PEMANFAATAN HIDROLISAT PROTEIN KERANG MAS NGUR (Atactodea striata), KARAGENAN, KITOSAN DAN EKSTRAK Pemphis acidula PADA PEMBUATAN SKIN LOTION

Oleh:

Muhamad Alif Razi
C34104060

PROGRAM STUDI TEKNOLOGI HASIL PERIKANAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2009
PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI

Dengan ini saya menyatakan bahwa skripsi yang berjudul "Pemanfaatan Hidrolisat Protein Kerang Mas Ngur (Atactodea striata), Karagenan, Kitosan dan Ekstrak Pemphis acidula pada Pembuatan Skin Lotion" adalah karya saya sendiri dan belum diajukan dalam bentuk apapun kepada perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan manapun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Bogor, Februari 2009

Muhammad Alif Razi
NRP C34104060
RINGKASAN

MUHAMAD ALIF RAZI. C34104060. Pemanfaatan Hidrolisat Protein Kerang Mas Nug (Atactodea striata), Karagenan, Kitosan dan Ekstrak Pemphis acidula pada Pembuatan Skin Lotion. Dibimbing oleh LINAWATI HARDJITO.

Umumnya skin lotion komersial menggunakan bahan sintetis dan tidak bersifat alami, sedangkan kebutuhan konsumen akan kosmetik alami mengalami peningkatan. Oleh sebab itu perlu dikembangkan skin lotion dengan menggunakan bahan-bahan alami. Bahan alami hasil perairan yang dapat digunakan adalah hidrolisat protein kerang mas nug (Atactodea striata), ekstrak sentigi (Pemphis acidula), kitosan dan karagenan.

Tujuan dari penelitian ini adalah membuat formula skin lotion menggunakan bahan alami hasil perairan, yaitu kitosan dan karagenan, mempelajari pengaruh dari kombinasi karagenan dan kitosan terhadap karakteristik skin lotion yang dihasilkan, mengetahui efektivitas kitosan sebagai bahan pengawet dalam skin lotion, efek melembabkan dari karagenan dan kitosan dan menguji efek anti aging dari skin lotion yang mengandung hidrolisat protein kerang mas nug (Atactodea striata), kitosan, karagenan dan ekstrak Pemphis acidula.

Penelitian ini dilakukan dalam dua tahap. Tahap pertama bertujuan untuk menentukan formula pelembab kulit (skin lotion). Tahap ini terdiri dari pembuatan skin lotion dan pencarian formula yang mirip dengan karakteristik (homogenitas dan kekentalan) skin lotion komersial. Selanjutnya, skin lotion yang memiliki karakteristik (homogenitas, kesehatan lengan dan kekentalan) terbaik digunakan pada penelitian tahap kedua. Penelitian tahap kedua bertujuan untuk melihat pengaruh kombinasi karagenan dan kitosan terhadap karakteristik (bobot jenis, pH dan kelembaban produk) skin lotion yang dihasilkan, mengetahui efektivitas kitosan sebagai bahan pengawet pada skin lotion dan menguji khasiat dari bahan aktif yang digunakan dalam skin lotion meliputi karagenan, kitosan, ekstrak Pemphis acidula dan hidrolisat protein kerang mas nug (Atactodea striata). Analisis data untuk mengetahui pengaruh kombinasi karagenan dan kitosan pada skin lotion adalah RALF (Rancangan Acak Lengkap Faktorial) dua faktor dengan dua kali ulangan dan uji lanjut Tukey.

Hasil pengujian statistik menunjukkan bahwa perbedaan konsentrasi karagenan dan kitosan memberikan pengaruh yang nyata terhadap nilai pH dan bobot jenis skin lotion yang dihasilkan, namun tidak ada interaksi antar faktor yang memberikan pengaruh yang nyata pada produk yang dihasilkan. Skin lotion dengan penggunaan karagenan 0,2 % dan kitosan 0,5 % memiliki water holding capacity (WHC) terbaik dibandingkan skin lotion lainnya.

Kitosan dapat berperan sebagai bahan pengawet selama 2 bulan pengamatan namun tidak seefektif metil dan propil paraben. Selain itu kitosan juga berfungsi sebagai humektan, yaitu zat yang mampu melembabkan. Berdasarkan hasil pengujian kelembaban kulit, skin lotion dengan penambahan kitosan 0,5 % lebih baik dibandingkan produk komersial. Skin lotion dengan bahan-bahan alami, yaitu karagenan, kitosan, ekstrak Pemphis acidula dan hidrolisat protein kerang mas nug (Atactodea striata) memiliki efek anti aging.
PEMANFAATAN HIDROLISAT PROTEIN KERANG
MAS NGUR (Atactodea striata), KARAGENAN, KITOSAN DAN
EKSTRAK Pemphis acidula PADA PEMBUATAN SKIN LOTION

Skripsi

Sebagai salah satu syarat untuk mendapatkan gelar Sarjana Perikanan
pada Fakultas Perikanan dan Ilmu Kelautan
Institut Pertanian Bogor

Oleh:

Muhammad Alif Razi
C34104060

PROGRAM STUDI TEKNOLOGI HASIL PERIKANAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2009
KATA PENGANTAR

Puji syukur kepada Allah SWT atas segala rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi dengan judul: Pemanfaatan Hydrolisat Protein Kerang Mas Ngur (Acteoda striata), Karagenan, Kitosan dan Ekstrak Pemphis acidula pada Pembuatan Skin Lotion.

Pada kesempatan ini penulis mengucapkan terima kasih yang sebesar-besarnya kepada semua pihak yang telah membantu dalam penulisan skripsi ini, terutama kepada :

1. Dr. Ir. Linawati Hardjito M.Sc yang telah bersedia menjadi dosen pembimbing skripsi dan memberikan arahan dan bantuan baik materil maupun non-materil selama penelitian.

2. Ir. Anna C Erungan MS dan Ir. Nurjanah MS selaku dosen penguji yang telah memberikan nasehat, kritik dan saran dalam penulisan skripsi.

3. Sugeng Heri Suseno S.Pi, M.Si selaku pembimbing akademik atas bimbingannya kepada penulis.

4. Dr. Ir Agoes M Jacoeb MS selaku moderator seminar hasil penelitian.

5. Papah, Mamah serta adik-adik tersayang (Hanan dan Vani), Keluarga besar, atas semua dukungan dan kasih sayang yang diberikan, baik moril maupun materil serta doa kepada penulis.

7. Mbak Ari SEASTF, Mbak Indah dan Mbak Nurul yang telah membantu penulis dalam pengujian sampel.

8. Bu Iis, Bu Sobariah dan Bu Yuke yang telah bersedia menjadi panelis.

10. Staf TU, Bang Mail, Mas Zacky, Mas Ipul dan Bu Ema selaku laboran di THP.

11. Istift Rini, yang selalu memberikan motivasi, semangat, doa dan kasih sayangnya kepada penulis.

15. Semua pihak yang telah membantu penulis dalam penyusunan skripsi yang tidak dapat penulis sebutkan satu persatu.

Semoga skripsi ini dapat diterima dan dapat bermanfaat bagi yang membacanya.

Bogor, Februari 2009

Muhamad Alif Razi
RIWAYAT HIDUP

Penulis dilahirkan di Bogor pada tanggal 26 Juni 1987 sebagai anak pertama dari tiga bersaudara dari pasangan Bapak M. Buceh Saleh dan Ibu Iis Jubaedah.

Penulis melakukan penelitian dan menyusun skripsi sebagai salah satu syarat untuk memperoleh gelar Sarjana Perikanan pada Fakultas Perikanan dan Ilmu Kelautan, dengan judul "Pemanfaatan Hidrolisat Protein Kerang Mas Ngur (Actaodes striata), Karagenan, Kitosan dan Ekstrak Pemphis acidula pada Pembuatan Skin Lotion", dibimbing oleh Dr. Ir. Linawati Hardjito M.Sc.
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR TABEL</td>
<td>xi</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>xii</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>xiii</td>
</tr>
<tr>
<td>1. PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Tujuan</td>
<td>2</td>
</tr>
<tr>
<td>2. Tinjauan Pustaka</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Kerang Mas Ngur (Atactodea striata)</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1 Deskripsi dan klasifikasi kerang mas ngur (Atactodea striata)</td>
<td>3</td>
</tr>
<tr>
<td>2.1.2 Hidrolisat protein kerang mas ngur (Atactodea striata)</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Pemphiis acidula</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Deskripsi Pemphiis acidula</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Pemanfaatan dan komponen bioaktif Pemphiis acidula</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Kitosan</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1 Struktur dan karakteristik kitosan</td>
<td>9</td>
</tr>
<tr>
<td>2.3.2 Aplikasi kitosan pada industri kosmetik</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Karagenan</td>
<td>11</td>
</tr>
<tr>
<td>2.4.1 Struktur dan sifat fisiko kimia karagenan</td>
<td>12</td>
</tr>
<tr>
<td>2.4.2 Aplikasi karagenan pada industri kosmetik</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Kulit</td>
<td>15</td>
</tr>
<tr>
<td>2.5.1 Anatomi kulit</td>
<td>15</td>
</tr>
<tr>
<td>2.5.2 Aging (penuaan) kulit</td>
<td>17</td>
</tr>
<tr>
<td>2.5.3 Anti aging</td>
<td>19</td>
</tr>
<tr>
<td>2.6 Pelembab Kulit (Skin Lotion)</td>
<td>21</td>
</tr>
<tr>
<td>2.6.1 Formula pelembab kulit (skin lotion)</td>
<td>22</td>
</tr>
<tr>
<td>2.6.2 Proses pembuatan pelembab kulit skin lotion</td>
<td>26</td>
</tr>
<tr>
<td>3. Metodologi</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Waktu dan Tempat</td>
<td>27</td>
</tr>
<tr>
<td>3.2 Alat dan Bahan</td>
<td>27</td>
</tr>
<tr>
<td>3.3 Metode Penelitian</td>
<td>27</td>
</tr>
<tr>
<td>3.3.1 Penelitian tahap pertama</td>
<td>28</td>
</tr>
<tr>
<td>3.3.2 Penelitian tahap kedua</td>
<td>28</td>
</tr>
</tbody>
</table>
3.3.2.1 Pengaruh kombinasi karagen dan kitosan terhadap karakteristik skin lotion ... 30
3.3.2.2 Efektivitas kitosan sebagai bahan pengawet .. 30
3.3.2.3 Analisis kulit... 31
 3.3.2.3.1 Uji kelembaban ... 31
 3.3.2.3.2 Uji anti aging ... 31

3.4 Metode Pengujian .. 31
 3.4.1 Analisa pH (SNI 16-4399-1996) ... 31
 3.4.2 Bobot jenis, 25 °C (SNI 16-4399-1996) ... 32
 3.4.3 Water Holding Capacity (Suryani et al. 2000) .. 32
 3.4.4 Uji cemaran mikroba ... 32
 3.4.4.1 Total Plate Count (SNI 01-2339-1991) ... 32
 3.4.4.2 Pertumbuhan jamur dengan metode Plate Count .. 33
 3.4.5 Analisa kestabilan emulsi selama penyimpanan ... 33
 3.4.5.1 pH ... 33
 3.4.5.2 Temperature swing test (de Polo 1998) ... 34
 3.4.5.3 Analisa diameter dan distribusi globula ... 34
 3.4.6 Uji kelembaban ... 34
 3.4.7 Uji iritasi ... 35
 3.4.8 Uji anti aging .. 35

3.5 Rancangan Percobaan ... 35

4. HASIL DAN PEMBAHASAN .. 37

4.1 Penelitian Tahap Pertama ... 37

4.2 Penelitian Tahap Kedua ... 40
 4.2.1 Pengaruh kombinasi karagen dan kitosan terhadap karakteristik skin lotion 40
 4.2.1.1 pH ... 41
 4.2.1.2 Bobot jenis, 25 °C ... 43
 4.2.1.3 Water Holding Capacity (WHC) .. 45
 4.2.2 Efektivitas kitosan sebagai bahan pengawet .. 46
 4.2.2.1 Cemaran mikroba selama penyimpanan ... 47
 4.2.2.1.1 Total Plate Count (TPC) ... 47
 4.2.2.1.2 Uji jamur ... 49
 4.2.2.2 Kestabilan emulsi selama penyimpanan ... 50
 4.2.2.2.1 pH .. 50
 4.2.2.2.2 Temperature swing test .. 52
 4.2.2.2.3 Diameter dan distribusi globula ... 53
 4.2.3 Analisis kulit ... 56
 4.2.3.1 Uji kelembaban ... 56
 4.2.3.2 Uji anti aging .. 58

5. KESIMPULAN DAN SARAN ... 63

5.1 Kesimpulan ... 63

5.2 Saran ... 63
Bogor Agricultural University

Hak cipta milik IPB (Institut Pertanian Bogor)

DAFTAR PUSTAKA

LAMPIRAN

65

71
<table>
<thead>
<tr>
<th>No.</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kandungan asam-asam amino hidrolisat protein kerang mas ngur.........</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Beberapa fungsi asam-asam amino terhadap proses penuaan................</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Aplikasi kitosan pada kosmetik..</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Sifat-sifat fisika kimia karagenan.......................................</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Standar mutu karagenan...</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Syarat mutu pelembab kulit sesuai dengan SNI 16-4399-1996............</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Rancangan perlakuan formula skin lotion..................................</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Komposisi media Plate Count Agar (PCA)..................................</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Komposisi media Potato Dextrose Agar......................................</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>Bahan penyusun skin lotion dan fungsinya..................................</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Hasil formulasi skin lotion pada penelitian tahap pertama.............</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>Formula skin lotion pada penelitian tahap kedua........................</td>
<td>41</td>
</tr>
<tr>
<td>13</td>
<td>Nilai pH skin lotion..</td>
<td>42</td>
</tr>
<tr>
<td>14</td>
<td>Nilai bobot jenis (g/ml) skin lotion......................................</td>
<td>43</td>
</tr>
<tr>
<td>15</td>
<td>Jumlah koloni bakteri (koloni/gram).....................................</td>
<td>47</td>
</tr>
<tr>
<td>16</td>
<td>Jumlah koloni jamur (koloni/gram).......................................</td>
<td>49</td>
</tr>
<tr>
<td>17</td>
<td>Nilai pH produk selama penyimpanan..</td>
<td>51</td>
</tr>
<tr>
<td>18</td>
<td>Diameter globula selama penyimpanan (μm)..................................</td>
<td>53</td>
</tr>
<tr>
<td>19</td>
<td>Data kelembaban kutil (%) dengan berbagai formula skin lotion.........</td>
<td>56</td>
</tr>
<tr>
<td>20</td>
<td>Aktivitas dan kondisi panelis selama sebulan pemakaian skin lotion...</td>
<td>58</td>
</tr>
<tr>
<td>No.</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Kerang mas ngur (Atactodea striata)</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Struktur kimia dari kitin dan konversinya menjadi kitosan</td>
<td>9</td>
</tr>
<tr>
<td>3.</td>
<td>Struktur kappa, iota dan lambda karagenan</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>Cara kerja antioksidan</td>
<td>20</td>
</tr>
<tr>
<td>5.</td>
<td>Diagram alir formulasi skin lotion</td>
<td>29</td>
</tr>
<tr>
<td>6.</td>
<td>Produk skin lotion</td>
<td>41</td>
</tr>
<tr>
<td>7.</td>
<td>Nilai pH skin lotion</td>
<td>42</td>
</tr>
<tr>
<td>8.</td>
<td>Nilai bobot jenis skin lotion</td>
<td>44</td>
</tr>
<tr>
<td>9.</td>
<td>Grafik hasil pengujian Water Holding Capacity skin lotion</td>
<td>45</td>
</tr>
<tr>
<td>10.</td>
<td>Nilai pH selama penyimpanan</td>
<td>51</td>
</tr>
<tr>
<td>11.</td>
<td>Diameter dan distribusi globula pada hari ke-0</td>
<td>54</td>
</tr>
<tr>
<td>12.</td>
<td>Diameter dan distribusi globula pada hari ke-30</td>
<td>54</td>
</tr>
<tr>
<td>13.</td>
<td>Diameter dan distribusi globula pada hari ke-60</td>
<td>55</td>
</tr>
<tr>
<td>14.</td>
<td>Grafik kelembapan kulit selama 15 menit setelah pemakaian lotion</td>
<td>57</td>
</tr>
<tr>
<td>15a.</td>
<td>Foto kulit sebelum pemakaian skin lotion (panelis 1)</td>
<td>59</td>
</tr>
<tr>
<td>15b.</td>
<td>Tekstur kulit sebelum pemakaian skin lotion (panelis 1)</td>
<td>59</td>
</tr>
<tr>
<td>16a.</td>
<td>Foto kulit sesudah sebulan pemakaian skin lotion (panelis 1)</td>
<td>59</td>
</tr>
<tr>
<td>16b.</td>
<td>Tekstur kulit sesudah sebulan pemakaian skin lotion (panelis 1)</td>
<td>59</td>
</tr>
<tr>
<td>17a.</td>
<td>Foto kulit sebelum pemakaian skin lotion (panelis 2)</td>
<td>59</td>
</tr>
<tr>
<td>17b.</td>
<td>Tekstur kulit sebelum pemakaian skin lotion (panelis 2)</td>
<td>59</td>
</tr>
<tr>
<td>18a.</td>
<td>Foto kulit sebelum pemakaian skin lotion (panelis 2)</td>
<td>60</td>
</tr>
<tr>
<td>18b.</td>
<td>Tekstur kulit sebelum pemakaian skin lotion (panelis 2)</td>
<td>60</td>
</tr>
<tr>
<td>19a.</td>
<td>Foto kulit sebelum pemakaian skin lotion (panelis 3)</td>
<td>61</td>
</tr>
<tr>
<td>19b.</td>
<td>Tekstur kulit sebelum pemakaian skin lotion (panelis 3)</td>
<td>61</td>
</tr>
<tr>
<td>20a.</td>
<td>Foto kulit sebelum pemakaian skin lotion (panelis 3)</td>
<td>61</td>
</tr>
<tr>
<td>20b.</td>
<td>Tekstur kulit sebelum pemakaian skin lotion (panelis 3)</td>
<td>61</td>
</tr>
<tr>
<td>No.</td>
<td>Deskripsi</td>
<td>Halaman</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Permenkes No.376/Menkes/Per/VIII/1990</td>
<td>71</td>
</tr>
<tr>
<td>2.</td>
<td>Hasil formulasi skin lotion pada penelitian tahap pertama</td>
<td>77</td>
</tr>
<tr>
<td>3.</td>
<td>Data pengujian pH produk (tahap kedua)</td>
<td>78</td>
</tr>
<tr>
<td>4.</td>
<td>Hasil analisis statistik terhadap pH skin lotion</td>
<td>79</td>
</tr>
<tr>
<td>5.</td>
<td>Data pengujian bobot jenis produk (tahap kedua)</td>
<td>80</td>
</tr>
<tr>
<td>6.</td>
<td>Hasil analisis statistik terhadap bobot jenis skin lotion</td>
<td>81</td>
</tr>
<tr>
<td>7.</td>
<td>Data pengujian WHC produk</td>
<td>82</td>
</tr>
<tr>
<td>8.</td>
<td>Data perhitungan jumlah koloni bakteri pada hari ke-0</td>
<td>85</td>
</tr>
<tr>
<td>9.</td>
<td>Data perhitungan jumlah koloni bakteri pada hari ke-30</td>
<td>85</td>
</tr>
<tr>
<td>10.</td>
<td>Data perhitungan jumlah koloni bakteri pada hari ke-60</td>
<td>85</td>
</tr>
<tr>
<td>11.</td>
<td>Data perhitungan jumlah koloni jamur pada hari ke-0</td>
<td>86</td>
</tr>
<tr>
<td>12.</td>
<td>Data perhitungan jumlah koloni jamur pada hari ke-30</td>
<td>86</td>
</tr>
<tr>
<td>13.</td>
<td>Data perhitungan jumlah koloni jamur pada hari ke-60</td>
<td>86</td>
</tr>
<tr>
<td>14.</td>
<td>Nilai pH produk selama penyimpanan</td>
<td>87</td>
</tr>
<tr>
<td>15.</td>
<td>Data uji kelembaban kulit (%)</td>
<td>87</td>
</tr>
</tbody>
</table>
1. PENDAHULUAN

1.1 Latar Belakang

Kulit merupakan organ tubuh paling luar yang sering terkena pengaruh dari lingkungan sekitarnya dan berkaitan satu dengan organ yang lainnya di dalam tubuh manusia. Berbagai faktor internal maupun eksternal dapat mempengaruhi struktur dan fungsi kulit, terutama pengaruh lingkungan seperti pancaran sinar matahari, radiasi UV dan polusi udara (Wasitaatmadja 1997). Kulit dapat menjadi kering dan berkerut yang merupakan gejala utama penuaan pada kulit, oleh sebab itu perlindungan dan perawatan terhadap kulit sangat penting. Salah satu cara merawat dan melindungi kulit dari efek penuaan adalah dengan menggunakan skin lotion.

