Proceedings of the 10th International Conference of the East and Southeast Asia Federation of Soil Science Societies

Soil, A Precious Natural Resource: Agricultural Ecosystems, Environmental Health & Climate Change

October 10 – 13
Cinnamon Lakeside Hotel
Colombo, Sri Lanka
PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE OF THE EAST AND SOUTHEAST ASIA FEDERATION OF SOIL SCIENCE SOCIETIES

Soil, A Precious Natural Resource: Agricultural Ecosystems, Environmental Health & Climate Change

Editor-in-Chief
R.S. Dharmakeerthi

Associate Editors
U.W.A. Vitharana
R.B. Mapa
A.N. Jayakody
H.B. Nayakakorale
W.M.W. Weerakoon

Soil Science Society of Sri Lanka
Panel of Reviewers
Prof. H. Ando (Faculty of Agriculture, Yamagata University, Japan)
Dr. W. Dandeniya (Department of Soil Science, Faculty of Agriculture, University of Peradeniya)
Dr. R.S. Dharmakeerthi (Rubber Research Institute, Sri Lanka)
Dr. L.W. Galagedara (Department of Agric. Engineering, Faculty of Agriculture, University of Peradeniya)
Prof. S.P. Indraratne (Department of Soil Science, Faculty of Agriculture, University of Peradeniya)
Prof. A.N. Jayakody (Department of Soil Science, Faculty of Agriculture, University of Peradeniya)
Mr. K.M.A. Kendaragama (Natural Resource Management Centre, Department of Agriculture, Peradeniya)
Dr. M.A. Lathiff (Horticultural Research and Development Institute, Department of Agriculture, Peradeniya)
Prof. R.B. Mapa (Department of Soil Science, Faculty of Agriculture, University of Peradeniya)
Dr. H.B. Nayakakorale (Postgraduate Institute of Agriculture, Peradeniya)
Prof. R.M.C.P. Rajapaksha (Department of Soil Science, Faculty of Agriculture, University of Peradeniya)
Dr. L. Samarappuli (Rubber Research Institute, Sri Lanka)
Dr. A. De Silva (Agriculture Research Station, Aralaganwila, Department of Agriculture)
Mr. D.N. Sirisena (Rice Research and Development Institute, Sri Lanka)
Dr. U.W.A. Vitharana (Department of Soil Science, Faculty of Agriculture, University of Peradeniya)
Prof. S.D. Wanniarachchi (Department of Soil Science, Faculty of Agriculture, University of Ruhuna)
Prof. R. Weerasuriya (Institute of Fundamental Studies, Sri Lanka)
Dr. P. Weerasinghe (Horticultural Research and Development Institute, Department of Agriculture, Peradeniya)
Dr. D.B. Wickramasinghe (Natural Resource Management Centre, Department of Agriculture, Peradeniya)

Organizers
Soil Science Society of Sri Lanka
East and Southeast Asia Federation of Soil Science Societies

Co-organizers
FAO Regional Office for Asia and the Pacific
Ministry of Agriculture
Department of Agriculture
Department of Export Agriculture
University of Peradeniya

Sponsors
FAO Regional Office for Asia and the Pacific
National Science Foundation
International Water Management Institute
Lanka Phosphate Limited
Sri Lanka Convention Bureau
United Nations Development Programme
Hayleys Agro Products Ltd
A Baurs Co Ltd
Innovative Pesticides Marketing (Pvt) Ltd,

Dankotuwa Porcelain Limited
Commercial Bank of Ceylon Limited
Sri Lankan airlines
Mobitel (Pvt) Ltd
Cargills Ceylon
Analytical Instruments Pvt Ltd
Hemsons International Pvt Ltd
Lankem Ceylon Ltd
Ceylon Tobacco Company
Control Union Certification

Country Presidents/ Representatives
Soil science society of Bangladesh : Prof. S.M. Imamul Huq (President)
Soil Science Society of China : Prof. J.C. Zhou (President)
Indian society of soil science : Prof. J.C. Katyal (Representative)
Indonesian society of soil science : Prof. B. Mulyanto (Vice-President)
Japanese society of soil science and plant nutrition : Prof. M. Nannya (President)
Soil Science Society of Sri Lanka : Prof. S. P. Indraratne (President)
Chinese society of soil and fertilizer sciences (Taiwan) : Prof. D. Yuan Lee (President)
Malaysian Soil Science Society : Prof. A.H.M. Hanif (President)
Vietnam Society of Soil Science : Dr. P. Lieu (President)
Korean Society of Soil Science and Fertilizer : Prof. K. H. Kim (Representative)
Philippine Association for the Advancement of Science, Inc. : Ms. Constancia D. Mangao (Representative)
Organizers

1. East and Southeast Federation of Soil Science Societies
2. Soil Science Society of Sri Lanka
3. University of Peradeniya
4. Department of Export Agriculture, Sri Lanka
5. FAO Regional office for Asia and the Pacific
6. Department of Agriculture

Main Sponsors

1. FAO Regional office for Asia and the Pacific
2. National Science Foundation
3. University of Peradeniya
4. UNDP
5. Department of Agriculture
6. Department of Export Agriculture, Sri Lanka
7. IWMI
8. SRI LANKA CONVENTION BUREAU
9. Srilankan
10. Sri Lanka Tourism
11. Commercial Bank
12. Innovative Pesticides Marketing (Pvt) Ltd.
13. Hayley's Agriculture
14. Dankotuwa
15. Bours
16. Lanka Phosphate Ltd.
Contents

