KAJIAN TOKSISITAS BEBERAPA FRAKSI EKSTRAKTIF KAYU SONOKEMBANG *(Pterocarpus indicus* Willd.) DAN NYATOH *(Palaquium gutta* Baill.) TERHADAP RAYAP TANAH DAN JAMUR PELAPUK KAYU

Oleh:
Tata Brata Suparjana
IHT 97383

PROGRAM PASCASARJANA
INSTITUT PERTANIAN BOGOR
2000
RINGKASAN

Tata Brata Suparjana. IHT 97383. Kajian Toksisitas Beberapa Fraksi Ekstraktif Kayu Sonokembang (Pterocarpus indicus Willd.) dan Nyatoh (Palaquium gutta Baill.) terhadap Rayap Tanah dan Jamur Pelapuk Kayu. Di Bawah Bimbingan Dr.Ir. Wasrin Syafii, M.Agr. dan Prof.Dr.Ir. H. Dodi Nandika, MS.

Suatu penelitian telah dilakukan untuk mengetahui toksisitas beberapa fraksi senyawa ekstraktif kayu Sonokembang (Pterocarpus indicus Willd.) dan kayu Nyatoh (Palaquium gutta Baill.) terhadap rayap tanah Coptotermes curvignathus Holmgren dan jamur pelapuk Schizophyllum commune Fr.
Ekstrak aseton dari dua jenis kayu difraksinasikan secara sinambung (successively fractionation) dengan pelarut n-heksan, etil eter, dan etil asetat. Hasil ekstrak dari masing-masing fraksi dipetakkan menggunakan rotary evaporator pada suhu 30-40°C. Esktrak kental yang diperoleh dikeringkan didalam oven bersuhu 50-60°C untuk mendapatkan ekstrak kering. Dari hasil ekstraksi diperoleh empat macam ekstrak kering, yaitu ekstrak n-heksan, ekstrak etil eter, ekstrak etil asetat dan residunya.

Pengujiann toksisitas ekstraktif kayu terhadap rayap tanah mengikuti metode yang dilakukan oleh Steller dan Labosky (1982) serta Ohmura (1997). Seberat 0,5 gram contoh uji yang telah ditambah ekstraktif kayu dengan konsentrasi 2%, 4%, 6%, 8%, dan 10% (w/w) dimasukkan kedalam botol uji (Ø 5 cm, tinggi 6,5 cm), kemudian kedalam botol tersebut dimasukkan 50 ekor rayap C. curvignathus. Botol uji ditutup dengan aluminium foil berlubang dan disimpan di kamar gelap selama empat minggu. Pada akhir pengamatan dihitung laju konsumsi dan mortalitas rayap.

Pengujiann toksisitas terhadap jamur pelapuk Schizophyllum commune Fr. dilakukan dengan menggunakan metode yang dikembangkan oleh Loman (1970). Inokulum jamur dari biakan murni berumur lima hari diinokulasikan kedalam cawan petri berisi media malt ekstrak agar yang telah ditambah zat ekstraktif dengan konsentrasi 2%, 4%, 6%, 8% dan 10% (w/w), kemudian diinkubasikan pada suhu 26,5°C selama dua minggu. Pertumbuhan miselium jamur S. commune Fr. dievaluasi pada akhir masa inkubasi.

Hasil penelitian menunjukkan bahwa kadar ekstraktif kayu Sonokembang (P. indicus) mencapai 6,40%. Pada konsentrasi 2% fraksi n-heksan dan fraksi etil eter dari ekstraktif tersebut sangat toksik terhadap rayap tanah C. curvignathus Holmgren dan mampu menghambat laju pertumbuhan miselium jamur pelapuk S. commune Fr. Sementara
itu kadar ekstraktif kayu Nyatoh (*P. gutta*) hanya 0,74% dan hanya fraksi etil eter yang bersifat toksik pada rayap tanah *C. curvignathus* Holmgren. Sedangkan zat ekstraktif dari kayu Nyatoh (*P. gutta*) tidak mampu menghambat pertumbuhan miselium jamur *S. commune* F.