1.2 Tujuan

Tujuan dari penelitian ini adalah:

1. Membuat formula skin lotion menggunakan bahan alami hasil perairan, yaitu kitosan dan karagenan.

2. Mempelajari pengaruh dari kombinasi karagenan dan kitosan terhadap karakteristik (bobot jenis, pH dan Water Holding Capacity) skin lotion yang dihasilkan.

3. Mengetahui efektivitas kitosan sebagai bahan pengawet dalam skin lotion.

4. Mengetahui efek melembabkan dari karagenan dan kitosan.

5. Menguji efek anti aging dari skin lotion yang mengandung hidrolisat protein kerang mas ngur (Atactodea striata), kitosan, karagenan dan ekstrak Pemphis acidula.
TINJAUAN PUSTAKA

2.1 Kerang Mas Ngur (Atactodea striata)

Kerang mas ngur merupakan nama lokal untuk kerang laut Atactodea striata di daerah Kei Besar Kabupaten Maluku Tenggara (Purbasari 2008). Kerang ini telah digunakan oleh masyarakat di Kei Maluku Tenggara sebagai obat tradisional untuk penyakit kuning. Kerang laut Atactodea striata memiliki nama daerah antara lain kepah, tude bombang (Makasar), kasii (Bima), seasea (Mandar) dan baje bombang (Bugis) (Moka 1982).

2.1.1 Deskripsi dan klasifikasi kerang mas ngur (Atactodea striata)

Berikut ini adalah klasifikasi kerang mas ngur (Gmelin 1791 diacu dalam Deker dan Orlin 2000):

- Filum : Moluska
- Kelas : Bivalvia
- Sub Kelas : Heterodonta
- Ordo : Veneroida
- Sub Famili : Mactroidea
- Famili : Mesodesmatidae
- Genus : Atactodea
- Spesies : Atactodea striata

Gambar 1. Kerang mas ngur (Atactodea striata)

2.1.2 Hidrolisat protein kerang mas ngur (Actinodina striata)

Hidrolisat protein merupakan sumber protein alami yang dihidrolisis secara parzial sehingga lebih mudah diasimilasi oleh makhluk hidup. Hidrolisis secara parial mampu memecah molekul protein menjadi beberapa gugus asam amino maupun peptida melalui pemutusan ikatan rantai peptida (Rehm dan Reed 1995). Hidrolisat protein untuk menghasilkan peptida dan asam amino dapat diakukan secara parzial dengan penambahan asam maupun basa dan enzim secara spesifik (Gesualdo dan Li-Chan 1999).

Hasil hidrolisis protein secara enzimatis berupa suatu hidrolisat yang mengandung peptida yang berat molekulnya lebih rendah dan asam amino bebas. Produk hidrolisat mempunyai kelarutan pada air yang tinggi, kapasitas emulsinya baik, kemampuan mengembang besar serta mudah diserap tubuh (Fox et al. 1991).

Purbasari (2008) melaporkan bahwa komposisi asam-asam amino hidrolisat protein kerang mas ngur terdiri dari kelompok asam amino esensial antara lain histidin, leusin, lisin, arginin, treonin, metionin, isoleusin, valin, phenilalanin dan dari kelompok asam amino non esensial antara lain asam

<table>
<thead>
<tr>
<th>No</th>
<th>Asam amino</th>
<th>Jumlah (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Histidin</td>
<td>1,78</td>
</tr>
<tr>
<td>2</td>
<td>Arginin</td>
<td>1,096</td>
</tr>
<tr>
<td>3</td>
<td>Treonin</td>
<td>3,291</td>
</tr>
<tr>
<td>4</td>
<td>Valin</td>
<td>2,296</td>
</tr>
<tr>
<td>5</td>
<td>Metionin</td>
<td>1,755</td>
</tr>
<tr>
<td>6</td>
<td>Isoleusin</td>
<td>4,203</td>
</tr>
<tr>
<td>7</td>
<td>Leusin</td>
<td>4,195</td>
</tr>
<tr>
<td>8</td>
<td>Phenilalanin</td>
<td>2,273</td>
</tr>
<tr>
<td>9</td>
<td>Lisin</td>
<td>3,308</td>
</tr>
<tr>
<td>10</td>
<td>Tirosin</td>
<td>3,156</td>
</tr>
<tr>
<td>11</td>
<td>Sistin</td>
<td>1,026</td>
</tr>
<tr>
<td>12</td>
<td>Asam aspartat</td>
<td>6,78</td>
</tr>
<tr>
<td>13</td>
<td>Asam glutamat</td>
<td>13,085</td>
</tr>
<tr>
<td>14</td>
<td>Serin</td>
<td>1,641</td>
</tr>
<tr>
<td>15</td>
<td>Glisin</td>
<td>1,813</td>
</tr>
<tr>
<td>16</td>
<td>Alanin</td>
<td>2,476</td>
</tr>
<tr>
<td>17</td>
<td>Prolin</td>
<td>1,296</td>
</tr>
</tbody>
</table>

Sumber: Purbasari (2008)

<table>
<thead>
<tr>
<th>Asam amino</th>
<th>Fungsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histidin</td>
<td>Melindungi tubuh dari dampak radiasi, berperan penting dalam pertumbuhan dan perbaikan jaringan</td>
</tr>
<tr>
<td>Arginin</td>
<td>Meningkatkan imunitas tubuh, memperbaiki sel/jaringan tubuh, membantu meningkatkan sekresi hormon pertumbuhan</td>
</tr>
<tr>
<td>Treonin</td>
<td>Berperan penting dalam pembentukan kolagen dan elastin</td>
</tr>
<tr>
<td>Vain</td>
<td>Membantu proses perbaikan jaringan</td>
</tr>
<tr>
<td>Methionin</td>
<td>Merangsang produksi estrogen, membantu proses detoksifikasi</td>
</tr>
<tr>
<td>Isoleusin</td>
<td>Menstabilkan dan mengatur gula darah dan energi, keseimbangan nitrogen bagi orang dewasa</td>
</tr>
<tr>
<td>Leusin</td>
<td>Membantu meningkatkan produksi hormon pertumbuhan, mempercepat proses penyembuhan pada tulang, jaringan dan kulit</td>
</tr>
<tr>
<td>Phenilalanin</td>
<td>Prekursor tirosin, melanin</td>
</tr>
<tr>
<td>Lisin</td>
<td>Membantu proses pembentukan kolagen dan memperbaiki jaringan, meningkatkan produksi enzim, hormon dan antibodi</td>
</tr>
<tr>
<td>Tiroisin</td>
<td>Membantu meningkatkan produksi melanin, sebagai antioksidan dan berperan penting dalam metabolisme tubuh</td>
</tr>
<tr>
<td>Sistin</td>
<td>Membantu proses produksi kolagen, berperan penting dalam detoksifikasi, membantu memperbaiki tekstur dan elastisitas kulit</td>
</tr>
<tr>
<td>Asam aspartat</td>
<td>Meningkatkan stamina, berperan penting dalam metabolisme, meningkatkan produksi immunoglobulin dan antibodi</td>
</tr>
<tr>
<td>Asam glutamat</td>
<td>Berperan penting dalam metabolisme lemak dan gula</td>
</tr>
<tr>
<td>Serin</td>
<td>Membantu metabolisme lemak, meningkatkan produksi antibodi dan immunoglobulin</td>
</tr>
<tr>
<td>Glisin</td>
<td>Memperbaiki jaringan tubuh yang rusak, mempercepat proses penyembuhan</td>
</tr>
<tr>
<td>Alanin</td>
<td>Membantu proses metabolisme glukosa</td>
</tr>
<tr>
<td>Prolin</td>
<td>Membantu proses pembentukan kolagen, memperbaiki tekstur kulit, mengurangi reduksi kolagen tubuh</td>
</tr>
</tbody>
</table>

Sumber: Craig (2007)

Selain mengandung asam amino, hidrolisat protein kerang mas agur mengandung alkaloid dan saponin. Saponin dan alkaloid berfungsi untuk meningkatkan aktivitas seluler epidermis. Saponin juga dapat membersihkan kotoran dan minyak yang terdapat pada lapisan terluar kulit sehingga kulit menjadi lebih halus (Daewook 2004). Alkaloid dapat digunakan untuk
mengurangi selulit pada kulit. Selain itu alkaloid dapat membantu permeasi bahan aktif ke dalam tubuh (Begoun 2005).

2.2 Pemphis acidula

Pemphis acidula merupakan salah satu jenis tanaman yang tumbuh di daerah mangrove. Pemphis acidula dapat juga ditemukan di pantai berbatu dan karang yang terjal. Pemphis acidula tidak mempunyai bakal buah yang besar, daunnya relatif kecil jika dibandingkan jenis mangrove lainnya (<3 cm) (Forst 1776 diacu dalam Thomlinson 1986).

2.2.1 Deskripsi Pemphis acidula

Kingdom : Plantae
Subkingdom : Tracheobinta
Divisi : Angiospermae
Kelas : Dicotyledons
Subkelas : Rosidae
Ordo : Myrtales
Familii : Lythraceae
Genus : Pemphis
Spesies : Pemphis acidula

Moldova (Halavelli), Singapura (mentigi), Indonesia (sentigi) dan Filipina (Kabantigi).

2.2.2 Pemanfaatan dan komponen bioaktif *Pemphis acidula*

Berdasarkan penelitian Yudhana (2006), ekstrak *Pemphis acidula* dapat digunakan sebagai antioksidan dan pewarna alami pada produk *skin cream*. Aktivitas antioksidan yang dihasilkan pada produk *skin cream* tersebut melebihi *skin cream* komersial yang menggunakan antioksidan sintetik.

2.3 Kitosan

Gambar 2. Struktur kimia dari kitin dan konversinya menjadi kitosan

Kitosan sebagai polimer alami dapat dihasilkan dari hewan berkulit keras terutama dari laut seperti kulit udang, rajungan, kepiting, cumi-cumi dengan kadar kitosan 10-15 %. Selain dari kulit hewan laut, kitosan juga dapat diperoleh dari daging sel jamur antara lain Aspergillus niger (Hardjito 2006).

2.3.1 Struktur dan karakteristik kitosan

Lain halnya dengan kitin yang tidak larut dalam pelarut organik, kitosan mudah larut dalam larutan asam pada pH dibawah 6. Asam organik seperti format, asetat dan laktat dapat digunakan untuk melarutkan kitosan. Asam yang paling banyak digunakan adalah asam asetat 1 %. Kitosan juga dapat larut pada asam HCl 1 % tetapi tidak larut pada asam sulfat dan fosfat. Kelarutan kitosan dalam asam anorganik sangat terbatas. Pada pH tinggi, presipitasi atau gelasi dapat terjadi dan larutan kitosan membentuk poli-ion kompleks dengan hidrokoloid anionik menghasilkan pembentukan gel (Kurita 1998 diacu dalam Kim 2004). Terdapat beberapa faktor yang mempengaruhi kelarutan kitosan antara lain suhu, derajat deasetilasi, konsentrasi alkali. pra perlakuan saat isolasi kitin, rasio kitin dengan larutan alkali dan besar partikel (Kim 2004).
Kitosan memiliki sifat non-toksik, biocompatible dan biodegradable. Tidak seperti selulosa, kitosan merupakan amino polisakarida yang menunjukkan sifat biologikal, fisiologikal, dan farmakologikal yang menarik. Bioaktivitas yang dimiliki kitosan antara lain mempercepat proses penyembuhan luka, aktivitas hemostatik, meningkatkan imunitas, aktivitas hypolipidemik, mucoadhesion, dan aktivitas antimikrobial (Kurita 2006).

Kitosan mempunyai gugus amin yang reaktif dan gugus hidroksil yang banyak serta kemampuannya membentuk gel maka kitosan dapat berperan sebagai komponen reaktif, pengkelat, pengikat, pengabsorpsi, penstabil, pembentuk film, penjernih, flokulan, koagulan. Dengan gugus fungsi yang unik itulah kitosan dapat diaplikasikan di bidang-bidang kesehatan, kosmetik, farmasi, pangan, pengolahan limbah, tekstil, kertas dan lain-lain (Shahidi et al. 1999).

Kitosan dapat menyebabkan destabilisasi fungsi dinding sel dan membran sel yang efektif membunuh bakteri, yeast (ragi) dan molds (kapang). Kitosan dapat digunakan sebagai bahan pengawet karena aktivitasnya sebagai antimikroba (Ray 2004). Minimum inhibitory concentrations (MICs) kitosan terhadap bakteri dan yeast adalah 0,9-3,0 mg/ml. Sedangkan MICs kitosan terhadap Aspergillus niger berkisar 5 mg/ml (Seo et al. 2002).

2.3.2 Aplikasi kitosan pada industri kosmetik

Kitosan mampu mempercepat proses regenerasi kulit, karenanya sering digunakan sebagai obat luka bakar. Kitosan adalah gum kationik alami yang telah digunakan pada berbagai jenis kosmetik, terutama pada perawatan rambut dan kulit dan personal care lainnya. Penggunaan kitosan pada shampo dapat

Tabel 3. Aplikasi kitosan pada kosmetik

<table>
<thead>
<tr>
<th>No.</th>
<th>Fungsi kitosan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Menjaga kelembaban kulit</td>
</tr>
<tr>
<td>2.</td>
<td>Menghilangkan jerawat</td>
</tr>
<tr>
<td>3.</td>
<td>Oral care (pasta gigi)</td>
</tr>
<tr>
<td>4.</td>
<td>Melembutkan kulit</td>
</tr>
<tr>
<td>5.</td>
<td>Mengurangi elektrisiti statis pada rambut</td>
</tr>
</tbody>
</table>

Sumber: Rinaudo (2006)

2.4 Karagenan

Selama beberapa ratus tahun yang lalu, karagenan telah digunakan sebagai bahan pengental dan penstabil pada makanan di Eropa dan Asia Timur. Di Eropa, penggunaan karagenan dimulai lebih dari 600 tahun yang lalu, yaitu terletak di daerah Irlandia. Di sebuah desa yang bernama Carraghen yang terletak di pantai selatan Irlandia, flans (kue pastry) dibuat dengan memasak irish moss (spesies alga merah, Chondrus crispus) dengan susu. Istilah carrageenin, nama lama carrageenan, pertama kali digunakan pada tahun 1862, untuk menamakan ekstrak dari Chondrus crispus dan diambil dari nama desa tersebut (Tseng 1945 diacu dalam van de Velde dan Ruiter 2004).

Karagenan adalah nama umum dari golongan polisakarida pembentuk gel dan pengental yang diperoleh secara komersial melalui proses ekstraksi dari spesies alga merah (Rhodophyaceae) tertentu, antara lain Gigartina, Chondrus, Iridaea dan Eucheuma. Karagenan terdiri dari galaktosa linier dengan kandungan
sulfat yang bervariasi antara 15 % dan 40 %. Karagenan telah digunakan secara komersial sebagai pembuat gel, pengental dan penstabil terutama pada makanan seperti susu coklat, keju, produk instant, yoghurt, jelly, makanan ternak dan saus. Selain itu, karagenan juga digunakan pada industri farmasi, kosmetik, tekstil, bioteknologi dan industri lainnya (van de Velde dan Ruiter 2004).

2.4.1 Struktur dan sifat fisiko kimia karagenan

Karagenan merupakan polisakarida linier berbobot molekul tinggi yang dibentuk oleh unit-unit galaktosa dan 3,6 anhidrogalaktosa (3,6 AG), gugus sulfat maupun non sulfat yang dihubungkan oleh ikatan glikosidik α(1,3) dan β(1,4) (Imeson 2000). Karagenan dikelompokkan berdasarkan gugus 3,6 anhidrogalaktosa dan jumlah serta posisi dari gugus ester sulfatnya. Berdasarkan cara pengelompokkannya tersebut, karagenan dapat dibedakan menjadi 3 jenis yaitu karagenan jenis kappa, iota dan lambda (Glicksman 1983). Kappa karagenan terdiri dari gugus ester sulfat dan 3,6 anhidrogalaktosa (3,6 AG) masing-masing sebesar 25 % dan 34 % sedangkan iota karagenan masing-masing sebesar 32 % dan 20 %. Lambda karagenan terdiri dari 35 % gugus ester sulfat dengan sedikit atau tidak ada kandungan 3,6 anhidrogalaktosa (Imeson 2000). Di antara yang lainnya, kappa karagenan merupakan tipe karagenan yang paling banyak digunakan. Sifatnya yang paling penting terletak pada kekuatan gelnya yang tinggi dan berinteraksi kuat dengan protein susu. Sekitar 70 % dari produksi karagenan di dunia adalah kappa karagenan (Anonim 2004a). Struktur dan sifat fisika kimia dari kappa, lambda dan iota karagenan dapat dilihat pada Gambar 3 dan Tabel 4.

