BAB II
TINJAUAN PUSTAKA

2.1 Fumigasi Amonia

Fumigasi amonia (Ammonia fuming) adalah suatu metode tradisional untuk menggelapkan dan memperkaya warna kayu Oak. Pada awalnya metode ini ditemukan dengan tidak sengaja dari hasil pengamatan terhadap perubahan warna yang terjadi pada balok penyusun kandang kuda yang terbuat dari kayu white-Oak. Kayu tersebut menjadi berwarna lebih gelap karena berinteraksi dengan amonia dari urin kuda (Rose 1997).

Metode pewarnaan menggunakan teknik fumigasi amonia (Ammonia fuming) merupakan salah satu metode dalam proses finishing kayu yang mudah dan hampir selalu berhasil, dan apabila suatu percobaan gagal maka percobaan dapat diulang lagi. Selain itu, perubahan warna pada kayu dapat bertahan selama ratusan tahun karena pada proses ini perubahan terjadi pada pigmen kayu itu sendiri dan tidak perlu khawatir akan terjadi pengelupasan maupun pelunturan fading) seperti yang terjadi pada proses pewarnaan (staining atau dyeing). Metode pewarnaan kayu dengan teknik staining dan dyeing tidak mengubah struktur kimia maupun komposisi pigmen alami kayu tersebut namun hanya menutupi permukaan alami kayu dengan pigmen baru (Bavaro dan Mossman 1996).
2.2 Peran Tanin dalam Fumigasi Amonia

Asam tanin (Tannic acid) merupakan nama komersial untuk tanin. Tanin merupakan polifenol dengan tingkat basa tinggi (pH sekitar 10) karena struktur fenolik penyusunnya. Tannic acid merupakan bahan baku pembuatan stain (pewarna). Asam tanin terdapat secara alami pada kayu Oak, Walnut, dan Mahoni, yang dapat diaplikasikan pada kayu yang memiliki kadar tanin rendah. Reaksi yang membutuhkan tanin (fumigasi amonia) dapat dilakukan pada kayu yang berkadar tanin rendah dengan cara melapisi permukaan kayu dengan tanin yang dijual di pasaran. Perubahan warna pada proses fumigasi amonia disebabkan oleh reaksi antara tanin terkondensasi terutama Flavonoids yang memiliki stuktur (5–OH) bebas dengan amonia NH₃. Jenis tanin ini antara lain Robinetin, Kaempferol, Quercetin, dan Morin.

Dari struktur tanin ini (Robinetin, Kaempferol, Quercetin, Morin), posisi 3 selalu terglikolisasi oleh glukosa, galaktosa, ramnosa, xilosa-glukosa, atau ramnosa-glukosa. Pada posisi 5 kadang-kadang terglikolisasi oleh glukosa sedangkan pada posisi 7 hampir tidak pernah terglikolisasi (Hemingway 1988).

2.3 Jenis Kayu

2.3.1 Kayu Durian (*Durio zibethinus*)

Kayu terasnya berwarna coklat merah jika masih segar, lambat laun akan menjadi cokelat kelabu atau coklat semu-semu lembayung. Kayu gubal berwarna putih dan dapat dibedakan dengan jelas dari kayu teras, tebal sampai 5 cm. Teksturnya agak kasar dan merata dengan arah serat lurus atau bepapu. Permukaan kayu agak licin dan mengkilap.

Kayu durian termasuk kelas awet IV-V dan kelas kuat II-III dengan berat jenis 0.57. Kayunya mudah digergaji meskipun permukaan cenderung untuk berbulu, mudah dikupas untuk dibuat vinir. Kayu durian cepat menjadi kering tanpa cacat, tetapi papan yang tipis cenderung untuk menjadi cekung. Jika diawetkan dapat menyerap bahan pengawet dengan mudah meskipun dengan proses perendaman.

