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1 Introduction

Neutron star is an interesting object. It is dense with the mass of about the
mass of the sun, while the radius of only about 10 km. This tremendous den-
sity may result in some unusual states of matter or lead to exotic many-body
physics phenomena. For the discussion here we assume that a neutron star is
a charge neutral system of nucleons and electrons in beta equilibrium at zero
temperature. To sustain the stability, the neutron star must be in hydrody-
namic equilibrium between gravity and Fermi degeneracy pressure. The mass,
radius, pressure, and density profiles of neutron star are determined by gen-
eral relativity and hydrodynamics of the neutron star matter consistently with
its equation of state, via the so called Tolman-Oppenheimer-Volkov equation [1].

Given tremendous variations of density from almost zero on the surface to
that of several times the nuclear density in the interior region the structure of
neutron stars may be rich and diverse. In figure 1, we show the typical cross
sections of the neutron star. Based on the increasing density of matter we
roughly separate four different layers.

• The first layer is the outer crust; region A in Fig. 1 at low density it
is made up from bare nuclei in thermodynamic equilibrium with electron
bath. Although the structure here is expected to be a typical Fermi state
exotic random or coherent lattice structures can not be excluded.

• We refer to the second layer as the inner crust, given higher density and
shifted beta-equilibrium we expect it to be made up from more neutron
rich nuclei that are embedded in the seas of neutrons and relativistic elec-
trons. Region B in Fig. 1. The structure is expected to be seriously in-
fluenced by the neutron superconductivity involving both phenomena the
internal nuclear superconductivity and neutron-pair transitions between
nuclei. The nuclei themselves may be arranged in random configurations
or even form regular lattice structures embedded in neutron superfluid
and relativistic electron bath. Because of the competition between the
coulomb and surface energies, nuclei in this region experience large shape
fluctuations ranging from spherical shapes to rods, plates, or tubes [2].

• With the further increase in density and approaching the nuclear matter
density we reach a more uniform neutron matter with only perhaps a
view cavities we identify this as the outer core, regions C in Fig. 1. The
superconducting state of neutron matter is expected to determine the
equation of state here, however neutron bubbles especially if coherently
arranged can be of importance [3].

• There is little known about the most inner core or the region D in our Fig.
1. There are speculations that higher densities will lead to exotic phases
of pion, kaon, hyperon condensates and eventually to a quark matter. The
transitions between these phases, relevant degrees of freedom and the role
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Figure 1: Structure of Neutron Star.

of many-body collective phenomena such as superconductivity for both
structure and transitions between phases are open questions.

Our motivation in this work is to tackle some of the questions related to
the structure of the neutron star. Clearly fully solving all of these problems is
a task of enormous complexity and remains infeasible for the near future. In
this work we will concentrate on the aspects related to pairing, regardless of
degrees of freedom free nuclei, nucleons, mesons or quarks the two-body corre-
lations of pairing type are extremely important. These correlations correspond
to particle-particle scatterings in the lowest momentum channel or equivalently
with the zero impact parameter. In our study we plan to traverse different re-
gions of neutron star and discuss the role of superconducting correlations. For
the crust region the questions of pairing in neutron rich nuclei, the pairing of
nucleons in continuum of scattering states between nuclei, the role of pairing in
forming the arrangement of nuclei such as random or ordered, and finally the
question of equation of state of such dilute matter are of interest. The nuclear
superconductivity in neutron rich nuclei and pairing in continuum unlike many
other subjects related to neutron stars can be studied in the lab. For the more
dense core regions the list of question includes the role of pairing for the general
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structure of matter that may involve the possibility of bubbles; the pairing cor-
relations between different non-nucleonic degrees of freedom and the possibility
of exotic pairing forms. Finally the role of pairing in possible existance and
transition to the quark matter inside the neutron star is to be explored.

The structure of this presentation is as follows: In the following section,
we show the importance of a short range interaction to produce a coherence
effect using a simple analytically solvable model. In section 3, we concentrate
on some pairing calculations for many-body system using BCS approach. We
briefly outline the derivation of BCS equations and give some examples of the
BCS calculation relevant to nuclear system. The future outlook and research
plans are presented in section 4.