ORAL SESSIONS DAY 1 .. 2

Land Degradation and Management

ERODIBILITY PREDICTION OF SHALLOW SOILS OVER COASTAL CORAL REEFS AFTER CLEAR FELLING OF FOREST IN TAIWAN .. 3

PREDICT THE MAXIMUM REMOVAL OF CADMIUM BY IMPATIENS (IMPATIENS WALLERIANA) GROWN IN CADMIUM-CONTAMINATED SOILS .. 5

PHYSICOCHEMICAL FORM OF FALLOUT 137CS IN SOILS: FATE OF 137CS IN THE FUKUSHIMA CONTAMINATED SOIL ... 7

ANALYSIS OF THE RELATIONSHIP BETWEEN SOIL SALINITY AND ENVIRONMENTAL FACTORS IN A TYPICAL ARTIFICIAL OASIS OF NORTHWESTERN CHINA ... 9

THE EFFECT OF DENSITY FRACTIONS TO THE PERFORMANCE OF SOIL ORGANIC CARBON DYNAMICS MODEL UNDER DIFFERENT ECOSYSTEMS ... 11

PRODUCTIVITY IMPROVEMENT OF MARGINAL PAADY LANDS IN POLONNARUWA DISTRICT, SRI LANKA .. 13

PHYSICAL AND HYDROLOGICAL PROPERTIES OF DISTURBED SOILS UNDER OPEN FIELD AND PLASTIC FILM HOUSE CONDITIONS .. 15

PHYTOREMEDIATION OF PYRENE CONTAMINATED SOILS AMENDED WITH COMPOST AND PLANTED WITH RYEGRASS AND ALFALFA ... 17

LAND DEGRADATION AND ITS MANAGEMENT IN AGRICULTURE IN BANGLADESH ... 19

Management of Paddy Soils for Sustainable Production

FRACTIONATION OF ARSENIC FROM GROUNDWATER IN PADDY SOILS AND DISTRIBUTION OF ARSENIC IN DIFFERENT PARTS OF RICE PLANTS OF SOUTHWESTERN TAIWAN .. 21

DISTRIBUTION OF NPK IN SOILS IN RELATION TO LAND USE TYPES AND SOIL EROSION STATUS IN SUMANI WATERSHED IN INDONESIA ... 23

A POSSIBLE PROCESS OF VIVIANITE FORMATION ON RICE ROOTS ... 25

EFFECT OF IRON PLAQUE ON THE UPTAKE OF ARSENIC BY PADDY RICE GROWN IN ARSENIC-CONTAMINATED SOILS OF GUANDU PLAIN, TAIPEI, TAIWAN .. 27

EFFECTS OF IRON-SILICATE-MANGANESE FERTILIZER ON RICE YIELD AND SUPPRESSING BROWN SPOT DISEASE IN JAPANESE PADDY FIELDS .. 29
RESIDUAL EFFECTS OF ZINC AND BORON ON YIELD AND GROWTH OF RICE IN A TROPICAL SOIL IN MALAYSIA ... 31

MICRO NUTRIENTS FORTIFIED ORGANIC MANURES ON THE NUTRIENT AVAILABILITY AND YIELD OF RICE IN SALINE SOILS OF COASTAL AGRO ECOSYSTEM ... 33
NITROGEN DYNAMICS DERIVED FROM ORGANIC MATERIALS IN PADDY FIELDS: DIRECT APPROACH WITH 15N-LABELED ORGANIC MATERIALS ... 35

IMPACTS OF AEROBIC METHOD AND SYSTEM OF RICE INTENSIFICATION (SRI) ON YIELD AND WATER USE EFFICIENCY IN RICE (ORYZA SATIVA L.) CULTIVATION ... 37

GROWTH AND NITROGEN ABSORPTION OF RICE CULTIVATED BY SYSTEM OF RICE INTENSIFICATION (SRI) AND CONVENTIONAL METHOD .. 39

Material Cycling in Soil and Regional Environment, and
Soil Ecosystems and Human Health

SOIL REMEDIATION TECHNIQUES FOR THE FOOD SAFETY ON THE HEAVY METALS-CONTAMINATED SOILS .. 41
CARBOFURAN LEACHING IN SELECTED SOILS AND ITS ACCUMULATION IN EDIBLE TISSUES 47
NITROGEN OUTFLOW FROM A SMALL SUBURBAN WATERSHED IN CHANGSHA, CHINA 49
EFFECT OF MANURE APPLICATION ON GREENHOUSE GAS EMISSIONS FROM MANAGED GRASSLANDS IN JAPAN .. 51
NUTRIENT LOADS FROM DIFFERENT LAND USE SYSTEMS TO WATER BODIES IN THE MIDDLE SETO INLAND AREA, JAPAN .. 53
TRACE ELEMENT MOVEMENT AND THEIR RELATIONSHIP TO NUTRIENT DYNAMICS IN AN INDONESIAN WATERSHED AREA .. 55
SELECTING HYPER-ACCUMULATORS FROM NATIVE WEED SPECIES GROWN IN CLEAN SOIL 57
SOIL ENVIRONMENTAL BEHAVIOR OF SELECTED PERSISTENT ORGANIC POLLUTANTS AND THEIR EFFECTS ON FOOD SECURITY ... 59