Identifikasi komponen aktif menggunakan kromatografi gas-spektra massa menunjukkan bahwa pada fraksi n-heksan terdeteksi 19 komponen utama yang bersifat toksik terhadap rayap tanah, tiga komponen diantaranya diduga tergolong kelompok guaiol (*C_{15}H_{26}O*), 2-Naphthenemethanol (*C_{15}H_{26}O*) dan 9, 12-Octadecadienoic acid (*C_{18}H_{32}O_{2})*. Di pihak lain pada fraksi ethyl ether yang memiliki komponen aktif anti jamur terdeteksi sebanyak 15 komponen utama yang tidak teridentifikasi kelompoknya karena pola spektra masing-masing komponennya tidak cocok dengan beberapa alternatif data yang tersedia dalam NIST Library.

Perlu dilakukan penelitian lanjutan untuk mengetahui jenis dan struktur kimia komponen bioaktif yang paling menentukan toksisitas ekstraktif kayu Sonokembang (*P. indicus*) dan Nyatoh (*P. gutta*) terhadap rayap dan jamur.

Nama Mahasiswa : Tata Brata Suparjana
Nomor Pokok : 97383
Program Studi : Ilmu Hayati

Menyetujui,
1. Komisi Pembimbing

[Signature]
Dr.Ir. Wasrin Syafii, M.Agr.
Ketua

[Signature]
Prof. Dr. Ir. H. Dodi Nandika, M.S.
Anggota

2. Ketua Program Studi

[Signature]
Prof. Dr. Ir. H. Dodi Nandika, M.S.

3. Direktur Program Pascasarjana

[Signature]
Dr. Hj. Sjafrida Manuwoto, M.Sc

Tanggal Lulus : 22 Februari 2000
RIWAYAT HIDUP

KATA PENGANTAR

Puji dan Syukur kehadiran Allah SWT yang telah melimpahkan rahmat dan hidayah-Nya, sehingga penulis dapat menyelesaikan Tesis ini sebagai salah satu syarat untuk memperoleh gelar Magister Sain pada Program Studi Ilmu Hayati, Program Pascasarjana, Institut Pertanian Bogor (IPB).

Pada kesempatan ini penulis mengucapkan terima kasih dan rasa penghargaan kepada:

1. Bapak Dr.Ir. Wasrin Syafii, M.Agr, sebagai Ketua Pembimbing dan Bapak Prof.Dr.Ir. H. Dodi Nandika, MS sebagai anggota Komisi Pembimbing, yang telah membimbing dan mengarahkan penulis dari sejak awal penelitian hingga akhir penulisan tesis ini.
2. Ketua Program Studi Ilmu Hayati, Prof.Dr.Ir. H. Dodi Nandika, MS dan seluruh staf pengajar Program Pascasarjana, Institut Pertanian Bogor yang telah mengajarkan ilmu pengetahuan kepada penulis.
4. Direktur Program Pascasarjana IPB, Prof.Dr.Ir. Hj. Sjafrida Manuwoto, M.Sc yang telah memberi kesempatan penulis untuk mengikuti studi di Program Pascasarjana, IPB.
5. Kepala Kebun Raya Bogor yang telah membantu menyediakan contoh kayu sebagai bahan penelitian.

Penulis menyadari bahwa tesis ini belum sempurna, namun demikian harapan penulis agar tulisan ini berguna dan bermanfaat bagi semua pihak yang memerlukan.