Tabel 4. Sifat-sifat fisika kimia karagenan

<table>
<thead>
<tr>
<th>Kelarutan</th>
<th>Kappa</th>
<th>Iota</th>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air panas (80 °C)</td>
<td>Larut</td>
<td>Larut</td>
<td>Larut</td>
</tr>
<tr>
<td>Air dingin (20 °C)</td>
<td>Garam Na larut, garam K dan Ca tidak larut</td>
<td>Garam Na larut</td>
<td>Larut</td>
</tr>
<tr>
<td>Susu panas (80 °C)</td>
<td>Larut</td>
<td>Larut</td>
<td>Larut</td>
</tr>
<tr>
<td>Susu dingin (20 °C)</td>
<td>Garam Na, K dan Ca tidak larut</td>
<td>Tidak larut</td>
<td>Mengental</td>
</tr>
<tr>
<td>Larutan gula 50 %</td>
<td>Larut, panas</td>
<td>Sukar larut</td>
<td>Larut</td>
</tr>
<tr>
<td>Larutan garam 10 %</td>
<td>Tidak larut</td>
<td>Larut, panas</td>
<td>Larut, panas</td>
</tr>
</tbody>
</table>

Stabilitas
- pH netral dan alkali: Stabil
- pH asam: Terhidrolisis pada larutan jika dipanaskan. Stabil dalam bentuk gel
- Terhidrolisis dalam larutan. Stabil dalam bentuk gel: Terhidrolisis

Karakteristik gel
- Efek kation: Gel lebih kuat dengan ion potassium
- Gel lebih kuat dengan ion kalsium: Tidak membentuk gel
- Tipe gel: Kuat dan rapuh
- Elastis: Tidak membentuk gel
- Shear reversible gel: Tidak
- Ya: Tidak membentuk gel
- Stabilitas freezing-thawing: Tidak
- Ya: Ya
- Efek sinergis dengan locust bean gum: Ya
- Tidak: Tidak
- Efek sinergis dengan konjac: Ya
- Tidak: Tidak
- Efek sinergis dengan pati: Tidak
- Ya: Tidak

Sumber: Imeson (2000); *Glicksman (1983)

Karagenan komersial memiliki berat molekul rata-rata (Mw) 400-600 kDa dan minimal 100 kDa. Pada tahun 1976, U.S. Food and Drug Administration mendefinisikan karagenan yang termasuk dalam kategori food grade adalah karagenan yang memiliki viskositas tidak kurang dari 5 cP pada konsentrasi 1,5% dalam air dan suhu 75 °C (van de Velde dan Ruiter 2004). Standar mutu karagenan menurut Food and Agriculture Organization (FAO) disajikan pada Tabel 5.
Tabel 5. Standar mutu karagenan

<table>
<thead>
<tr>
<th>Spesifikasi</th>
<th>FAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kehilangan akibat pengeringan (%)</td>
<td>Maks. 12</td>
</tr>
<tr>
<td>pH</td>
<td>8-11</td>
</tr>
<tr>
<td>Viskositas 1,5 % sol, cP</td>
<td>Min. 5</td>
</tr>
<tr>
<td>Sulfat (%)</td>
<td>15-40</td>
</tr>
<tr>
<td>Abit (%)</td>
<td>15-40</td>
</tr>
<tr>
<td>Abu tak larut asam (%)</td>
<td>Maks. 1</td>
</tr>
<tr>
<td>Bahan tak larut asam (%)</td>
<td>Maks. 2</td>
</tr>
<tr>
<td>Residu pelarut (%)</td>
<td>Maks. 0,1</td>
</tr>
<tr>
<td>TPC (efu/g)</td>
<td>Maks. 5000</td>
</tr>
<tr>
<td>Arsen (mg/kg)</td>
<td>Maks. 3</td>
</tr>
<tr>
<td>Timbal (mg/kg)</td>
<td>Maks. 2</td>
</tr>
<tr>
<td>Cadmium (mg/kg)</td>
<td>Maks. 2</td>
</tr>
<tr>
<td>Merkuri (mg/kg)</td>
<td>Maks. 1</td>
</tr>
</tbody>
</table>

2.4.2 Aplikasi karagenan pada industri kosmetik

Karakteristik karagenan seperti pembentuk gel, pengental, pembentuk lapisan film menyebabkan karagenan cocok diaplikasikan dalam berbagai bidang industri kosmetik. Kemampuan karagenan untuk mengikat air secara efektif dan membentuk gel yang lemah yang sangat stabil terhadap degradasi enzimatis,
membuat karagenan unik sebagai pengental dalam pasta gigi (Skensved 2004), bahkan saat ini sudah mulai menggeser penggunaan xanthan gum (Jana 2003).

Dalam industri kosmetik karagenan dapat digunakan pada gel, cream, lotion, hair care, skin and body product. Gel karagenan meningkatkan kestabilan emulsi dengan menjaga droplet minyak dan mencegah bahan yang tidak larut (non soluble) seperti pigmen, memisah. Sifat thixotropy yang dimilikinya membuat karagenan dapat diaplikasikan secara luas seperti pada industri kosmetik (Anonim 2007*). Selain itu konon petani irish moss cenderung memiliki kulit yang halus akibat seringnya kontak langsung antara kulit petani dengan rumput laut tersebut.

Hal ini karena karagenan diduga berinteraksi dengan karoten pada manusia untuk menghasilkan kulit yang halus. Karena alasan ini, karagenan juga seringkali digunakan dalam produk kosmetik untuk menjaga kehalusan kulit (Anonim 2004*).

2.5 Kulit

Kulit merupakan salah satu organ tubuh yang terdiri dari jaringan yang bergabung secara struktural dan membentuk fungsi spesifik. Kulit merupakan salah satu organ terbesar tubuh yang berkaitan dengan luas permukaan. Luas permukaan kulit orang dewasa sekitar 2 m² dan menerima sekitar sepertiga darah yang beredar dalam tubuh. Dengan ketebalan sekitar 2,97±0,28 mm, kulit melindungi jaringan dan organ-organ penting dalam tubuh dari pengaruh lingkungan luar (Tortora 1990 diacu dalam Sary 2007).

2.5.1 Anatomi kulit

Secara hispatologis kulit tersusun atas 3 lapisan utama yaitu: 1) Lapisan epidermis atau kutikel; 2) Lapisan dermis (korium, kutis vera, true skin); dan 3) Lapisan subkutis (hipodermis). Lapisan epidermis ini terdiri atas stratum korneum, stratum lusidum, stratum granulosum, stratum spinosum dan stratum

Lapisan dermis terdiri atas bahan dasar serabut kolagen dan elastin, yang berada di dalam substansi dasar yang bersifat koloid dan terbuat dari gelatin mukopolisakarida (Tranggono dan Latifah 2007). Lapisan ini terdiri atas:
a. *Pars papilolaris*, yaitu bagian yang menonjol ke dalam epidermis, berisi ujung serabut saraf dan pembuluh darah.

Lapisan subkutis merupakan kelanjutan dermis, terdiri atas jaringan iktang berisi sel-sel lemak di dalamnya. Sel lemak merupakan sel bulat, besar, dengan inti terdesak ke pinggir karena sitoplasma lemak yang bertambah besar, sel-sel ini membentuk kelompok yang dipisahkan satu dengan yang lainnya oleh trabekula yang fibrosa. Lapisan sel lemak disebut panikulus adiposus, berfungsi sebagai cadangan makanan. Di lapisan ini terdapat ujung-ujung saraf tepi, pembuluh darah, dan saluran getah bening (Wasitaatmadjia 1997).

Kulit dilapis oleh mantel asam yang terletak pada stratum corneum. Mantel asam berperan dalam menghambat pertumbuhan bakteri dan jamur. Istilah mantel asam diberikan bukan karena nilai pH yang rendah, tetapi karena adanya senyawa spesifik yang memproduksi asam. Hal ini didukung oleh hasil penelitian yang menunjukkan bahwa lemak pada kulit juga mengandung asam yang memiliki efek fungisidal (asam jenuh) dan bakterisidal (asam tak jenuh). Selain itu, kapasitas daftar dan kemampuan mantel asam untuk beregenerasi juga berperan penting dalam memberikan perlindungan (Jellinek 1970).

2.5.2 Aging (penuaan) kulit

Kulit merupakan organ tubuh yang dapat dengan jelas memberikan tanda-tanda penuaan. Hal ini disebabkan adanya kontak langsung dengan lingkungan (eksternal) maupun faktor internal. Faktor eksternal yang mempengaruhi proses penuaan antara lain pencerahan sinar matahari/radiasi UV, radikal bebas (Ursula dan
Schikowski 2006), polusi udara, asap rokok dan makanan yang tidak sehat sedangkan faktor internal adalah hormon, ras, genetik (Zouboulis dan Makrantonaki 2006).

Kolagen adalah komponen utama lapisan kulit dermis (bagian bawah epidermis) yang dibuat oleh sel fibroblast. Pada dasarnya kolagen adalah senyawa protein rantai panjang yang tersusun lagi atas asam amino alanin, arginin, lisin, glisin, prolin, serta hidroksiprolin. Sebelum menjadi kolagen, terlebih dahulu terbentuk pro kolagen. Jika produksi kolagen menurun seiring dengan bertambahnya usia, dampaknya adalah meningkatnya proses kulit kering (dryness) serta menurunnya elastisitas. Dermis merupakan lapisan kulit yang bertanggung jawab akan sifat elastisitas dan kehalusan kulit (Anonim 2007").

2.5.3 Anti aging

Indonesia mempunyai iklim tropis dengan sinar matahari melimpah yang dapat menyebarakan risiko tinggi terhadap kerusakan kulit atau penuaan dini (premature aging). Masalah yang timbul pada kulit akibat sinar matahari dapat diatasi dengan pengobatan dermatologis. Pengobatan yang diaplikasikan langsung ke kulit biasanya lebih efektif. Berikut ini adalah cara-cara yang dapat digunakan untuk mengobati dampak penuaan dan photoaging (Anonim 2007b):

a) Injeksi toksin Botulinum

b) Injeksi Kolagen

c) Produk-produk OTC (Over the counter)

Mengandung retinol, Alpha Hydroxy Acid (AHA), antioksidan seperti vitamin C dan E serta pelembab dapat mengurangi munculnya garis-garis
halus dan keriput. Produk yang digunakan secara topikal ini relatif lebih praktis dan aman sehingga lebih disukai. Antioksidan yang digunakan secara topikal terutama vitamin C dan E, berfungsi untuk membantu sel-sel memperbaiki kerusakan kulit akibat radikal bebas yang disebabkan radiasi UV dan rokok.

Antioksidan adalah senyawa yang mampu menghambat oksidasi radikal bebas (Kochhar dan Rossel 1990). Sebagai bahan aktif, antioksidan digunakan untuk melindungi kulit dari kerusakan akibat oksidasi dan mencegah penuaan dini. Antioksidan berfungsi menangkap radikal bebas dalam kulit akibat sinar UV dan polusi.

Gambar 4. Cara kerja antioksidan
Sumber : Anonim (2007b)
Cara lain untuk mengobati dampak penuaan adalah dengan meningkatkan produksi kolagen yang efektif mengatasi penuaan kulit dan merawat kulit agar terlihat muda (Dioguardi 2005). Kolagen yang diterapkan dalam sediaan kosmetik dianggap tidak efektif sebab berat molekul yang tinggi menyebabkan kolagen tidak dapat berpenetrasi dengan baik ke dalam kulit, begitu pula dengan injeksi kolagen. Namun, lain halnya dengan asam amino yang merupakan penyusun utama dari protein dan kolagen. Dioguardi (2005) menambahkan bahwa asam amino dapat diserap oleh kulit dengan baik hingga masuk ke dalam lapisan dermis, dan mengirimkan sinyal ke sel fibroblast untuk merangsang pembentukan kolagen.

2.6 Pelembab Kulit (Skin Lotion)

Menurut Mitsui (1997), lotion adalah produk kosmetik berbentuk cairan transparan yang digunakan pada kulit dengan tujuan untuk membersihkan dan menjaga kulit tetap sehat. Selain membersihkan kulit lotion juga berfungsi menjaga kelembaban. Lotion dibedakan menjadi 4 jenis berdasarkan tujuan pemakaianannya, yaitu:

a) **Softening lotion**, memberikan rasa lembab dan humektan ke dalam lapisan tanduk yang dapat membuat kulit lembut dan menjaga kelembabannya.

b) **Astringent lotion**. Mempunyai efek astringent selain juga berperan dalam melembabkan kulit. Menghentikan sekresi sebum (minyak kulit) dan memberikan kesan nyaman saat digunakan.

c) **Cleansing lotion**. Digunakan untuk membersihkan make up atau sebagai pembersih kulit muka. Mengandung banyak surfaktan, humektan dan alkohol yang bertujuan untuk meningkatkan efek membersihkan pada kulit.

2.6.1 Formula pelembab kulit (*skin lotion*)

Formula umum suatu pelembab kulit (*skin lotion*) biasanya terdiri atas:

Basis/ dasar

Menurut Barnett (1962), bahan penyusun *lotion* terdiri dari *astringent*, antiseptik, alkohol, humektan, minyak, lemak, pengemulsi, surfaktan dan *emollient*. *Emollient* (pelunak), yaitu zat yang dapat melunakkan kulit didefinisikan sebagai sebuah media, bila digunakan pada lapisan kulit yang keras dan kering, akan mempengaruhi kelembutan kulit dengan adanya hidrasi ulang...
(Schmitt 1996). Dalam skin lotion, emollient yang digunakan memiliki titik cair yang lebih tinggi dari suhu kulit. Fenomena ini dapat menjelaskan timbulnya rasa nyaman dan tidak berminyak bila lotion dioleskan pada kulit, oleh karena itu dalam membuat formula skin lotion harus diperhatikan syarat utama dari penggunaan skin lotion yaitu melembutkan kulit, mudah pemakaiannya dan cepat menyerap di permukaan kulit, tidak meninggalkan lapisan tipis (tidak membuat lemak kulit setelah pemakaian), tidak mengganggu pernafasan normal kulit, antiseptis, memiliki bau yang khas dan memiliki warna yang menarik dan stabil (Schmitt 1996).

2. Bahan aktif

Merupakan bahan kosmetika terpenting dan memiliki efek pengobatan dalam kosmetika. Konsentrasi bahan aktif kosmetika pada umumnya kecil, namun dapat pula tinggi apabila bahan aktif kosmetika tersebut sekaligus berperan sebagai bahan dasarnya, misalnya bahan aktif dalam preparat pembersih muka (cleansing cream). Contoh bahan aktif antara lain Para Amino Benzoic Acid (PABA), sulfur, hidrogen peroksida dan aluminium klorida (Wasitaatmadja 1997).

3. Bahan yang menstabilkan campuran (stabilizer)

Bahan-bahan yang menstabilkan campuran (stabilizer) sehingga kosmetika tersebut dapat lebih tahan lama baik dalam warna, bau dan bentuk fisik. Bahan-bahan tersebut adalah:

a) Emulgator, yaitu bahan yang memungkinkan tercampurnya semua bahan-bahan secara merata (homogen). Pada campuran dua cairan maka emulgator umumnya memiliki sifat menurunkan tegangan permukaan kedua cairan tersebut (surfactant). Misalnya lanolin, alkohol, gliserin, lilin lebih, gliseril monostearat.

b) Pengawet, yaitu bahan yang dapat mengawetkan kosmetika dalam jangka waktu selama mungkin agar dapat digunakan lebih lama. Pengawet dapat bersifat antikuman sehingga menangkal terjadinya tengik oleh aktivitas mikroba sehingga kosmetika menjadi stabil. Misalnya asam benzoat, formaldehid, antioksidan yang dapat menangkal terjadinya oksidasi yang juga dapat menstabilkan kosmetika misalnya natrium sulfat.
c) Pelekat yang dapat melekatkan kosmetika ke kulit, terutama pada kosmetika yang tidak lengket ke kulit semacam bedak. Misalnya seng dan magnesium stearat.

4. Bahan pelengkap kosmetika

Bahan yang digunakan untuk formulasi skin lotion yaitu setil alkohol, cremophor A25 dan A6, isopropil palmitat, metil paraben dan propil paraben dan gliserin.

rantainya. Asam lemak berperan sebagai pengatur konsistensi tetapi cenderung untuk mengkrystal dalam formulasi.

Isopropil palmitat (IPP) (C₁₉H₃₈O₂). Menurut KKI (1993), IPP terdiri dari ester yang terbentuk dari isopropil alkohol dan asam lemak jenuh dengan BM tinggi yaitu 298,51. Mengandung tidak kurang dari 90 % C₁₉H₃₈O₂. IPP merupakan cairan tidak berwarna, mudah dituang dan berbau lemah. Larut dalam aseton, minyak jarak, kloroform, minyak biji kapas, etil asetat, etanol 95 % dan parafin cair. Tidak larut dalam air, gliserin dan propilenglikol.

Propil paraben. Propil paraben atau nipasol adalah senyawa paraben yang berfungsi sebagai pengawet antimikroba dalam kosmetik, produk makanan dan formula farmasi. Propil paraben dapat digunakan sendiri ataupun dikombinasikan dengan paraben lain maupun antimikroba lain. Aktivitas antimikroba propil paraben efektif pada pH 4-8. Efek sebagai pengawet menurun dengan meningkatnya pH. Propil paraben lebih aktif melawan jamur daripada melawan bakteri dan lebih aktif melawan gram positif daripada gram negatif. Propil paraben sangat larut dalam aseton dan eter, larut dalam etanol, metanol, dan propilen glikol, tidak larut dalam air. Aktivitas antimikroba dari propil paraben menurun dengan keberadaan surfaktan non ionik (Wade and Weller 1994).

2.6.2 Proses pembuatan pelembab kulit skin lotion

Proses pembuatan pelembab kulit tergantung pada jenis atau tipe formulasinya. Tahapan proses pembuatan pelembab kulit secara umum adalah 1) penampungan bahan penyusun pelembab kulit 2) pemanasan bahan 3) pemberian zat warna. Zat warna yang digunakan terlebih dahulu dilarutkan dalam pelarut yang sesuai kemudian dicampurkan ke dalam adonan yang lain hingga homogen (Yudhiana 2006).

Pelembab kulit yang baik harus memenuhi persyaratan mutu yang terdapat di SNI 16-4399-1996 (Tabel 6).