2.3.2 Kayu Kecapi (*Sandoricum koetjape*)

2.3.3 Menteng (*Baccaurea racemosa*)

Menteng (*Baccaurea racemosa*) memiliki pohon dengan tinggi 15-25 m, diameter 25-70 cm, tajuknya padat, dan tak teratur. Daunnya bundar telur lonjong sampai bundar telur sungsaeng, berukuran (7-18) cm x (37) cm, berkelengjar, bertangkai daun dengan panjang 0.5-4.5 cm, dan penumpunya segitiga. Racemosa dibedakan atas dua forma: yang satu daging buahnya putih (menteng), dan yang satu lagi daging buahnya merah (*bencoy*). Kayunya digunakan untuk bangunan rumah, perahu, dan mebel. Selain itu, sama halnya dengan pohon-pohon kauliflora lainnya. Menteng dianggap sebagai pohon perambat yang baik untuk rotan. Jenis-jenis yang dibudidayakan membentuk tajuk yang bagus dan dapat dimanfaatkan juga sebagai tanaman hias dan pohon pelindung. Kulit kayu beberapa jenisnya, dengan dicampur berbagai ramuan, digunakan untuk mewarnai sutra menjadi kuning, merah, atau lembayung muda, melalui proses pewarnaan yang dalam bahasa Melayu disebut 'pekan'. Kulit kayu ini digunakan juga untuk mengobati mata bengkok.

2.3.4 Kayu Nangka (*Artocarpus heterophyllus*)

Nangka termasuk ke dalam famili Moraceae, nama ilmiahnya adalah *Artocarpus heterophyllus*. Pohon nangka umumnya berukuran sedang, sampai sekitar 20 m tingginya, walaupun ada yang mencapai 30 m. Batang bulat silindris, sampai sekitar 1 m garis tengahnya. Tajuknya padat dan lebat, melebar dan membualap apabila di tempat terbuka. Seluruh bagian tumbuhan mengeluarkan getah putih pekat apabila dilukai.

Nangka tumbuh dengan baik di iklim tropis sampai dengan 25° lintang utara maupun selatan, walaupun diketahui masih dapat berbuah hingga 30° lintang utara maupun selatan. Tanaman ini menyukai wilayah dengan curah hujan lebih dari 1500 mm pertahun di mana musim keringnya tidak terlalu keras. Nangka kurang toleran terhadap udara dingin, kekeringan, dan penggenangan.

Kayu Nangka berwarna kuning di bagian teras, berkualitas baik dan mudah dikerjakan. Kayu ini cukup kuat, awet dan tahan terhadap serangan rayap atau jamur, serta memiliki pola yang menarik, gampang mengkilap apabila diserut halus dan digosok dengan minyak. Karena itu kayu nangka kerap dijadikan perkakas rumah tangga, mebel, konstruksi bangunan, konstruksi kapal sampai ke

2.3.5 Rambutan (Nephelium lappaceum)

Pohon Rambutan berukuran cukup besar di vegetasi alaminya, namun pohon-pohon hasil perbanyakan (clonal trees) hanya memiliki tinggi sekitar 4-7 m. Daun majemuk menyirip ganda sempurna sampai 6 pasang anak daun. Anak-anak daun berbentuk bulat telur sampai bulat telur sungsang, berukuran panjang 5-28 cm dan lebar 2-10.5 cm, permukaan atas daun halus dan ujung daun meruncing. Pembungaan umumnya terminal (terkadang pseudoterminal), terdapat bunga jantan dan bunga hermafrodit. Bunga bersimetri banyak (actinomorphic), berwarna putih, kuning atau hijau. Daun kelopak terdiri atas 4-5 daun yang saling lepas. Umumnya tidak ada daun-daun mahkota, terkadang dari 4 daun mahkota tereduksi menjadi 1 daun saja dengan ukuran yang tidak lebih dari 0.7-2.1 mm. Tangkai benang sari diselaputi rambut-rambut panjang khususnya dibagian pangkalnya. Posisi kepala sari terlungkup menghadap kesamping dan tergolong dapat pecah. Putik berkembang dengan baik di bunga hermafrodit. Tangkai kepala putik berkembang dengan baik. Buah berbentuk samara elips sampai semi globular dengan panjang 7 cm dan lebar 5 cm, umumnya terdiri atas satu lembaga.
Rambutan dapat tumbuh subur pada daerah dataran rendah, tropis, dan lembab pada ketinggian dari permukaan air laut hingga 600 mdpl. Tumbuhan ini menyusun lapisan kanopi bawah dan tengah hutan primer dan sekunder. Curah hujan di habitat alamnya dapat mencapai 2500 mm per tahun. Jenis tumbuhan ini tumbuh pada tanah subur berpasir yang kaya humus atau tanah liat yang kaya humus dengan pH tanah berkisar antara 4,5-6,5. Kayunya cocok untuk bahan bangunan. Pohon ini dapat ditanam untuk pemulihan kembali lahan-lahan kritis.

