Proceeding
The 2nd International Seminar
Feed Safety for Healthy Food

AINI publication No. 01/2012

Jointly Published by:
Indonesian Association of Nutritional and Feed Science (AINI)
and Faculty of Animal Husbandry, Universitas Padjadjaran
Jatinangor, July 6-7, 2012
ISBN: 978-602-95808-3-9
Proceeding
The 2nd International Seminar
"Feed Safety for Healthy Food"

Technical Editors:
Secretariat of The International Seminar
"Feed Safety for Healthy Food"
Keynote Speaker:
Director General of Animal Husbandry and Animal Health

Main Speakers:
Prof. Fr. Jurgen Zentek (Berlin, German)
Prof. Abdul Razak Alimon (Malaysia)
Dr. Kevin Liu (Singapore)
Prof. E. R. Ørskov, Ph D., FPAS, FRSE (Scotland)
Proceeding
The 2nd International Seminar
"Feed Safety for Healthy Food"

Subject Editors:
Prof. Dr. Ali Agus
Dr. Ir. Kurnia A. Kamil, M. Agr.Sc., M. Phil.
Prof. Dr. Abdur Razak Alimon
Prof. E. R. Ørskov, Ph.D., FPAS, FRSE.
Prof. Fr. Jurgen Zentek
Dr. U. Hidayat Tanuwiria, M.Si.
FOREWORD

We thank the Almighty Allah, the Most Gracious and the Most Merciful that the proceedings of the 2nd International Seminar, the 8th Biannual Meeting and 3rd Congress and Workshop of AINI with the theme “Feed Safety for Healthy Food” organized by Indonesian Association of Nutrition and Feed Science, Faculty of Animal Husbandry, Universitas Padjadjaran on 6 - 7 July 2011 have been completed.

These activities were to collect variety of scientific information with the purpose to collect scientific information about feed for a healthy food, to produce a draft policy on a national feed system and to make a scientific forum for Academics, Researchers, Practitioners of animal husbandry, Health and Policy makers. Scientific papers that were presented either in oral or poster stated in the proceedings.

Thanks go to all those who have provided both moral support or material so that this seminar can be carried out and the proceeding can be issued.

Jatinangor, 5 March 2012

Committee
CONTENTS

TECHNICAL EDITORS ... i
KEYNOTE AND MAIN SPEAKERS ... ii
SUBJECT EDITORS .. iii
FOREWORD ... iv
CONTENTS .. v

DIETARY STRATEGIES OF AMMONIA MITIGATION AT POULTRY FARMS IN INDONESIA
Adrizal, P. Patterson, and Nelson ... 1

EFFECTS OF FEEDING FORAGES LEAF MEAL ON THE PERFORMANCES OF LAYING HENS
Ahmad Windu Bahari and Osfar Sjofjan ... 18

THE PROTEOGLICAN QUALITY FROM PRODUCT NATURATED OF CHITOSAN EXTRACT WHICH DIGESTIBILITY AND HEMATOLOGIC MEASURED
Abun, Denny Rusman, and Kiki Haetami .. 29

RUMINANTS FEED CHAIN DEVELOPMENT IN INDONESIA: REVIEWING AND A VALUE ANALYSIS
Achmad Firman, Andre R Daud, Hasni Arief, dan Anita Fitriani .. 38

BEEF CATTLE DEVELOPMENT: LIVESTOCK PRODUCTION AND FEEDING SYSTEM AND ANIMAL PERFORMANCE UNDER FARMER GROUP OF BEEF CATTLE DEVELOPMENT PROGRAM
Akhmad Sodiq ... 44

BLOOD ALBUMIN AND YOLK CHOLESTEROL OF DUCK (Anas sp.) POLLUTED BY LEAD (Pb) TEXTILE INDUSTRY WASTE
Andi Mushawwir and Diding Latipudin ... 54

FEED SAFETY: ISSUES AND CHALLENGES FOR RUMINANT INDUSTRY IN INDONESIA
Andre R. Daud, A. Firman .. 59

EFFECT OF UREA ADDITION AND INCUBATION TIME IN PALM FIBER FERMENTATION ON CHEMICAL COMPOSITION AND GAS PRODUCTION IN-VITRO
Asih Kurniawati, Chusnul Hanim, and Syaiful Anwar Malik ... 66
EFFECT OF COMMERCIAL TANNIN AND *Leucaena Leucocephala* ON THE RUMEN METHANOCENIC BACTERIA OF CATTLE AND CARABAO
Bambang Suwignyo, Medino G. N. Yebron, Jr and Cesar C. Sevilla 74

Saccharomyces cerevisiae IN GOAT FEEDS AFFECTED RUMEN FERMENTATION PATTERN BUT DID NOT AFFECT METHANE CONCENTRATION
Caribu Hadi Prayitno, Tri Rahardjo Sutadi dan Suwarno .. 84

EFFECT OF FLUSHING ON SPERM QUALITY IN NATIVE ROOSTERS (*Gallus Gallus Domesticus* L)
Dadang Mulyadi Saleh ... 90

THE EFFECT OF PRE-CONDITION AND WATER SOLUBLE CARBOHYDRATE SOURCES ADDITION ON NAPIER GRASS SILAGE QUALITY
Despat and Permana, I.G. ... 94

ISOLATION AND SCREENING OF FUNGI PRODUCING CELLOBIOSE DEHYDROGENASE: "ENZYMES FOR ANIMAL FEED PREPARATIONS BASED ON ENZYMATIC PROCESS"
Desriani, Bambang Prasetya, Puspita Lisdiyanti, Wiwit Amrinola, Neneng Hasanah, Rivai .. 101

TOXIC DOSE METHANOL EXTRACT AND RESIDUE OF *Jatropha curcas* L. MEAL ON MICE (*Mus musculus*)
Dewi Apri Astuti, Sumiati and P. C. Nanlohy ... 106

EFFECT OF INCREASING ENERGY CONTENT IN DIET ON THE PRODUCTIVITY OF SUMATERA COMPOSITE BREED EWES DURING LACTATION
Dwi Yulistiani ... 115

