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The impact of the damping effect and external forces on DNA breathing is investigated within the
Peyrard-Bishop model. In the continuum limit, the dynamics of the breathing of DNA is described by
the forced-damped nonlinear Schrodinger equation and studied by means of the variational method. The
analytical solutions are obtained for special cases. It is shown that the breather propagation is decelerated
in the presence of a damping factor without the external force, while the envelope velocity and the
amplitude increase significantly with the presence of external force. It is particularly found that the higher
harmonic terms are enhanced when the periodic force is applied. Itis finally argued that the external force
accelerates the DNA breathing.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

At room temperature the DNA double helix spontaneously
denatures locally, opens up or fluctuates. The so called DNA
breathing in particular occurs when it is locally excited with large
amplitude [1-3]. It also depends on the dynamics of surrounding
fluid molecules [4,5]. Therefore, it is important to take into account
the effects of such viscous medium. The effects have actually
been investigated by, for instance, Zdravkovic et al. where the
solution is described by the damped nonlinear Schrodinger (NLS)
equation [6].

Recent experiments show that the DNA breathing might be
influenced by external forces like the Terahertz field | 7]. They have
found that the linear instabilities lead to a dynamics dimerization,
while the true local strand separation requires a threshold
amplitude mechanism. Within the Peyrard-Bishop-Dauxois (PBD)
model, Maniadis et al. have shown that the period-doubled
discrete breather appears from the anti-continuum limit of the
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driven PBD model [8]. They adopted the discretized PBD model
with additional damping (dissipative) term and periodic (cosine)
external force as well.

This paper discusses the viscous dissipation effect as well as an
external force acting on DNA in the Peyrard-Bishop (PB) model.
Then, the dynamics of DNA breathing with such additional terms
are investigated using a continuum approach. This means the
paper considers a larger scale of DNAs with a typical size of namely
2 pm, which can be observed using atomic force microscopy
(AFM). Using AFM it has been observed that such DNAs generate
interesting fractal patterns [9].

The paper is organized as follows. In Section 2 the Hamiltonian
of the model under consideration is explained, and its subsequent
equation of motion (EOM) containing the damping and external
force is derived. The continuum approximation for the DNA
breathing is described in Section 3. Thereafter, its solitonic solution
using the variational method is given in Section 4, and followed by
a discussion of breathing dynamics in terms of solitary waves in
Section 5. Finally, the paper is ended with a summary.

2. PB Model with damping and external force

Following the PB model, the motion of DNA molecules is repre-
sented by two degrees of freedom, u, and v,, which correspond
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to the displacement of the base pair from its equilibrium position
along the direction of the hydrogen bonds connecting the two
bases in the pair in the two different strands [ 10-12]. Further, it can
be rewritten by performing a transformation to the center of mass
coordinate representing the in-phase and out-of phase transverse
motions, Xy = (Un + vs)/~/2 and Yy = (1, — va) /+/2 respectively.
Since, however only the variable Y, is relevant for DNA breathing,
the PB model is given by Peyrard and Bishop [10],

1 K - D Il
H=§ — (P = (Yopy — V)2 + = (2 = 1)? 1
s 21\/1(“) +2(v+1 1) +2(€ ), (1)

where D and « are the depth and inverse width of the potential
respectively. P, = MY, is the momentum, while « is the spring
constant.

As mentioned above, the studies of PB models with viscosity
have already been done by adding a term —eyY, in the EOM
[6,13,14]. In Ref. {6], the NLS equation with viscous effect has been
solved to study the dynamics of DNA breathing. The interaction
between the system and the surrounding environment leads to
energy dissipation. This means that the system is no longer
conservative and reversible. Unfortunately, there is no standard
procedure to include the dissipation effect in a Hamiltonian. It
is still an open problem so far. On the other hand, including
the dissipation effects is motivated by some measurements
in quantum cryptography [15,16]. There are some methods
to incorporate dissipation effects, i.e. Caldirola-Kanai [17], and
Caldeira-Leggett where the dissipation effects are treated as a
collection of oscillator harmonics [ 18,19]. The first method is rather
straightforward. The second method makes use of a Lindblad
formulation with a density matrix equation [16,20,21].