2.4 Pengolahan Citra (Image Processing)

Pengolahan Citra adalah proses untuk mengamati dan menganalisa suatu objek tanpa berhubungan langsung dengan objek yang diamati. Proses dan analisisnya melibatkan persepsi visual dengan data masukan maupun data keluaran yang diperoleh berupa citra dari objek yang diamati. Teknik-teknik pengolahan citra meliputi penajaman citra, penonjolan fitur tertentu dari suatu citra, kompresi citra dan koreksi citra yang tidak fokus atau kabur (Ahmad 2005). Sebagai contoh, layaknya mata dan otak, sistem visual buatan atau vision system (computer vision) adalah suatu sistem yang mempunyai kemampuan untuk menganalisis obyek secara visual, setelah data obyek yang bersangkutan dimasukkan dalam bentuk citra (image) untuk membuat model nyata dari sistem visual (Ahmad 2005).

Citra merupakan sekumpulan titik-titik dari gambar yang berisi informasi warna dan tidak tergantung pada waktu. Umumnya citra dibentuk dari kotak-kotak persegi empat yang teratur sehingga jarak horizontal dan vertikal antar pixel sama pada seluruh bagian citra. Warna citra didapat melalui penjumlahan nilai Red, Green, Blue (RGB). Permukaan suatu benda yang terlihat sebenarnya hanya memantulkan cahaya yang jatuh pada benda tersebut, itulah sebabnya mata kita tidak dapat melihat sesuatu benda, apapun warnanya, bila ditempatkan dalam ruangan yang gelap sekali (Ahmad 2005).

Selain memantulkan, benda juga dapat memancarkan sinar sendiri agar dapat terlihat oleh mata, dan itulah cara kerja monitor. Dengan cara mengalirkan sejumlah energi ke titik-titik penyusun layar monitor, maka akan tampak sesuatu benda ke layar monitor. Monitor dan kartu grafik komputer menggunakan model warna RGB (Red, Green dan Blue), yaitu suatu model warna yang didasarkan pada pembentukan warna melalui kombinasi ketiga warna pokoknya, yaitu
merah, hijau dan biru untuk mempresentasikan suatu warna. Dalam hal ini warna didefinisikan dengan jumlah relatif dari intensitas ketiga warna pokok tadi yang diperlukan untuk membentuk suatu warna. Kekuatan intensitas tiap komponen warna tadi dapat berkisar dari 0% sampai 100% dimana kekuatan intensitas dengan nilai nol (0%) untuk ketiga warna pokok tadi berarti ketiadaan suatu warna maupun kecerahan pada suatu piksel sehingga tampak sebagai titik hitam pada monitor. Demikian sebaliknya jika nilai intensitas penuh (100%) untuk ketiga warna pokok berarti semua komponen warna akan saling menetralkan pada suatu piksel sehingga tampak suatu titik putih pada monitor. Dengan demikian, warna merah yang murni akan muncul bila komponen warna merahnya bernilai penuh, sedangkan dua komponen lainnya bernilai nol. Sama halnya dengan keadaan munculnya wana hijau murni dan biru murni. Gabungan untuk berbagai nilai komponen penyusunnya di luar keadaan tadi akan menghasilkan warna campuran yang dalam kehidupan sehari-hari sering kita nilai secara kualitatif seperti kuning kemerahan, hijau muda, kuning kehijauan dan sebagainya (Ahmad 2005).

Citra masukan diperoleh melalui suatu kamera yang di dalamnya terdapat suatu alat digitasi yang mengubah citra masukan berbentuk analog menjadi citra digital. Alat digitasi ini dapat berupa penjelajahan solid-state yang menggunakan matrik sel yang sensitif terhadap cahaya yang masuk, dimana citra yang direkam maupun yang digunakan mempunyai kedudukan atau posisi yang tetap.

Alat masukan citra yang digunakan adalah kamera CCD (Charge Coupled Device) atau juga bisa menggunakan kamera digital, dimana sensor citra dari alat ini menghasilkan keluaran berupa citra analog sehingga dibutuhkan proses digitasi dengan menggunakan alat digitasi.

Model warna telah banyak dikembangkan oleh para ahli, seperti model RGB (Red, Green, Blue), model CMY(K) (Cyan, Magenta, Yellow), YcbCr (luminase serta dua komponen kromasi Cb dan Cr), dan HSI (Hue, Saturation, Intensity). Model warna RGB merupakan model warna pokok aditif, yaitu warna dibentuk dengan mengkombinasikan energi cahaya dari ketiga warna pokok dalam berbagai perbandingan (Ahmad 2005). Tabel 1 memperlihatkan beberapa model warna yang penting dan deskripsi serta pemakaainnya.