<table>
<thead>
<tr>
<th>No.</th>
<th>Kriteria Uji</th>
<th>Satuan</th>
<th>Persyaratan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Penampakan</td>
<td>-</td>
<td>Homogen</td>
</tr>
<tr>
<td>2.</td>
<td>pH</td>
<td>-</td>
<td>4,5-8,0</td>
</tr>
<tr>
<td>3.</td>
<td>Bobot jenis, 25 ºC</td>
<td>g/ml</td>
<td>0,95-1,05</td>
</tr>
<tr>
<td>4.</td>
<td>Viskositas 25 ºC</td>
<td>cps</td>
<td>2000-50000</td>
</tr>
<tr>
<td>5.</td>
<td>Cemaran mikroba</td>
<td>koloni/gram</td>
<td>Maks 10²</td>
</tr>
</tbody>
</table>

Sumber: SNI 16-4399-1996
3. METODOLOGI

3.1 Waktu dan Tempat

3.2 Alat dan Bahan

Alat yang digunakan antara lain pemanas (hot plate), magnetic stirrer, Scalar Moisture Checker, coscam skin analyzing digital camera, gelas piala, gelas ukur, erlenmeyer, timbangan digital, mikroskop polarisasi, termometer, pipet volumetrik, pipet mikro, micro tube, pipet tetes, oven, autoklaf, inkubator, vortex, clean bench, cawan petri, pH meter, tissue, spatula, sudip, alumunium foil, kartas parafilm dan botol kosmetik.

Bahan-bahan yang digunakan pada penelitian ini meliputi bahan utama dan bahan tambahan. Bahan utama yang digunakan adalah kappa karagenan refined EC 01, kitosan, hidrolisat protein kerang mas ngur (Atactodea striata) dan ekstrak kulit batang sentigi (Pemphis acidula). Sedangkan bahan tambahan terdiri atas:

1) Bahan untuk uji cemaran mikroba adalah peptone, yeast extract, glukosa, agar, media PDA (Potato Dextrose Agar) dan akuades.

2) Bahan dalam pembuatan skin lotion adalah gliserin, akuades steril, setil alkohol, cremophor A6, cremophor A25, isopropil palmitat, metil paraben dan propil paraben.

3.3 Metode Penelitian

Penelitian dilakukan dalam dua tahap. Tahap pertama bertujuan menentukan formula pelembab kulit (skin lotion). Tahap kedua bertujuan melihat pengaruh kombinasi karagenan dan kitosan terhadap karakteristik (bobot jenis, pH dan kelembaban produk) skin lotion yang dihasilkan, mengetahui efektivitas kitosan sebagai bahan pengawet pada skin lotion dan menguji khasiat dari bahan
aktif yang digunakan dalam skin lotion meliputi karagenan, kitosan, ekstrak Pemphis acidula dan hidrolisat protein kerang mas ngur (Atactodea striata).

3.3.1 Penelitian tahap pertama

Penelitian tahap pertama bertujuan menentukan formula pelembab kulit (skin lotion). Tahap ini terdiri dari pembuatan skin lotion dan pencarian formula yang mirip dengan karakteristik (homogenitas dan kekentalan) skin lotion komersial. Selanjutnya, skin lotion yang memiliki karakteristik (homogenitas, kesan lengket dan kekentalan) terbaik digunakan pada penelitian tahap kedua.

Berikut ini merupakan prosedur pembuatan skin lotion :

1) Persiapan dan penimbangan bahan yang diperlukan dalam formulasi skin lotion. Bahan dipisahkan menjadi dua bagian yaitu bahan A (larut air) dan bahan B (larut minyak).

2) Bahan A dipanaskan pada suhu 70 °C dan dilakukan pengadukan. Setelah bahan tercampur secara homogen, ditambahkan gliserin sehingga terbentuk adonan A.

3) Bahan B dipanaskan pada suhu 70-80 °C dan dilakukan pengadukan. Setelah bahan tercampur secara homogen, ditambahkan setil alkohol yang telah dipanaskan terlebih dahulu sehingga terbentuk adonan B.

3.3.2 Penelitian tahap kedua

Penelitian tahap kedua bertujuan melihat pengaruh kombinasi karagenan dan kitosan terhadap karakteristik (bobot jenis, pH dan kelembaban produk) skin lotion yang dihasilkan, mengetahui efektivitas kitosan sebagai bahan pengawet pada skin lotion dan menguji khasiat dari bahan aktif yang digunakan dalam skin
Gambar 5. Diagram alir formulasi skin lotion (modifikasi dari Yudhana 2006)
lotion meliputi karagenan, kitosan, ekstrak *Pemphis acidula* dan hidrolisat protein kerang mas ngur (*Atactidea striata*).

3.3.2.1 Pengaruh kombinasi karagenan dan kitosan terhadap karakteristik skin lotion

Formula yang terpilih pada penelitian tahap pertama kemudian diberi perlakuan kombinasi konsentrasi karagenan (0,1 % dan 0,2 %) dan kitosan (0,1 %, 0,3 % dan 0,5 %), sehingga terdapat enam buah perlakuan. Kemudian masing-masing perlakuan diuji karakteristiknya secara fisik (bobot jenis dan kelembaban produk) dan kimia (pH). Rancangan perlakuan formula skin lotion disajikan pada Tabel 7.

Tabel 7. Rancangan perlakuan formula skin lotion

<table>
<thead>
<tr>
<th>Formula</th>
<th>Kitosan</th>
<th>Karagenan</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>0,1 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>201</td>
<td>0,3 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>301</td>
<td>0,5 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>401</td>
<td>0,1 %</td>
<td>0,2 %</td>
</tr>
<tr>
<td>501</td>
<td>0,3 %</td>
<td>0,2 %</td>
</tr>
<tr>
<td>601</td>
<td>0,5 %</td>
<td>0,2 %</td>
</tr>
</tbody>
</table>

3.3.2.2 Efektivitas kitosan sebagai bahan pengawet

Pada tahap ini dilakukan penggunaan bahan pengawet yang berbeda pada formula yang terpilih pada penelitian sebelumnya. Perlakuan yang digunakan adalah sebagai berikut:

L01 : Formula tanpa penggunaan bahan pengawet sebagai kontrol negatif
L02 : *Skin lotion* dengan kitosan sebagai pengawet
L03 : *Skin lotion* dengan metil dan propil paraben 0,2 % sebagai pengawet
L04 : *Skin lotion* dengan gabungan kitosan, metil dan propil paraben 0,2 % sebagai bahan pengawet

Penguajian yang dilakukan meliputi uji kimia, yaitu derajat keasaman (pH), uji cemaran mikroba (bakteri dan jamur) dan uji kestabilan emulsi selama penyimpanan, yaitu *temperature swing test* dan diameter serta distribusi globula produk untuk menunjukkan kestabilan emulsi secara mikroskopi.
3.3.2.3 Analisis kulit

Analisis kulit bertujuan mengetahui efek dari bahan aktif yang digunakan dalam produk skin lotion meliputi karagenan, kitosan, ekstrak Pemphis acidula dan hidrolisat protein kerang mas ngur (Atactidea striatala).

3.3.2.3.1 Uji kelembaban

Uji kelembaban dilakukan untuk mengetahui efek melembabkan dari moisturizer agent yang digunakan dalam skin lotion, yaitu kitosan dan karagenan, yang kemudian dibandingkan dengan skin lotion komersial. Perlakuan yang digunakan adalah sebagai berikut:

- L11 : Skin lotion tanpa penggunaan kitosan dan karagenan (basis)
- L12 : Skin lotion dengan menggunakan karagenan
- L13 : Skin lotion dengan menggunakan kitosan
- L14 : Skin lotion dengan menggunakan karagenan dan kitosan
- L15 : Skin lotion komersial

3.3.2.3.2 Uji anti aging

Uji anti aging dilakukan untuk mengetahui efek anti aging (anti penuaan) dari bahan aktif ekstrak Pemphis acidula dan hidrolisat protein kerang mas ngur setelah pemakaian skin lotion selama sebulan. Formula yang terpilih pada penelitian tahap sebelumnya dilakukan penambahan ekstrak Pemphis acidula sebesar 0,5 % dan hidrolisat protein kerang mas ngur sebesar 1,0 %. Analisis yang dilakukan meliputi pengamatan terhadap tekstur kulit. Uji anti aging dilakukan terhadap tiga orang panelis.

3.4 Metode Pengujian

3.4.1 Analisis pH (SNI 16-4399-1996)

3.4.2 Bobot jenis, 25 °C (SNI 16-4399-1996)

Perhitungan:

\[
\text{Bobot jenis sampel (g/ml)} = b - a
\]

Keterangan:

- \(a\) = Bobot *micro tube* kosong
- \(b\) = Bobot *micro tube + sampel*

3.4.3 *Water Holding Capacity (WHC) (Suryani et al. 2000)*

Skin lotion dioleskan secara merata di atas wasah kedap air yang sudah diketahui berat awalnya, kemudian ditimbang untuk mengetahui berat awal sampel (jam ke-0 atau T0). Setelah penimbangan (T0) dilakukan lagi penimbangan dengan perbedaan waktu 1 jam (T1), 2 jam (T2) sampai 5 jam (T5). *Skin lotion* yang memiliki berat lebih tinggi berarti memiliki penguapan yang lebih rendah dan merupakan indikasi bahwa sampel memiliki *Water Holding Capacity* (kemampuan mengikat air) yang lebih baik.

\[
\text{Berat yang tersisa (%) } = 100 \% \times \frac{\text{Berat yang hilang (g)}}{\text{Berat awal (g)}} \times 100 \%
\]

3.4.4 Uji cemaran mikroba

3.4.4.1 *Total Plate Count (SNI 01-2339-1991)*

Uji dilakukan berdasarkan SNI 01-2339-1991, secara aseptis ditimbang 1 gram sampel dari tiap perlakuan dilarutkan dan dihomogenisasi menggunakan vortex dalam 9 ml garam fisiologis steril 0,85 %. Pengenceran dilakukan hingga \(10^{-2}\). Larutan tersebut diambil 1 ml menggunakan pipet dan dituangkan ke dalam cawan petri steril. Sebanyak 15 ml media *Plate Count Agar* (PCA) dituangkan ke dalam cawan petri berisi 1 ml larutan sampel hasil pengenceran dan diaduk dengan cara memutar cawan petri ke depan dan ke belakang sampai homogen. Kemudian media dibiarakan sampai membeku. Komposisi media PCA tercantum pada Tabel 8. Inkubasi dilakukan selama 48 jam pada suhu 37 °C. Jumlah koloni
pada setiap cawan dihitung. Jumlah total bakteri didapat dengan mengalikan jumlah rata-rata koloni pada cawan dengan faktor pengenceran yang sesuai.

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptone (gram)</td>
<td>5,0</td>
</tr>
<tr>
<td>Beef extract (gram)</td>
<td>3</td>
</tr>
<tr>
<td>Agar (gram)</td>
<td>15,0</td>
</tr>
<tr>
<td>Akuades (liter)</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Sumber: Fardiaz (1989)

3.4.4.2 Pertumbuhan jamur dengan metode Plate Count

Jumlah koloni jamur dihitung dengan metode Standar Plate Count (SPC) dengan media Potato Dextrose Agar (PDA). Produk ditimbang sebanyak 1 gram disuspensikan ke dalam 9 ml larutan 0,85 % NaCl. Hasil pengenceran tersebut dimasukkan ke dalam petri yang telah berisi pengenceran sampel dan diinkubasi pada suhu 32 °C selama 48 jam. Komposisi media PDA dapat dilihat pada Tabel 9.

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Gram/liter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infusi kentang</td>
<td>200</td>
</tr>
<tr>
<td>Glukosa</td>
<td>20</td>
</tr>
<tr>
<td>Agar</td>
<td>15</td>
</tr>
</tbody>
</table>

Sumber: Fardiaz (1989)

3.4.5 Analisa kestabilan emulsi selama penyimpanan

Pengujian stabilitas emulsi dilakukan dalam interval sampling 30 hari selama dua bulan. Adapun uji-ujian yang dilakukan pada saat analisa stabilitas emulsi adalah sebagai berikut:

3.4.5.1 pH

Sebelum dilakukan pengukuran, pH meter dikalibrasi dengan menggunakan buffer pH. Setelah itu elektroda dibersihkan dengan akuades dan dikeringkan. Kemudian elektroda dimasukkan ke dalam sampel skin lotion sampai
tenggelam. Selanjutnya pH meter dibiarankan selama beberapa menit sampai nilai pada display pH meter stabil. Setelah stabil, nilai yang ditunjukkan dicatat sebagai pH sampel.

3.4.5.2 Temperature swing test (de Polo 1998)

Sampel skin lotion dimasukkan ke dalam wadah yang sudah ditimbang berat awalnya. Kemudian dimasukkan secara bergantian ke dalam oven pada suhu 40 °C dan ke dalam freezer pada suhu -5 °C masing-masing selama 24 jam. Parameter yang diamati adalah perubahan emulsii meliputi sedimentasi, creaming dan ada tidaknya fase minyak yang terpisah. Perubahan emulsi menunjukkan bahwa skin lotion tidak stabil.

3.4.5.3 Analisis diameter dan distribusi globula

Diameter produk emulsi diukur dengan menggunakan mikroskop polarisasi yang dilengkapi dengan mikrometer pada perbesaran 200x. Pengukuran dilakukan secara acak pada lokasi haemostimeter dan hasil yang dicatat diameter terbesar, kemudian dikonversi ke dalam satuan mikron (μ). Faktor konversi satuan strip mikrometer menjadi mikron adalah sebagai berikut:

| Diameter yang terukur | = diameter (μ) |

3.4.6 Uji kelembaban

Uji kelembaban dilakukan dengan menggunakan Scalar Moisture Checker. Uji ini mengikuti prosedur yang dilakukan oleh PT. Pusaka Tradisi Ibu. Sebelum diolesi skin lotion, terlebih dahulu kulit diukur tingkat kelembabannya. Hal ini bertujuan mengetahui tingkat kelembaban awal sehingga dapat diketahui pengaruh skin lotion terhadap perubahan tingkat kelembapan kulit.

Skin lotion ditimbang sebanyak 0,1 gram kemudian dioleskan pada kulit dengan luas permukaan 1x1 cm². Kelembaban kulit setelah diolesi skin lotion diukur selama 15 menit dengan slang waktu pengukuran 5 menit. Hasil yang terdapat pada layar Scalar Moisture Checker menunjukkan persentase kelembaban kulit. Persentase kelembaban terdiri dari 5 kriteria, yaitu kering
(0-27 %), agak kering (28-37 %), lembab (38-47 %), lebih lembab (48-57 %), dan sangat lembab (>57 %).

3.4.7 Uji iritasi

Uji iritasi dilakukan terhadap calon panelis pada uji anti aging. Uji ini mengikuti prosedur yang dilakukan oleh PT. Pusaka Tradisi Ibu. Skin lotion dioleskan di daerah kulit yang tipis, yaitu di belakang daun telinga. Jika terdapat tanda-tanda iritasi seperti kulit memerah dan nyeri, calon panelis tersebut tidak digunakan sebagai panelis pada uji anti aging.

3.4.8 Uji anti aging

Uji anti aging dilakukan dengan menggunakan coscam skin analyzing digital camera terhadap dua orang panelis berusia 45 tahun dan satu orang berusia 38 tahun. Skin lotion digunakan panelis sebanyak 2x sehari selama sebulan dan dioleskan pada kulit di sekitar mata.

Hasil foto kulit sebelum dan sesudah pemakaian skin lotion kemudian dianalisis dengan menggunakan software Skin Sys Analysis. Analisis dilakukan terhadap tekstur kulit yang diolesi skin lotion. Perubahan tekstur kulit menjadi lebih halus dan rata menunjukkan adanya efek anti aging pada kulit.

3.5 Rancangan Percobaan

Rancangan percobaan yang digunakan adalah Rancangan Acak Lengkap Faktorial (RALF) dengan dua faktor yaitu karagenan dan kitosan dan dua kali ulangan. Model rancangan yang digunakan adalah sebagai berikut:

\[Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk} \]

Keterangan:
- \(Y_{ijk} \) = Nilai pengamatan ke-k dari pengaruh faktor karagenan ke-i dan kitosan ke-j
- \(\mu \) = Rataan umum
- \(\alpha_i \) = Pengaruh faktor karagenan ke-i
- \(\beta_j \) = Pengaruh faktor kitosan ke-j
- \((\alpha\beta)_{ij} \) = Pengaruh interaksi faktor karagenan ke-i dan faktor kitosan ke-j
- \(\epsilon_{ijk} \) = Pengaruh galat
- \(\alpha_i \) = Jumlah faktor karagenan (0,1 % dan 0,2 %)

Data yang diperoleh dianalisa dengan menggunakan metode analisa sidik ragam. Apabila diantara perlakuan menunjukkan hasil yang berbeda maka dilakukan uji lanjut dengan menggunakan uji Tukey (Steel dan Torrie 1995).
4. HASIL DAN PEMBAHASAN

4.1 Penelitian Tahap Pertama

Sebelum membuat formula skin lotion, perlu diketahui fungsi bahan-bahan yang digunakan dalam pembuatan skin lotion. Fungsi bahan-bahan tersebut dapat dilihat pada Tabel 10.

<table>
<thead>
<tr>
<th>Nama bahan</th>
<th>Fungsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larut air</td>
<td></td>
</tr>
<tr>
<td>Karagenan</td>
<td>Pengental, pelembut, penstabil</td>
</tr>
<tr>
<td>Gliserin</td>
<td>Humektan</td>
</tr>
<tr>
<td>Larutan kitosan*</td>
<td>Antibakteri dan humektan</td>
</tr>
<tr>
<td>Akuades steril</td>
<td>Polarut</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Larut minyak</td>
<td></td>
</tr>
<tr>
<td>Cremophor A-6</td>
<td>Emulsifier</td>
</tr>
<tr>
<td>Cremophor A-25</td>
<td>Emulsifier</td>
</tr>
<tr>
<td>Isopropil palmitat</td>
<td>Emollient</td>
</tr>
<tr>
<td>Setil alkohol</td>
<td>Emulsifier, pengental, penstabil</td>
</tr>
</tbody>
</table>

Sumber: Lastyantini 2003; * Rinaudo 2006

Karagenan adalah nama umum dari golongan polisakarida pembentuk gel dan pengental yang diperoleh secara komersial melalui proses ekstraksi dari spesies alga merah (Rhodophyceae) tertentu. Karagenan telah digunakan secara komersial sebagai pembuat gel, pengental dan penstabil terutama pada makanan seperti susu coklat, keju, produk instant, yoghurt, jelly, makanan ternak dan saus.
Selain itu, karagenan juga digunakan pada industri farmasi, kosmetik, tekstil, bioteknologi dan industri lainnya (van de Velde dan Ruiter 2004).

Kitosan merupakan amino polisakarida yang menunjukkan sifat biologikal, fisiologikal, dan farmakologikal yang menarik. Kitosan memiliki sifat non-toksik, biocompatible dan biodegradable. Kitosan dapat diaplikasikan di berbagai bidang, seperti pangan, farmasi, kosmetik dengan berbagai fungsinya antara lain antibakteri, antifungi, zat koagulan, pembentuk gel, pelembab dan pelembut kulit.

Gliserin merupakan jenis humektan yang aman untuk kulit. Humektan adalah suatu zat yang ditambahkan ke dalam sediaan kosmetik yang berfungsi mempertahankan kandungan air produk pada permukaan kulit saat pemakaian. Bahan humektan ini umumnya bersifat higroskopis, dapat mengikat air dari udara sehingga dapat melindungi kelembaban pada kulit yang sudah diolesi lotion.