Hydrology and Water Management

CAN WE INTENSIFY AGRICULTURE WITHOUT FURTHER ENVIRONMENTAL DAMAGE? 61
WATER FOOTPRINTS OF AGRICULTURAL PRODUCTS: INDICATORS OF WATER SUSTAINABILITY 63
TEMPORAL VARIATION OF PLANT NUTRIENTS AND SOME WATER QUALITY PARAMETERS IN MEEGASSAGAMA TANK IN THE DRY ZONE OF SRI LANKA .. 65
CAUSES FOR NITRATE POLLUTION IN GROUND WATER: A CASE STUDY FROM VAVUNYA DISTRICT, SRI LANKA ... 67
ESTIMATION OF SOIL MOISTURE DEFICIT, TRANSMISSIVITY AND SPECIFIC YIELD FOR EFFICIENT WATER MANAGEMENT IN A BETAL CULTIVATED AREA OF SRI LANKA .. 69

ACTIVITY REPORTS OF THE MEMBER COUNTRIES ... 71

SOIL SCIENCE SOCIETY OF BANGLADESH AT A GLANCE .. 73

THE ACTIVITY REPORT OF THE SOIL SCIENCE SOCIETY OF CHINA IN THE PAST TWO YEARS 74

INDIAN SOCIETY OF SOIL SCIENCE – AN OVERVIEW... 76

INDONESIAN SOCIETY OF SOIL SCIENCE (ISSS): PROGRAM AND ACTIVITIES .. 78

JAPANESE SOCIETY OF SOIL SCIENCE AND PLANT NUTRITION .. 80

THE ACTIVITY REPORT OF THE SOIL SCIENCE SOCIETY OF SRI LANKA ... 82

ACTIVITY REPORT OF CHINESE SOCIETY OF SOIL AND FERTILIZER SCIENCES (TAIWAN) 84

MALAYSIAN SOIL SCIENCE SOCIETY’S (MSSS) REPORT .. 86

VIETNAM SOCIETY OF SOIL SCIENCE .. 88

KOREAN SOCIETY OF SOIL SCIENCE AND FERTILIZER 2011 .. 90

ORAL SESSIONS DAY 2 .. 93

Plant Nutrition and Environment

NEED-BASED NITROGEN MANAGEMENT FOR SUSTAINABLE HIGH PRODUCTIVITY AND FERTILIZER USE EFFICIENCY IN AGRO-ECOSYSTEMS .. 95

EFFECT OF BIOCHAR ON SOIL N MINERALIZATION AND BIOCHEMICAL PROPERTIES OF VEGETABLE GROWING SOILS OF JAFFNA, SRI LANKA .. 101

PRODUCTION OF PLANT GROWTH PROMOTING BACTERIA USING MONOSODIUM GLUTAMATE WASTEWATER AS A CULTURE MEDIUM AND ITS EFFECT ON THE GROWTH OF BRASSICA CHINENSIS L. CV. AFFECTION ... 103

FOLIAR NUTRIENT STATUS OF COCONUT GROWING AREAS IN SRI LANKA ... 105

BORON ABSORPTION BY TWO CULTIVARS OF PEANUT (ARACHIS HYPOGAEA L.) ON TYPIC KANDIUDULTS AS AFFECTED BY SAND AND BORIC ACID APPLICATIONS .. 107

CATEGORIZATION OF TEA GROWING SOILS IN SRI LANKA BASED ON PH BUFFERING CAPACITY 109

TRACER STUDIES ON THE EFFECT OF PHOSPHORUS SOURCES ON PHOSPHORUS AVAILABILITY TO GROUNDNUT ... 111
Climate Change and Land Use

EFFECTS OF WOODCHIP BIOCHAR APPLICATION ON NITROUS OXIDE EMISSION FROM SOILS 113

CAN MEASURABLE SOIL CARBON POOLS BE MATCHED WITH CONCEPTUAL COMPARTMENTS IN THE ROTHAMSTED CARBON MODEL? ... 115

ANALYSIS OF RESEARCH STOCKTAKING BY THE PADDY RICE RESEARCH GROUP OF THE GLOBAL RESEARCH ALLIANCE ON AGRICULTURAL GREENHOUSE GASES .. 117

CONTRIBUTION OF SOIL CARBON TO THE LAND-ATMOSPHERE EXCHANGES IN US CROPLANDS: IMPLICATIONS FROM A FINE RESOLUTION LAND SURFACE MODEL119

INFLUENCE OF PHOSPHORUS ADDITION ON \text{N}_2\text{O} AND \text{NO} EMISSIONS FROM AN \textit{ACACIA MANGIUM} SOIL ... 121

THE IMPACT OF SALINITY AND CLIMATE CHANGE ON EGYPTIAN AGRICULTURE .. 123

Cropping Systems and Sustainable Management, and Soil Biology and Crop Production

EFFECT OF IRON-FERTILIZER ON METHANE PRODUCTION, EMISSION AND YIELD IN SOUTHEAST ASIAN PADDY FIELDS ... 125

DIFFERENCES IN CROP FERTILIZATION, YIELD, AND SOIL FERTILITY ACROSS CROPS AND SOIL GROUPS IN JAPAN .. 127

IDENTIFICATION OF THE SUSTAINABLE AGRICULTURAL LAND-USE OPTIONS: A GIS BASED CASE STUDY .. 129

POTENTIAL APPROACHES TO INCREASE RICE PRODUCTION UNDER RAINFOED CONDITIONS 131

STATUS OF IMPORTANT CHEMICAL PROPERTIES OF SUGARCANE-GROWING SOILS AFTER CHANGING CROPPING SYSTEM IN HINGURANA, SRI LANKA .. 133