VARIOUS METHOD OF PROCESSING TO INCREASE THE UTILIZATION OF CASSAVA PEEL AS RUMINANTS FEED
Dwi Yulistiani, I. W. Mathius and Santi Ananda.A.A. .. 121

THE EFFECT OF TEMULA WAK (*Curcuma xanthorrhiza* Roxb) AND COMBINATION OF VITAMIN C AND VITAMIN E SUPPLEMENTATIONS ON PERFORMANCE OF HEAT-STRESSED BROILERS
E. Kusnadi, A. Rahmat, A. Djulardi ... 128

EFFECT OF USING BY-PRODUCT OF VIRGIN COCONUT OIL PROCESSING (BLONDO) IN RATION ON DUCK PERFORMANCE
E. Martinelly, Husmaini, A. Salim and R. Lubis ... 135
DETECTION OF ANTIBIOTICS RESIDUAL IN PIG AND CHICKEN PREMIX THROUGH TEST MICROBIOLOGICAL
Ellin Harlia ... 140

DETERMINATION OF UTILIZATION LEVEL OF *Curcuma zedoaria* Rosc.
TO IMPROVE RUMEN ECOLOGY OF mastitis DAIRY COWS (in-vitro)
Ellyza Nurdin and Hilda Susanti 143

AVAILABILITY OF RICE STRAWS AS FEED RESOURCE IN SUPPORTING CROP LIVESTOCK SYSTEM (Beef Cattle-Paddy)
BASED ON ECO-FARMING IN JAMBI PROVINCE
Evi Frimawaty, Adi Basukriadi, Jasmal A Syamsu, T. E. Budhi Soesilo 150

EFFECTS OF SUPPLEMENTAL ORGANIC CHROMIUM AND FUNGI
Ganoderma lucidum ON MILK PRODUCTION AND IMMUNE RESPONSE IN LACTATING COWS
F. Agustin, T. Toharmat, D. Evyernie, D. Taniwiryono, S. Tarigan 156

THE EFFECTS OF RUMINAL INFUSION OF UREA TO DRY MATTER AND CRUDE PROTEIN INTAKES WITH UTILIZATION OF LEUCENA (*Leucaena leucocephala*) IN BUFFALO (*Bubalus bubalis* Linn.)
F. F. Munier and C. C. Sevilla .. 164

THE REQUIREMENT OF ENERGY AS WELL AS DIGESTIBLE PROTEIN OF MILKING BEEF COW
F. Rahim ... 172

EFFECTS OF VITAMIN E SUPPLEMENTATION ON PRODUCTION AND REPRODUCTION PERFORMANCE OF MUSCOPPY DUCK (*Cairina moschata*)
Hafsah, Rosmiaty Arief, and Mulyati 179

THE EFFECT OF *HIBISCUS ROSA-SINENSIS* L LEAVES AS SAPONIN SOURCES ON PROTOZOA POPULATION, GAS PRODUCTION AND RUMEN FLUID FERMENTATION CHARACTERIZATION IN VITRO
Hendra Herdian, Lusty Istiqomah, Andi Febrisiantosa, Sigit Wahyu Hartanto 186

BLOOD MEAL USAGE IN DIET OF AMMONIATED RICE STRAW BASIS FOR SIMMENTAL CATTLE
Hermon ... 194

RESPONSE OF NATIVE CHICKENS ON FEED FORMULATIONS USING LOCAL UNCONVENTIONAL FEEDSTUFFS
Heti Resnawati .. 200
EARTHWORMS AS SOURCE OF PROTEIN ALTERNATIVE FOR POULTRY FEED
Heti Resnawi ... 206

EFFECT OF SHEEP URINE ON DRY MATTER YIELD AND FORAGE QUALITY AND CORN YIELD
Jin Susilawati, Nyimas Popi Indriani, Lizah Khairani, Mansyur, Romi Zamhir Islami ... 211

EFFECT OF FEED RESTRICTION ON FEED EFFICIENCY, CARCASS QUALITY AND DIGESTIVE ORGANS CHARACTERISTICS OF BROILER
J.J.M.R. Londok, B. Tulung, Y.H.S. Kowel, and John E.G. Rompis 216

STRATEGIC UTILIZATION OF RICE STRAW AS FEED FOR RUMINANTS IN THE BANTAENG DISTRICT: SWOT ANALYSIS APPROACH
Jasmal A. Syamsu and Hasmida Karim ... 227

THE EFFECT OF PHYTATE IN DIET AND LEAD (Pb) IN DRINKING WATER ON LEAD OF BLOOD, MEAT, BONE AND EXCRETA OF STARTING DUCK
Kamil K.A., R. Kartasudjana, S. Iskandar ... 236

THE EFFECT OF PHYTATE IN DIET AND LEAD (Pb) IN DRINKING WATER ON HEMATOLOGICAL INDICATORS OF STARTING DUCK
Kamil K.A ... 244

PEMANFAATAN BIO-MOS (Mannan oligosakarida) HASIL BIOPROSES LIMBAH INTI SAWIT DALAM PAKAN IKAN NILA
Kiki Haetami, Junianto, dan Abun ... 250

THE ADDITION OF COCOA (Theobroma cacao) POWDER IN MILK FERMENTED TO REDUCE THE URIC ACID LEVEL ON HYPERLIPIDEMI RATS
Lovita Adriani ... 260

THE EFFECT OF SUPPLEMENTATION FERMENTED KOMBUCHA TEA ON URIC ACID LEVELS IN THE DUCK BLOODS
Lovita Adriani ... 266

IMPROVING THE NUTRIENT QUALITY OF JUICE WASTE MIXTURE BY STEAM PRESSURE FOR POULTRY DIET
Maria Endo Mahata, Yose Rizal and Guoyao Wu ... 270

