BAB II
TINJAUAN PUSTAKA

27. Gambaran Umum Hutan Hujan Tropika

Iklim hutan hujan tropis umumnya masuk ke dalam tipe A atau B dalam klasifikasi Schmidt dan Ferguson (Whitmore, 1984), yaitu mempunyai curah hujan rata-rata 1.600-4.000 mm/tahun dengan temperatur berkisar antara 20°C-28°C dan rata-rata kelembaban relatifnya 80 %. Lebih jauh, Whitmore (1984) menyatakan bahwa hutan hujan tropika di Indonesia terdapat di daerah-daerah dengan ketinggian 0 - 4.100 m di atas permukaan laut (mdpl).

Menurut Soerianegara dan Indrawan (1988), formasi hutan hujan tropika di Indonesia terbagi dalam 3 (tiga) zona vegetasi hutan, yaitu:

2.2. Hutan Alam Bekas Tebang

Hutan alam bekas tebangan termasuk kedalam kategori hutan tidak seumur. Tegakan hutan tidak seumur adalah tegakan yang memiliki perbedaan nyata dalam umur pohon dan sedikitnya memiliki tiga kelas umur atau lebih, karena umur pohon dalam tegakan hutan tidak seumur tidak diketahui dengan pasti, dan setiap satuan tapak dalam hutan mengandung pohon-pohon dari fase pertumbuhan semai sampai masuk fase tebang, maka konsep pengelolaan hutan tidak seumur lebih ditentukan oleh struktur ukuran (kelas diameter) pohon-pohon dalam tegakan (Davis, 1954 diacu dalam Nurseyanti, 2007).

2.3. Struktur Tegakan

Istilah tegakan bila ditinjau dari segi operasionalnya adalah suatu hamparan lahan hutan yang secara geografis terpusat dan memiliki ciri-ciri kombinasi dari sifat-sifat vegetasi (komposisi jenis, pola pertumbuhan, kualitas pertumbuhan), sifat-sifat fisik (bentuk lapangan, kemiringan lapangan, dan lain-lain) yang relatif homogen serta memiliki luasan minimal tertentu sebagaimana yang diisyaratkan (Suhendang, 1995).

Richard (1964) mendefinisikan struktur tegakan hutan sebagai sebaran individu tumbuhan dalam lapisan tajuk hutan. Meyer et al. (1961) menggunakan...

Struktur tegakan meliputi dua tipe, yaitu struktur tegakan horizontal dan vertikal. Struktur tegakan vertikal merupakan sebaran jumlah pohon dalam berbagai lapisan tajuk, sedangkan struktur tegakan horizontal merupakan sebaran jumlah pohon pada berbagai kelas diameter. Secara matematis struktur tegakan horizontal ini dapat dipandang sebagai hubungan fungsional antara diameter (X) dengan jumlah pohon (N) pada satuan luas tertentu yang dapat dinyatakan sebagai \(N = f(X) \). Struktur tegakan mempunyai bentuk yang khas untuk setiap tempat tumbuh, setiap jenis pohon, dan keadaan tegakan hutan (Suhendang, 1985).

2.4. Dinamika Struktur Tegakan

Dinamika tegakan dapat dijabarkan secara khusus melalui tiga faktor yakni ingrowth, upgrowth, dan mortality (Buongiorno dan Gilles, 1987). Alder (1995) menyatakan bahwa perubahan yang terjadi dalam tegakan setiap periode waktu dijabarkan dalam ingrowth, upgrowth, dan mortality, dimana:

- **Ingrowth** adalah pohon-pohon yang tumbuh ke dalam suatu kelas diameter setelah satu periode tertentu. Pohon-pohon yang tumbuh ke dalam kelas diameter terkecil disebut recruitment atau external ingrowth.
- **Upgrowth** adalah pohon-pohon yang tumbuh dan keluar dari kelas diameter tertentu setelah satu periode tertentu.

- **Mortality** adalah pohon-pohon yang mati selama periode pertumbuhan.

Panen (harvest) adalah pohon-pohon yang diambil melalui pemanenan selama satu periode.