CHANGES IN FARM HOUSEHOLD WELFARE OF RAINFOED RICE FARMS IN THE NORTHEASTERN OF THAILAND: IMPLICATION WHEN WATER IS AVAILABLE .. 135

A RAPID AND SIMPLE POLYMERASE GENE REACTION (PCR) METHOD TO IDENTIFY ISOLATES BELONGING TO THE GENUS \textit{AZOSPIRILLUM} .. 137

COMBINED EFFECT OF MYCORRHIZAL INOCULATION AND P FERTILIZER ON CINNAMON SEEDLING GROWTH AND SOIL P AVAILABILITY .. 139

Soil Databases and Digital Soil Mapping

PREDICTION OF SPATIO-TEMPORAL VARIATIONS OF SOIL CARBON AND NITROGEN STOCKS IN JAPANESE AGRICULTURAL SOILS .. 141
DEVELOPMENT AND APPLICATION OF A SOIL DATA BASE FOR SRI LANKA .. 143
CORRELATIVE EVALUATION OF PEDODIVERSITY AND LAND USE DIVERSITY BASED ON SHANNON
ENTROPY ... 145
SPATIAL VARIABILITY OF SOIL TEXTURE IN AN ULTISOL SOILSCAPE 147

ASIAN SOIL INFORMATICS .. 149
OUTLINE OF CHINA’S SOIL AND RECENT RESEARCHES IN SOIL SCIENCE 151
SOILS OF INDIA – AN OVERVIEW .. 153
LAND DEGRADATION AND ECOSYSTEM RESTORATION IN INDONESIA 155
OUTLINING RECENT DEVELOPMENTS RELATED TO SOIL INFORMATICS IN JAPAN 158
KOREAN SOILS AND INFORMATION ... 161
CLIMATE CHANGE IN THE PHILIPPINES AND ITS IMPACTS TO AGRICULTURE 167
MINERALOGY OF THE SOILS OF SRI LANKA AND ITS APPLICATIONS 169
SOIL GROUPS AND SOIL INFORMATION SYSTEM OF TAIWAN .. 171
TROPICAL PEAT SOILS OF MALAYSIA AND PINEAPPLE PLANTING .. 174
SOILS OF BANGLADESH ... 175
SOILS OF VIETNAM .. 177

POSTER SESSIONS ... 180

Land Degradation and Management

LEAD REMEDIATION THROUGH SORPTION BY INORGANIC AND ORGANIC FRACTIONS IN ANIMAL
MANURE COMPOSTS .. 183
HEAVY METALS (CD, CR, AND ZN) ACCUMULATION BY SWITCHGRASS AND ACCOMPANYING
REDUCTIONS IN BIOMASS YIELD FOR ASSESSING PHYTOEXTRACTION 185
RECLAIMING NUTRIENT STATUS OF A DEGRADED ULTISOLS USING BIOCHAR 187
ECOLOGICAL KNOWLEDGE AND DAILY PRACTICES OF HAUSA CULTIVATORS FOR LAND
REHABILITATION IN SAHELIAN NIGER, WEST AFRICA .. 189
UMBRIC CHARACTERISTICS IN HIGHLAND SOILS OF KOREA .. 191
PEDOGENY, CHEMICAL PROPERTIES AND DISTRIBUTION OF ACID SULFATE SOILS IN THE MEKONG DELTA IN VIETNAM ... 193

CHANGES IN FERTILITY OF A DEGRADED ULTISOL IN SRI LANKA AFTER AMENDING WITH RUBBERWOOD BIOCHAR ... 195

AGRICULTURAL ENGINEERING MANAGEMENT FOR SOIL IMPROVEMENT IN RECLAIMED LANDS 197

STUDY ON INFLUENCE OF SOIL EROSION FOR DIFFERENT COVERED PATTERNS IN KARST SLOPE OF SUGARCANE PLANTING REGIONS ... 199

Management of Paddy Soils for Sustainable Production

EFFECTS OF LONG-TERM MANURE MADE FROM RICE STRAW APPLICATION ON SOIL CARBON SEQUESTRATION AND RICE CROP YIELD IN A PADDY FIELD IN NIIGATA, JAPAN 203

EXPRESSION ANALYSIS OF SOME STRESS TOLERANCE GENES IN RICE UNDER ADVERSE ENVIRONMENTAL CONDITIONS AND UNDER ABA STRESS ... 205

EFFECT OF SUBMERGENCE ON TRANSFORMATION OF ZINC FRACTIONS IN PADDY GROWING SOIL .. 207

DISTRIBUTION OF IRRIGATION WATER ALONG PADDY TRACTS IN THE DRY ZONE OF SRI LANKA AND ITS EFFECT ON RICE LAND PRODUCTIVITY: A CASE STUDY AT AMBANGANGA................. 209