PERFORMANCES AND HAEMATOLOGY CHARACTERISTICS OF BROILER CHICKS FED VARYING MODIFIED PALM KERNEL CAKE
M Tafsin, ND Hanafi, Z Siregar ... 277
Proceeding
The 2nd International Seminar
"Feed Safety for Healthy Food"

1. Efficiency of Garlic Extract on Performance and Fat Deposit of Broiler
 Merry Muspita Dyah Utami ... 284

2. Improving the Quality of Palm Kernel Cake Content as Poultry Feed through Fermentation by Combination with Various Microbe, and Humic Acid Dosage
 Mirmayati, Yose Rizal, Yetti Marlida and I. Putu Kompiang 290

3. Effects of Plant Proportions of Panicum maximum and Centrosema pubescens Applied with Phosphate Fertilizers and Defoliated at Different Intervals on Dry Matter Yield, Yield Advantage and Nutritional Quality
 Muhammad Rusdy .. 301

4. The Forage Composition of Sheep and Cut and Carry System Capacity in the Palm Gardens Sub Cibadak, District Sukabumi
 Muhammad Setiana .. 308

5. Determination of Utilization of Level Shrimp by Product on Broiler Performance
 Muhtarudin, Tintin Kurtini, Dian Septinova ... 311

6. Enzyme Supplementation on Local Feeds (Pelleted or Mash) for Broiler Chickens Growth: Technology Innovation to Support Food Sustainability
 N.G.A. Mulyantini .. 315

7. Penngunaan Lumpur Sawit Fermentasi Dalam Pakan Terhadap Profil Darah dan Lemak Ayam Broiler
 Ning Iriyanti and Bambang Hartoyo ... 319

8. The Effect of Feeding Product Fermented with Monascus purpureus on Performances and Quail Egg Quality
 Nuraini, Sabrina dan Suslina A Latif ... 327

9. The Effect of Phytogenic Feed Additives for Broiler Chicken
 Nurita Thiassari and Osfar Sjofjan ... 334

10. Effect of Corn Meal Substitution with Noodle Waste and Fortified Noodle Waste in Diet on Broiler Performance
 Osfar Sjofjan and Ahmad Windu Bahari .. 342
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLEMENTATION Curcuma longa OR Curcuma xanthorrhiza ON</td>
<td>R. Mutia and Sumiati</td>
<td>349</td>
</tr>
<tr>
<td>CARCASS TRAIT AND CHOLESTEROL CONTENT OF BROILER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPPLEMENTATION Curcuma longa OR Curcuma xanthorrhiza ON</td>
<td>R. Mutia and Sumiati</td>
<td>355</td>
</tr>
<tr>
<td>BROILER PERFORMANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFLUENCE of PARE FRUIT EXTRACT (Momordica charantia L.) TO</td>
<td>Rita Shintawati, Hernawati</td>
<td>361</td>
</tr>
<tr>
<td>VISCERAL FAT WEIGHT, FEMUR MUSCLE AND LIVER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDDLE-AGED FEMALE MICE SWISS WEBSTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFFECTIVITY OF SILAGE AND PROBIOTIC ON THE RUMEN</td>
<td>Ridwan, R, Y. Widyastuti, S. Budiarti, A. Dinoto</td>
<td>368</td>
</tr>
<tr>
<td>METABOLISM OF ONGOLE CATTLE IN VIVO EXPERIMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFFECT OF EDAMAME SOYBEAN ISOFLAVONE CONCENTRATE ON</td>
<td>Rosa Tri Hertamawati, Ujang Suryadi dan Dadik Pantaya</td>
<td>378</td>
</tr>
<tr>
<td>BROILERS GROWTH PERFORMANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFLUENCE of PARE FRUIT EXTRACT (Momordica charantia L.) TO</td>
<td>Siti Chuzaemi, Mashudi</td>
<td>402</td>
</tr>
<tr>
<td>VISCERAL FAT WEIGHT, FEMUR MUSCLE AND LIVER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDDLE-AGED FEMALE MICE SWISS WEBSTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE EFFECT OF ADDING “TAPE SINGKONG” (FERMENTED CASSAVA) JUICE ON</td>
<td>Salam N.Aritonang, Elly Roza, Sri Novalina</td>
<td>383</td>
</tr>
<tr>
<td>THE CHARACTERISTICS OF FERMENTED MILK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROTEIN MOLECULAR STRUCTURE OF CANOLA SEED AFFECTED BY</td>
<td>Samadi</td>
<td>389</td>
</tr>
<tr>
<td>HEAT PROCESSING METHOD IN RELATION TO PROTEIN AVAILABILITY:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTOCLAVED HEATING VS. DRY HEATING: A NOVEL APPROACH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE EFFECT OF CONDENSED TANNIN OF MIMOSA BARK ADDED TO</td>
<td>Siti Chuzaemi, Mashudi</td>
<td>408</td>
</tr>
<tr>
<td>SOYBEAN MEAL ON IN VITRO GAS PRODUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vitro RUMEN ENZYME ACTIVITIES ON DIFFERENT RATIO OF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORAGE AND CONCENTRATE SUPPLEMENTED BY LERAK (Sapindus rarak)</td>
<td>Sri Suharti, Dewi Apri Astuti, Elizabeth Wina, K.G. Wiryawan and</td>
<td>408</td>
</tr>
<tr>
<td>EXTRACT</td>
<td>Toto Toharmat</td>
<td></td>
</tr>
<tr>
<td>THE USE OF Squilla empusa FERMENTATION IN THE DIET LAYERS THE</td>
<td>Sri Suhermiyati, Roesdiyanto, Winarto Hadi</td>
<td>415</td>
</tr>
<tr>
<td>EFFECTS YOLK EGGS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x
TRANSFER OF OMEGA-3 PROTECTED AND L-CARNITINE IN THE DIETS OF FERMENTED RUBBISH MARKET ITS EFFECT ON FATTY ACID COMPOSITION OF CHEMIST SIMENTAL MEAT CATTLE
Sudibya .. 420