Ingrowth

Ingrowth menyatakan laju penambahan individu pohon yang masuk ke kelas diameter tertentu yang diukur sekali setahun. *Ingrowth* dipengaruhi jumlah pohon per hektar dan luas bidang dasar. Menurut Abdullah (2003) *ingrowth* untuk semua jenis diduga dengan rumus per kelas diameter sebagai berikut:

- **KD 20-29 cm:**
 \[I = 9,38 - 0,000017B^2 \]
 \(R^2 = 28,1\% \)

- **KD 30-39 cm:**
 \[I = -8,77 + 0,0317N \]
 \(R^2 = 43,7\% \)

- **KD 40-49 cm:**
 \[I = -13,5 + 0,0426N \]
 \(R^2 = 39,9\% \)

- **KD 50-59 cm:**
 \[I = -55,9 + 45,3 \log N - 22,5 \log B \]
 \(R^2 = 67,9\% \)

- **KD 60 cm up:**
 \[I = 21,0 + 1,35M3 - 0,0428B \]
 \(R^2 = 52,5\% \)

Adapun keterangan dari rumus di atas adalah:

- **KD** = Kelas diameter
- **I** = Laju *ingrowth* pohon (%/tahun)
- **N** = Jumlah pohon/ Ha
- **B** = Luas bidang dasar tegakan (cm²)
- **M3** = Laju kematian pohon pada kelas diameter 30-39 cm (%/tahun)

Upgrowth

Pengertian *Upgrowth* menurut Alder (1995) adalah pohon yang tumbuh dan keluar dari kelas diameter tertentu setelah satu periode waktu. *Upgrowth*
merupakan pohon yang tetap hidup, tetapi pindah ke kelas diameter diatasnya selama periode waktu tertentu. Pengertian upgrowth yang digunakan dalam penelitian ini sama dengan ingrowth. Ingrowth diartikan sebagai perpindahan dari kelas diameter yang lebih kecil ke kelas diameter yang lebih besar selama periode pertumbuhan. Ingrowth dalam arti masuknya beberapa individu tegakan ke kelas diameter pohon, disebut sebagai recruitment.

Mortality

Mortality menyatakan banyaknya pohon yang mati selama masa pengamatan, yang diukur tiap tahun sekali. Menurut Abdullah (2003) penduga kematian pohon untuk semua jenis, dinyatakan dengan rumus per kelas diameter sebagai berikut:

\[KD \text{ 10-19 cm} : M = -374 + 197 \log N - 36.9 \log B - 0.000226 N^2 \quad (R^2 = 69.9 \%) \]
\[KD \text{ 20-29 cm} : M = 7.95 - 0.0124B - 0.00494N + 0.480M3 \quad (R^2 = 63 \%) \]
\[KD \text{ 30-39 cm} : M = -4.2 + 1.18M2 + 2.1 \log N \quad (R^2 = 56.3 \%) \]
\[KD \text{ 40 cm up } : M = 0.78 + 0.430M5 \quad (R^2 = 30.3 \%) \]

di mana,

- \(M \) = Laju kematian pohon (\%/ tahun)
- \(15 \) = Laju ingrowth pohon pada kelas diameter 60 cm up (\%/ tahun)
- \(M2 \) = Laju kematian pohon pada kelas diameter 20-29 cm (\%/ tahun)

Menurut Vanclay (1994) faktor penyebab kematian pohon dapat dibedakan atas dua faktor, yaitu:
1. Faktor *regular*, yakni kematian pohon yang disebabkan oleh faktor lingkungan ekologi dan fisiologi pohon, seperti angin, penyakit dan sebagainya.

2. Faktor *non-catastrophic*, yakni kematian yang disebabkan oleh hal-hal yang bersifat pasti, seperti kebakaran, pencurian/penjarahan dan sebagainya.

Recruitment

Recruitment menyatakan masuknya individu-individu pohon pada kelas diameter terkecil. *Recruitment* dalam penelitian Abdullah (2003), dinyatakan dalam rumus sebagai berikut:

\[
R = 96,8 - 43,1 \log B + 9,24 \log N \quad (R^2 = 73,9 \%)
\]

di mana,

- \(R \) = Laju recruitment pohon (%/ tahun)

2.5. Model Dinamika Struktur Tegakan

Model merupakan suatu abstraksi dari dinamika alami pada beberapa aspek yang nyata. Pertumbuhan menunjukkan perubahan dimensi dari satu atau lebih individu dalam suatu tegakan hutan pada periode waktu tertentu. Model pertumbuhan adalah suatu sintesa dari data inventarisasi dinamis yang mengindikasikan pertumbuhan dan perubahan di hutan. Model pertumbuhan tegakan adalah suatu abstraksi dari dinamika alami suatu tegakan hutan, dan
meliputi pertumbuhan, kematian, dan pertukaran lainnya pada struktur dan komposisi tegakan (Vanclay, 1994).