Setil alkohol merupakan alkohol lemak yang digunakan sebagai pengental. Setil alkohol efektif sebagai pelembut karena bersifat hidrofobik, yaitu memproduksi film penghambat yang menghindari hidrasi dari kulit kering. Selain itu setil alkohol dapat berfungsi sebagai penstabil emulsi.

Isopropil palmitat digunakan dalam kosmetik sebagai emollient, yaitu bahan yang dapat mengurangi kehilangan air dari permukaan kulit sehingga mencegah terjadinya kekeringan dan timbulnya kerak pada kulit.

Hasil formulasi skin lotion pada penelitian tahap pertama disajikan pada Tabel 11. Data lengkap formulasi yang digunakan pada penelitian tahap pertama dapat dilihat pada Lampiran 2.
Tabel 11. Hasil formulasi skin lotion pada penelitian tahap pertama

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama Bahan</th>
<th>Konsentrasir (%)</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Karagenan</td>
<td>0,1 % 0,2 % 0,3 %</td>
<td>Kekentalan mirip dengan produk komersial Produk terlalu kental Terbentuk gel pada produk</td>
</tr>
<tr>
<td>2.</td>
<td>Gliserin</td>
<td>5,0 %</td>
<td>Efek melembabkan cukup baik</td>
</tr>
<tr>
<td>3.</td>
<td>Kitosan</td>
<td>0,1 %</td>
<td>Penambahan kitosan tidak memberikan perubahan secara organoleptik, baik penampakan, warna dan bau</td>
</tr>
<tr>
<td>4.</td>
<td>Isopropil palmitat</td>
<td>3,0 % 6,0 % 2,0 %</td>
<td>Produk agak berminyak dan lengket Produk tidak lengket dan tidak berminyak</td>
</tr>
<tr>
<td>5.</td>
<td>Setil alkohol</td>
<td>4,0 % 2,0 % 2,5 %</td>
<td>Produk terlalu kental Produk kurang kental Kekentalan mirip dengan produk komersial</td>
</tr>
<tr>
<td>6.</td>
<td>Cremophor A25 & A6</td>
<td>1,0 % 1,5 %</td>
<td>Tidak terjadi pencampuran air dan minyak (tidak teremulsifikasi) Terjadi pencampuran air dan minyak (teremulsifikasi)</td>
</tr>
<tr>
<td>7.</td>
<td>Akuades steril</td>
<td>± 80 %</td>
<td>Disesuaikan dengan penambahan bahan lain</td>
</tr>
</tbody>
</table>

Penggunaan karagenan sebesar 0,1 % dan 0,2 % menghasilkan formulasi skin lotion yang baik. Kekentalan produk cukup baik, skin lotion tidak terlalu encer dan tidak terlalu kental. Skin lotion adalah suatu sistem emulsi yang karakteristik kekentalannya berada dibawah cream. Karagenan yang digunakan adalah jenis kappa refined. Karagenan ini memiliki karakteristik gel yang kuat namun terhidrolisis ketika dipanaskan dalam suasana asam, oleh karena sifat geinya yang kuat, penggunaan kappa karagenan sebanyak lebih dari 0,5 % pada formulasi skin lotion sebaiknya dihindari. Selain itu, karagenan ini juga dapat berfungsi sebagai penstabil emulsi yang baik. Selain karagenan, setil alkohol juga digunakan sebagai pengental, penstabil emulsi dan co-emulsifier. Penggunaan setil alkohol yang dianjurkan menurut Jaffery (1992) adalah sekitar 2,0 % sampai 5,0 %. Setil alkohol, pada beberapa kasus, dapat menyebabkan iritasi kulit.

Gliserin merupakan humektan yang sering digunakan dalam sediakan kosmetik. Dengan konsentrasi 5,0 %, efek melembabkan dari gliserin sudah cukup baik (Yudhana 2006). Menurut Jaffery (1992), penggunaan gliserin sebaiknya
berkisar antara 2,0 % sampai 12,0 %, diatas itu, gliserin dapat menyebabkan iritasi pada kulit. Isopropil palmitat merupakan minyak dengan viskositas rendah berfungsi sebagai emollient dan occlusive agent, dapat menyebar dengan baik pada permukaan kulit. Penggunaan yang berlebihan dapat menyebabkan timbulnya jerawat selain itu pada konsentrasi 3,0 % skin lotion yang dihasilkan agak berminyak dan lengket.

Cremophor A6 dan cremophor A25 merupakan emulsifier nonionik yang sering digunakan pada kosmetik dengan emulsi o/w. Dengan konsentrasi masing-masing sebesar 1,5 %, sistem emulsi yang dihasilkan sudah cukup baik. Kitosan digunakan sebagai antibakteri dan humektan. Pada konsentrasi 0,1 %, kitosan tidak memberikan perubahan secara organoleptik, baik penampakan, warna dan bau. Konsentrasi diatas 0,1 %, dapat menyebabkan perubahan warna pada skin lotion menjadi kekuningan dan bau asam asetat, yang merupakan pelarut kitosan tercium. Skin lotion sebaiknya diberi warna dan parfum secukupnya.

Berdasarkan hasil formulasi tersebut formula skin lotion terpilih pada penelitian tahap pertama (formula no.12) adalah karagenan 0,1 %, gliserin 5,0 %, sedi alkohol 2,5 %, isopropil palmitat 2,0 %, cremophor A6 & A25 1,5 %, kitosan 0,1 % dan akudes steril ±80 %. Formula yang dihasilkan memiliki karakteristik mirip dengan skin lotion komersial yaitu penampakan yang homogen, tidak lengket dan tidak berminyak setelah pemakaian serta tidak terlalu kental.

4.2 Penelitian Tahap Kedua

Penelitian tahap kedua bertujuan melihat pengaruh kombinasi karagenan dan kitosan terhadap karakteristik (bobot jenis, pH dan kelembaban produk) skin lotion yang dihasilkan, mengetahui efektivitas kitosan sebagai bahan pengawet pada skin lotion dan menguji khasiat dari bahan aktif yang digunakan dalam skin lotion meliputi karagenan, kitosan, ekstrak Pemphis acidula dan hidrolisat protein kerang mas ngur (Atactodea striata).

4.2.1 Pengaruh kombinasi karagenan dan kitosan terhadap karakteristik skin lotion

Formula yang terpilih pada penelitian tahap pertama (formula no.12) kemudian diberi perlakuan kombinasi konsentrasi karagenan (0,1 % dan 0,2 %)
dan kitosan (0,1 %, 0,3 % dan 0,5 %), sehingga terdapat enam buah perlakuan. Kemudian masing-masing perlakuan diuji karakteristiknya secara fisik (bobot jenis dan kelembaban produk) dan kimia (derajat keasaman/pH). Keenam macam perlakuan tersebut dapat dilihat pada Tabel 12 dan Gambar 6.

<table>
<thead>
<tr>
<th>Bahagian</th>
<th>Perlakuan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>601</td>
</tr>
<tr>
<td>Karangian (g)</td>
<td>0,04</td>
</tr>
<tr>
<td>Glicerin (ml)</td>
<td>2</td>
</tr>
<tr>
<td>Setil alkohol (g)</td>
<td>1</td>
</tr>
<tr>
<td>Cremolol A25 (g)</td>
<td>0,6</td>
</tr>
<tr>
<td>Cremolol A6 (g)</td>
<td>0,6</td>
</tr>
<tr>
<td>Isopropil palmitat (ml)</td>
<td>0,75</td>
</tr>
<tr>
<td>Kitosan % (ml)</td>
<td>0,8</td>
</tr>
<tr>
<td>Akueid (ml)</td>
<td>34,21</td>
</tr>
</tbody>
</table>

Keterangan : % berat/volume terhadap total volume 40 ml

Gambar 6. Produk skin lotion

4.2.1.1 pH

Gambar 7. Nilai pH skin lotion

Gambar 7 menunjukkan bahwa nilai pH skin lotion cenderung meningkat dengan peningkatan konsentrasi karagenan. Sedangkan peningkatan konsentrasi kitosan cenderung menurunkan nilai pH skin lotion yang dihasilkan. Hasil analisis ragam menunjukkan bahwa pada tingkat kepercayaan 95 %, perbedaan konsentrasi karagenan dan kitosan memberikan pengaruh yang nyata terhadap nilai pH skin lotion yang dihasilkan (Sig. < 0,05), namun tidak ada interaksi antar
faktor yang memberikan pengaruh yang nyata terhadap nilai pH produk yang dihasilkan.

Karagenan yang dilarutkan dalam akuades memiliki pH cenderung basa, yaitu berkisar 8-9. Hal ini diduga yang menyebabkan nilai pH skin lotion cenderung naik seiring dengan peningkatan konsentrasi karagenan. Sebaliknya, kitosan yang dilarutkan di dalam asam asetat 2,0 % memiliki nilai pH asam (sekitar 4,5), dengan peningkatan konsentrasi larutan kitosan menyebabkan bertambah banyaknya ion H+ pada sediaan skin lotion sehingga nilai pH cenderung asam (turun). Dengan uji lanjut Tukey, dapat diketahui bahwa kitosan 0,1 % berbeda nyata terhadap kitosan 0,3 % dan 0,5 %. Data dan hasil analisa statistik dapat dilihat pada Lampiran 3 dan 4.

4.2.1.2 Bobot jenis, 25 °C

<table>
<thead>
<tr>
<th>Konsentrasi Kitosan</th>
<th>0,1 %</th>
<th>0,3 %</th>
<th>0,5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1 %</td>
<td>1,003</td>
<td>1,000</td>
<td>1,075</td>
</tr>
<tr>
<td>0,3 %</td>
<td>1,043</td>
<td>1,040</td>
<td>1,155</td>
</tr>
</tbody>
</table>

Berdasarkan Tabel 14 dapat dilihat bahwa nilai bobot jenis skin lotion yang dihasilkan berkisar antara 1,00-1,155 g/ml. Nilai bobot jenis pada skin lotion dengan konsentrasi kitosan 0,5 % (1,075 dan 1,155 g/ml) tidak memenuhi persyaratan mutu SNI 16-4399-1996, yaitu berkisar antara 0,95-1,05 g/ml. Sedangkan produk skin lotion yang lainnya (1,00-1,043 g/ml) telah memenuhi...

![Grafik nilai bobot jenis skin lotion](image)

Gambar 8. Nilai bobot jenis skin lotion

Gambar 8 memperlihatkan bahwa nilai bobot jenis skin lotion cenderung meningkat dengan peningkatan konsentrasi karagenan. Sedangkan konsentrasi kitosan 0,5 % cenderung meningkatkan nilai bobot jenis skin lotion yang dihasilkan. Perbedaan nilai bobot jenis disebabkan oleh jenis dan konsentrasi dari bahan terlarut dalam suatu larutan. Jika suatu bahan dilarutkan dalam air maka densitasnya mengalami perubahan. Penambahan bahan-bahan seperti garam dan gula (karbohidrat) dapat meningkatkan bobot jenis sedangkan lemak (minyak) dan etanol dapat menurunkan bobot jenis (Gaman dan Sherington 1990 diacu dalam Hidayat 2006). Karagenan merupakan polisakarida linier alami berbobot molekul tinggi yang berasal dari alga merah Rhodophyceae (Imeson 2000), sedangkan kitosan merupakan amino polisakarida alami yang berasal dari hewan berkutil keras terutama dari laut seperti kulit udang, rajungan, kepiting, cumi-cumi. Perlu dilakukan penambahan fase minyak untuk skin lotion dengan konsentrasi kitosan 0,5 % sehingga nilai bobot jenis sesuai dengan syarat mutu pelembab kulit.

Berdasarkan analisis ragam dapat diketahui bahwa pada tingkat kepercayaan 95 %, perbedaan konsentrasi karagenan dan kitosan memberikan pengaruh yang nyata terhadap nilai bobot jenis skin lotion yang dihasilkan (Sig. < 0,05), namun tidak ada interaksi antar faktor yang memberikan pengaruh yang
nyata terhadap nilai bobot jenis produk yang dihasilkan. Hasil uji Tukey menunjukkan bahwa skin lotion dengan konsentrasi kitosan 0,5 % berbeda nyata dengan skin lotion dengan konsentrasi kitosan 0,1 % dan 0,3 %. Data dan hasil analisa statistik dapat dilihat pada Lampiran 5 dan 6.

4.2.1.3 Water Holding Capacity (WHC)

Gambar 9. Grafik hasil pengujian Water Holding Capacity skin lotion

Berdasarkan Gambar 9 dapat dilihat bahwa adanya perbedaan Water Holding Capacity (WHC) pada skin lotion yang dihasilkan. Selama pengamatan (jam ke-0 sampai jam ke-5), berat skin lotion yang dihasilkan terus mengalami penurunan. Skin lotion dengan penggunaan karagenan 0,2 % dan kitosan 0,5 % merupakan produk yang memiliki Water Holding Capacity (WHC) paling baik, dilihat dari % berat yang tersisa dengan nilai paling tinggi, yaitu 88,035 % (pada jam ke-5). Sedangkan pada skin lotion yang lainnya, Water Holding Capacity (WHC) cenderung sama, dengan nilai berkisar antara 83,37 %-85,155 % (pada jam ke-5). Hal ini juga menunjukkan bahwa skin lotion dengan karagenan 0,2 %
dan kitosan 0,5 % (produk 601) memiliki tingkat kestabilan dan kelembaban yang lebih tinggi dibandingkan lotion lainnya, oleh karena itu skin lotion tersebut dipilih menjadi formula terbaik yang akan digunakan pada penelitian tahap selanjutnya. Data hasil pengukuran Water Holding Capacity disajikan pada Lampiran 7.

4.2.2 Efektivitas kitosan sebagai bahan pengawet

Pada tahap ini dilakukan penggunaan bahan pengawet yang berbeda pada formula yang terpilih pada penelitian tahap pertama, yaitu formula 601. Perlakuan yang digunakan pada penelitian tahap kedua adalah formula tanpa bahan pengawet (L01) digunakan sebagai kontrol negatif, formula dengan menggunakan kitosan 0,5 % sebagai bahan pengawet (L02), formula dengan metil dan propil paraben 0,2 % sebagai pengawet (L03) dan formula dengan menggunakan gabungan kitosan, metil dan propil paraben 0,2 % (L04). Pengujian yang dilakukan meliputi uji kimia, yaitu derajat keasaman (pH), uji kemaril mikroba (bakteri dan jamur) dan uji kestabilan emulsi selama penyimpanan, yaitu temperature swing test dan diameter dan distribusi globula produk untuk menunjukkan kestabilan emulsi secara mikroskopis. Uji kestabilan emulsi perlu dilakukan sebab mikroorganisme yang terkandung di dalam skin lotion mempengaruhi kestabilan dan umur simpan produk.
4.2.2.1 Cemaran mikroba selama penyimpanan

Uji cemaran mikroba selama penyimpanan bertujuan untuk mengetahui jumlah mikroba yang terdapat dalam produk skin lotion yang dihasilkan. Aspek mikrobiologis sangat menentukan mutu suatu produk kosmetik karena sediaan yang tercemar bakteri atau jamur tidak dapat digunakan dan dapat membahayakan kesehatan penggunanya. Tranggono dan Latifah (2007) menambahkan bahwa kontaminasi mikroorganisme dapat menyebabkan timbulnya bau tidak sedap, perubahan warna, perubahan viskositas, penurunan daya kerja bahan aktif, pemasaran emulsi dan gangguan kesehatan. Jenis mikroorganisme utama yang mengkontaminasi produk kosmetik adalah bakteri, selain itu juga jamur dan ragi (Mitsui 1997).

4.2.2.1.1 Total Plate Count (TPC)

<table>
<thead>
<tr>
<th>Tabel 15. Jumlah koloni bakteri (koloni/gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hari ke-0</td>
</tr>
<tr>
<td>1,0 x 10(^1)</td>
</tr>
<tr>
<td>Hari ke-30</td>
</tr>
<tr>
<td>Hari ke-60</td>
</tr>
</tbody>
</table>

Keterangan:
* untuk kosmetik wajah (SNI 16-4399-1996)
** untuk kosmetik badan (CTFA di dalam Mitsui 1997)

Tabel 15 memperlihatkan bahwa jumlah koloni bakteri pada hari ke-0 formula L01 (kontrol negatif) adalah 1,0 x 10\(^1\) koloni/gram, pada formula L02 (kitosan sebagai pengawet) adalah 1,0 x 10\(^1\) koloni/gram sedangkan pada formula L03 dan L04 tidak terdapat koloni bakteri. Hasil tersebut menunjukkan bahwa pada hari ke-0, jumlah koloni bakteri yang terdapat pada semua perlakuan
memenuhi persyaratan mutu Standar Nasional Indonesia (SNI 16-4399-1996), yaitu maksimum 10^2 koloni/gram.

Berdasarkan pengamatan hari ke-30, jumlah koloni bakteri pada formula L01 adalah $1,2 \times 10^3$ koloni/gram dan formula L02 adalah $4,4 \times 10^2$ koloni/gram. Hal ini menunjukkan bahwa skin lotion tanpa bahan pengawet (L01) sudah tidak bisa digunakan dalam waktu sebulan, sedangkan untuk formula L02 tidak bisa digunakan pada wajah. Jumlah koloni bakteri pada formula L03 dan L04 adalah masing-masing $5,5 \times 10^1$ dan $3,5 \times 10^1$ koloni/gram. Jumlah tersebut masih memenuhi persyaratan mutu yang ditetapkan oleh SNI, yaitu maksimum 10^2 koloni/gram.

Berdasarkan pengamatan hari ke-60, jumlah koloni bakteri pada formula L02 ($7,3 \times 10^2$ koloni/gram) lebih rendah dibandingkan dengan formula L01 ($1,8 \times 10^3$ koloni/gram), namun lebih tinggi dibandingkan jumlah koloni bakteri pada formula L03 ($8,0 \times 10^1$ koloni/gram) dan L04 ($7,5 \times 10^1$ koloni/gram). Hal ini menunjukkan bahwa kitosan mampu berperan sebagai antibakteri namun tidak sebaik paraben. Produk dapat digunakan sampai dua bulan untuk formula L02 (tanpa paraben). Data perhitungan jumlah koloni bakteri pada hari ke-0, 30 dan 60 disajikan pada Lampiran 8, 9 dan 10.

Cemaran mikroba pada produk kosmetika dapat menyebabkan perubahan organoleptik seperti bau dan penampakan produk. Selain itu, adanya kontaminasi mikroorganisme juga dapat menyebabkan produk menjadi berbahaya bagi kesehatan pemakainya. Oleh karena itu dalam formulasi skin lotion dan produk kosmetik lainnya diperlukan bahan pengawet (Mitsui 1997).