THE EFFECT OF CHEMICAL AND BIOLOGICAL TREATMENTS ON WEIGHT LOSS, NUTRIENTS CONTENT, TRYSIN INHIBITOR AND LECTIN ACTIVITIES OF Jatropha curcas L. MEAL
Sumanti, D. A. Astuti, and R. Rahmasari .. 430

FORAGES FOR GOAT PRODUCTION UNDER CITRUS ECOSYSTEM IN NORTH SUMATRA
Tatang M. Ibrahim .. 438

ENVIRONMENTAL MANIPULATION MICROINTESTINAL USING LECTIN Jatropha SEED MEAL AS MEDIA ATTACHMENT LACTIC ACID BACTERIA AND ITS INFLUENCE ON THE HAEMATOLOGICAL PROFILE OF POULTRY
Titin Widiyastuti and Caribu Hadi Prayitno ... 447

THE EFFECT OF MIXED COMMERCIAL YEAST CULTURE FERMENTATION FOR CASSAVA WASTE ON ITS PROXIMATE COMPONENTS
Tri Agus Sartono, Nurwantoro, and Joelal Achmadi .. 451

CORRELATION BETWEEN THE PUBLIC UNDERSTANDINGS OF AVIAN INFLUENZA WITH LEVEL OF WILLINGNESS TO CONSUME POULTRY PRODUCT
Unang Yunasaf dan Adjat Sudradjat M. ... 456

UTILIZATION OF UREA AND FISH MEAL IN COCOA POD SILAGE BASED RATIONS TO INCREASE THE GROWTH OF ETAWAH CROSSBRED GOATS
Wisri Puastuti and Dwi Yulistiani .. 463

ACTIVITY OF CELLULASE FROM SELECTED ACTINOMYCETES Streptomyces rimosus sp. ID05-A0911
Wulansih Dwi Astuti, Roni Ridwan, Yantyati Widyastuti .. 470

IMPROVING THE NUTRIENT QUALITY OF JUICE WASTES MIXTURE THROUGH FERMENTATION BY USING Trichoderma viride FOR POULTRY DIET
Yose Rizal, Maria Endo Mahata and Indra Joli .. 482
THE EVALUATION OF FERMENTATIVE CAPABILITY OF CELLULOTIC FUNGI FROM COW RUMEN FLUID AGAINST DECREASE IN CRUDE FIBER AND READY AVAILABLE CARBOHYDRATE IN CASSAVE PEEL WASTE
Yuli Andriani, Ratu Safitri, Abun ... 492

THE EFFECT OF WASHING AND FERMENTATION OF CASSAVEA PEEL ON HCN CONCENTRATION AND RUMEN VFA PRODUCTION
Yuni Suranindyah, Andriyani Astuti ... 502

PARTY RELATIONS WITH THE MINERAL CONTENT OF BLOOD ON THE PARENT CATTLE ARTIFICIAL INSEMINATION (AI) IN WEST SUMATRA
Zaituni Udin and Zesfin BP ... 508

EFFECT OF FEEDING A TRADITIONAL TOWARDS THE DEVELOPMENT OF LIVESTOCK REPRODUCTION BUFFALO THE DISTRICTS OF KAMPAR PROVINCE RIAU
Zespin BP, Ferry Lismanto Syaiful and Yendraliza 516

EFFECT OF SAPONIN (Sapindus rarak fruit) ON MEAT CHOLESTEROL FROM BROILER CHICKENS
Chusnul Hanim, Lies Mira Yusianti, and Rahma Fitriastuti 520

BODY WEIGHT GAIN OF ETAWWA CROSSBREED GOATS MALE FED LOCAL FEED IN WEST JAVA
Denie Heriyadi ... 526

TESTING FEED OF SUGAR CANE PULP AMMONIATION WITH UREA AND AMMONIUM SULFATE ADMINISTRATION BY MEASURING TOTAL VFA CONCENTRATION AND BACTERIA AND PROTOZOA POPULATION OF SHEEP RUMEN FLUID
Diding Latipudin, An-An Yulianti, Ronnie Permana 532

UTILIZED BIO-MOS (Mannan Oligosaccharide) FROM BIOPROCESSED OF PALM KERNEL CAKE ON FEED OF NILE TILAPIA
Kiki Haetami, Junianto, and Abun .. 542

UTILIZATION OF ENCAPSULATED EARTHWORM EXTRACT (Lumbricus rubellius) AS FEED ADDITIVE ON BROILER PERFORMANCE AND MEAT QUALITY
Lusty Istiqomah, Hardi Julendra, Ema Damayanti, Septi Nur Hayati and Hendra Herdian ... 550

PERFORMANCES AND HAEMATOLOGY CHARACTERISTICS OF BROILER CHICKS FED VARYING MODIFIED PALM KERNEL CAKE
M Tafsin, ND Hanafi, Z Siregar .. 559
EFFECT OF KOMBUCHA FERMENTATION ON HEMATOLOGY STATUS AND CARCASS WEIGHT IN DUCK
Novi Mayasari, Lovita Adriani and Angga Kurniawan .. 566

UTILIZATION OF VEGETABLE CROPS RESIDUES AS ELEPHANT GRASS SUBSTITUTE IN COMPLETE FEED ON BODY COMPOSITION OF SHEEP
Umi Muyasaroh, Limbang K Nuswantara and Eko Pangestu .. 572

THE EFFECT OF WASHING AND FERMENTATION OF CASSAVA PEEL ON THE CONCENTRATION OF HCN AND RUMEN VFA PRODUCTION
Yuni Suranindyah, Andriyani Astuti ... 577

AUTHOR INDEKS .. 583
TOXIC DOSE METHANOL EXTRACT AND RESIDUE OF *Jatropha curcas* L. MEAL ON MICE (*Mus musculus*)

Dewi Apri Astuti, Sumiati and P. C. Nanlohy

Department of Animal Nutrition and Feed Technology, Faculty Animal Science, Bogor Agriculture University, dewiapriastuti@yahoo.com

