KAJIAN PROSES START-UP DAN KINERJA REAKTOR TIGA TAHAP UNTUK PENYISIHAN NUTRIEN DARI LIMBAH CAIR PABRIK PENGOLAHAN KARET ALAM

Oleh

Tanto Pratondo Utomo

97327

PROGRAM PASCASARJANA
INSTITUT PERTANIAN BOGOR
2000
RINGKASAN

Limbah cair yang dihasilkan dari industri karet menimbulkan masalah lingkungan karena mengandung senyawa karbon, nitrogen, dan fosfat. Limbah cair industri karet memerlukan penanganan yang memadai karena limbah yang dihasilkan rata-rata sebanyak 25 m³/ton karet kering, sedangkan produksi karet Indonesia per tahun sekitar 1,5 juta ton karet kering yang dihasilkan dari sekitar 500 pabrik. Penanganan limbah cair pabrik pengolahan karet alam di Indonesia sebagian besar menggunakan kolam anaerobik dan fakultatif yang belum memadai untuk menurunkan tingkat pencemaran limbah karena proses fakultatif dan anaerobik hanya menurunkan kandungan karbon saja, sedangkan senyawa nitrogen dan fosfor masih relatif tinggi. Berdasarkan hal tersebut maka perlu dilakukan perbaikan penanganan limbah cair pabrik karet menggunakan proses penyisihan senyawa karbon yang dikombinasikan dengan proses nitrifkasi-denitrifikasi serta penyisihan fosfat secara biologis secara simultan.

Tujuan penelitian ini adalah menyisihkan nutrien dari limbah cair pabrik pengolahan karet alam menggunakan reaktor tiga tahap, menentukan konfigurasi reaktor yang mampu menyisihkan nutrien yang optimal, mengetahui pengaruh waktu tinggal hidrolis pada reaktor aerobik dan anoksik serta adanya proses recycle dari reaktor aerobik ke reaktor anoksik terhadap proses penyisihan nutrien.

Penelitian dibagi menjadi lima tahap yaitu (1) desain proses dan pembuatan reaktor tiga tahap yang digunakan yang terdiri dari reaktor anaerobik, anoksik, dan aerobik; (2) karakterisasi limbah cair pengolahan karet alam jenis
ribbed smoked sheet (RSS); (3) aklimatisasi lumpur aktif; (4) proses start-up reaktor anaerobik; (5) perbandingan kinerja reaktor tiga tahap yang digunakan dengan konfigurasi yang berbeda yaitu konfigurasi anaerobik-aerobik-anoksik, konfigurasi anaerobik-anoksik-aerobik tanpa recycle, dan konfigurasi anaerobik-anoksik-aerobik dengan recycle 200% dari debit dari reaktor aerobik ke reaktor anoksik. Waktu tinggal hidrolis konfigurasi anaerobik-anoksik-aerobik dengan recycle 200% dari debit dari reaktor aerobik ke reaktor anoksik pada reaktor anoksik dan aerobik terdiri dari dua taraf (4 dan 8 jam) dan waktu tinggal hidrolis pada reaktor anaerobik ditetapkan selama 24 jam. Parameter yang diamati meliputi pH, COD, BOD, Total Kjeldahl Nitrogen, NH$_3$-N, NO$_3$-N, PO$_4$-P, MLSS, dan MLVSS. Tiga macam reaktor yang digunakan adalah reaktor anaerobik jenis fluidized bed dengan sistem pertumbuhan terikat dan reaktor aerobik dan anoksik jenis reaktor teraduk sempurna dengan sistem pertumbuhan tersuspensi.

Hasil analisis karakteristik kimiai menunjukkan bahwa limbah cair pabrik karet jenis ribbed smoked sheet (RSS) mempunyai kandungan COD 3000 - 5000 mg/l, BOD 2300 - 2700 mg/l, total nitrogen 200 – 400 mg/l, NH$_3$-N 100 – 300 mg/l, NO$_3$-N 4 – 8 mg/l, PO$_4$-P 20–40 mg/l, dan pH 4 - 6 mg/l.

Hasil pengamatan menunjukkan bahwa (1) reaktor tiga tahap yang didesain dengan beberapa konfigurasi yang berbeda dapat menyisihkan COD, total nitrogen, dan ortofosfat masing-masing sebesar 95 - 97%, 45 - 76%, dan 81 - 99%; (2) reaktor tiga tahap dengan konfigurasi anaerobik-anoksik-aerobik dengan recycle dari reaktor aerobik ke anoksik 200% dari debit influen dan waktu tinggal hidrolis 24, 4 dan 4 jam menghasilkan kualitas efluen akhir yang lebih baik dibandingkan dengan konfigurasi yang lain dengan nilai pH 8,25 ± 0,10; COD
250 ± 100 mg/l; total nitrogen 100 ± 15 mg/l; NH\(_3\)-N 8 ± 7 mg/l; NO\(_3\)-N 75,0 ± 10,0 mg/l; dan ortofosfat (PO\(_4\)-P) 0,20 ± 0,30 mg/l; (3) kualitas efluen akhir yang dihasilkan reaktor tiga tahap dengan konfigurasi anaerobik-anoksik-aerobik dengan *recycle* dari reaktor aerobik ke anoksik 200% dari debit influen dengan waktu tinggal hidrolis 24, 4 dan 4 jam relatif sama apabila waktu tinggal hidrolis pada reaktor anoksik diperpanjang menjadi 8 jam pada reaktor tiga tahap dan lebih baik dibandingkan dengan kualitas efluen apabila waktu tinggal hidrolis reaktor aerobik dan anoksik diperpanjang menjadi masing-masing 8 jam.
KAJIAN PROSES *START-UP* DAN KINERJA REAKTOR
TIGA TAHAP UNTUK PENYISIHAN NUTRIEN DARI
LIMBAH CAIR PABRIK PENGOLAHAN
KARET ALAM