In this paper, for the sake of simplicity let us adopt the
formulation of Caldirola-Kanai to derive the classical EOM.
The corresponding Hamiltonian for a dissipative system in the
formulation is called the Caldirola-Kanai Hamiltonian. In general,
it is written in the form of a time-dependent Hamiltonian, that is
H(p, q) = exp(—yt) p*/2M + exp(yt) V(q) [17]. Here,y =n/M
and 7 is the damping coefficient. The model describes a dissipative
system where its kinetic energy is damped along the time, while
its potential is getting larger. This means the energy conservation
is broken explicitly within the model, since it describes a kind of
open system due to dissipation rather than a conventional closed
system. The model has widely been applied to deal with quantum
dissipations such as the quantization of an electromagnetic
field inside a resonator filled by dielectric medium [22], the
susceptibility of identical atoms subjected to an external force [23],
the coherent states for a damped harmonic oscillator [23], the
dissipative tunneling of an inverted Caldirola-Kanai oscillator [24]
and the functional integral for non-Lagrangian systems [25].
In principle one can extend such approaches to describe the
denaturation processes in a dissipative system.

The present paper proposes the modified PB model with the
damping effect and an external driving force F(t),
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Here, F,(t) is a conservative force. Although in principle one
can directly start from a certain EOM as derived later, in this
paper let us consider this Hamiltonian, because there are certain
advantages of this approach, for instance being able to calculate
the thermodynamic behaviors of the system under consideration
for future studies. Secondly, rather than put the additional forces
in the EOMs by hand, one can generate them in a systematical

way. It should be noted however that this paper is focused only
on investigating the dynamics governed by the derived EOM.

From the Hamiltonian in Eq. (2), one can obtain the canonical
coordinates,

v dH -~ (3)
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Substituting Eq. (3) into Eq. (4) yields a differential equation,
Myn + M]/Yn F K Yog1 =2, + Y1)

D o o
n %—(e-ﬂ" — eI = Fy(t). (5)

The damping term y MY, is similar to the external force in [6], Le.
F, = —y MY, in their EOM which has been put by hand. Therefore,
within the model one can conclude that the term is nothing else
than the contribution of a damped kinetic term in an open system
governed by the Caldirola-Kanai Hamiltonian.

3. Continuum limit approximation

The dynamical behavior of DNA breathing can be studied using
the continuum approximation in Eq. (5). Let us assume that the
amplitude of osciflation is small, and the nucleotide oscillates
around the bottom of the Morse potential. This assumption is
plausible to keep the DNA breathing, Then, under the assumption
the out-of phase transverse motions can be rewritten as,

Y, =€, (6)

withe < 1(3,6,13].
Substituting Eq. {6) into Eq. {5), up to the third order of the
Morse potential one obtains,

l}}n + Vll/ = w(z)(‘pn—H — 2%, + ¥, 1)

+ CA(W, + ea W2 + 2a2¥}) + Fy, (7)
where w2 = «/M, C3 = (¢?D)/(2M), a1 = —3/4a, 0y =
V7/24a, D = 1/N YN D, is the average value of D, and F, =
Fp(e¥,, t). This result is well known as a semi-discrete equation for
investigating the DNA breathing in a viscous medium [6,13]. For a
relatively long DNA chain, this equation can be simplified by taking
its full continuum limit. Defining the length scale [ = x/n and
(2 = wil? one can rewrite ¥,(t) — ¥ (x. t). The approximation
is valid as long as the solution under consideration changes rather
slowly and smoothly along the DNA [5]. This then yields,
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Both terms of €F (x, t) and ey 0¥ /0t can be treated perturbatively
by assuming that it contributes little enough to the whole DNA
motion that is dominated by the first and second terms. Since
the first and second terms yield a solution of ¥ ~ e/ "%t using
the multiple scale expansion method, namely by expanding the
associated equation into different scale and time spaces [26], one
gets,

+ 2 +eaw? 4 aiv?)

=y pep® 4. (9
SR

9_ L.C . 10
TR T T (10
9 9

A A (11)

dx  Jxp X1



1642 A. Sulaiman et al. / Physica D 241 (2012) 1640-1647

Substituting further these expansions into Eq. (8),
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The first and second terms in the leading order (LO) and next-
to-leading order (NLO) terms in Eq. (12) provide the harmonic
solutions, while the remaining terms lead to the non-harmonic
ones. Then it is plausible to consider [6,13],

O, 1) = W (xy, £y) 00700 4, (13)
UV, t) = 0O, ) + PP (g, ) 00 e, (14)
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Having Eqgs. (13)-(15) at hand and using the dispersion relation
w? = D + CJk?* Eq.(12) becomes,

W(O):qu/m!z’ (16)
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where Ay = CoD/(2C2), Ay = ¥/(2Cp), A3 = 2D/Cy T =6 =
€tg, & = x1— (Cok) /G to, X1 = €Xg. This set of EOMs is nothing else
than the forced-damped nonlinear Schrodinger (FDNLS) equation.