ABSTRACT

The *Jatropha curcas* meal is waste product of *Jatropha curcas* oil production. It contains high amount of nutrient (56% - 68% crude protein) which can be used as an alternative feed source. However, *Jatropha curcas* meal content high anti nutritive compound such as phorbolester and lectin (curcin), which can be used as animal poison. The extraction method was done to get the Jatropha anti nutrition in high concentration. Methanol solvent was used as lipid and water extractor substance, including phorbolester which dissolved in fat. This experiment designed in two steps with twenty five males of mice (av. 19.15 ± 3.03 g BW). Treatments in the first experiment were control (diet without *Jatropha*); R-10 (diet contained 10% residue of methanol extract of *Jatropha*); R-20 (diet contained 20% residue of methanol extract of *Jatropha*); E-5 (5% filtrate methanol extract of *Jatropha* in drinking water) and EF-5 (force drinking of 5% filtrate methanol extract of *Jatropha*). The treatment continued in the second period, same with the first experiment, except the E-5 was replaced by E-10 (10% filtrate methanol extract in drinking water). This dose (5% and 10% of filtrate) were based on total body water. The parameter observed were feed consumption, body weight, mortality, blood profile and histopathology. All data were analyzed descriptively. The results of the first experiment showed that there were decreasing of feed intake and body weight of mice fed with R-10, R-20 and E-5. Treatment with EF-5 resulted 100% mortality in the first day of treatment due to phorbolester, which was indicated by the damage of liver and spleen cells. The result of the second experiment showed that there were decreasing of feed consumption and body weight in all treatments drastically. The treatment R-20 resulted 80% mortality on sixth days, followed by treatment E-10 on ninth days, due to the low erythrocyte and leucocyte number below the normal value. Treatment of R-10 has decreased of PCV even though they were still alive. It is concluded that dose of *Jatropha* methanol extract for mice toxicity were 20% residue in the ration or 10% filtrate in water drinking, or 5% filtrate by force drinking.

Keywords: *Jatropha curcas* meal, mice, methanol extract.
INTRODUCTION

The *Jatropha curcas* meal is a waste product of *Jatropha curcas* oil production and contains high amounts of nutrient (32% - 42% crude protein) which can be used as an alternative protein source for soybean meal replacement. Staubmann et al. (1997) reported that from *Jatropha curcas* oil production results more than 50% of meal *Jatropha curcas*. However, *Jatropha curcas* meal content high anti-nutritive compounds such as phorbol ester and lectin (curcin), which can be used as animal poison. Makkar et al. (1997) reported that phorbol ester and lectin (curcin) are main anti-nutrition which is highly toxic concentration. The extraction method was done to get the *Jatropha curcas* anti-nutrition in high concentration in the filtrate. Methanol solvent was used as a lipid and water extractor substance, including phorbol ester which dissolved in fat.

In Indonesia, the potential of *Jatropha curcas* plantation is very wide, from west to east Indonesia, as presented in Table 1. The most potential of seed production is in Nusa Tenggara islands while the highest plant production is in Sumbawa island.

Table 1. Potential of *Jatropha curcas* production in Indonesia

<table>
<thead>
<tr>
<th>Region</th>
<th>Area (ha)</th>
<th>Plant Production (000)</th>
<th>Seed production X 10^6 ton/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Java</td>
<td>3374</td>
<td>8435</td>
<td>759.15</td>
</tr>
<tr>
<td>East Java</td>
<td>3465</td>
<td>8663</td>
<td>779.74</td>
</tr>
<tr>
<td>Nusa Tenggara</td>
<td>2677</td>
<td>6692</td>
<td>60250</td>
</tr>
<tr>
<td>Sumbawa</td>
<td>15000</td>
<td>37500</td>
<td>3375</td>
</tr>
<tr>
<td>Kalimantan</td>
<td>10025</td>
<td>25062</td>
<td>2255</td>
</tr>
<tr>
<td>Sulawesi</td>
<td>3000</td>
<td>7500</td>
<td>675</td>
</tr>
</tbody>
</table>

Source: Departemen Pertanian (2008)

Permana (2007) reported that there are a different nutrient content of *Jatropha curcas* L. in some region, like in Kebumen, Lampung and East Lombok. Table 2 shows the nutrient composition of *Jatropha curcas* (seed) in some region in Indonesia.

Table 2. Chemical composition of *Jatropha curcas* from different regions

<table>
<thead>
<tr>
<th>Nutrient (%)</th>
<th>Lampung</th>
<th>Kebumen</th>
<th>East Lombok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>93.19</td>
<td>93.24</td>
<td>94.10</td>
</tr>
<tr>
<td>Crude Protein</td>
<td>42.58</td>
<td>37.93</td>
<td>32.64</td>
</tr>
<tr>
<td>Crude Fiber</td>
<td>20.52</td>
<td>12.97</td>
<td>6.58</td>
</tr>
<tr>
<td>Extract ether</td>
<td>13.82</td>
<td>22.38</td>
<td>29.62</td>
</tr>
<tr>
<td>Ash</td>
<td>7.31</td>
<td>7.01</td>
<td>6.78</td>
</tr>
<tr>
<td>Gross Energy (Kal/kg)</td>
<td>5062</td>
<td>4713</td>
<td>4915</td>
</tr>
</tbody>
</table>

Anti-nutrient and toxic content of *Jatropha curcas* L. meal produced from Lampung, Kebumen, and East Lombok were 7.39%, 6.65%, and 7% for phytic acid; 0.72%, 0.70%, and 0.63% for curcin, and trace, 0.99 and 1.33 mg/g sample for phorbol ester, respectively (Triastuty, 2007).

Mice as animal model for evaluation toxic dose, usually used in many studies. Toxicity is defined as a compound which can disturb metabolism and healthy, even though will cause tissue damage and following with deadly animal. Lethal dose (LD) is a such...
dose of poison which given to animal (object) and will cause the animal die suddenly.
LD$_{50}$ or LD$_{100}$ is a such dose of poison or toxic which can kill 50% or 100% of total animal population. Utilization of 40% and 50% of Jatropha curcas meal in mice diet caused 87% and 67% mortality in 3rd – 16th day, while in rat with 37% of Jatropha curcas meal in their diet caused 100% died in 3rd day (Makkar and Becker, 1997).