Hydrology and Water management

WATER USE EFFICIENCY OF TURNIP RAPE, SUN FLOWER, AND HAIRY VETCH AS AFFECTED BY GROUND WATER TABLE .. 211

Material Cycling in Soils and Regional Environment

 ADSORPTION OF HUMIC ACID AND HUMIC SUBSTANCE-LIKE MATERIALS ON FE(OXY)HYDROXIDES ... 213

POTENTIAL OF MATERIAL RECOVERY AND ENERGY PRODUCTION BY ANAEROBIC DIGESTION OF WASTE BIOMASS FROM GREENHOUSE VEGETABLE CROPS ... 215

POTENTIAL OF ANAEROBIC DIGESTION FOR MATERIAL RECOVERY AND ENERGY PRODUCTION IN SWINE WASTE BIOMASS ... 217

 ADSORPTION AND REDUCTION OF HEXAVALENT CHROMIUM BY BIOCHAR UNDER THE INFLUENCES OF CO-EXISTING IRON AND MANGANESE HYDROS OXIDES................................. 219

EFFECT OF SUCCESSIVE APPLICATIONS OF ORGANIC MATERIALS TO AN ANDOSOL FIELD IN A DISTRICT OF NORTHERN JAPAN ... 221

DEPTH DISTRIBUTION AND STORAGE OF SOIL ORGANIC CARBON IN THE YANGMINGSHAN VOLCANIC NATIONAL PARK IN NORTHERN TAIWAN ... 223
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHANGES IN DRAINED WATER QUALITY IN A PADDY FIELD ON ACID SULPHATE SOILS IN THE MEKONG DELTA, VIETNAM</td>
<td>225</td>
</tr>
<tr>
<td>NUTRIENT CYCLE IN ACACIA CRASSICARPA PLANTATION ON DEEP TROPICAL PEATLAND AT BUKITBATU, BENGKALIS, INDONESIA</td>
<td>227</td>
</tr>
<tr>
<td>CARBON EMISSION FROM ACACIA CRASSICARPA PLANTATIONS ON SHALLOW AND DEEP TROPICAL PEAT</td>
<td>229</td>
</tr>
<tr>
<td>CAPACITY TO PROTECT ORGANIC CARBON IN CLAY- AND SILT-SIZE FRACTIONS OF SOIL</td>
<td>231</td>
</tr>
<tr>
<td>THE ZETA POTENTIAL AND IR SPECTROSCOPIC MEASUREMENTS OF PYRITE-CARBOFURAN INTERACTIONS</td>
<td>233</td>
</tr>
<tr>
<td>Plant Nutrition and Environment</td>
<td></td>
</tr>
<tr>
<td>DELINEATING DOSE-RESPONSE PROFILE OF COPPER ON ROOT ELONGATION OF GRAPEVINE</td>
<td>235</td>
</tr>
<tr>
<td>EVALUATION OF THE EFFECTS OF CALCIUM AND POTASSIUM ON ALLEVIATION OF CADMIUM TOXICITY ON SOYBEAN USING A BIO-LIGAND MODEL (BLM)</td>
<td>237</td>
</tr>
<tr>
<td>EFFECT OF ORGANIC FERTILIZER ON YIELD AND QUALITY OF EIGHT ORGANICALLY GROWN TOMATO VARIETIES</td>
<td>239</td>
</tr>
<tr>
<td>CADMIUM CONCENTRATIONS IN SOYBEAN SEEDS OF CADMIUM-CONTAMINATED AREA IN TOKYO</td>
<td>241</td>
</tr>
<tr>
<td>CADMIUM CONTENT IN WHEAT (TRINITICUM AESTIVUM L.) GRAIN OF A CADMIUM-CONTAMINATED AREA IN TOKYO</td>
<td>243</td>
</tr>
<tr>
<td>PHYSICO-CHEMICAL PROPERTIES AND NUTRIENT STATUS OF ACIDIC SOILS UNDER DIFFERENT AGRICULTURAL LAND USE SYSTEMS</td>
<td>245</td>
</tr>
<tr>
<td>INFLUENCE OF CALCIUM WITH BORON ON CRACKING OF BANANA (MUSA ACCUMINATA) GROWN IN RED YELLOW PODSOLIC SOIL</td>
<td>247</td>
</tr>
<tr>
<td>CADMIUM TOXICITY TO NINE CULTIVARS OF PADDY RICE IN TAIWAN</td>
<td>249</td>
</tr>
<tr>
<td>ESTIMATION FOR APPLICATION RATE OF N FERTILIZER AND BIOMASS OF RICE (ORYZA SATIVA L.) BY GROUND-BASED REMOTE SENSORS</td>
<td>251</td>
</tr>
<tr>
<td>EFFECT OF HUMIC ACID CHELATED ZINC APPLICATION ON GROWTH, YIELD AND ZINC NUTRITION IN COASTAL SANDY SOIL</td>
<td>253</td>
</tr>
<tr>
<td>NATURAL 15N ABUNDANCE (Δ^{15}N) IN ORGANIC AND CONVENTIONAL RICE WITH SPECIAL REFERENCE TO RELATION WITH Δ^{15}N OF SOIL</td>
<td>255</td>
</tr>
<tr>
<td>EVALUATION OF CARBON STATUS IN AGRICULTURAL SOILS IN RELATION TO LAND USE AND LABILE FRACTIONS</td>
<td>257</td>
</tr>
<tr>
<td>SHORT-TERM EFFECTS OF CATTLE MANURE APPLICATION ON PADDY SOIL PROPERTIES WITH SPECIAL REFERENCE TO LABILE CARBON FRACTIONS</td>
<td>259</td>
</tr>
</tbody>
</table>
UTILIZATION OF THE FERTILIZER PRESCRIPTION PROGRAM AND .. 261
ITS DEVELOPMENT FOR NUTRIENT MANAGEMENT OF SOILS IN KOREA .. 261