Bogor, Februari 2000

Penulis,
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATA PENGANTAR</td>
<td>i</td>
</tr>
<tr>
<td>DAFTAR ISI</td>
<td>ii</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>iv</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>v</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>vi</td>
</tr>
<tr>
<td>PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>Tujuan Penelitian</td>
<td>3</td>
</tr>
<tr>
<td>TINJAUAN PUSTAKA</td>
<td>4</td>
</tr>
<tr>
<td>Kimia Kayu</td>
<td>4</td>
</tr>
<tr>
<td>Komposisi Kimia Kayu</td>
<td>4</td>
</tr>
<tr>
<td>Selulosa</td>
<td>4</td>
</tr>
<tr>
<td>Hemiselulosa</td>
<td>5</td>
</tr>
<tr>
<td>Lignin</td>
<td>6</td>
</tr>
<tr>
<td>Ekstraktif dan Keawetan Alami Kayu</td>
<td>8</td>
</tr>
<tr>
<td>Penggolongan Zat Ekstraktif</td>
<td>10</td>
</tr>
<tr>
<td>Rayap Tanah Coptotermes curvignathus Holmgren</td>
<td>18</td>
</tr>
<tr>
<td>Morfologi</td>
<td>18</td>
</tr>
<tr>
<td>Biologi</td>
<td>20</td>
</tr>
<tr>
<td>Rayap sebagai Hama dan Alternatif Pengendaliannya</td>
<td>23</td>
</tr>
<tr>
<td>Jamur Pelapuk Kayu</td>
<td>25</td>
</tr>
<tr>
<td>Schizophyllum commune Fr</td>
<td>28</td>
</tr>
<tr>
<td>METODOLOGI PENELITIAN</td>
<td>30</td>
</tr>
<tr>
<td>Tempat dan Waktu Penelitian</td>
<td>30</td>
</tr>
<tr>
<td>Bahan dan Alat Penelitian</td>
<td>30</td>
</tr>
<tr>
<td>Prosedur Penelitian</td>
<td>30</td>
</tr>
<tr>
<td>Ekstraksi</td>
<td>30</td>
</tr>
<tr>
<td>Pengujian Toksisitas Terhadap Rayap Tanah</td>
<td>33</td>
</tr>
<tr>
<td>Pengujian Toksisitas Terhadap Jamur Pelapuk</td>
<td>35</td>
</tr>
<tr>
<td>Analisis Data</td>
<td>36</td>
</tr>
<tr>
<td>Penentuan Komponen Aktif Kimia Kayu</td>
<td>37</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>HASIL DAN PEMBAHASAN</td>
<td></td>
</tr>
<tr>
<td>Kadar Air dan Ekstraktif</td>
<td>38</td>
</tr>
<tr>
<td>Toksisitas Ekstraktif Kayu Terhadap Rayap</td>
<td>40</td>
</tr>
<tr>
<td>Efikasi Zat Ekstraktif Kayu pada Peper Pads terhadap</td>
<td></td>
</tr>
<tr>
<td>Serangan Rayap Tanah</td>
<td>42</td>
</tr>
<tr>
<td>Efek Ekstraktif Kayu terhadap Pertumbuhan Miselia Jamur S. commune Fr.</td>
<td>45</td>
</tr>
<tr>
<td>Penentuan Fraksi Aktif Komponen Ekstraktif Kayu</td>
<td>51</td>
</tr>
<tr>
<td>Identifikasi Komponen Aktif Ekstraktif Kayu</td>
<td>51</td>
</tr>
<tr>
<td>KESIMPULAN DAN SARAN</td>
<td>55</td>
</tr>
<tr>
<td>Kesimpulan</td>
<td>55</td>
</tr>
<tr>
<td>Saran</td>
<td>56</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>57</td>
</tr>
<tr>
<td>LAMPIRAN</td>
<td>60</td>
</tr>
<tr>
<td>No.</td>
<td>Teks</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Golongan utama terpenoid tumbuhan</td>