Faktor-faktor yang mempengaruhi mikroorganisme adalah air, mineral, garam organik, suhu, oksigen dan pH. Hal-hal yang perlu diperhatikan untuk mencegah kontaminasi pada sediaan kosmetik adalah pemilihan bahan dasar yang tepat, pemakaian bahan pengawet yang tepat, air yang digunakan harus memenuhi syarat air bersih, penyimpanan harus bebas debu dan kondisi yang memenuhi syarat higienis (Soraya 1996 diacu dalam Martinalova 2004).

Berdasarkan hasil pengujian TPC tersebut dapat dilihat bahwa kitosan mampu berperan sebagai zat antibakteri. Mekanisme kitosan sebagai antibakteri adalah dengan menghambat metabolisme kerja sel bakteri sehingga

4.2.2.1.2 Uji jamur

Uji jamur dilakukan untuk mengetahui ada tidaknya jamur dalam sediaan skin lotion yang dihasilkan. Sebagai bakteri, jamur merupakan mikroorganisme yang sering menjadi kontaminan produk kosmetik (Mitsui 1997). Sediaan lotion merupakan tempat berkembangbiak yang baik bagi jamur maupun bakteri. Lotion biasanya memiliki nilai pH asam sampai netral yang berisi air dan bahan-bahan organik, yang merupakan bahan-bahan yang diperlukan bagi pertumbuhan mikroorganisme (Tranggono dan Latifah 2007). Hasil uji jamur pada skin lotion selama penyimpanan dapat dilihat pada Tabel 16.

| Tabel 16. Jumlah koloni jamur (koloni/gram) |
|---------------------------------|------|------|------|------|
| | L01 | L02 | L03 | L04 |
| Hari ke-0 | 0 | 0 | 0 | 0 |
| Hari ke-30 | 2,0 x 10¹ | 0 | 0 | 0 |
| Hari ke-60 | 2,0 x 10¹ | 0 | 0 | 0 |

Tabel 16 memperlihatkan bahwa hasil pengujian pada hari ke-0 keempat skin lotion tidak mengandung jamur. Namun pada pengujian hari ke-30 dan hari ke-60, formula L01 mengandung koloni jamur sebanyak 2,0 x 10¹ koloni/gram
sedangkan ketiga formula lainnya tidak mengandung koloni jamur. Hal ini menunjukkan bahwa formula skin lotion tanpa bahan pengawet (L.01) pada hari ke-30 sudah tidak dapat digunakan sebab sudah terkontaminasi jamur dan berbahaya bagi kesehatan kulit. Data perhitungan jumlah koloni jamur pada hari ke-0, 30 dan 60 disajikan pada Lampiran 11, 12 dan 13.

4.2.2.2 Kestabilan emulsi selama penyimpanan

Pengujuan kestabilan emulsi selama penyimpanan merupakan parameter penting dalam suatu produk emulsi, karena tingkat kestabilan emulsi menunjukkan daya tahan suatu produk emulsi dalam rentang waktu tertentu. Selain itu, terdapat korelasi yang baik antara kestabilan emulsi dan aspek microbiologis.

Emulsi yang baik jika tidak terbentuk lapisan-lapisan, tidak terjadi perubahan warna (Suryani et al. 2000). Prinsip dasar kestabilan emulsi adalah keseimbangan antara gaya tarik-menarik dan gaya tolak-menolak yang terjadi antar partikel dalam sistem emulsi. Parameter kestabilan emulsi yang diuji adalah penampakan (yaitu untuk mengetahui ada tidaknya perubahan sistem emulsi meliputi pengamatan terhadap terjadinya sedimentasi, creaming dan coalescence/fase minyak yang memisah), pH, diameter dan distribusi globula, untuk mengetahui sistem emulsi secara mikroskopis.

4.2.2.1 pH

Derajat keasaman (pH) merupakan parameter penting pada skin lotion dan produk kosmetik lainnya. pH skin lotion hendaknya diusahakan sama atau mendekati pH fisiologis kulit, yaitu antara 4,5-6,5 (Wasitaatmadja 1997). Semakin alkalis atau semakin asam bahan yang mengenai kulit, semakin sulit kulit menetralisir dan cenderung mudah teriritasi. Kulit dapat menjadi kering,
pecah-pecah, sensitif dan mudah terkena infeksi (Tranggono dan Latifah 2007).
Nilai pH skin lotion selama penyimpanan disajikan pada Tabel 17 dan Gambar 10.

Tabel 17. Nilai pH produk selama penyimpanan

<table>
<thead>
<tr>
<th></th>
<th>L01</th>
<th>L02</th>
<th>L03</th>
<th>L04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hari ke-0</td>
<td>6,39</td>
<td>4,95</td>
<td>5,91</td>
<td>4,94</td>
</tr>
<tr>
<td>Hari ke-30</td>
<td>6,29</td>
<td>4,98</td>
<td>5,90</td>
<td>4,90</td>
</tr>
<tr>
<td>Hari ke-60</td>
<td>5,75</td>
<td>5,03</td>
<td>5,93</td>
<td>4,92</td>
</tr>
</tbody>
</table>

Gambar 10. Nilai pH selama penyimpanan

Berdasarkan Tabel 17 dan Gambar 10 dapat dilihat bahwa nilai pH semua perlakuan baik formula tanpa bahan pengawet (L01), formula L02 (kitosan sebagai bahan pengawet), formula L03 (paraben sebagai bahan pengawet) maupun formula L04 (gabungan paraben dan kitosan) memiliki nilai pH yang sesuai dengan pH fisiologis kulit sehingga aman digunakan. Nilai pH semua perlakuan juga sesuai dengan Standar Nasional Indonesia (SNI) 16-4399-1996 karena berkisar antara 4,90-6,39.

Berdasarkan nilai pH produk pada Gambar 10 diketahui bahwa nilai pH pada formula L03 dan L04 selama penyimpanan cenderung stabil dan tidak

Berdasarkan Gambar 10 dapat diketahui bahwa penambahan bahan pengawet metil dan propil paraben 0,2 % dan juga larutan kitosan 0,5 % menyebabkan nilai pH *skin lotion* lebih rendah apabila dibandingkan dengan *skin lotion* tanpa penggunaan bahan pengawet. Metil dan propil paraben merupakan bahan pengawet yang bersifat asam dan mampu bekerja dengan baik pada kondisi asam dengan pH sekitar 4-5 (Tranggono dan Latifah 2007). Kitosan bersifat larut dalam asam, ketika dilarutkan dalam asam, gugus asam amino pada kitosan terprotonasi dan menyebabkan kehadiran ion H⁺ sehingga nilai pH *skin lotion* menjadi lebih rendah (asam). Data pengujian pH produk selama penyimpanan disajikan pada Lampiran 14.

4.2.2.2 Temperature swing test

Temperature swing test merupakan salah satu uji untuk mengetahui kestabilan emulsi (de Polo 1998). Stabilitas emulsi merupakan faktor penting dalam kosmetik karena berpengaruh pada daya awet produk. Ketidakstabilan emulsi dapat disebabkan oleh beberapa hal, antara lain komposisi bahan yang tidak tepat, ketidakcocokan bahan, kecepatan dan pencampuran yang tidak tepat, pemanasan dan penguapan yang berlebihan, jumlah dan pemilihan emulsifier yang tidak tepat, pembekuan, serta guncangan mekanik atau getaran (Suryani et al. 2000). Prinsip pengujian ini adalah dengan menempatkan sistem emulsi dalam kondisi “stress”, dimana emulsi ditempatkan pada suhu rendah (-5 °C) dan suhu tinggi (40 °C) secara bergantian selama masing-masing 24 jam. Kondisi
tersebut menyebar dan pergerakan partikel-partikel di dalam sistem emulsi secara acak yang mendorong terjadinya ketidakstabilan emulsi.

4.2.2.3 Diameter dan distribusi globula

Pengujian terhadap diameter dan distribusi globula dilakukan dengan tujuan mengetahui sistem emulsi skin lotion dan perubahannya selama penyimpanan secara mikro. Stabilitas emulsi akan semakin baik dengan semakin kecil dan seragamnya ukuran dan distribusi globula. Globula dengan ukuran yang kecil akan mengabsorb energi kinetik yang kecil pula, dengan demikian, kemungkinan untuk terjadinya tumbukan antar molekul semakin kecil sehingga sistem emulsi akan semakin stabil (Suryani et al. 2000).

Pengukuran diameter dan distribusi globula dilakukan dengan menggunakan mikroskop polarisasi dengan perbesaran 20 x 10. Nilai diameter globula dapat dilihat pada Tabel 18 dan foto diameter globula pada Gambar 11, 12 dan 13.

<table>
<thead>
<tr>
<th></th>
<th>L01</th>
<th>L02</th>
<th>L03</th>
<th>L04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hari ke-0</td>
<td>5-25</td>
<td>5-25</td>
<td>5-25</td>
<td>5-25</td>
</tr>
<tr>
<td>Hari ke-30</td>
<td>5-30</td>
<td>5-25</td>
<td>5-25</td>
<td>5-25</td>
</tr>
<tr>
<td>Hari ke-60</td>
<td>5-50</td>
<td>5-25</td>
<td>5-25</td>
<td>5-25</td>
</tr>
</tbody>
</table>

Keterangan:
L01 : kontrol negatif
L02 : kitosan 0,5 % sebagai bahan pengawet
L03 : metil dan propil paraben 0,2 % sebagai bahan pengawet
L04 : gabungan kitosan, metil dan propil paraben 0,2 % sebagai bahan pengawet
Gambar 11. Diameter dan distribusi globula pada hari ke-0

Gambar 12. Diameter dan distribusi globula pada hari ke-30
Gambar 13. Diameter dan distribusi globula pada hari ke-60

Berdasarkan Tabel 18 dan Gambar 11 dapat diketahui bahwa pada hari ke-60 tidak ada perbedaan diameter globula antara formula L01, L02, L03 dan L04. Ukuran globula pada skin lotion yang dihasilkan cenderung tidak seragam, yaitu berkisar 5-25 μm. Ukuran dan distribusi globula dipengaruhi oleh proses emulsifikasi. Pemilihan jenis dan jumlah emulsifier yang tepat menyebabkan ukuran globula menjadi lebih kecil dan seragam, selain itu dipengaruhi juga oleh alat homogenizer yang digunakan untuk proses emulsifikasi (Rieger 2000). Peningkatan konsentrasi emulsifier pada skin lotion yang dihasilkan perlu ditingkatkan untuk memperoleh ukuran globula yang lebih kecil dan seragam.

Diameter globula formula L02, L03 dan L04 cenderung stabil selama dua bulan penyimpanan, tetapi formula L01 mengalami peningkatan, yaitu naik dari 5-25 μm menjadi 5-30 μm pada hari ke-30 dan 5-50 μm pada hari ke-60. Hal ini menunjukkan bahwa sistem emulsi formula L01 tidak stabil, walaupun masih memenuhi standar diameter globula untuk makroemuls, yaitu (1-50 μm). Perlu dilakukan penggunaan bahan pengawet pada skin lotion L01 serta penambahan konsentrasi emulsifier dan bahan pengental untuk meningkatkan kestabilan emulsi skin lotion yang dihasilkan.
4.2.3 Analisis kulit

Analisis kulit bertujuan mengetahui efek dari bahan aktif yang digunakan dalam produk skin lotion meliputi karagenan, kitosan, ekstrak Pemphis acidula dan hidrolisat protein kerang mas ngur (Attactodea striata). Pengujian yang dilakukan yaitu uji kelembaban dan analisis kulit meliputi pengamatan terhadap tekstur kulit.

4.2.3.1 Uji kelembaban

Uji ini dilakukan untuk mengetahui efek melembabkan dari moisturizer agent yang digunakan dalam skin lotion, yaitu kitosan dan karagenan, yang kemudian dibandingkan dengan skin lotion komersial. Uji ini dilakukan terhadap lima produk dengan dua kali ulangan. Produk tersebut yaitu skin lotion tanpa penggunaan kitosan dan karagenan sebagai kontrol negatif (L11), skin lotion dengan menggunakan karagenan 0,2 % (L12), skin lotion dengan menggunakan kitosan 0,5 % (L13), skin lotion dengan menggunakan karagenan 0,2 % dan kitosan 0,5 % (L14) dan skin lotion komersial merek Dove sebagai kontrol positif (L15).

Tabel 19. Data kelembaban kulit (%) dengan berbagai formulasi skin lotion

<table>
<thead>
<tr>
<th>Menit ke-Produk</th>
<th>0'</th>
<th>5'</th>
<th>10'</th>
<th>15'</th>
<th>Σ Kenaikan kelembaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>L11</td>
<td>34,1</td>
<td>39,1</td>
<td>38,5</td>
<td>38,25</td>
<td>5,0</td>
</tr>
<tr>
<td>L12</td>
<td>33,95</td>
<td>40,45</td>
<td>39,2</td>
<td>38,8</td>
<td>6,5</td>
</tr>
<tr>
<td>L13</td>
<td>33,7</td>
<td>42,45</td>
<td>41,65</td>
<td>40,5</td>
<td>8,75</td>
</tr>
<tr>
<td>L14</td>
<td>33,7</td>
<td>43,1</td>
<td>42,1</td>
<td>41,3</td>
<td>9,4</td>
</tr>
<tr>
<td>L15</td>
<td>33,9</td>
<td>39</td>
<td>38,75</td>
<td>37,65</td>
<td>5,1</td>
</tr>
</tbody>
</table>
Gambar 14. Grafik kelembaban kulit selama 15 menit setelah pemakaian lotion

Berdasarkan Tabel 19 dapat dilihat bahwa nilai kelembaban kulit awal (menit ke-0) berkisar antara 33,7-34,1 %. Setelah pemakaian skin lotion selama 5 menit, kelembaban kulit mengalami kenaikan dengan persentase yang berbedabeda. Skin lotion dengan penggunaan karagenan 0,2 % dan kitosan 0,5 % (L14) memiliki persentase kenaikan tertinggi, yaitu 9,4 %, dengan persentase kelembaban 43,1 %, sedangkan skin lotion komersial merek Dove memiliki persentase kenaikan terendah, yaitu 5,1 %, dengan persentase kelembaban 39,0 %.

Kelembaban kulit dipengaruhi faktor internal maupun eksternal, terutama oleh lingkungan, yaitu kehadiran humektan, kelembaban udara dan suhu.

Gambar 14 memperlihatkan bahwa persentase kelembaban skin lotion dengan penggunaan kitosan 0,5 % (42,45 %) lebih tinggi dibandingkan dengan skin lotion tanpa penggunaan karagenan dan kitosan (39,10 %), skin lotion dengan penggunaan karagenan 0,2 % (40,45 %) dan skin lotion komersial merek Dove (39,0 %). Hal ini menunjukkan bahwa kitosan dapat berfungsi sebagai humektan. Kitosan merupakan amino polisakarida yang bersifat higroskopis. Gugus hidrofobik dan hidrofilik pada kitosan mampu mengikat air dari udara dan menahanya di dalam lapisan epidermis. Beaulieu (2005) menyatakan bahwa ketika digunakan pada permukaan kulit, kitosan membentuk perlindungan dan lapisan elastik melambakkan, hal ini membuat kitosan berfungsi sebagai humektan pada lotion atau sunscreens. Bandai et al. (1988) diacu dalam
Champagne (2008) menyatakan lotion yang mengandung kitosan laktat, kitosan suksinat dan kitosan alkil fosfat juga dapat meningkatkan kelembutan kulit.

4.2.3.2 Uji anti aging

Uji anti aging dilakukan terhadap dua orang panelis berusia 45 tahun dan satu orang berusia 38 tahun. Aktivitas dan kondisi ketiga orang panelis selama sebulan pemakaian skin lotion dapat dilihat pada Tabel 20.

Tabel 20. Aktivitas dan kondisi panelis selama sebulan pemakaian skin lotion

<table>
<thead>
<tr>
<th>Faktor-Faktor yang Mempengaruhi Penuaan</th>
<th>Panelis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Usia 45 tahun(1)</td>
</tr>
<tr>
<td>Aktivitas fisik dan gaya hidup</td>
<td>Berolahraga seminggu 2x, tempat tinggal dekat dari kantor</td>
</tr>
<tr>
<td>Pola makan</td>
<td>Seimbang (makan lauk pauk dan sayur-sayuran serta buah) dan jarang mengkonsumsi junkfood</td>
</tr>
<tr>
<td>Stres</td>
<td>Tidak dalam keadaan stress</td>
</tr>
<tr>
<td>Penyakit sistemik seperti diabetes, defisiensi gizi dan arteriosklerosis</td>
<td>Tidak memiliki penyakit sistemik</td>
</tr>
</tbody>
</table>
Skin lotion digunakan selama sebulan dan dioleskan pada kulit di sekitar mata. Hasil analisis tekstur kulit sebelum dan sesudah pemakaian skin lotion dua orang panelis berusia 45 tahun disajikan pada Gambar 15, 16, 17 dan 18.

Gambar 15. a) Foto kulit sebelum pemakaian skin lotion (panelis 1)
b) Tekstur kulit sebelum pemakaian skin lotion (panelis 1)

Gambar 16. a) Foto kulit sesudah sebulan pemakaian skin lotion (panelis 1)
b) Tekstur kulit sesudah sebulan pemakaian skin lotion (panelis 1)

Gambar 17. a) Foto kulit sebelum pemakaian skin lotion (panelis 2)
b) Tekstur kulit sebelum pemakaian skin lotion (panelis 2)
Gambar 18. a) Foto kulit sesudah sebulan pemakaian *skin lotion* (panelis 2)
b) Tekstur kulit sesudah sebulan pemakaian *skin lotion* (panelis 2)

Selain mengandung asam-asam amino, hidrolisat protein kerang mas ngur mengandung saponin dan alkaloid. Saponin dan alkaloid berfungsi untuk meningkatkan aktivitas seluler epidermis. Saponin juga dapat membersihkan
kotoran dan minyak yang terdapat pada lapisan terluar kulit sehingga kulit menjadi lebih halus (Daewook 2004).

Hasil analisis tekstur kulit sebelum dan sesudah pemakaian skin lotion seorang panelis berusia 38 tahun disajikan pada Gambar 19 dan 20.

Gambar 19. a) Foto kulit sebelum pemakaian skin lotion (panelis 3) b) Tekstur kulit sebelum pemakaian skin lotion (panelis 3)

Gambar 20. a) Foto kulit sesudah sebulan pemakaian skin lotion (panelis 3) b) Tekstur kulit sesudah sebulan pemakaian skin lotion (panelis 3)

Berdasarkan Gambar 20 dapat dilihat bahwa tekstur kulit panelis berusia 38 tahun tidak menunjukkan adanya perbaikan (tekstur kulit tidak berubah menjadi halus) sesudah pemakaian skin lotion. Hal ini diduga karena adanya penurunan respon panelis terhadap bahan aktif (karagenan, kitosan, ekstrak Pemphias acidula dan hidrolisat protein kerang mas ngur) yang digunakan dalam skin lotion. Pada panelis berusia 45 tahun diduga terjadi penyerapan bahan aktif yang lebih baik dibandingkan dengan umur 38 tahun sehingga efek anti agingnya lebih terlihat. Kulit yang sudah menua dapat dengan mudah mengabsorbsi kosmetika yang kemudian membantu memperbaiki struktur dan fisiologi kulit.
(Wasitaatmadja 1997). Selain itu proses penuaan kulit juga dipengaruhi oleh berbagai faktor seperti umur, hormon, genetik, paparan sinar matahari, polusi udara dan kebiasaan hidup.

5. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Komposisi formula terpilih pada penelitian tahap pertama adalah karagenan 0,1 %, gliserin 5 %, setil alkohol 2,5 %, cremophor A6 1,5 %, cremophor A25 1,5 %, isopropil palmitat 2 %, kitosan 0,1 % dan akuades steril ± 80 %. Formula yang dihasilkan memiliki karakteristik mirip dengan skin lotion komersial yaitu penampakan yang homogen, tidak lengket setelah pemakaian dan tidak terlalu kental.

Nilai pH skin lotion cenderung meningkat dengan peningkatan konsentrasi karagenan. Sedangkan peningkatan konsentrasi kitosan cenderung menurunkan nilai pH skin lotion yang dihasilkan. Nilai bobot jenis skin lotion cenderung meningkat dengan peningkatan konsentrasi karagenan. Hasil analisis ragam menunjukkan bahwa perbedaan konsentrasi karagenan dan kitosan memberikan pengaruh yang nyata terhadap nilai pH dan bobot jenis skin lotion yang dihasilkan namun tidak ada interaksi antar faktor yang memberikan pengaruh yang nyata terhadap nilai pH dan bobot jenis produk yang dihasilkan. Skin lotion dengan penggunaan karagenan 0,2 % dan kitosan 0,5 % memiliki water holding capacity (WHC) terbaik dibandingkan skin lotion lainnya.

Kitosan dapat berperan sebagai bahan pengawet skin lotion selama 2 bulan pengamatan namun tidak seefektif metil dan propil paraben. Selain itu kitosan juga berfungsi sebagai humektan, yaitu zat yang mampu melembabkan. Berdasarkan hasil pengujian kelembaban kulit, skin lotion yang menggunakan karagenan 0,2 % dan kitosan 0,5 % (formula L14) lebih baik dibandingkan produk komersial (merk Dove). Skin lotion dengan bahan-bahan alami, yaitu karagenan, kitosan, ekstrak Pemphis acidula dan hidrolisat protein kerang mas ngur (Atractodea striata) memiliki efek anti aging.

5.2 Saran

Saran yang dapat diberikan pada penelitian ini adalah

Perlu dilakukan penggunaan kitosan larut air pada skin lotion agar konsentrasi kitosan dapat ditambahkan tanpa mengubah nilai pH dan sifat organoleptik produk serta meningkatkan efek antimikroba.
(2) Perlu dilakukan penambahan konsentrasi emulsifier untuk memperoleh ukuran globula yang lebih kecil dan seragam.

(3) Perlu dilakukan uji penyimpanan lanjut (lebih dari dua bulan) untuk formula dengan paraben.

(4) Perlu dilakukan pengukuran viskositas.

(5) Perlu dilakukan penelitian lebih lanjut mengenai penggunaan saponin dan alkaloid pada skin lotion.
DAFTAR PUSTAKA

1. Hak Cipta Dilindungi Undang-Undang

2. Dilarang menggandakan dan memperbanyak abadinya atau sebagian yang telah ditulis dalam bentuk apapun tanpa izin IPB.

LAMPIRAN
DAFTAR ZAT WARNA YANG DIZINKAN DIGUNAKAN PADA PRODUK KOSMETIKA

DINAMAI: PERATURAN MENTERI KESEHATAN RI

<table>
<thead>
<tr>
<th>No.</th>
<th>NAMA ZAT WARNA</th>
<th>Nomor Indeks Warna (C.I.NO)</th>
<th>DAERAH PENGUNGAAN</th>
<th>PEMBATASAN DAN PERSYARATAN LAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pigment Green 8</td>
<td>10006</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D&C Green 1 Ext</td>
<td>10020</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D&C Yellow 7 Ext</td>
<td>10316</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Kuning K1</td>
<td>11680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Hansa Yellow</td>
<td>11710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hansa Orange</td>
<td>11725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Solvent Orange 1</td>
<td>11920</td>
<td>X,X</td>
<td>Maksimum 3% pada sediaan bibir dan mulut</td>
</tr>
<tr>
<td>8</td>
<td>Solvent Red 3</td>
<td>12010</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D & C Red 36 Merah K1</td>
<td>12085</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>D & C Red 35</td>
<td>12120</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Solvent Red 1</td>
<td>12150</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Pigment Red 112</td>
<td>12370</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Pigment Red 7</td>
<td>12420</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Pigment Brown 1</td>
<td>12480</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pigment Red 5</td>
<td>12490</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Solvent Yellow 16</td>
<td>12700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Acid Yellow 9</td>
<td>13015</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Food Yellow 8</td>
<td>14270</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>D&C Red 4 Merah K2</td>
<td>14700</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Carmoisine</td>
<td>14720</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Acid Dye</td>
<td>14815</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>D&C Orange 4 Jingga K2</td>
<td>15510</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Pigment Red 68</td>
<td>15525</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Pigment Red 51</td>
<td>15580</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Fast Red 5</td>
<td>15620</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Pigment Red 49</td>
<td>15630</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>D & C Red 31 Merah K5</td>
<td>15800:1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>D & C Red 6 (7)</td>
<td>15850: (1)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Pigment Red 48</td>
<td>15865</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>D & C Red 34 Merah K6</td>
<td>15880</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Food Orange 2</td>
<td>15980</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>D & C Yellow 6</td>
<td>15985</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>D&C Red 40 Merah K7</td>
<td>16035</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Amaranth</td>
<td>16185</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Food Orange 4</td>
<td>16230</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>NAMA ZAT WARNA</td>
<td>Nomor Indeks Warna (C.I.NO)</td>
<td>DAERAH PENGGUNAAN</td>
<td>PEMBATASAN DAN PERSYARATAN LAIN</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>36</td>
<td>Food Red 7</td>
<td>16255</td>
<td>X</td>
<td>Maksimum 3% pada sediaan bibir dan mulut</td>
</tr>
<tr>
<td>37</td>
<td>Ponceng 6R</td>
<td>16290</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>D&C Red 33 Merah K8</td>
<td>17200</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>D&C Red 11 Ext.</td>
<td>18050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Acid Red 155</td>
<td>18130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Solvent Yellow 21</td>
<td>18690</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Solvent Orange 6</td>
<td>18736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Acid Yellow 11</td>
<td>18820</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Acid Yellow 17</td>
<td>18965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>FD&C yellow 5 Kuning K2</td>
<td>19140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Pigment Yellow 16</td>
<td>20040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>D&C Brown 1 Coklat K1</td>
<td>20170</td>
<td></td>
<td>Maksimum kandungan 3,3-dimetil benzidin:5ppm</td>
</tr>
<tr>
<td>48</td>
<td>Naphtol Blue – Balek B</td>
<td>20470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Pigment Yellow 13</td>
<td>21100</td>
<td></td>
<td>Maksimum kandungan 3,3-dimetil benzidin:5ppm</td>
</tr>
<tr>
<td>50</td>
<td>Pigment Yellow 83</td>
<td>21108</td>
<td></td>
<td>Maksimum kandungan 3,3-dimetil benzidin:5ppm</td>
</tr>
<tr>
<td>51</td>
<td>Basic Bronzo 2</td>
<td>21230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Acid Red 163</td>
<td>24790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>D&C Acid 17 Merah K9</td>
<td>26100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>D&C Red 13 Ext.</td>
<td>27290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Food Black 2</td>
<td>27755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Food Black 1</td>
<td>28440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Direct Orange 34</td>
<td>40215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Food Orange 5</td>
<td>40800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Food Orange 6</td>
<td>40820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Food Orange 7</td>
<td>40825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Food Orange 8</td>
<td>40850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Acid Blue 1</td>
<td>42045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Food Blue 5</td>
<td>42051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>FD&C Green 3</td>
<td>42053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>D&C Blue 3</td>
<td>42080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>FD&C Blue 1 Biru K1</td>
<td>42090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>D&C Blue 4</td>
<td>42090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Acid Green 8</td>
<td>42100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Acid Green 22</td>
<td>42170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Solvent Red 41</td>
<td>42510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Basic Violet 2</td>
<td>42520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Acid Blue 104</td>
<td>42735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Basic Blue 26</td>
<td>44045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Acid Green 50</td>
<td>44090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>D&C Red 3 Ext.</td>
<td>45190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Acid Red 50</td>
<td>45220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>D&C Yellow 8 (7)</td>
<td>45350; (1)</td>
<td></td>
<td>Kadar Maksimum pada produk akhir: 6%</td>
</tr>
<tr>
<td>No.</td>
<td>NAMA ZAT WARNA</td>
<td>Nomor Indeks Warana (C.I.NO)</td>
<td>DAERAH PENGUNAAN</td>
<td>PEMBATASAN DAN PERSYARATAN LAIN</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>78</td>
<td>D&C Orange 6 (5) Jingga K3</td>
<td>45370 (.1)</td>
<td>X</td>
<td>Maksimum kandungan 2-(6-hidroksi-3-oxo-3H-xanten-9-11)benzoat:1% dan 2- (bromo-6-hidroksi-3-okso-3H-xanten-9-11)benzoat:2%. Untuk sediaan bibir dan muah maksimum 5%</td>
</tr>
<tr>
<td>79</td>
<td>D&C Red 22 (21) Solvent Orange 16</td>
<td>45380 (.2)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Acid Red 98</td>
<td>45396</td>
<td>X</td>
<td>Untuk lipstik hanya bentuk asam bebasnya dan maksimum 5%</td>
</tr>
<tr>
<td>81</td>
<td>D&C Red 28 (27)</td>
<td>45405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>D&C Orange 11 (10)</td>
<td>45410(.1)</td>
<td>X</td>
<td>Maksimum kandungan 2-(6-hidroksi-3-oxo-3H-xanten-9-11)benzoat:1% dan 2- (bromo-6-hidroksi-3-okso-3H-xanten-9-11)benzoat:2%. Idem</td>
</tr>
<tr>
<td>83</td>
<td>D&C Yellow 11 Kuning K5</td>
<td>47000</td>
<td>X</td>
<td>Maksimum kandungan 2-(6-hidroksi-3-oxo-3H-xanten-9-11)benzoat:1% dan 2- (bromo-6-hidroksi-3-okso-3H-xanten-9-11)benzoat:3%.</td>
</tr>
<tr>
<td>84</td>
<td>D&C Yellow 10 Kuning K6</td>
<td>47005</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Acid Violet 50</td>
<td>50325</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Acid Black 2</td>
<td>50420</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Pigment Violet 23</td>
<td>51319</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>D&C Orange 15</td>
<td>58000</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>D&C Green 8 Hijau K1</td>
<td>59040</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>D&C Green 2 K2</td>
<td>60724</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>D&C Violet 2 Ungu K1</td>
<td>60725</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>D&C Violet 2 Ext Ungu K2</td>
<td>60730</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>D&C Green 6</td>
<td>61565</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>D&C Green 5</td>
<td>61570</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Acid Blue 80</td>
<td>61585</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Acid Blue 62</td>
<td>62045</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Pigment Blue 60</td>
<td>69800</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>D&C Blue 9</td>
<td>69825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Pigment Orange 43</td>
<td>71105</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Pigment Blue 66</td>
<td>73000</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>D&C Red 30</td>
<td>73360</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Vat Violet 2</td>
<td>73385</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Vat Blue 15</td>
<td>73900</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Vat Blue 16</td>
<td>73915</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Pigment Blue 15</td>
<td>74100</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Pigment Blue 16</td>
<td>74160</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>NAMA ZAT WARNA</td>
<td>Nomor Indeks Warna (C.1 NO)</td>
<td>DAERAH PENGGUNAAN</td>
<td>PEMBATASAN DAN PERSYARATAN LAIN</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>108</td>
<td>Direct Blue 86</td>
<td>74180</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Pigment Green 7</td>
<td>74620</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Natural Red 1</td>
<td>75100</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Anato Jingka K4</td>
<td>75120</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Natura Yellow 27</td>
<td>75125</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Beta Karoten Jingka K5</td>
<td>75130</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Rubixanthin</td>
<td>75135</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Quanin Puth K1</td>
<td>75170</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Natura Yellow K12</td>
<td>75300</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Karmin Merah K12</td>
<td>75470</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Hena Jingga K6</td>
<td>75480</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Kalium natrium tembaga (II) klorofil (Hijau K2)</td>
<td>75810</td>
<td>X</td>
<td>Hanya untuk cat rambut kepala</td>
</tr>
<tr>
<td>120</td>
<td>Serbuk Aluminium Puth K2</td>
<td>77000</td>
<td>X</td>
<td>Hanya untuk sediain tapal gigi maksimum 0,1%</td>
</tr>
<tr>
<td>121</td>
<td>Aluminium Hidrat</td>
<td>77002</td>
<td>X</td>
<td>Kecuali sediain bibir dan sediain mulut</td>
</tr>
<tr>
<td>122</td>
<td>Profilit Puth K3</td>
<td>77004</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Ultramarini</td>
<td>77007</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Blue (Biru K2)</td>
<td>77007</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Red (Merah K13)</td>
<td>77007</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Violet (Ungu K3)</td>
<td>77007</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Green (Hijau K3)</td>
<td>77013</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Pigment Red 101</td>
<td>77015</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Mika Puth K4</td>
<td>77019</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Barium Sulfat</td>
<td>77120</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Bismut Oksikloroda (Puth K5)</td>
<td>77163</td>
<td>X</td>
<td>Kecuali sediain bibir dan sediain mulut</td>
</tr>
<tr>
<td>132</td>
<td>Magnesit</td>
<td>77220</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Kalsium Sulfat</td>
<td>77231</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Carbon Black</td>
<td>77266</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Pigment Black 9</td>
<td>77267</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Pigment Black 8</td>
<td>77268</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Krom Oksida Hijau</td>
<td>77288</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Krom Oksida Hijau</td>
<td>77289</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Pigment Green 14</td>
<td>77346</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Serbuk Tembaga Coklat K2</td>
<td>77400</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Pigment Metal 3</td>
<td>77480</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Besi Oksida Coklat</td>
<td>77489</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Besi Oksida Kuning</td>
<td>77491</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Besi Oksida Hitam Besi</td>
<td>77499</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>NAMA ZAT WARNA</td>
<td>Nomor Indeks Warna (C1.NO)</td>
<td>DAERAH PENGGUNAAN</td>
<td>PEMBATASAN DAN PERSYARATAN LAIN</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>142</td>
<td>Ferosianida Biru K3</td>
<td>77510</td>
<td>X</td>
<td>Kecuali sediaan bibir dan sediaan mulut. Bebas dari ion sianida.</td>
</tr>
<tr>
<td>143</td>
<td>Besi Amonium</td>
<td>77520</td>
<td>X</td>
<td>Kecuali sediaan bibir dan sediaan mulut. Bebas dari ion sianida.</td>
</tr>
<tr>
<td>144</td>
<td>Magnesium Karbonat</td>
<td>77713</td>
<td>X</td>
<td>Hanya untuk cat kuku maksimum 1%.</td>
</tr>
<tr>
<td>145</td>
<td>Mangan Ungu</td>
<td>77742</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Unga K4</td>
<td>77745</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Mangan Fosfat</td>
<td>77820</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>Perak (Putih K6)</td>
<td>77891</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Titan Oksida Putih K7</td>
<td>77947</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Seng Oksida Putih K8</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Laktoflavin</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>Karamel</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Kapsulintin</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Antosianin</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Aluminium, Seng,</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Magnesium dan Kalsium sebati</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Bromitimol biru</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Bromkresol Hijau</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Acid Red 195</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Biru Strut</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Aseton dihidroksida</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Timbaga (IV) dinatrium edetat</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Quilasulen</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Timbal (II) asetat</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MENTERI KESEHATAN R.I.
Ttd
Dr. ADHYATMA, MPH.
PERATURAN MENTERI KESEHATAN

DAFTAR SUBSTRATUM ZAT WARNA KOSMETIKA YANG DIIZINKAN

1. Aluminium Hidroksida
2. Aluminium stearat
3. Asam Silikat
4. Barium Sulfat, Barium Sulfida
5. Bentonit
6. Kalsium karbonat
7. Kalsium silikat
8. Kalsium stearat
9. Kalsium sulfat
10. Kaolin
11. Litium stearat
12. Magnesium aluminium silikat
13. Magnesium Karbonat
14. Magnesium Oksida
15. Magnesium Stearat
16. Magnesium Trisilikat
17. Pati
18. Seng Karbonat
19. Seng Stearat
20. Silicon Dioksida
21. Talk

MENTERI KESEHATAN R.I.
Ttd
Dr. ADHYATMA, MPH.
<table>
<thead>
<tr>
<th>Section</th>
<th>Percentages</th>
<th>1%</th>
<th>2%</th>
<th>3%</th>
<th>4%</th>
<th>5%</th>
<th>6%</th>
<th>7%</th>
<th>8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 0 (control)</td>
<td>0%</td>
<td>1%</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
<td>6%</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>EC 0.5 (low)</td>
<td>0%</td>
<td>1%</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
<td>6%</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>EC 1.0 (medium)</td>
<td>0%</td>
<td>1%</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
<td>6%</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>EC 1.5 (high)</td>
<td>0%</td>
<td>1%</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
<td>6%</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>EC 2.0 (very high)</td>
<td>0%</td>
<td>1%</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
<td>6%</td>
<td>7%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Legend:
- EC: Environmental Conditions
- 0%: No reaction
- 1%: Reaction detected
Lampiran 3. Data pengujian pH produk (tahap kedua)

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>pH</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>4,95</td>
<td>4,95</td>
</tr>
<tr>
<td>201</td>
<td>4,91</td>
<td>4,905</td>
</tr>
<tr>
<td>301</td>
<td>4,78</td>
<td>4,835</td>
</tr>
<tr>
<td>401</td>
<td>4,89</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>5,11</td>
<td>5,17</td>
</tr>
<tr>
<td>601</td>
<td>5,23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,95</td>
<td>4,98</td>
</tr>
<tr>
<td></td>
<td>5,01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,92</td>
<td>4,93</td>
</tr>
<tr>
<td></td>
<td>4,94</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
101 : skin lotion dengan karagenan 0,1 % dan kitosan 0,1 %
201 : skin lotion dengan karagenan 0,1 % dan kitosan 0,3 %
301 : skin lotion dengan karagenan 0,1 % dan kitosan 0,5 %
401 : skin lotion dengan karagenan 0,2 % dan kitosan 0,1 %
501 : skin lotion dengan karagenan 0,2 % dan kitosan 0,3 %
601 : skin lotion dengan karagenan 0,2 % dan kitosan 0,5 %
Lampiran 4. Hasil analisis statistik terhadap pH skin lotion

Anova

Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>128.8</td>
<td>5</td>
<td>0.026</td>
<td>10.060</td>
<td>.007</td>
</tr>
<tr>
<td>Intercept</td>
<td>295.418</td>
<td>1</td>
<td>295.418</td>
<td>1155.0</td>
<td>.000</td>
</tr>
<tr>
<td>Karakteran</td>
<td>0.51</td>
<td>1</td>
<td>0.051</td>
<td>19.882</td>
<td>.004</td>
</tr>
<tr>
<td>Kitosan</td>
<td>0.655</td>
<td>2</td>
<td>0.033</td>
<td>12.788</td>
<td>.007</td>
</tr>
<tr>
<td>Karakteran * Kitosan</td>
<td>0.12</td>
<td>2</td>
<td>0.006</td>
<td>2.422</td>
<td>.169</td>
</tr>
<tr>
<td>Error</td>
<td>0.15</td>
<td>6</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>295.561</td>
<td>12</td>
<td>0.03571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>144</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R Squared = .893 (Adjusted R Squared = .805)

Post Hoc Test

Multiple Comparisons

<table>
<thead>
<tr>
<th>(l) Kitosan</th>
<th>(j) Kitosan</th>
<th>Mean Difference (l-j)</th>
<th>Std Error</th>
<th>Sig</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yukey HSD</td>
<td>.50</td>
<td>.30</td>
<td>0.1175</td>
<td>0.03751</td>
<td>.038</td>
</tr>
<tr>
<td></td>
<td>.30</td>
<td>.10</td>
<td>0.1175</td>
<td>0.03751</td>
<td>.038</td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td>.10</td>
<td>0.0600</td>
<td>0.03751</td>
<td>.062</td>
</tr>
<tr>
<td></td>
<td>.30</td>
<td>.00</td>
<td>-0.0000</td>
<td>0.03751</td>
<td>.287</td>
</tr>
<tr>
<td>Bonferroni</td>
<td>.10</td>
<td>.30</td>
<td>0.1175</td>
<td>0.03751</td>
<td>.050</td>
</tr>
<tr>
<td></td>
<td>.30</td>
<td>.10</td>
<td>0.1175</td>
<td>0.03751</td>
<td>.050</td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td>.00</td>
<td>-0.0000</td>
<td>0.03751</td>
<td>.432</td>
</tr>
<tr>
<td></td>
<td>.30</td>
<td>.00</td>
<td>-0.0000</td>
<td>0.03751</td>
<td>.432</td>
</tr>
</tbody>
</table>

Based on observed means.