NITROGEN, PHOSPHROUS AND POTASSIUM CONTENTS IN COMMERCIAL COMPOST AND ORGANIC
FERTILIZER IN KOREA .. 263

SOLUBILITY OF IRON AND MANGANESE OXIDES OF JAPANESE SOILS IN THREE OXIDE-OCLUDED
TRACE METAL EXTRACTANTS ... 265

EFFECTS OF LIMING AND SOIL WASHING ON CADMIUM UPTAKE BY OKRA (ABELMOSCHUS
ESCULENTUS) .. 267

RESIDUAL PHOSPHORUS AVAILABILITY OF COCONUT GROWING SOIL AFTER LONG TERM
APPLICATION OF DIFFERENT PHOSPHATE SOURCES .. 269

EFFECT OF DIFFERENT ORGANIC MULCHES AND RATES OF INORGANIC FERTILIZER ON YIELD AND
TISSUE NUTRIENT CONTENT OF GINGER (ZINGIBER OFFICINALE ROSC) .. 271

EFFECT OF COAL FLY ASH ON SOIL PROPERTIES AND GROWTH OF ONION IN SANDY SOILS OF
KALPITIYA IN SRI LANKA .. 273

NUTRIENT DIAGNOSIS OF STRAWBERRY USING RAPID AND SIMPLE METHODS 275
NUTRIENT DIAGNOSIS OF SWEET PEPPER USING RAPID AND SIMPLE METHODS 277

Climate Change and Land Use

EFFECTS OF WOODCHIP BIOCHAR APPLICATION ON CARBON SEQUESTRATION IN SOIL............. 279
DISSOLVED GAS MEASUREMENT UNDER FLOODED WETLAND SOILS .. 281
LONG-TERM FIELD EXPERIMENT PROGRAM FOR MONITORING SOIL CARBON CONTENTS IN JAPAN
.. 283
ASSESSMENT OF SOIL CARBON STOCKS UNDER DIFFERENT LAND USES IN JAFFNA DISTRICT, SRI
LANKA .. 285
A NATIONAL SOIL SURVEY PROGRAMME FOR MONITORING SOIL CARBON CONTENT AND SOIL
MANAGEMENT IN JAPAN FROM 2008 TO 2010 ... 287
EFFECT OF RICE STRAW ON METHANE EMISSION FROM RICE FIELDS IN KOREA.......................... 289
GROWING RUBBER (HEVEA BRASILIENSIS): IMPACT ON CLIMATE CHANGE 291

Soil Data Bases and Digital Mapping

THE SOIL PEDOGENESIS AND GEOMORPHIC ENVIRONMENT RELATIONSHIPS OF THE WEST-CENTRAL
TAIWAN ... 293
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPARISON OF METHODS OF LAND SUITABILITY CLASSIFICATION FOR WILD EDIBLE GREENS</td>
<td>295</td>
</tr>
<tr>
<td>ESTIMATION OF SHALLOW GRAVEL LAYER DISTRIBUTION USING A COMBINATION OF COLOR INFRARED AERIAL PHOTOGRAPHY AND TOPOGRAPHIC MAPS BEFORE FARMLAND CONSOLIDATION</td>
<td>297</td>
</tr>
<tr>
<td>SOIL CHEMICAL PROPERTIES IN MAIN CROP LANDS AND SOIL MONITORING ON ARABLE LANDS IN CHUNGBUK PROVINCE, KOREA</td>
<td>299</td>
</tr>
<tr>
<td>Cropping Systems and Sustainable Management</td>
<td></td>
</tr>
<tr>
<td>NUTRIENT RELEASE FROM COW MANURE AND ITS FATE IN TWO UPLAND FIELDS OF INDONESIA</td>
<td>301</td>
</tr>
<tr>
<td>THE EFFECT OF CHELATING AGENTS ON GROWTH OF CHINESE CABBAGES IN SALINIZED SOILS IN PLASTIC FILM HOUSE</td>
<td>303</td>
</tr>
<tr>
<td>IMPROVEMENTS SHOWN BY SALINIZED SOILS DUE TO ADDITION OF ORGANIC AMENDMENTS WITH GYPSUM</td>
<td>305</td>
</tr>
<tr>
<td>Soil Biology and Crop Production</td>
<td></td>
</tr>
<tr>
<td>SOIL CILIATES IN ORGANIC AND NON-ORGANIC FIELDS</td>
<td>307</td>
</tr>
<tr>
<td>FUNCTIONAL GROUP DIVERSITY OF INVERTEBRATE MESO-FAUNA IN LITTER-SOIL ECOSYSTEM OF TROPICAL RAINFORESTS VS. ADJACENT COMPARABLE AGRO ECOSYSTEMS</td>
<td>309</td>
</tr>
<tr>
<td>NITRIFIERS IN THE RICE RHIZOSPHERE AS AFFECTED BY SOIL MOISTURE REGIME</td>
<td>311</td>
</tr>
<tr>
<td>SOIL MICROBIAL COMMUNITY STRUCTURE AND RHIZODEPOSIT CARBON ASSIMILATION VARY WITH THE RICE VARIETY AND TYPE OF NUTRIENT INPUT</td>
<td>313</td>
</tr>
<tr>
<td>SYNERGISTIC EFFECTS OF BLACK CARBON AND HUMIC SUBSTANCES ON THE REDUCTION OF HEXAVALENT CHROMIUM IN SOIL</td>
<td>315</td>
</tr>
<tr>
<td>Soil Ecosystems and Human Health</td>
<td></td>
</tr>
<tr>
<td>REACTION MECHANISM OF TETRACYCLINE ANTIBIOTICS WITH RICE-STRAW CHAR IN SOIL</td>
<td>317</td>
</tr>
<tr>
<td>REACTIONS OF HEAVY METALS WITH RICE-STRAW-DERIVED BIOCHAR</td>
<td>319</td>
</tr>
<tr>
<td>SUITABILITY OF LOCALLY AVAILABLE MINERAL AMENDMENTS FOR REMEDIATION OF TRACE METAL CONTAMINATED SOILS OF SRI LANKA</td>
<td>321</td>
</tr>
<tr>
<td>ROLE OF RICE-STRAW BIOCHAR IN DETERMINING CADMIUM SOLUBILITY IN RICE PADDY SOILS</td>
<td>323</td>
</tr>
<tr>
<td>ASSESSMENT OF PHOSPHATE AND CADMIUM LEVELS IN WATER AND SEDIMENTS OF SELECTED WATER RESOURCES IN DRY ZONE OF SRI LANKA: A CASE STUDY</td>
<td>325</td>
</tr>
</tbody>
</table>
ERROR: syntaxerror
OFFENDING COMMAND: --nostringval--

