and K-562 cell line.

This study showed that all of supplemented levels (0.1, 1, 5, 10 and 20 x C; which C was estimated equivalent to daily consumption dosage) of secang wood extracts (methanol, ethanol and water extract) resulted in higher splenocytes proliferative index than that of the control (the cells without any secang wood extracts added). The methanol extract resulted in the highest proliferative index, followed by ethanol extract and then water extract. At the low supplemented level (0.1 x C), the methanol, ethanol and water extracts showed to depress K-562 cells proliferation, but at the higher levels they were not toxic to the cells. Methanol and ethanol extracts, however, demonstrated very highly proliferative. This result suggested that there was a growth factor compound in secang wood extract which was highly soluble in methanol and ethanol.

I. INTRODUCTION

Secang wood (Caesalpinia sappan Linn) is not only commonly used as food colorants, but also has been used as a raw material in many traditional medicines for a long period of time, such as traditional healthy drinks. As a component of traditional healthy drinks, secang wood is known to be effective as antiinvasive, anti-cold, and antiinflammation. The major chemical components of secang wood are phenolic compounds tannin (tannic acid), gallic acid, resorzin, brazilin and sappanin (Heyne, 1987). Brazilin (C_{15}H_{10}O_{5}), the yellow crystalline isoflavone, is known to have antioxidative and antibacterial activities (Subharti, 1983). If it is oxidized, it can be transformed into a reddish-brown brazilein, which is highly soluble in water.

Water extract of secang wood has a higher antioxidative index than that of BHA and BHT (Lim, 1997), expected it can protect cell from damage and death. Some phenolic compounds, such as tea catechin and curcumin, have immunoproliferative activity, were due to their antioxidative capacity. Meanwhile, these phenolic compounds showed antiproliferative capacity and toxic to cancer cells.

Because of its high potency to be developed as functional foods, it is necessary to investigate the effects of secang wood extracts on the cell proliferation. In this study, we observed its effects on mouse splenocyte and K-562 (chronic myelogenous leucemia) cell proliferation. Being expected, secang wood extract is not toxic on splenocytes representing as a normal cell, and it has an antiproliferative activity to K-562 cells. The amounts of cell that proliferated were assayed by MTT technique.

II. MATERIALS AND METHODS

Extraction

Secang woods flakes were purchased from local retailer in Bogor-Indonesia. They were then crushed by using a disc mill to obtain secang powder. In this study, there were three kinds of secang wood extracts (methanol extract, ethanol extract, and water extract) that assayed.

To obtain ethanol extract and methanol extract, secang powder were percolated in ethanol or methanol, which were containing 1% HCl each, for 24 hours at ambient temperature. The ratio of secang
powder to the solvent was 1:5 (w/v). The suspensions were then filtered by Whatman no.1 filter paper. The filtrates were concentrated and its solvent residue were eliminated by using a vacuum rotary evaporator at 50°C and then were freeze-dried.

To obtain water extract, secang wood powder water was boiled in aquades (1:10) during 10 minutes. After was filtered by Whatman no.1 filter paper, the filtrate was freeze-dried.

Extract preparations

Secang wood extracts were dissolved in RPMI-1640 medium (Sigma, USA) and were sterilized by 0.22 μm Millipore membrane. This medium was also used to dilute the extracts. The supplemented levels of these extracts in the cell culture were 0.1 x C, 1 x C, 5 x C, 10 x C and 20 x C. C was estimated equivalent to daily consumption dosage of ‘wedang secang’ (5 g secang powder boiled in 250 ml water), without considering any loss amount during absorption. Table 1 showed the 1xC concentration levels of the three kinds of extracts.

Splenic cell proliferation activity

The splenocyte stimulation assay was modified from Gery et al. (1972). Spleens from male BALB/c mice were removed aseptically and a single cell suspension was prepared by teasing apart spleens in RPMI-1640 medium. The cells were then treated with 0.85% ammonium chloride/l to lyse erythrocytes. The splenocytes were then resuspended in sterile RPMI-1640 medium which was supplemented with gentamycin (1% v/v) and NaHCO₃ (0.2%; w/v). The splenocytes (50 μl; 1 x 10⁶ cell/ml) were cultured in triplicates with 20 μl FBS and 80 μl secang wood extract for a total 30 h incubation in 5% CO₂ (37°C) chamber. The cells were cultured in 96 well flat-bottomed microplate.