</tr>
<tr>
<td>2.</td>
<td>Flavonoid yang diisolasi dari beberapa kayu daun lebar</td>
</tr>
<tr>
<td>3.</td>
<td>Perbandingan dampak serangan white rot dan brown rot terhadap karakteristik kayu</td>
</tr>
<tr>
<td>4.</td>
<td>Fraksi ekstrak aseton dari serbuk kayu Sonokembang dan Nyatoh (%)</td>
</tr>
<tr>
<td>5.</td>
<td>Rata-rata mortalitas rayap tanah C. curvignathus Holmgren pada empat minggu pengumpanan</td>
</tr>
<tr>
<td>6.</td>
<td>Rata-rata pengurangan berat paper pads (%) setelah empat minggu pengamatan</td>
</tr>
<tr>
<td>7.</td>
<td>Rata-rata pertumbuhan miselia jamur S. commune (%) pada medium MEA berisi ekstraktif kayu Sonokembang dan Nyatoh</td>
</tr>
<tr>
<td>No.</td>
<td>Teks</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Unit pembentuk lignin: p-koumaril alkohol (I), koniferil alkohol (II), dan sinapil alkohol (III) (Fengel dan Wegener, 1995)</td>
</tr>
<tr>
<td>2.</td>
<td>Klasifikasi zat ekstraktif kayu yang dihasilkan dari empat macam teknik ekstraksi (Fengel dan Wegener, 1995)</td>
</tr>
<tr>
<td>3.</td>
<td>Struktur kimia lemak, lilin dan komponen-komponennya yang diisolasi dari kayu (Fengel dan Wegener, 1995)</td>
</tr>
<tr>
<td>4.</td>
<td>Struktur dasar berbagai terpena (Fengel dan Wegener, 1995)</td>
</tr>
<tr>
<td>5.</td>
<td>Beberapa contoh fenol sederhana yang diekstraksi dari kayu daun lebar (Fengel dan Wegener, 1995)</td>
</tr>
<tr>
<td>6.</td>
<td>Beberapa contoh lignan yang diekstraksi dari kayu daun lebar (Fengel dan Wegener, 1995)</td>
</tr>
<tr>
<td>7.</td>
<td>Flavonoid dengan pembentukan cincin tambahan (Fengel dan Wegener, 1995)</td>
</tr>
<tr>
<td>8.</td>
<td>Struktur tanin terkondensasi (Fengel dan Wegener, 1995)</td>
</tr>
<tr>
<td>9.</td>
<td>Bagian jalan pertumbuhan hifa (Fengel dan Wegener, 1995)</td>
</tr>
<tr>
<td>10.</td>
<td>Skema urutan proses ekstraksi bertahap dengan menggunakan 4 pelarut</td>
</tr>
<tr>
<td>11.</td>
<td>Botol gelas untuk pengujuan termitisida</td>
</tr>
<tr>
<td>12.</td>
<td>Serbuk contoh dan ekstrak aseton kayu Sonokemble (a) dan Nyatah (b)</td>
</tr>
<tr>
<td>13.</td>
<td>Proses pemekatan larutan ekstrak menggunakan rotary evaporator</td>
</tr>
<tr>
<td>14.</td>
<td>Rata-rata mortalitas rayap tanah C. curvignathus Holmgren pada konsentrasi fraksi ekstrak kayu Sonokemple 2% dibandingkan kontrol setelah empat minggu pengumpanan</td>
</tr>
<tr>
<td>15.</td>
<td>Rata-rata pengurangan berat paper pads (%) pada empat minggu pengamatan</td>
</tr>
</tbody>
</table>
16. Rata-rata pertumbuhan relatif miselium jamur *S. commune* dalam media MEA berisi fraksi ekstrak kayu Sonokembang setelah dua minggu masa inkubasi ...