STACK:
/Title ()
/Subject (D:20130102153255+07’00’) /
/ModDate () /
/Keywords (PDFCreator Version 0.9.5) /
/Creator (D:20130102153255+07’00’) /
/CreationDate (Tocil) /
/Author -mark-
NUTRIENT CYCLE IN *ACACIA CRASSICARPA* PLANTATION ON DEEP TROPICAL PEATLAND AT BUKITBATU, BENGKALIS, INDONESIA

Suwardi¹*, G. Djajakirana¹, B. Sumawinata¹, DPT. Baskoro¹, C. Munoz² and R. Hatano³

¹Department of Soil Science and Land Resources, Faculty of Agriculture, Bogor Agricultural University
²Sinar Mas Forestry
³Faculty of Agriculture, Hokkaido University
* Corresponding author: suwardi_bogor@yahoo.com

Introduction

Development of annual crops on tropical peatland in Indonesia in most cases eventually ended up in failures and has resulted in serious environmental deterioration, including the latest huge one million-hectare rice project in Central Kalimantan. The causes of failures were widely discussed and primarily failures were attributed to land and soil characteristics for crops cultivation. Among others, flooding, peat subsidence, and problems associated with low decomposed peat material in deep peat (ombrogenous peat) and nutrient deficiencies were mentioned.

Mindful of the problems and environmental impact that could happen, utilization of tropical peatland for perennial crop production poses both economic and environmental challenges (Darmawan et al., 2011). It is too early to say however that any utilization of peatland in Indonesia will drastically lead to environmental deterioration and that it is not beneficial for the country’s development. There are strong indications that some utilization for forest and oil palm plantations appear to be wise choices.

Bukitbatu is one of Indonesian peat areas in Sumatra Island dominated by deep peat having more than 10 m depth. The peatland now are used for forest plantation by cultivation of *Acacia crassicarpa* as raw material of pulp industry. Although the *A. crassicarpa* is only fertilized in the first year and with a very low rate, the growth of plant is very fast. The objective of this research is to study the nutrients cycle of the *A. crassicarpa* planted in peatland.

Materials and Methods

The research was conducted at peat swamp area in the working area of Sinar Mas Plantation at Bukitbatu, Bengkalis Regency, Riau Province, Indonesia. The area is now planted with *A. crassicarpa*. The acacia plants usually are harvested after 5 years and planted again for the next cycle. Soil samples were collected for chemical and physical analysis. For soil chemical analysis, the samples were taken compositely from the upper 10 cm layer for pH, macro and micro nutrients. The samples for bulk density were taken by using box sampler with a size of 30 cm x 30 cm x 30 cm.

Biomass measurement of standing *A. crassicarpa* plants of different ages were conducted by cutting down sample trees and weighing part of the trees. The trees were sampled within a plot of 20 m x 20 m. Some 6-7 plants of each age were sampled. The amount of litter fall down to the ground was measured by collecting the litter using a net of 1 m x 1 m size placed on about 75 cm from the ground under 3 years old of acacia trees. Each month the litter fall trapped in the net was weighted for calculating the total litter fall added to the soil. The macro and micro nutrients in the litter fall were analyzed for calculating nutrient cycle. In a separate research, rate of litter decomposition was measured by using litter bag containing litter fall laid in plantation floor. Some 48 bags containing 20 g of litter fall were laid on the surface and sub surface of the top soil with two replications. Each month, 4 bags containing litter fall were taken from the surface and subsurface soil for weighing the rest of litter fall in the litter bag.