2 Coherence effect due to the short range inter-

action

To show the effect of short range interaction on a system we consider a two-body
problem with a relative coordinate x. The two particles under consideration
interact and form a confined system, this interaction is given by the Hamiltonian
H0, and the discreet set of states of this system is given by energies εn and wave
functions φn(x)

H0φn = εnφn. (1)

We suppose that in addition to this there is a short range interaction, given here
by the Dirac delta function with some strength g. The role of this perturbation
is the question to be addressed. The full Hamiltonian for the system is

H = H0 − gδ(x). (2)

In order to solve the full Shrödinger equation

Hψ(x) = Eψ(x) (3)

we decompose the eigenstate ψ(x) in the unperturbed basis

ψ(x) =

∞
∑

n=0

cnφn(x) (4)

After substitution of Eq. (4) into Eq. (2) the eigenvalue matrix diagonalization
equation becomes :

ckεk −

∞
∑

k,n=0

g φk(0)φn(0)cn = Eck. (5)

The Hamiltonian matrix here is separable and therefore allows for an analytic
solution. Introducing the collective field ∆

∆ =

∞
∑

n=0

φn(0)cn (6)
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we obtain expansion coefficient ck as

ck =
gφk(0)∆

εk − E
(7)

then self-consistency of this equation and Eq. (6) result is a secular equation
for the energy

1

g
=

∞
∑

k=0

φ2
k(0)

εk − E
(8)

This equation is known to represent a rather generic phenomenon describing
the collectivity formation. When g = 0 the roots coincide with unperturbed
roots εk. For non zero g with a graphical solution one can establish that each
root Ek lies between εk−1 and εk, we assume here attractive g > 0 interaction.
The ground state E0, however, is not bound from below and typically due to
coherent level repulsion from all other states is significantly pushed down. If
all states are degenerate εk = 0 and with approximation that φ2

k(0) ≡ φ2 are
independent of k the ground state of perturbed system is found at E0 = −gφ2N .
The repulsion is coherent since it is proportional to the macroscopically large
number of states in the system N .

An example of Harmonic oscillator below illustrates the situation. Consider
only even k due to the parity, the sum in Eq. (8) can be done analytically which
leads to

g

2

Γ(−E
2

)

Γ( 1−E
2

)
= 1 (9)

In Fig.2(a), we show the energy spectrum as a function of pairing constant
g. Before pairing (g = 0) we simply get the spectrum of energy of harmonic
oscillator Ek → εk = k + 1/2. When we turn on the pairing constant g, the
ground state goes down in energy E0 → −∞ and forms a single coherent state
(pairing state), while the other states asymptotically go down to the level below
Ek → εk−1. The wave functions corresponding to the ground states of perturbed
and unperturbed systems are shown in Fig.2(b). It is clear that the short range
correlation forces particle confinement leading to a sharp peak near x = 0 as
expected from the delta potential.

3 Superconductivity, and the BCS Theory

For the case of the many-body system with short range pairwise interaction the
macroscopic theory was developed by Bardeen, Cooper, and Schrieffer in 1957,
known as BCS theory [4]. The BCS theory represents a variational approach
where many-body wave function is assumed to be a product of particle-pairs.
Pairwise structure is favored by the attractive short range interaction, the effect
considered in the previous section.
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Figure 2: (a)Energy spectrum of harmonic oscillator as a function of pairing
constant g and (b) the ground state wave function of harmonic oscillator before
and after pairing with g=1.00

3.1 BCS theory formulation

In this section we outline the BCS approach, the more detailed consideration
can be found in various textbook [5].
The concept of a pair is central for the BCS construction. Physics of interaction
dictates what is to be taken as a pair, namely in what channel the attractive in-
teraction between particle is the strongest. In this analysis we consider the most
common and the simplest case when pair represents two particles on time conju-
gate states (k, k̃). The k here labels single particle quantum state. It is natural
that short range interaction would be strongest for these angular momentum
L = 0 head on collisions. The exotic pairs with other degrees of freedom such
as isospin or color are to be addressed in future work. The scattering in this
pairing channel is described by the matrix element Vkk′ reflecting transition of
initial state (k′,k̃′) to the final state (k, k̃). It is useful to use second quantiza-

tion language, where we introduce creation and annihilation operators a†
k and

ak; the typical fermion commutation rules are

{ak, a†
k′} = aka†

k′ + a†
k′ak = δkk′ , {ak, ak′} = akak′ + ak′ak = 0. (10)

we also introduce the operators:

pk = ak̃ak, p†k = a†
ka†

k̃
, nk = a†

kak, nk̃ = a†

k̃
ak̃ (11)

which satisfy the commutation rules below:

[pk, p†k′ ] = δkk′(1 − nk′ − nk̃′) (12)