17. Rata-rata pertumbuhan relatif miselium jamur *S. commune* dalam media MEA berisi fraksi ekstrak kayu Nyatoh setelah dua minggu masa inkubasi ...

18. Perbandingan pertumbuhan miselium jamur antara kontrol dengan fraksi etil eter pada konsentrasi 2% ...

19. Perbandingan pertumbuhan miselium jamur antara kontrol dengan fraksi n-heksan pada konsentrasi 4% ...

20. Perbandingan pertumbuhan miselium jamur antara kontrol dengan fraksi etil asetat pada konsentrasi 10% ...

21. Pola kromatogram komponen utama dari fraksi n-heksan ...

22. Spektra massa komponen *C_{15}H_{26}O* (guaïol) ...

23. Spektra massa komponen *C_{15}H_{26}O* (2-Naphthalenemethanol) ...

24. Spektra massa komponen *C_{18}H_{32}O_{2}* (9,12-Octadecadienoic acid) ...

25. Pola kromatogram komponen utama dari fraksi ethyl ether ...

26. Spektra massa komponen X_1 dari fraksi ethyl ether ...

27. Spektra massa komponen X_2 dari fraksi ethyl ether ...

28. Spektra massa komponen X_3 dari fraksi ethyl ether ...
<table>
<thead>
<tr>
<th>No.</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Daftar sidik ragam mortalitas rayap C. curvignathus Holmgren pada setiap fraksi ekstrak kayu Pterocarpus sp. setelah empat minggu pengumpanan</td>
<td>61</td>
</tr>
<tr>
<td>2.</td>
<td>Uji beda rata-rata Duncan mortalitas rayap C. curvignathus Holmgren pada setiap fraksi ekstrak kayu Pterocarpus sp setelah empat minggu pengumpanan</td>
<td>61</td>
</tr>
<tr>
<td>3.</td>
<td>Daftar sidik ragam mortalitas rayap C. curvignathus Holmgren pada setiap fraksi ekstrak kayu Palaquium gutta Baill setelah empat minggu pengumpanan</td>
<td>61</td>
</tr>
<tr>
<td>4.</td>
<td>Uji beda rata-rata Duncan mortalitas rayap C. curvignathus Holmgren pada setiap fraksi ekstrak Palaquium gutta setelah empat minggu pengumpanan</td>
<td>62</td>
</tr>
<tr>
<td>5.</td>
<td>Daftar sidik ragam kehilangan berat paper pads pada kayu P. indicus Willd setelah empat minggu pengumpanan terhadap rayap C. curvignathus Holmgren</td>
<td>62</td>
</tr>
<tr>
<td>6.</td>
<td>Uji beda rata-rata Duncan pengurangan berat paper pads kayu Pterocarpus indicus Willd</td>
<td>62</td>
</tr>
<tr>
<td>7.</td>
<td>Daftar sidik ragam pengurangan berat paper pads kayu Palaquium gutta Baill dengan model faktorial tersarang (konsentrasi tersarang pada fraksi ekstrak)</td>
<td>62</td>
</tr>
<tr>
<td>8.</td>
<td>Daftar sidik ragam pertumbuhan miselium jamur pasca medium MEA ditambah ekstrak kayu dari Pterocarpus indicus Willd dengan model faktorial tersarang (konsentrasi tersarang pada fraksi ekstrak)</td>
<td>63</td>
</tr>
<tr>
<td>9.</td>
<td>Uji beda rata-rata Duncan pertumbuhan miselium jamur pasca medium MEA ditambah ekstrak kayu Pterocarpus indicus Willd</td>
<td>63</td>
</tr>
<tr>
<td>10.</td>
<td>Daftar sidik ragam pertumbuhan miselium jamur pada medium MEA yang mengandung ekstrak kayu P. gutta Baill</td>
<td>63</td>
</tr>
<tr>
<td>11.</td>
<td>Uji beda rata-rata Duncan pertumbuhan miselium jamur pasca medium MEA ditambah ekstrak kayu dari P. gutta Baill</td>
<td>63</td>
</tr>
<tr>
<td>12.</td>
<td>Rata-rata mortalitas rayap tanah Coptotermes curvignathus Holmgren selama 4 minggu</td>
<td>64</td>
</tr>
<tr>
<td>13.</td>
<td>Pola kromatogram dan spektra massa komponen utama dari fraksi n-heksan</td>
<td>65</td>
</tr>
<tr>
<td>14.</td>
<td>Pola kromatogram dan spektra massa dari fraksi ethyl ether</td>
<td>85</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar belakang