* The mean difference is significant at the .05 level.

Homogeneous Subsets

<table>
<thead>
<tr>
<th>Kitosan</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Tukey HSD</td>
<td>.50</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>.30</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>.10</td>
<td>4</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>287</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

Based on Type III Sum of Squares

The error term is Mean Square(Error) = .003.

b. Uses Harmonic Mean Sample Size = 4.000.

c. Alpha = .05.
Lampiran 5. Data pengujian bobot jenis produk (tahap kedua)

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Berat Tube Kosong (g)</th>
<th>Berat Tube + Sampel (g)</th>
<th>Bobot Jenis (g/ml)</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1</td>
<td>2,015</td>
<td>1,015</td>
<td>1,0025</td>
</tr>
<tr>
<td></td>
<td>1,005</td>
<td>1,925</td>
<td>0,99</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>1</td>
<td>1,985</td>
<td>0,985</td>
<td>1</td>
</tr>
<tr>
<td>301</td>
<td>1</td>
<td>2,065</td>
<td>1,065</td>
<td>1,075</td>
</tr>
<tr>
<td></td>
<td>0,995</td>
<td>2,080</td>
<td>1,085</td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>1</td>
<td>2,020</td>
<td>1,020</td>
<td>1,0425</td>
</tr>
<tr>
<td>501</td>
<td>1</td>
<td>2,065</td>
<td>1,065</td>
<td>1,040</td>
</tr>
<tr>
<td>601</td>
<td>1</td>
<td>2,205</td>
<td>1,205</td>
<td>1,155</td>
</tr>
<tr>
<td></td>
<td>1,005</td>
<td>2,065</td>
<td>1,060</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 6. Hasil analisis statistik terhadap bobot jenis skin lotion yang dihasilkan

ANOVA

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>0.033</td>
<td>5</td>
<td>0.007</td>
<td>5.101</td>
<td>0.036</td>
</tr>
<tr>
<td>Intercept</td>
<td>13.293</td>
<td>1</td>
<td>13.293</td>
<td>10258.322</td>
<td>0.000</td>
</tr>
<tr>
<td>Karangen</td>
<td>0.009</td>
<td>1</td>
<td>0.009</td>
<td>6.585</td>
<td>0.043</td>
</tr>
<tr>
<td>Kitosan</td>
<td>0.023</td>
<td>2</td>
<td>0.012</td>
<td>9.048</td>
<td>0.015</td>
</tr>
<tr>
<td>Karangen * Kitosan</td>
<td>0.001</td>
<td>2</td>
<td>0.001</td>
<td>4.12</td>
<td>0.680</td>
</tr>
<tr>
<td>Error</td>
<td>0.008</td>
<td>6</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13.334</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>0.041</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R Squared = 0.610 (Adjusted R Squared = 0.651)

Post Hoc Test

Multiple Comparisons

<table>
<thead>
<tr>
<th>(i) Kitosan</th>
<th>(j) Kitosan</th>
<th>Mean Difference (i-j)</th>
<th>Std. Error</th>
<th>Sig</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>Bayer HSD</td>
<td>.10</td>
<td>.30</td>
<td>0.0250</td>
<td>.025</td>
<td>.995</td>
</tr>
<tr>
<td></td>
<td>.30</td>
<td>.50</td>
<td>0.0250</td>
<td>.025</td>
<td>.995</td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td>.30</td>
<td>0.0250</td>
<td>.025</td>
<td>.995</td>
</tr>
<tr>
<td>Bonferron</td>
<td>.10</td>
<td>.30</td>
<td>0.0250</td>
<td>.025</td>
<td>.995</td>
</tr>
<tr>
<td></td>
<td>.30</td>
<td>.50</td>
<td>0.0250</td>
<td>.025</td>
<td>.995</td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td>.30</td>
<td>0.0250</td>
<td>.025</td>
<td>.995</td>
</tr>
</tbody>
</table>

Based on observed means.
* The mean difference is significant at the .05 level.

Homogenous Subsets

<table>
<thead>
<tr>
<th>Bj</th>
<th>Kitosan</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Tukey HSD</td>
<td>.10</td>
<td>4</td>
<td>1.02200</td>
</tr>
<tr>
<td></td>
<td>.30</td>
<td>4</td>
<td>1.02250</td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td>4</td>
<td>1.11500</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 0.01.
a. Uses Harmonic Mean Sample Size = 4.000.
b. Alpha = .05.
Lampiran 7. Data pengujian water holding capacity

Pengukuran pada jam ke-0

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Ulangan</th>
<th>Berat plastik (g)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total (g)</td>
<td>Sampel (g)</td>
<td>% Sampel</td>
<td>Rata-rata</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>0,370</td>
<td>1,405</td>
<td>1,035</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,400</td>
<td>1,425</td>
<td>1,025</td>
<td>100</td>
</tr>
<tr>
<td>201</td>
<td>1</td>
<td>0,365</td>
<td>1,445</td>
<td>1,080</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,320</td>
<td>1,335</td>
<td>1,015</td>
<td>100</td>
</tr>
<tr>
<td>301</td>
<td>1</td>
<td>0,370</td>
<td>1,39</td>
<td>1,020</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,345</td>
<td>1,395</td>
<td>1,050</td>
<td>100</td>
</tr>
<tr>
<td>401</td>
<td>1</td>
<td>0,410</td>
<td>1,495</td>
<td>1,085</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,400</td>
<td>1,425</td>
<td>1,025</td>
<td>100</td>
</tr>
<tr>
<td>501</td>
<td>1</td>
<td>0,350</td>
<td>1,35</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,455</td>
<td>1,505</td>
<td>1,050</td>
<td>100</td>
</tr>
<tr>
<td>601</td>
<td>1</td>
<td>0,305</td>
<td>1,505</td>
<td>1,2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,365</td>
<td>1,425</td>
<td>1,060</td>
<td>100</td>
</tr>
</tbody>
</table>

Pengukuran pada jam ke-1

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Ulangan</th>
<th>Total (g)</th>
<th>Sampel (g)</th>
<th>% Sampel</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1</td>
<td>1,375</td>
<td>1,005</td>
<td>97,10</td>
<td>96,84</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,390</td>
<td>0,990</td>
<td>96,58</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>1</td>
<td>1,415</td>
<td>1,050</td>
<td>97,22</td>
<td>96,145</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,285</td>
<td>0,965</td>
<td>95,07</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>1</td>
<td>1,355</td>
<td>0,985</td>
<td>96,57</td>
<td>96,14</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,350</td>
<td>1,005</td>
<td>95,71</td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>1</td>
<td>1,450</td>
<td>1,040</td>
<td>95,85</td>
<td>97,195</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,410</td>
<td>1,010</td>
<td>98,54</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>1</td>
<td>1,315</td>
<td>0,965</td>
<td>96,50</td>
<td>96,82</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,475</td>
<td>1,020</td>
<td>97,14</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>1</td>
<td>1,500</td>
<td>1,195</td>
<td>99,58</td>
<td>99,08</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,410</td>
<td>1,045</td>
<td>98,58</td>
<td></td>
</tr>
</tbody>
</table>
Pengukuran pada jam ke-2

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Ulangan</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1</td>
<td>1,340</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,360</td>
</tr>
<tr>
<td>201</td>
<td>1</td>
<td>1,380</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,255</td>
</tr>
<tr>
<td>301</td>
<td>1</td>
<td>1,325</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,315</td>
</tr>
<tr>
<td>401</td>
<td>1</td>
<td>1,415</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,375</td>
</tr>
<tr>
<td>501</td>
<td>1</td>
<td>1,285</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,445</td>
</tr>
<tr>
<td>601</td>
<td>1</td>
<td>1,470</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,375</td>
</tr>
</tbody>
</table>

Pengukuran pada jam ke-3

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Ulangan</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1</td>
<td>1,300</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,320</td>
</tr>
<tr>
<td>201</td>
<td>1</td>
<td>1,355</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,220</td>
</tr>
<tr>
<td>301</td>
<td>1</td>
<td>1,290</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,285</td>
</tr>
<tr>
<td>401</td>
<td>1</td>
<td>1,375</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,340</td>
</tr>
<tr>
<td>501</td>
<td>1</td>
<td>1,235</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,415</td>
</tr>
<tr>
<td>601</td>
<td>1</td>
<td>1,430</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,340</td>
</tr>
</tbody>
</table>

Pengukuran pada jam ke-4

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Ulangan</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1</td>
<td>1,270</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,290</td>
</tr>
<tr>
<td>201</td>
<td>1</td>
<td>1,325</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,195</td>
</tr>
<tr>
<td>301</td>
<td>1</td>
<td>1,270</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,255</td>
</tr>
<tr>
<td>401</td>
<td>1</td>
<td>1,335</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,310</td>
</tr>
<tr>
<td>501</td>
<td>1</td>
<td>1,200</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,380</td>
</tr>
<tr>
<td>601</td>
<td>1</td>
<td>1,400</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,320</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>Ulangan</td>
<td>Total (g)</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>1,235</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,265</td>
</tr>
<tr>
<td>201</td>
<td>1</td>
<td>1,300</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,170</td>
</tr>
<tr>
<td>301</td>
<td>1</td>
<td>1,245</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,225</td>
</tr>
<tr>
<td>401</td>
<td>1</td>
<td>1,315</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,290</td>
</tr>
<tr>
<td>501</td>
<td>1</td>
<td>1,165</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,350</td>
</tr>
<tr>
<td>601</td>
<td>1</td>
<td>1,365</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,295</td>
</tr>
</tbody>
</table>
Lampiran 8. Data perhitungan jumlah koloni bakteri pada hari ke-0

<table>
<thead>
<tr>
<th></th>
<th>L01</th>
<th>L02</th>
<th>L03</th>
<th>L04</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10^2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Keterangan:
- L01: kontrol negatif
- L02: kitosan 0.5% sebagai bahan pengawet
- L03: metil dan propil paraben 0.2% sebagai bahan pengawet
- L04: gabungan kitosan, metil dan propil paraben 0.2% sebagai bahan pengawet

Contoh perhitungan:
- **L01:** $(1 + 1)/2 \times 10^1 = 1,0 \times 10^1$ koloni/gram
- **L02:** $(1 + 1)/2 \times 10^1 = 1,0 \times 10^1$ koloni/gram

Lampiran 9. Data perhitungan jumlah koloni bakteri pada hari ke-30

<table>
<thead>
<tr>
<th></th>
<th>L01</th>
<th>L02</th>
<th>L03</th>
<th>L04</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^1</td>
<td>TBUD</td>
<td>48</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TBUD</td>
<td>40</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>10^2</td>
<td>7</td>
<td>16</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Contoh perhitungan:
- **L01:** $(7 + 17)/2 \times 10^2 = 1,2 \times 10^3$ koloni/gram
- **L02:** $(48 + 40)/2 \times 10^1 = 4,4 \times 10^2$ koloni/gram
- **L03:** $(6 + 5)/2 \times 10^1 = 5,5 \times 10^1$ koloni/gram
- **L04:** $(3 + 4)/2 \times 10^1 = 3,5 \times 10^1$ koloni/gram

Lampiran 10. Data perhitungan jumlah koloni bakteri pada hari ke-60

<table>
<thead>
<tr>
<th></th>
<th>L01</th>
<th>L02</th>
<th>L03</th>
<th>L04</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^1</td>
<td>TBUD</td>
<td>63</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>TBUD</td>
<td>83</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>10^2</td>
<td>14</td>
<td>21</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>27</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Contoh perhitungan:
L01 : \((14+21)/2 \times 10^2 = 1,8 \times 10^3\) koloni/gram
L02 : \((63+83)/2 \times 10^1 = 7,3 \times 10^2\) koloni/gram
L03 : \((10+6)/2 \times 10^1 = 8 \times 10^1\) koloni/gram
L04 : \((7+8)/2 \times 10^1 = 7,5 \times 10^1\) koloni/gram

| Lampiran 11. Data perhitungan jumlah koloni jamur pada hari ke-0 |
|-----------------|-------|-------|-------|-------|
| 10^1 | L01 | L02 | L03 | L04 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

Keterangan:
L01 : kontrol negatif
L02 : kitosan 0,5 % sebagai bahan pengawet
L03 : metil dan propil paraben 0,2 % sebagai bahan pengawet
L04 : gabungan kitosan, metil dan propil paraben 0,2 % sebagai bahan pengawet

| Lampiran 12. Data perhitungan jumlah koloni jamur pada hari ke-30 |
|-----------------|-------|-------|-------|-------|
| 10^1 | L01 | L02 | L03 | L04 |
| 3 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |

Contoh perhitungan:
L01 : \((3+1)/2 \times 10^1 = 2,0 \times 10^1\) koloni/gram

| Lampiran 13. Data perhitungan jumlah koloni jamur pada hari ke-60 |
|-----------------|-------|-------|-------|-------|
| 10^1 | L01 | L02 | L03 | L04 |
| 2 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 |

Contoh perhitungan:
L01 : \((2+2)/2 \times 10^1 = 2,0 \times 10^1\) koloni/gram
Lampiran 14. Nilai pH produk selama penyimpanan

<table>
<thead>
<tr>
<th></th>
<th>L01</th>
<th>L02</th>
<th>L03</th>
<th>L04</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-0</td>
<td>6,38</td>
<td>4,96</td>
<td>5,86</td>
<td>4,93</td>
</tr>
<tr>
<td></td>
<td>6,4</td>
<td>4,94</td>
<td>5,95</td>
<td>4,94</td>
</tr>
<tr>
<td>H-30</td>
<td>6,2</td>
<td>5,01</td>
<td>5,86</td>
<td>4,86</td>
</tr>
<tr>
<td></td>
<td>6,38</td>
<td>4,95</td>
<td>5,93</td>
<td>4,93</td>
</tr>
<tr>
<td>H-60</td>
<td>5,32</td>
<td>5,02</td>
<td>5,95</td>
<td>4,92</td>
</tr>
<tr>
<td></td>
<td>6,18</td>
<td>5,04</td>
<td>5,91</td>
<td>4,92</td>
</tr>
</tbody>
</table>

Keterangan:
- L01 : kontrol negatif
- L02 : kitosan 0,5 % sebagai bahan pengawet
- L03 : metil dan propil paraben 0,2 % sebagai bahan pengawet
- L04 : gabungan kitosan, metil dan propil paraben 0,2 % sebagai bahan pengawet

Lampiran 15. Data uji kelembaban kulit (%)

Ulangan ke-1

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>0'</th>
<th>5'</th>
<th>10'</th>
<th>15'</th>
</tr>
</thead>
<tbody>
<tr>
<td>L11</td>
<td>34,7</td>
<td>38,8</td>
<td>38,1</td>
<td>37,9</td>
</tr>
<tr>
<td>L12</td>
<td>34,2</td>
<td>40,1</td>
<td>38,8</td>
<td>38,1</td>
</tr>
<tr>
<td>L13</td>
<td>34</td>
<td>43</td>
<td>42,6</td>
<td>41,2</td>
</tr>
<tr>
<td>L14</td>
<td>34</td>
<td>43,6</td>
<td>43</td>
<td>42,1</td>
</tr>
<tr>
<td>L15</td>
<td>34,8</td>
<td>39</td>
<td>38,7</td>
<td>37,5</td>
</tr>
</tbody>
</table>

Ulangan ke-2

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>0'</th>
<th>5'</th>
<th>10'</th>
<th>15'</th>
</tr>
</thead>
<tbody>
<tr>
<td>L11</td>
<td>33,5</td>
<td>39,4</td>
<td>38,9</td>
<td>38,6</td>
</tr>
<tr>
<td>L12</td>
<td>33,7</td>
<td>40,8</td>
<td>39,6</td>
<td>39,5</td>
</tr>
<tr>
<td>L13</td>
<td>33,4</td>
<td>41,9</td>
<td>40,7</td>
<td>39,8</td>
</tr>
<tr>
<td>L14</td>
<td>33,4</td>
<td>42,6</td>
<td>41,2</td>
<td>40,5</td>
</tr>
<tr>
<td>L15</td>
<td>33</td>
<td>39</td>
<td>38,8</td>
<td>37,8</td>
</tr>
</tbody>
</table>

Keterangan:
- L11 : basis sebagai kontrol negatif
- L12 : penggunaan karagenan 0,2 % sebagai pelembab
- L13 : penggunaan kitosan 0,5 % sebagai pelembab
- L14 : gabungan kitosan 0,5 % dan karagenan 0,2 % sebagai pelembab
- L15 : komersial (Dove) sebagai kontrol positif