The total amounts of proliferated cells were assayed by MTT technique. Briefly, six hours before incubation period ended, culture was added with 10 μl MTT (0.5% in PBS) solutions. At the end of the incubation period, 100 μl HCl-isopropanol 0.04 N was added to each well and then the optical density (OD) of the cultured cells was read at 570 nm using microplate reader. The proliferated cells were counted relative to the controls (the cells without any secang wood extracts added). The proliferation activity was expressed by proliferative index (P.I) as followed:

\[
P.I = \frac{\text{OD cultured cells with added extract}}{\text{OD control cells}}
\]

K-562 cell proliferation activity

The K-562 cells (50 μl; 1 x 10⁵ cell/ml) were cultured in triplicates with 20 μl FBS and 80 μl secang wood extract for a total 24 and 48 hours incubation periods in 5% CO₂ (37°C) chamber. The cells were cultured in 96 well flat-bottomed microplate. After the incubation period, the total amounts of proliferated cells were assayed by MTT technique (as described previously).

RESULTS AND DISCUSSION

Extraction

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Yields extracts (%; w/w)</th>
<th>The 1 x C supplemented level of extract that in the cell culture (g/ml medium)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>2.77</td>
<td>4.3 x 10⁻⁵</td>
</tr>
<tr>
<td>Methanol</td>
<td>6.64</td>
<td>10.4 x 10⁻⁵</td>
</tr>
<tr>
<td>Water</td>
<td>1.49</td>
<td>2.3 x 10⁻⁵</td>
</tr>
</tbody>
</table>

Brazilin, the specific component in the secang wood, was high soluble in alcohol and water. This study showed that the highest extract yield was obtained from extraction secang wood powder by methanol, followed by the ethanol extract and the water extract (Table 1). Treated ethanol or methanol by acid (HCl 1%) was done in order to increase the extraction efficiency, because of its ability to denature plants cells membrane and to leach pigments out of the cells. Acid-treated methanol with 10% HCl produced the higher yields than that with 1% HCl (Metivier et al. 1980). In food research field, it was
ough to extract with 1% HCl, but needed 24 hours for extraction process (Francis, 1982). HCl-treated anol had less effective than that of methanol, but it was more appropriate for food application because the methanol toxicity (Markakis, 1982).

B. and K-562 cells proliferation activity

Figure 1. Proliferation of splenocytes that cultured 30 h with secang wood extracts

Figure 1 showed that the supplementation of methanol, ethanol and water extracts in cultured splenocytes resulted in higher proliferative index than that of the control (the cells without any secang wood extracts added). The supplementation with high level concentrations of secang wood extracts did not cause cell death or not toxic to these cells. The methanol extract resulted in the highest proliferative index, followed by ethanol extract. This result suggested that there was a proliferative cell stimulator compound which was high soluble in methanol and ethanol.

Figure 2. Proliferation of K-562 cells that cultured 24 h with secang wood extracts

Figure 2 showed that at low supplemented level (0.1 x C) the methanol, ethanol and water extracts expressed K-562 cells proliferation, but at the higher levels they were not toxic to these cells. Methanol and ethanol extracts, however, demonstrated very highly proliferative. These results did not show any suggested bioactive compound which has immunoproliferative but antiproliferative properties to K-562 cells. Because of the high proliferative index was suggested that the unknown compound was a quinone like growth-factor.

The study of Steinberg et al. (1994) reported that pyrroloquinoline quinone (PQQ; 4,5-dihydroxy-5-dihydro-H-pyrrolo(2,3-f) quinoline-2,7,9-tricarboxylic acid) and PQQ-like compounds in animals and plants, was a growth factor and has antioxidant activity. The secang wood extracts had reddish-brown color, indicated that brazilein was oxidized to brazilein (quinone-like) suggesting has the ability as a growth factor. It needs further investigations.
PQQ was a redox cofactor for alcohol and glucose dehydrogenases. Because of this capacity, PQQ could be detected by nitroblue tetrazolium assay. Initially, considering the high proliferative index, there was a suspected compound that had a capacity as a redox cofactor that's like PQQ, which contributed to total amount of formazan formed. Figure 2 and Figure 3 showed that there were significantly difference of proliferative index resulted from 24 hours and 48 hours incubation times.

![Graph showing proliferation of K-562 cells with secang wood extracts](image)

Figure 3. Proliferation of K-562 cells that cultured 4 h with secang wood extracts

Our work showed that the tannin content of the methanol extract was lower than that of the ethanol extract and the water extract (data is not shown). The tannin content of the water extract was the highest, approximately 4.5 higher than the methanol extract. On the other hand, Figure 1-3 showed that water extract had the lowest proliferative index. It suggested that the compound which was responsible on stimulating cell proliferation was not tannin.

IV. CONCLUSION

In vitro supplementation of secang wood extracts (methanol, ethanol and water extract) at high concentration level did not cause splenocytes that cultured death. It showed that these extracts were not toxic. However, at low supplemented level (0.1 x C) these extracts showed to depress K-562 cells proliferation, while at higher concentration levels showed to increase it. It recommended not exceeding to consumption secang wood extract.

Methanol extract showed the highest potency to increase cells proliferation, both splenocytes and K-562 cells, followed then by ethanol extract and water extract. Our suggestion that might be there was a growth-factor-like compound in secang wood extracts which had high polarity.

REFERENCES