Phorbolester is organic compound named 12-O-tetradecanophorbol-13-acetate (TPA) solved in water and organic solvent (polar), resistant to the high boiling temperature (>160°C) and can be extracted from Jatropha curcas by methanol solvent (Hecker et al., 1967; Rug et al., 2006). Curcin or lectin is phytotoxin within high toxicity called specific non-immunoglobulin protein which can bind complex carbohydrate (Heller, 1996). Curcin have specific action to coagulate of red blood cell in all animal species (Cheeke, 1989).

Hematology status is very importance to evaluate physiological state of animal condition. Hematology status of mice has 7.7 – 12.5 (X 106/mm3) of erythrocyte, 6-12.6 (X 103/mm3) of leucocyte, 13-16 g% of hemoglobin, 41%-48% of PCV, 55% - 85% of lymphocyte and 12% -30% of netrophil (Smith and Mangkoewidjojo, 1988).

This research was to know the exact toxic dose of filtrate and residue of methanol extract Jatropha curcas L. meal on mice. The product can be elaborate for pesticide poison.

MATERIAL AND METHOD

Twenty five mice male (BW 19.15 ± 3.03 g), were used for up to one month. The animals were allotted into five treatments. The diet offered were mash and based on Nutrient Requirements of Laboratory Animals (1995). The treatments containing methanol extract Jatropha curcas L., either as residue and also filtrate. The treatments were control (diet without Jatropha); R-10 (diet contained 10% residue of methanol extract of Jatropha); R-20 (diet contained 20% residue of methanol extract of Jatropha); E-5 (5% filtrate methanol extract of Jatropha in drinking water) and EF-5 (force drinking of 5% filtrate methanol extract of Jatropha) for the first two weeks experiment and continued with the second period, same with the first experiment, except the E-5 was replaced with E-10 (10% filtrate methanol extract in drinking water). The dose of filtrate methanol extract in drinking water was measured from total animal body water (body water is around 70% of body weight). Composition of diet is presented in Table 3. Concentration of phorbolester and curcin in Jatropha curcas L. meal were 1.33 mg/g and 0.63%, respectively (Permana et al., 2007). A one week feed control (mash) adaptation period for animals was allowed before feeding trial in the individual cages.
Table 3. Nutrient composition of diets for experimental mice

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>C</th>
<th>R10</th>
<th>R20</th>
<th>E5</th>
<th>EF5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter (% of feed)</td>
<td>87.88</td>
<td>88.18</td>
<td>88.34</td>
<td>87.88</td>
<td>87.88</td>
</tr>
<tr>
<td>Crude protein (% DM)</td>
<td>22.32</td>
<td>20.70</td>
<td>21.59</td>
<td>22.32</td>
<td>22.32</td>
</tr>
<tr>
<td>Crude fiber (% DM)</td>
<td>1.73</td>
<td>4.94</td>
<td>7.80</td>
<td>1.73</td>
<td>1.73</td>
</tr>
<tr>
<td>Fat (% DM)</td>
<td>1.72</td>
<td>1.76</td>
<td>1.97</td>
<td>1.72</td>
<td>1.72</td>
</tr>
<tr>
<td>N-free extract (% DM)</td>
<td>71.59</td>
<td>58.19</td>
<td>54.19</td>
<td>71.59</td>
<td>71.59</td>
</tr>
<tr>
<td>Gross energy (Kal/kg)</td>
<td>4497</td>
<td>3599</td>
<td>3299</td>
<td>4497</td>
<td>4497</td>
</tr>
</tbody>
</table>

C = control diet; R10 = diet contained 10% residue of methanol extract of *Jatropha*; R20 = diet contained 20% residue of methanol extract of *Jatropha*; E5 = 5% filtrate methanol extract of *Jatropha* in drinking water; EF5 = force drinking of 5% filtrate methanol extract of *Jatropha*.

Data on dry matter (DM) intake was obtained from the difference between feed offered and the remainder, while nutrient intake were calculated from the DM intake times nutrient content of diet. Animals were weighed once a week and their body weight was obtained. Percentage of mortality was calculated from animal death divided by total animal times 100%. Lethal dose was defined by the concentration of toxic or dose of residue and filtrate given which can cause the death animal. Blood profile (erythrocyte, PCV, hemoglobin and leucocyte) were measured as described (Sastradipradja et al., 1989). Histopathology of liver and spleen organs was observed at Histopathology Laboratory, Faculty of Veterinary and Medicine IPB. All data were analyzed descriptively.