<table>
<thead>
<tr>
<th>Model Warna</th>
<th>Deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB</td>
<td>Merah, Hijau dan Biru (warna pokok). Sebuah model warna pokok aditif yang digunakan pada sistem display.</td>
</tr>
<tr>
<td>CMY(K)</td>
<td>Cyan, Magenta, Kuning (dan Hitam). Sebuah model warna subtraktif yang digunakan pada mesin printer.</td>
</tr>
<tr>
<td>YcbCr</td>
<td>Luminase (Y) dan dua komponen kromasiti (Cb dan Cr). Digunakan dalam siaran gelombang televiisi.</td>
</tr>
<tr>
<td>HSI</td>
<td>Hue, Saturasi, dan Intensity. Berdasarkan pada persepsi manusia terhadap warna.</td>
</tr>
</tbody>
</table>

Sumber : Ahmad U (2005)

Salah satu cara yang mudah untuk menghitung nilai warna dan menafsirkan hasilnya dalam model warna RGB adalah dengan melakukan normalisasi terhadap ketiga komponen warna tersebut. Normalisasi penting dilakukan terutama bila sejumlah citra ditangkap dengan penerangan yang berbeda-beda. Hasil perhitungan tiap komponen warna pokok yang telah dinormalisasi akan menghilangkan pengaruh penerangan, sehingga nilai untuk setiap komponen warna dapat dibandingkan satu sama lainnya walaupun berasal dari citra dengan kondisi penerangan yang berbeda.

Model warna RGB dapat dinormalisasi dengan rumus sebagai berikut:

\[\text{Indeks warna merah} \left(I_{\text{red}} \right) = \frac{R}{R + G + B} \]
\[\text{Indeks warna hijau} \left(I_{\text{green}} \right) = \frac{G}{R + G + B} \]
\[\text{Indeks warna biru} \left(I_{\text{blue}} \right) = \frac{B}{R + G + B} \]
Nilai R, G dan B masing-masing berupa besaran yang menyatakan nilai intensitas warna merah, hijau dan biru. Nilai warna hasil normalisasi ini kemudian ditafsirkan dengan melihat besarnya apabila ketiga komponen warna yang telah dinormalkan ini, katanakanlah masing-masing menjadi indeks warna merah (r), indeks warna hijau (g), dan indeks warna biru (b), mempunyai nilai yang sama (1/3) maka objek tidak berwarna. Bila r lebih besar daripada g dan b maka objek berwarna merah, dan seterusnya. Warna merah murni akan mempunyai nilai r sama dengan satu, sementara dua indeks lainya bernilai nol dan seterusnya.

2.5 Rayap Tanah (*Coptotermes curvignathus* Holmgren)

Menurut Nandika *et al.* (1996), pada prinsipnya makanan utama rayap adalah selulosa. Oleh karena itu kayu dan jaringan tanaman lainnya yang merupakan “gudang selulosa” merupakan sasaran serangan rayap. Bahkan lebih dari itu, dengan ukuran populasinya yang sangat besar disertai dengan daya...
jelajah yang sangat tinggi maka rayap mampu menjangkau dan merusak beraneka ragam bahan yang menjadi kepentingan manusia seperti kertas, karton, kain, plastik, dll. Sasarannya pun kadang terletak jauh dari sarangnya. Dengan demikian dapat dimengerti mengapa bangunan atau perumahan yang bertingkat sekalipun seringkali rusak akibat serangan rayap.

Rayap tanah (Coptotermes curvignathus Holmgren) termasuk famili Rhinotermitidae dan sub-famili Coptotermitinae Kepala berwarna kuning, antena, labrum, dan pronotum kuning pucat. Bentuk kepala bulat ukuran panjang sedikit lebih besar daripada lebarnya, memiliki fontanel yang lebar. Antena terdiri dari 15 segmen, segmen kedua dan segmen keempat sama panjangnya.

Mandibel berbentuk seperti arit dan melengkung diujungnya, batas antara sebelah dalam dari mandibel sama sekali rata. Panjang kepala dengan mandibel 2.46-2.66 mm, panjang kepala tanpa mandibel 1.56-1.68 mm. Lebar kepala 1.40-1.44 mm dengan lebar pronotum 1.00-1.03 mm dan panjangnya 0.56 mm. Panjang badan 5.5-6 mm. Bagian abdomen ditutupi dengan rambut yang menyerupai duri. Abdomen berwarna putih kekuning-kuningan (Nandika et al. 2003).