Results and Discussion

Soil chemical analyses showed that peat soil has very low pH ranged from 3.2 to 3.5 and contained very poor in macronutrients and micronutrients. The bulk density ranged from 0.15-0.17 g/cm³ in oxidized surface layer and 0.08-0.10 g/cm³ under submerged condition. Those soil properties showed that the fertility of peat was very low. Therefore, the utilization of peatland for perennial crops which need high fertility will run into some problems. Furthermore, intensive land cultivation that must be done for the annual crops will accelerate land to change especially with peat decomposition. On the contrary, perennial crops such as *A. crassicarpa* can grow well and gave good production. To date, *A. crassicarpa* at Bukitbatu has entered to the second cycle. This fact showed that *A. crassicarpa* has proven as perennial crop that gave minimal land changes and demonstrated as very adaptive tree to grow on deep peat areas.

A. crassicarpa grows very fast (Table 1). The plant is a legume, requiring N, P, K fertilization and cultivation only in the first year. This statement is supported by the fact that in one year after planting, the height
of plant reached 6 m with diameter of 5.5 cm. The plant usually was harvested 5 years after planting with the height reaching 30 m and the diameter of 25 cm. With this growth characteristic, *A. crassicarpa* is classified as a fast growing plant and adaptive to deep peat.

Table 1. Average growth parameter of *A. crassicarpa* during 5 years (weights on oven dry weight basis).

<table>
<thead>
<tr>
<th>Age (Year)</th>
<th>Diameter (cm)</th>
<th>Height (m)</th>
<th>Root (kg)</th>
<th>Stump (kg)</th>
<th>Stem (kg)</th>
<th>Branch (kg)</th>
<th>Leaf (kg)</th>
<th>Total (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>5.5</td>
<td>6.0</td>
<td>0.8</td>
<td>1.0</td>
<td>2.5</td>
<td>2.6</td>
<td>3.8</td>
<td>10.8</td>
</tr>
<tr>
<td>2.0</td>
<td>11.0</td>
<td>12.0</td>
<td>2.9</td>
<td>3.3</td>
<td>16.0</td>
<td>6.7</td>
<td>4.8</td>
<td>33.6</td>
</tr>
<tr>
<td>3.0</td>
<td>15.0</td>
<td>16.5</td>
<td>7.0</td>
<td>8.0</td>
<td>40.4</td>
<td>12.6</td>
<td>4.9</td>
<td>72.9</td>
</tr>
<tr>
<td>4.0</td>
<td>19.0</td>
<td>22.5</td>
<td>15.2</td>
<td>17.3</td>
<td>78.3</td>
<td>26.8</td>
<td>6.9</td>
<td>144.5</td>
</tr>
<tr>
<td>5.0</td>
<td>25.0</td>
<td>30.0</td>
<td>35.3</td>
<td>40.1</td>
<td>144.4</td>
<td>65.4</td>
<td>26.5</td>
<td>311.8</td>
</tr>
</tbody>
</table>

Based on litter fall measurements, during 8 months of observations, there has been 611.12 g/m² of dry weight litter fall or equal to about 9.2 ton/ha/year oven dry weight. Decomposition of litter fall of *A. crassicarpa* was very fast, 60% litter fall from *A. crassicarpa* was decomposed in 3 months whereas litter fall from natural forest in the same period only decomposed 40%. From macronutrient analysis of litter fall the amount of potential macro nutrients released from litter fall to soil could be estimated (Table 2). The highest nutrient released from litter fall was nitrogen. In one ha, the nitrogen content in litter fall was 271 kg/ha/year or equivalent to 602 kg urea/ha/year. The very high number of nitrogen content in litter fall was attributable to the fact that acacia is a leguminous plant having dense lateral roots rich in nodules. The other nutrients (P, K, Ca, Mg and S) will cycle from litter fall, released to soil and taken again by plants without a significant increase. These nutrients become available for growing plants after the litter fall is decomposed by microorganisms. Based on litter fall decomposition in the litter bag, acacia leaf decomposed very fast indicating that acacia leaf is good composting material.

Table 2. Content of macronutrients in litter fall and equivalent macronutrients for one ha per year.

<table>
<thead>
<tr>
<th>Litter Fall from Acacia</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content of macro nutrients (%)</td>
<td>2.95</td>
<td>0.15</td>
<td>1.76</td>
<td>0.91</td>
<td>0.36</td>
<td>0.28</td>
</tr>
<tr>
<td>Equivalent of macro nutrients based on the amount of 9.2 ton litter fall/ha/year (kg/ha/year)</td>
<td>271.1</td>
<td>13.8</td>
<td>161.9</td>
<td>83.7</td>
<td>33.1</td>
<td>25.8</td>
</tr>
</tbody>
</table>

The nutrients released from litter fall decomposition are used for enriching soils and growing of acacia plant. From the above results, *A. crassicarpa* shows success as a plantation crop that can sustain growth on peatland due to the nutrient cycle produced by the plant itself with low fertilizer input.

Conclusions

Peatland has low pH and are poor in macro and micro nutrients. However, *A. crassicarpa* can adapt and grow in peat soils due to the plant having lateral roots rich in nodules. Measurement of litter fall using nets showed that one hectare of Acacia plantation aged 3 years produced about 9.2 tons/ha/year oven dry weight of litter fall or equivalent to 271 kg N ha/year. After 3 months some 60% of litter fall have been decomposed.

Acknowledgments

We thank Sinar Mas Groups for their financial support for this research and permission for using Bukitbatu Acacia plantation for location of this research.

References