RESULT AND DISCUSSION

Dry matter intake of mice treated with filtrate and residue methanol extract of *Jatropha curcas* meal in different levels during 2 weeks observation were around 2 – 3 g/head/d, means equal with 10% of BW. Diet containing 10% residue (R10) and 5% filtrate of methanol extract *Jatropha curcas* in drinking water (E5) caused reducing dry matter intake until 14.61% and 31.56% lower than control, respectively. Treatment of 5% filtrate methanol extract by force drinking resulted 100% death animal in a few hours after treatment. High concentration of phorbolester in filtrate methanol extract *Jatropha curcas* as force drinking caused histamine releasing and following with hemolysis and increasing number of leucocyte which caused trans-endothelial cell migration in same organs cell. On the other hand, phorbolester cause releasing of protease and cytokine, and also increase of NADPH oxidase activation, so that all of the reactions above cause damage some tissues and further death animal (Gunjan et al., 2007).
Table 4. Dry matter and nutrient intake (g/d) of mice with different treatments at the first period (0–2nd week observations)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C</th>
<th>R10</th>
<th>R20</th>
<th>E5</th>
<th>EF5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>3.01 ± 1.01</td>
<td>2.92 ± 0.96</td>
<td>3.42 ± 1.06</td>
<td>2.06 ± 0.76</td>
<td>ND</td>
</tr>
<tr>
<td>Crude protein</td>
<td>0.67 ± 0.20</td>
<td>0.53 ± 0.17</td>
<td>0.65 ± 0.23</td>
<td>0.50 ± 0.17</td>
<td>ND</td>
</tr>
<tr>
<td>Fat</td>
<td>0.05 ± 0.01</td>
<td>0.05 ± 0.01</td>
<td>0.06 ± 0.02</td>
<td>0.04 ± 0.01</td>
<td>ND</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>0.05 ± 0.01</td>
<td>0.13 ± 0.04</td>
<td>0.24 ± 0.08</td>
<td>0.04 ± 0.01</td>
<td>ND</td>
</tr>
<tr>
<td>N-free extract</td>
<td>2.16 ± 0.64</td>
<td>1.49 ± 0.49</td>
<td>1.64 ± 0.57</td>
<td>1.59 ± 0.55</td>
<td>ND</td>
</tr>
<tr>
<td>Energy (kal/d)</td>
<td>135 ± 40</td>
<td>92 ± 30</td>
<td>99 ± 34</td>
<td>100 ± 34</td>
<td>ND</td>
</tr>
<tr>
<td>Phorbolester (mg/d)</td>
<td>-</td>
<td>0.34 ± 0.11</td>
<td>0.80 ± 0.28</td>
<td>undetected</td>
<td>ND</td>
</tr>
<tr>
<td>Curcin (ug/d)</td>
<td>-</td>
<td>115.53 ± 38</td>
<td>271.44 ± 95</td>
<td>undetected</td>
<td>ND</td>
</tr>
</tbody>
</table>

C= control diet; R10= diet contained 10\% residue of methanol extract of \textit{Jatropha}; R20 = diet contained 20\% residue of methanol extract of \textit{Jatropha}; E5 = 5\% filtrate methanol extract of \textit{Jatropha} in drinking water; EF5 = force drinking of 5\% filtrate methanol extract of \textit{Jatropha}. ND = no data (animal was die).

In general, dry matter and nutrients intake of mice in the second period (2nd – 4th week) showed decreasing and become lower than in the first period. The longer animal consume phorbolester and curcin, the more toxic they can get. In this research, mice consumed 0.34 (R10) and 0.80 mg/g (R20) phorbolester, while curcin were consumed around 115 and 271 ug/d. Areghere et al (2003) reported that the safety dose of phorbolester in the diet is 0.014 mg/g. Rat fed with 16\% of \textit{Jatropha curcas} meal, contained 0.13 mg/g phorbolester caused decreasing of feed consumption and body weight. Sumiati et al (2007) reported that 5\% (with 2.33 mg curcin), 10\% (with 1.72 mg curcin) and 15\% (with 0.42 mg curcin) of \textit{Jatropha curcas} meal in the broiler ration had LD\textsubscript{50} in the 28th, 14th and 7th day, respectively. Lin et al. (2003) reported that curcin can bind glucoprotein of cell which caused death cell. Curcin also can resist protein synthesis in the ribosome.

Table 5. Dry matter and nutrient intake (g/d) of mice with different treatments at the second period (2nd – 4th week observations)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C</th>
<th>R10</th>
<th>R20</th>
<th>E10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>2.04 ± 0.92</td>
<td>2.32 ± 1.45</td>
<td>2.07 ± 1.85</td>
<td>1.79 ± 0.73</td>
</tr>
<tr>
<td>Crude protein</td>
<td>0.45 ± 0.14</td>
<td>0.48 ± 0.31</td>
<td>0.45 ± 0.39</td>
<td>0.40 ± 0.16</td>
</tr>
<tr>
<td>Fat</td>
<td>0.04 ± 0.01</td>
<td>0.04 ± 0.02</td>
<td>0.04 ± 0.02</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>0.04 ± 0.01</td>
<td>0.13 ± 0.04</td>
<td>0.16 ± 0.04</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td>N-free extract</td>
<td>1.45 ± 0.46</td>
<td>1.35 ± 0.87</td>
<td>1.12 ± 0.99</td>
<td>1.28 ± 0.52</td>
</tr>
<tr>
<td>Energy (kal/d)</td>
<td>91 ± 28</td>
<td>83 ± 53</td>
<td>68 ± 6</td>
<td>80 ± 32</td>
</tr>
<tr>
<td>Phorbolester (mg/d)</td>
<td>-</td>
<td>0.30 ± 0.19</td>
<td>0.55 ± 0.49</td>
<td>undetected</td>
</tr>
<tr>
<td>Curcin (ug/d)</td>
<td>-</td>
<td>104 ± 58</td>
<td>186 ± 116</td>
<td>undetected</td>
</tr>
</tbody>
</table>

C= control diet; R10= diet contained 10\% residue of methanol extract of \textit{Jatropha}; R20 = diet contained 20\% residue of methanol extract of \textit{Jatropha}; E10 = 10\% filtrate methanol extract of \textit{Jatropha} in drinking water.

Performance of mice fed by residue and filtrate methanol extract \textit{Jatropha curcas} during 4 weeks showed that there were loosing of body weight dramatically. Average daily gain in R20 (both in first and second period) were the worst compare to other treatments. In the first two weeks experiment, there were no mortality except in
force drinking treatment. In the second round of feeding toxicity showed that R20 and E10 had 80% mortalities in 6th and 9th day feeding trial, while the deadly in the control was happened by accident at day 12th caused by trapped of the cage.