Perancangan model menurut Leuscher (1990) diacu dalam Abdulfah (2003), mengindikasikan ada empat variabel kunci dalam pemodelan hutan tidak seumur, yaitu laju pertumbuhan tegakan, sebaran diameter dalam setiap tegakan, komposisi jenis, dan lamanya siklus tebang.

Model ini memberikan pemahaman yang baik terhadap pertumbuhan dan dinamika tegakan tetapi tidak memberikan informasi yang memuaskan untuk penafsiran dan peramalan hasil untuk keperluan manajemen hutan.

Model pohon tunggal adalah model yang paling detail karena menggunakan individu pohon sebagai unit penyusun modelnya. Selain membutuhkan data yang detail, model pohon tunggal pada umumnya juga lebih kompleks. Pendekatan model ini selain dapat menerangkan pertumbuhan juga dapat digunakan untuk mempelajari adanya kompetisi, kematian, variasi
komposisi jenis dan pengaruh lingkungan terhadap pertumbuhan tegakan. Secara
teoritis, model pohon tunggal akan lebih akurat dalam menggambarkan
pertumbuhan tegakan. Untuk hutan alam yang heterogen sesungguhnya model
pohon tunggal yang paling tepat. Akan tetapi, untutun data yang detail serta
model yang kompleks dapat menjadi penghambat penerapannya.

Model klas ukuran adalah kompromi antara model seluruh tegakan dan
model pohon tunggal (Vanclay, 1994; 1995). Data yang di perlukan dan informasi
yang dihasilkan model dari tipe ini adalah dalam bentuk struktur tegakan. Tabel
tegakan, bentuk model pertumbuhan paling klasik, termasuk kategori model kelas
ukuran. Model klas ukuran telah digunakan secara luas untuk model
pertumbuhan tegakan di berbagai tipe hutan, dimana pohon-pohon dapat
dikelompokan atas dasar metrik ke dalam kelas-kelas diameter ataupun atas
dasar non-metrik ke dalam kelompok-kelompok jenis yang memiliki kemiripan
perilaku pertumbuhan.

2.6. Beberapa Penelitian Sebelumnya

Hasil penelitian yang dilakukan oleh Kuncabayo (1995) diacu dalam Ilyas
(2006), mengatakan bahwa model pertumbuhan untuk setiap lokasi berbeda-beda.
Hal ini karena pertumbuhan tegakan tersebut dipengaruhi oleh faktor internal
tempat tumbuh tersebut. Oleh karena itu pemodelan dinamika struktur tegakan
berdasarkan lokasi spesifik penting untuk dilakukan.

Dari penelitian yang dilakukan pada hutan alam bekas tebangan,
Krisnawati (2001) mengemukakan bahwa model dinamika struktur tegakan
menunjukkan bahwa model yang dihasilkan cukup handal dalam menggambarkan
dinamika tegakan selama 6 tahun, dimana hasil pendugaan dengan model tidak
berbeda secara nyata dengan kondisi aktualnya. Model dinamika struktur tegakan
yang dihasilkan dapat digunakan untuk mensimulasikan tegakan selama beberapa
waktu sehingga dapat dilihat perubah kan karakteristik tegakannya (struktur
tegakan, bidang dasar, komposisi jenis, dan keanekebangsaan jenis serta ukuran
pohon).

Lebih lanjut Krisnawati mengemukakan berdasarkan data yang diperoleh
di lokasi penelitian, tegakan yang lebih rapat akan mempunyai ingrowth dan
yang lebih kecil. Ingrowth dan upgrowth jenis tertentu (pada bidang dasar tertentu) akan lebih tinggi dalam tegakan bila kehadiran jenis tersebut dalam tegakan cukup banyak.

Abdullah (2003), menyatakan bahwa dalam pemodelan besarnya recruitment, ingrowth, dan mortality tidak bisa dibedakan per jenis atau per kelompok jenis. Menurutnya bentuk persamaan yang baik untuk menduga besarnya recruitment, ingrowth, dan mortality adalah bentuk non-linear.

Ilyas (2006), menyatakan hasil validasi model struktur tegakan menunjukkan bahwa model yang digunakan cukup akurat dalam menggambarkan dinamika tegakan yang terjadi selama 7 sampai dengan 11 tahun, dimana pada percayaan 99% hasil pendugaan tidak berbeda nyata dengan kondisi aktualnya.