Oleh
TANTO PRATONDO UTOMO
97327

TESIS
Sebagai Salah Satu Syarat untuk Memperoleh Gelar
MAGISTER SAINS
Pada Program Pascasarjana
Institut Pertanian Bogor

PROGRAM PASCASARJANA
INSTITUT PERTANIAN BOGOR
2000
Judul Tesis : KAJIAN PROSES START-UP DAN KINERJA REAKTOR TIGA TAHAP UNTUK PENYISIHAN NUTRIEN DARI LIMBAH CAIR PABRIK PENGOLAHAN KARET ALAM

Nama : TANTO PRATONDO UTOMO
NRP : 97327
Program Studi : Teknologi Industri Pertanian

Menyetujui,

1. Komisi Pembimbing

[Signature]
Dr. Ir. Muhammad Romli, M.Sc.St.
Ketua

[Signature]
Dr. Ir. Anas Miftah Fauzi, M.Eng.
Anggota

[Signature]
Ir. Andes Ismayana, M.T.
Anggota

2. Ketua Program Studi

[Signature]
Dr. Ir. Irawadi Djamalan

3. Direktur Program Pascasarjana

[Signature]
Prof. Dr. Ir. Sjafrida Manuwoto, M.Sc.

Tanggal lulus: 16 November 2000
dream as if you'll live forever.

live as if you'll die tomorrow.

Kado kecil untuk li’ll d, li’ll dito, mama, ibu, dan bapak
KATA PENGANTAR

Penulis memanajatkan puji syukur ke hadirat Allah SWT. karena hanya dengan berkat, rahmat, dan hidayahNya maka tesis ini yang berisi hasil penelitian selama lebih dari satu tahun untuk memperoleh gelar magister dapat diselesaikan dengan baik.

Penulis mengucapkan terimakasih kepada semua pihak yang telah membantu dalam penyelsaian tesis ini yaitu:

1. Dr. Ir. Muhammad Romli, M.Sc.St., Dr. Ir. Anas Miftah Fauzi, M.Eng., dan Ir. Andes Ismayana, MT. selaku komisi pembimbing yang telah banyak memberikan saran, bimbingan, dan kritik selama penyusunan tesis serta kesediaan menerima penulis sebagai salah satu mahasiswa peneliti pada proyek Biological Nutrient Removal.

2. Prof. Dr. M.S. Saeni dan Dr. Ir. Suprihatin selaku anggota tim peneliti Biological Nutrient Removal atas saran yang telah diberikan.

3. Direksi PTP Nusantara VIII terutama Administratur Kebun Cikasungka beserta staf yang telah memberikan bantuan berupa limbah segar selama penelitian berlangsung.

4. Istri dan anakku tercinta, Mama, Ibu dan Bapak, serta semua keluarga besarku atas dukungan moril dan material yang tiada henti.

5. Para sahabat yang telah banyak membantu dalam melaksanakan penelitian terutama Bapak Wagiman, Bapak Yogi, Mas Imron, Yudi, teman-teman TIP dan IPN 97, dan para laboran di Jurusan Teknologi Industri Pertanian FATETA IPB.
6. Rekan-rekan Babakan Raya III-31 dan Keluarga Bapak Soewarno yang telah banyak membantu penulis pada masa-masa awal perkuliahan

Semoga tesis ini bermanfaat.

Bogor, November 2000

Penulis
DAFTAR ISI

KATA PENGANTAR .. ii

DAFTAR ISI .. iii

DAFTAR TABEL ... vi

DAFTAR GAMBAR ... vii

LAMPIRAN ... viii

I. PENDAHULUAN .. 1
A. LATAR BELAKANG .. 1
B. TUJUAN PENELITIAN .. 3
C. HIPOTESIS PENELITIAN 3
D. RUANG LINGKUP PENELITIAN 4

II. TINJAUAN PUSTAKA ... 5
A. RIBBED SMOKED SHEET (RSS) 5
B. SENYAWA NUTRIEN PADA LIMBAH 6
 1. Nitrogen ... 8
 2. Fosfor ... 11
C. PROSES PENYISIHAN NUTRIEN SECARA BIOLOGIS ... 13
 1. Nitriifikasi .. 15
 2. Denitriifikasi ... 17
 3. Proses Penyisihan Senyawa Fosfat 19
 4. Faktor-faktor yang Mempengaruhi Proses Penyisihan Nutrien secara Biologis 20
D. TEKNOLOGI PENYISIHAN NUTRIEN 21
E. PROSES START-UP .. 22