Table 6. Performance of mice with different treatments at the first period (0-2nd week observations)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C</th>
<th>R10</th>
<th>R20</th>
<th>E5</th>
<th>EF5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial BW (g)</td>
<td>19.81 ± 2.37</td>
<td>21.07 ± 2.24</td>
<td>19.36 ± 3.61</td>
<td>19.10 ± 2.85</td>
<td>17.01 ± 3.87</td>
</tr>
<tr>
<td>Final BW (g)</td>
<td>21.37 ± 3.03</td>
<td>20.38 ± 2.88</td>
<td>17.14 ± 2.14</td>
<td>17.31 ± 2.15</td>
<td>-</td>
</tr>
<tr>
<td>ADG (g/d)</td>
<td>0.11 ± 1.25</td>
<td>-0.05 ± 0.23</td>
<td>-0.16 ± 0.14</td>
<td>-0.13 ± 0.14</td>
<td>-</td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

C= control diet; R10 = diet contained 10% residue of methanol extract of Jatropha; R20 = diet contained 20% residue of methanol extract of Jatropha; E5 = 5% filtrate methanol extract of Jatropha in drinking water; EF5 = force drinking of 5% filtrate methanol extract of Jatropha.

Table 7. Performance of mice with different treatments at the second period (2nd - 4th week observations)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C</th>
<th>R10</th>
<th>R20</th>
<th>E10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial BW (g)</td>
<td>23.49 ± 3.03</td>
<td>20.38 ± 2.88</td>
<td>17.14 ± 2.14</td>
<td>17.31 ± 2.15</td>
</tr>
<tr>
<td>Final BW (g)</td>
<td>19.25 ± 0.77</td>
<td>16.75 ± 3.36</td>
<td>14.71 ± 1.83</td>
<td>12.88 ± 1.66</td>
</tr>
<tr>
<td>ADG (g/d)</td>
<td>-0.30 ± 0.04</td>
<td>-0.25 ± 0.05</td>
<td>-0.47 ± 0.29</td>
<td>-0.45 ± 0.32</td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>60*</td>
<td>0</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

C= control diet; R10 = diet contained 10% residue of methanol extract of Jatropha; R20 = diet contained 20% residue of methanol extract of Jatropha; E10 = 10% filtrate methanol extract of Jatropha in drinking water; * (by accident at day 12th).

Blood profile is presented in Table 8. Result showed that diet containing residue and filtrate methanol extract of Jatropha curcas were lower than control treatment and normal condition of living mice. The worst hematology status was happened in treatment E10, which is the animal has no immunity anymore (0.70 X 10³/mm³). It is said that dose of 10% filtrate methanol extract Jatropha curcas in the drinking water and 5% filtrate by force drinking, to become toxic dose for mice. The toxic dose of residue methanol extract Jatropha curcas is 20% in diet, which cause damage of liver and spleen organs.

Table 8. Blood profile of mice with different treatments at the second period (2nd - 4th week observations)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C</th>
<th>R10</th>
<th>R20</th>
<th>E10</th>
<th>Normal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocyte (10⁶/mm³)</td>
<td>10.39</td>
<td>7.44</td>
<td>7.29</td>
<td>3.65</td>
<td>7 - 12</td>
</tr>
<tr>
<td>Hemoglobin (g %)</td>
<td>13.40</td>
<td>9.60</td>
<td>12.00</td>
<td>11.00</td>
<td>13 - 16</td>
</tr>
<tr>
<td>Pack Cell Volume (%)</td>
<td>39.50</td>
<td>23.25</td>
<td>28.00</td>
<td>33.50</td>
<td>41 - 48</td>
</tr>
<tr>
<td>Leucocyte (10³/mm³)</td>
<td>8.05</td>
<td>4.35</td>
<td>6.40</td>
<td>0.70</td>
<td>6 - 12</td>
</tr>
</tbody>
</table>

C= control diet; R10 = diet contained 10% residue of methanol extract of Jatropha; R20 = diet contained 20% residue of methanol extract of Jatropha; E10 = 10% filtrate methanol extract of Jatropha in drinking water; * Smith and Mangkoewidjojo (1988)
Histopathology profile of liver and spleen mice treated by residue and filtrate methanol extract of *Jatropha curcas* showed there were degenerative epithelium liver cell and tubuli spleen. Liver is special organ that can metabolize all nutrients which are absorbed by intestine, while spleen is organ which can excrete all metabolites excess. Those two organs are very important to the body, so that if those organs are damaged, it will make disorder metabolism and at the end, the animal will die. Both toxins, phorbolester and curcin in such dose intake in this research caused some oedema and infiltration of lymphocyte cell into liver and spleen which is the main causing of death animal.

Table 9. Histopathology profile of mice liver and spleen with different treatments

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Liver</th>
<th>Spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td>R20</td>
<td>Wide sinusoids</td>
<td>- Oedema</td>
</tr>
<tr>
<td></td>
<td>lymphocyte cell infiltration multifocus</td>
<td>-Degenerative epithelium tubuli</td>
</tr>
<tr>
<td></td>
<td>Necrosis</td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>Degenerative liver cell</td>
<td>-Oedema</td>
</tr>
<tr>
<td></td>
<td>lymphocyte cell infiltration</td>
<td>-Degenerative and fatty in tubuli</td>
</tr>
<tr>
<td></td>
<td>Sinusoid oedema</td>
<td>-Dilatation in spleen tubuli</td>
</tr>
<tr>
<td>E10</td>
<td>Degenerative liver cell</td>
<td>-Degenerative epithelium tubuli</td>
</tr>
<tr>
<td></td>
<td>Sinusoid widely</td>
<td>-Oedema</td>
</tr>
</tbody>
</table>

R20 = Diet contained 20% residue of methanol extract of *Jatropha*; E5 (10) = 5% (10%) filtrate methanol extract of *Jatropha* in drinking water;

CONCLUSION

It was concluded that toxic dose of *Jatropha curcas* L., from heavy to light dose, were 5% (of total body water) filtrate methanol extract by force drinking which caused 100% death, followed by 10% filtrate in drinking water, 20% of residue in the diet and 10% of residue in the diet, respectively. Death animal was happened because of high concentration of phorbolester and curcin in the filtrate of methanol extract of *Jatropha curcas* L., and such amount in residue. The histopathology profile showed that there were many degenerative and infiltration in liver and spleen cells, followed by decreasing of number blood profile.

REFERENCES