4. Variational methods

The solution of the FDNLS equation with cosine force leads to
a chaotic behavior [8,27]. However, the present paper investigates
the breathing dynamics which is still in the solitonic behavior. This
situation is realized by putting the damping terms and external
force to remain perturbative. Therefore the basic solution is still
the solitonic NLS. This problem can be solved using the variational
method [18]. )

It is also well know that for the case with y =0 and f =0,
the NLS equation admits the following traveling wave solution
[5,6,13],

1 e
P M(E, 1) = Ay sech [Z (& — uer)} pTiE—=OT) (19)
where,
u2 — 2u,u
A=\ Ae K (20)
1413
V2A
L= 220 (21)
u2 — 2ugl,
i = Z”A? , (22)
1
5) _ Llellc‘ (23)

Here, u, is the envelope wave velocity and u. is the carrier wave
velocity satisfying u2 - 2u.u. > 0.Using Egs.(9),(13) and (14) one
obtains the soliton solution,
w(x, t) = 20 cos(kx — wpt)

+el¥' V7 [3 + cos2kx — wot))], (24)
where ¥V is given by Eq. (19).

Based on the corresponding variational methods to solve the
FDNLS equation, one may use the solution in Eq. (19) as the related
basic form. Considering that the amplitude, width, phase velocity
and position of the soliton should be time dependent [26,28], let us
write the 1-soliton in the following form,

(&, 1) = n(r) sech[n(s + ¢ (0))]
x exp (—i{f(1)§ + ¢(2)]) . (25)

In order to obtain the dynamics of functions »n, #, { and ¢, one
should first derive the Lagrangian for the FDNLS. The appropriate
Lagrangian is,

i
L = E(wrmlp(l)* _ lI/T“)*l]/(U) _ A1|w5(1)|2 + A3Ilp(1)l4

A - -
n 72(%(1@(1)* _ 11/1(”*11/(”) _ (fllfm* ~|—f*l1/“)), (26)

which satisfies the FDNLS equation through the Euler-Lagrange
equation [26],

d ( L + 0 aL 9L 0 (27)
ot 3l1/,m* dE 3‘1/;”* Jurtx e

Substituting Eq. (25) into Eq. (26) yields,
L = 2ng8 + 1 + 2iA;ngd

. 4 -
+iAng + 4A16° + §A3773 —5F, (28)

by making use of relations L = jf; Ld&, ffooo sech(aé)ds = m/a
and [%_sech?(a§) tanh(a$)dg = 0. Here,

P /Oo (feiw(r>s+¢<r>1 +f*e—iwms+¢<r>x)

ool

x sech[n(& — ¢)]dE. (29)

Eq. (28) is the Lagrange function in terms of 8, 5, ¢ and ¢. The
EOM can be easily obtained by again using the Euler-Lagrange
equation,

4oy o, (30)
de \ 98X 0X

where X = (1, 8, ¢, £).Egs. (28) and (30) lead to the following set
of EOMs,

201 +iAx)n¢ +2(1 +i/\2)C7‘7=8A1779—77gw (31)
214i4)06 + (1 +i42)¢ = 4(A:67 = Asn?)

- n% —F, (32)
(14iA)7 = —ng, (33)
2(14+iAy)0 = ~3—§ (34)
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Further substitution of Eqs. (33) and (34) into Egs. (31) and (32)
provides,
. OF  OF
14+iA)ne — 4440 = 2n— — —, 35
( 218 1 n 5 " a0 (35)
N 9F  9F .
(1+iA2)¢ —4(A8% — Asn®) = — —n— = F. (36)
e an
Unfortunately, the analytic and general solutions for Egs. (31)-
(34) do not exist. The solutions are still derivable only for special
conditions. From here, [et us consider a few special cases of f.
First of all, let us consider a special case when the damping
factor and external force vanish, thatis A, = QandF = 0. As a
result, 7 = ng in Eq. (33} is a constant, while Eq. (34) yields 6 = 6,
to be also a constant. Egs. (31) and (32) lead to a simple solution,

¢ = 4A 6T, (37)
¢ = 4(A165 — Asnd)T. (38)
Therefore the single soliton has the form of,
v, 1) = nosech [1g(5 4+ 441697)]

x exp {—il6o€ + 4(A:65 — Asnd)Tl}. (39)

This coincides with the single soliton solution of the conventional
NLS equation. _

In the second case, let us ignore the external force, F = 0. Again,
17 = ng and @ = 6 in Egs. (33) and (34) become constant as well.
The time dependent variables are ¢ which represents the soliton
velocity and the phase of soliton ¢. The EOM then has a simple
form,

(1 +ia0% —4a16, =0, (40)
dt
N 2 2
(1+id9) - = 4 (A6 — Asng) = 0. (41)
These yield,
g M s
§(r)—4(]+/\§) (1-iA))T, (42)
(M0 — Asm)
=410 "0 (1 jay, 43
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and the single soliton solution becomes,
w (&, 1) = mosech [no(§ + ) + ino¢ Azt ]

% e—&/\zr e—i(905+q~51), (44)

where Z = 44165/ (1 4+ A2) and ¢ = 4(A16% — A3n3)/ (1 + A3).