It should be noted that, trough out this paper we are going to use the same
notations for both the operators and their expectation values.
Now, assume that the Hamiltonian for the system is

H =
∑

k

εknk +
∑

kk′>0

Vkk′p†kpk′ (13)
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which includes no interactions other than pairing. To get the ground state we
consider wave functions

|BCS〉 =

∞
∏

k>0

(uk + vkp†k)|0〉 (14)

with variational parameters uk and vk. Imposing the normalization on BCS
wave function, we get

u2
k + v2

k = 1. (15)

We can interpret the v2
k as the probability of pairing state (k, k̃) being occupied,

while u2
k is the probability of that state to remain empty. We also define the

particle number operator N as

N =
∑

k>0

(nk + nk̃) (16)

The BCS wave function (14) explicitly doesn’t conserve the particle number,
however in the macroscopic case asymptotically exact restoration of particle
number conservation can be reached by introducing chemical potential λ ad-
justed so that 〈BCS|N̂ |BCS〉 = N . The Hamiltonian then changed as H →
H − λN̂ . By using nk = v2

k as a free parameter, we minimize energy

E = 〈BCS|H|BCS〉 = 2
∑

k>0

ε0
kv2

k +
∑

kk′>0

Vkk′ukvkuk′vk′ +
∑

k>0

Vkkv2
k (17)

which leads to

εk +
(1 − 2nk)

2
√

(1 − nk)nk

∑

k′>0

Vkk′uk′vk′ = 0 (18)

Similar to the discussion conducted in the previous section this set of equations
can be solved with the introduction of collective variable called gap parameter

∆k =
∑

k′>0

Vkk′uk′vk′ (19)

then we have

εk +
(1 − 2nk)

2
√

(1 − nk)nk

∆k = 0, (20)

which solved for nk gives

nk =
1

2
(1 −

εk

ek
). (21)

where the quasiparticle energy is introduced as

ek =
√

ε2
k + ∆2

k (22)

Thus

v2
k =

1

2
(1 −

εk

ek
), u2

k =
1

2
(1 +

εk

ek
). (23)
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In full similarity to the two-body problem of the previous section the self-
consistency in collective gap ∆ through equations (19) , (23) , leads to

∆k =
1

2

∑

k′>0

∆k′

ek′

Vkk′ . (24)

This result is called gap equation. The Eq. (24) is simplified if Vkk′ is constant,
in this case the gap ∆ is state independent. In the following section we consider
some BCS applications.

3.2 Examples of BCS calculations

3.2.1 One level problem/degenerate states

One of the simplest pairing problems is the case of N particles in the degenerate
valence space so that all states k have the same energy εk = ε. In realistic
situation this can occur due to symmetries such as the case of a single particle
level with large spin j that has 2j + 1 degenerate states labeled by magnetic
quantum number. The interaction in this case is also constant Vkk′ = V. The
BCS approach here leads to two equations: gap equation and equation for the
chemical potential that sets the particle number.

∆ =
ΩV

2
(

∆
√

(ε − λ)2 + ∆2
), N =

Ω

2
(1 −

(ε − λ)
√

(ε − λ)2 + ∆2
). (25)

The solution of this set is

∆ =
V

2

√

NΩ − N2, λ = ε − V (
Ω

2
− N). (26)

For the strong pairing where one can neglect the differences between single
particle energies the above equations reflect a typical parabolic behavior of the
gap and linear increase in chemical potential as the valence space is gradually
filled. The BCS total energy for the degenerate model is:

EBCS(N, s) = Nε +
V

4

[

(N − s)(Ω − N − s + 2
(N − s)

(Ω − 2s)
)

]

(27)

with s is the number of unpaired particles.
We can also solve the pairing problem in degenerate model by using exact pairing
method. Introducing operator P , P †, and N :

P =
∑

k

pk , P † =
∑

k

p†k , N =
∑

k

nk (28)

which have the commutation relations :

[P †, P ] = N −
Ω

2
, [N,P ] = −2P , [N,P †] = 2P † (29)
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Figure 3: (a) Pairing gap vs N (b) total energies vs N, BCS result in blue and
exact result in red color

the Hamiltonian of equation (13), now can be written in more simple way as :

H = Nε + V P †P (30)

To get the total energy, we can map the problem into the problem of particles in
the field by analoging the operator above with the angular momentum operators

P → L− , P † → L+ ,
1

2
(N −

Ω

2
) → Lz (31)

and finally the total energy of exact pairing method is:

Eexact(N, s) = Nε +
V

4
[(N − s)(Ω − N − s + 2)] (32)

We can relate the expectation value of angular momentum with the number of
unpaired particles s as :

s = 2(
Ω

4
− L) (33)

In Fig.3(a), the gap is plotted as a function of particle number for the degenerate
model. In order to give the problem some realistic flavor we select the valence
space Ω = 32 to represent a set of states h11/2, d3/2, s1/2, g7/2, and d5/2 which
are close in energy and can roughly be considered as degenerate. Within this
shell we study the problem of neutron pairing for 100Sn- 132Sn. The typical
pairing strength is V =-0.1MeV [6]. In Fig. 3(b), we compare the BCS total
energy (the blue line) with the exact pairing energy (the red line) as a function
of the number particles for the case ε = 0, N = Ω = 32, and V = -0.1 MeV.
We see clearly that the exact method always give you lower energy compared
to BCS/variational calculation.

3.2.2 Two levels problem

The degenerate model discussed above represents the case of strong pairing
and thus is somewhat limited as pair excitation to unoccupied orbitals are not
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Figure 4: Pairing gap vs the number of particles for two levels problem

penalized by the requirement to overcome single particle energy differences. For
this reason degenerate model has no pairing phase transition, even at weak
pairing paired state is always energetically favored. The most general picture
can be obtained in the two-level case. Here we consider two shells with energies
ε0 and ε1. the degeneracies are Ω0 and Ω1, respectively [7] Without loosing
any features we can assume constant V for all pair interactions within the shells
and between the shells. As indicated earlier this assumptions leads to a single
gap parameter.

For the example of the calculation shown in Fig.4, we again attempt to
describe the realistic picture of two shells, that would correspond to tin isotopes
in the region 100Sn- 174Sn. For the single particle energies we assume constant
potential V which come from Woods-Saxon solution of the nuclear mean field
potential adjusted for this region. We select various interactions strengths V =
92.4, 95, 100, 120, and 150 KeV. By increasing the pairing potential, we simply
transform system from two separate shells to a single big shell.

4 Research Plans and outlook

In this presentation we report our first step toward understanding the role of
coherent pairing effects on the structure and phases of matter in the neutron
star. The importance of short range correlations and their role in forming
the bound Cooper pairs has been shown in Sec. 2. This analytically solvable
example is of particular importance as real coordinate space interaction was
used. Obtaining the interaction matrix elements for the relevant pairing mode
from fundamental laws will be crucial part for this project. In section 3, we
have shown the study of the role of pairing in many-body systems. The basic
formalism is outlined in Sec 3.1 , however future applications most likely will

9



REFERENCES

Pairing in Neutron Stars
XVII NNPS, UC Berkeley 6-17 June 2005

require its extension to include various phases of pairing coherence such as
different color modes or isospin modes of pairing. Examples in Sec 3.2 show
the needs for the development of fast and reliable general code to tackle pairing
problem in a larger system. In terms of applications we plan to start with the
study of pairing in typical nuclear systems, given a lot of experimental data and
large amount of research done in this direction. This study will extend into the
realm of neutron rich nuclei; here the interplay of pairing effects and neutron
decay is the key question. By considering a collection of neutron rich nuclei
and assuming their random, regular, or special distribution, we hope to model
the crust of the neutron star and its properties. The variational procedure here
would extent beyond BCS to include the properties of the distribution of nuclei,
hopefully this can shed some light on the possibility of exotic structures such
as planes, rods and etc. This work with nucleon degrees of freedom can be
further extended into the outer core regions of neutron stars where neutron
matter equation of state can be investigated along with the possibility and/or
distribution of bubbles in it at lower density.

The meson and quark degrees of freedom are the next challenge in further
steps toward understanding the physics of the neutron star’s core. We will start
by focusing on a “multi-flavor pairing” where Cooper pairs of different sym-
metries are possible. The consideration of analogous problems of SU(2)xSU(2)
pairing in nuclear systems with rotational invariance and isospin is particu-
larly valuable and practically important since interplay between isovector and
isoscalar pairing modes in nuclei is still not fully resolved. Using the guiding
principles of these cases as well as the examples from the condensed matter
physics we plan to explore the superconductivity in the quark matter. By com-
bining the quark deconfinement process with pairing effects on both hadron and
quark levels we hope to get some idea about the phases and equation of state
of the neutron star’s core.
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