The third one is another simple case when F = Fq is a constant.
Again, n = ng and @ = ¢, are constants. The EOMs in Egs. (35) and
(36) have simple forms as follows,

d
(1 +iA2)a§ — 4,65 = 0, (45)
N 2 2 5
(1+id2) == —4 (M85 — Asng) = —Fo. (46)
These lead to,
Asb )
t(@) = 4a+‘—j§) (1—idAy) T, (47)
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¢(r)=[ (4165 3775) 0
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Finally, the single soliton solution for this case is,
11/(”(%', T) = ngexp (—(}/\zl’) eF*r e—i(ﬁoé-ﬁir—F*r)

x sech[no(§ + ¢1) + inol Ast], (49)

where F* = F"O/H + A%). The external force contributes through
the positive exponential term, and then should increase the
amplitude of the soliton,

For the last one, let us assume that the amplitude and phase are
both constants, i.e. n = ng and # = &, while the external force is
assumed to have an exponential form, f = fy exp(—ibp€) with fp a
constant. The EOM becomes,

(1+iA3)7m0¢ — 4A16p =0, (50)
N 2 2 aF
(1+iA2)¢ — 4(A0 —A3Uo)=§%,—ﬁ (51)
while Eq. (29) becomes,
F = /Oo (foe—iﬂoéeiwosw(r)l +foeiﬁosefiwo$+¢m1)
—00
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4
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Finally one can find,
4716
= ¢~ (53)
(1+1iA2)m0
; 4f 418 ~ Asnpd)
=————cos{¢p) + ————— 54
¢ (1 -4+1Ay) @ (t+1iAy) (54)

The Eq. (54) can be solved numerically. It should be noted that
its solution is a complex function, i.e.¢p = ¢y + i¢h;. Therefore the
soliton profile is given by,

e (E 1) = g e?iT g0 +oRD
x sech (€ = £7) + inod Aa7]. (55)

Now, in the next section let us discuss in more detail the
dynamics of DNA breathing in the four cases given above.

5. Nonlinear dynamics of DNA breathing

The external effects of DNA usually lead to inhomogeneities in
the DNA model. The inhomogeneity in stacking energy has been
found to modulate the width and speed of the soliton depending
on the nature of inhomogeneities [29]. The author used the dy-
namic plane-base rotator model by considering the angular rota-
tion of bases in a plane normal to the helical axis, and found that the
DNA dynamics is merely governed by the perturbed sine-Gordon
equation. In this paper, it has been shown that the inhomogeneities
of DNA breathing dynamics is governed by the FDNLS equation.
The solutions of the homogeneous case represent a large amplitude
with localized oscillatory mode. This seems to be a good explana-
tion for the breathing of DNA that is spontaneously formed [2,3,5].

In the first case mentioned in the preceding section, it is easily
shown that by performing certain transformations, that is 7y =
Ap and 6y = 1/(2u, A4), the solution coincides with Eq. (19). The
simulation for the solution is done forkx = § Nm, M = 5.1 x
107% kg, o = 2 x 10 m~', D = 0.1 eV and the length scale [ =
3.4 x 10~ m [6]. The solution demonstrates a sort of modulated
solitonic wave where the hyperbolic and cosine terms correspond
to the envelope wave number and the carrier wave respectively.

In the second case with F = 0 and damping constant y =
0.05 kg/s, the breathing behavior is depicted in Fig. 1. The figure
shows that the breathing propagation along the DNA molecule is
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Fig. 1. The DNA breathing in the second case where x denotes the continuum base pair in the present model (black) and the original PB model (red) with g = 0.05 and
F = 0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. The solitonic solution of DNA breathing in the model with damping effect and external force F (black) and in the original PB model (red) with y = 0.05 kg/s and

F = 15 pN. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

amplitude and is damped out by the damping effect. Consequently,
the presence of external force increases the envelope velocity
significantly, in particular around Au, = AE/At ~ O(1).

These results are actually motivated by previous works in [30].
In a cell, DNA strands are separated by the external force [30,31],
or in chemical terms by enzymes whose interactions with DNA
make strand separation thermodynamically favorable at ambient

affected by the damping. It is obvious from the figure that the
damping term decelerates the propagating soliton while retaining
its amplitude profile. This indicates that the corresponding
damping term does not affect the soliton mass.

Now, the solution with damping effect and F # 0 is depicted in
Fig. 2. The figure is generated with F = 15pNanda damping factor
y = 0.05 kg/s. The external force tends to increase the breathing
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Fig. 3. The solution of Eq. (54) for real (dot line) and imaginary (solid line) parts.

temperature [32]. It has been shown that two strands of double-
stranded DNA can be separated (unzipped) by the application of
15 pN force applied at room temperature. Their model predicts
that the melting temperature should be a decreasing function of
applied force. The paper shows that the external force can increase
the amplitude of the breathing and may separate the double helix
into single helices.

Finally, let us discuss the fourth case. The behavior of this
case is described by the numerical solution of Eq. (54) with a
complex function of ¢. The real and imaginary parts of the solution
are associated with the carrier wave and the envelope velocity
respectively. The profiles of both parts are shown in Fig. 3. The real
part seems to have an anti-sigmoid-like function. In contrast, the
imaginary part has negative values. The negative value means the
solution propagates to the left.

Now we can discuss the solution of the FDNLS equation using
Eq. {54). The result is depicted in Fig. 4. The soliton solution of
FDNLS shows an increasing amplitude and velocity with time. The
amplitude is relatively high and the shape of the soliton tends to
be of step form during its propagation.

=0
1
5 0
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-10 -5 0 5 10
€
1=0.08
1
= 0 LA o
> J ';
-1
~10 -5 0 5 10
£
1=0.13
of
g A
> 0 g {‘\;’
o -5 0 5 10

N

The DNA breathing in the fourth case using the solution of &
given in Fig. 4 is depicted in Fig. 5. The amplitude of DNA breathing
is around 2 nm where the result is similar to that previously
reported in [6] for the same parameters. The amplitude is relatively
increasing as it propagates to the left. The high amplitude indicates
that the DNA is going to be unzipped and finally separated into
single helices.

Finally, it is interesting to note the case of decreasing envelope
and carrier velocity respectively up to one order lower. The results
are given in Fig. 6. In this case, the solution of FDNLS propagates
much more slowly than the previous one. At t = 0.3 s the soliton
with periodic external force tends to increase the amplitude and
velocity. Further at T = 0.6 s the amplitude is increased and the
corresponding form changes significantly. At 7 = 0.7 s the higher
harmonic term is developed and completed at t = 0.9. Together
with the time propagation, the amplitude tends to decrease and to
disperse into a wider form, and then the higher harmonic term is
generated and increasing the amplitude. It is interesting to point
out that the harmonic term is coming from the solution of Eq. (54)
which is a nonlinear equation.

The DNA breathing corresponding to the previously mentioned
WD is depicted in Fig. 7. From the figure, the amplitude is about
0.2 nm which is more or less the same as the previous resultin [14],
where they made use of the Forinash-Cretary-Peyrard model with
helicosity. In that work it has been argued that the opening of the
DNA double helix is controlled by the resonance mode.

The present results show that the periodic external force
and damping effect generate a higher harmonic term -in the
dynamics of the FDNLS solution. Then it can be concluded that
this phenomenon might be responsible for the dynamics of DNA
breathing. In particular the early propagation imposes the DNA
breathing to decrease its amplitude and disperse into a wider form.
The condition changes as the higher harmonic terms of the FDNLS
soliton begin to develop which increases the amplitude of DNA
breathing significantly.

6. Summary

The effects of viscous fluid and external forces on the Peyrard-
Bishop DNA breathing have been investigated. In particular, a PB
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1
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4
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Fig.4. The solution of the soliton in the FDNLS (black) and the NLS (red) with y = 0.05 kg/s, F = 15¢€* pN, v, = 10° m/s and u, = 4 x 10 m/s. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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model with the damping effect and the external driving force
have been proposed to describe a time-dependent Caldirola-Kanai
Hamiltonian, Taking into account the full continuum approxima-
tion and using the multiple scale expansion method, it has been
shown that the EOM reproduces the FDNLS equation. Assuming
that the damping and external forces are perturbative, the FDNLS

equation has been solved using variational methods through
Lagrangian formalism.

The analytical solutions have also been obtained for special
cases. In the case with constant damping factor and without
external force, the breathing propagation is decelerated by the
damping effect. In the presence of external force, the velocity and
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the amplitude increase significantly. It has also been found that
the higher harmonic terms are enhanced when the periodic force
is applied. These results show that the external force contributes
constructively to accelerate the separation of the double helix into
single helices.
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