Masalah umum yang di hadapi dalam pengembangan industri hasil hutan terutama adanya kesenjangan antara kebutuhan bahan baku dengan kemampuan suplai kayu secara lestari. Hutan tropika Indonesia diperkirakan hanya menghasilkan 15-20% jenis kayu kelas awet tinggi (kelas awet I-II), sedangkan sisanya termasuk kelas awet rendah (kelas awet III-IV). Kualitas dari Hutan Tanaman Industri (HTI) juga relatif rendah. Pemanfaatan kayu kelas awet rendah untuk bahan bangunan menghadapi banyak kendala, antara lain umur pakainya yang relatif singkat karena mudah diserang oleh organisme perusak kayu. Kerusakan biologis yang disebabkan oleh rayap dan jamur pelapuk kayu yang terjadi di daerah tropis, terutama didukung oleh iklim tropis yang memiliki suhu, kelembaban udara dan curah hujan yang relatif tinggi merupakan kondisi yang cocok bagi pertumbuhan organisme perusak kayu.

alami kayu telah terbukti karena adanya komponen-komponen bioaktif yang bersifat racun
dan secara kimiai mempunyai kemampuan untuk menahan serangan organisme perusak
kayu.

Senyawa-senyawa ekstraktif kayu merupakan sumberdaya yang perlu dikaji
kemungkinan pemanfaatannya sebagai sumber pestisida nabati, terutama untuk
mengendalikan serangan organisme perusak kayu. Syafii et al. (1993) melaporkan bahwa
komponen bioaktif dari kayu ulin (Eusideroxyloch zwageri), yaitu eusiderin bersifat racun
dan menghambat pertumbuhan berbagai jenis jamur. Ekstrak kulit Quercus prinus,
Sassafras albidum dan Pinus strobus juga sangat menjanjikan sebagai bahan pengawet
alami kayu (Steller dan Labosky, 1982). Bahkan ekstrak akar Acanthus ilicifolius dapat
menghambat pertumbuhan bakteri, jamur dan berfungsi sebagai "anti-feedant" bagi
serangga (Nursal, et al., 1997).

Indonesia memiliki keanekaragaman jenis tumbuhan tropis yang sangat besar
selayaknya melakukan eksplorasi dan identifikasi komponen-komponen bioaktif yang
dibentuk dan ditimbun oleh organ tumbuhan, termasuk pengkajian kemungkinan
pemanfaatannya sebagai bahan pengawet kayu. Dalam kaitan ini kayu Sonokembang
termasuk kayu kelas awet II dan Nyatoh termasuk kayu kelas awet III-IV, kedua contoh
kayu ini pohonnya telah berumur lebih dari 25 tahun. Penggunaan pengawet alami sebagai
pengawet alternatif akan lebih menguntungkan karena senyawa tersebut lebih aman bagi
lingkungan (biodegradable) dan bersifat terbaurui (renewable).

Suatu penelitian telah dilakukan untuk mengetahui toksisitas beberapa fraksi
senyawa ekstraktif kayu Sonokembang (Pterocarpus indicus Willd.) dan Nyatoh
(Palaquium gutta Baill.) terhadap rayap tanah Coptotermes curvignathus Holmgren dan jamur pelapuk Schizophyllum commune Fr.

Tujuan Penelitian

Penelitian bertujuan untuk mengetahui toksisitas beberapa fraksi zat ekstraktif kayu Sonokembang (Pterocarpus indicus Willd) dan Nyatoh (Palaquium gutta Baill) terhadap rayap tanah Coptotermes curvignathus Holmgren dan jamur pelapuk Schizophyllum commune Fr serta menduga komponen bioaktif melalui pendekatan dengan pola spektrum massa yang tersedia dalam data National Institute Standard of Technology (NITS) Library.

Hasil penelitian diharapkan dapat memberikan tambahan informasi mengenai jenis-jenis kayu tropis yang berpotensi sebagai agen pengendalian hayati organisme perusak kayu, khususnya rayap tanah dan jamur pelapuk.
TINJAUAN PUSTAKA

Kimia Kayu

Komposisi Kimia Kayu

Kayu adalah bahan organik yang tersusun terutama atas unsur karbon (C) sebesar 50%, hidrogen (H) sebesar 6% dan oksigen (O) sebesar 44% (Achmadi, 1990). Sepanjang menyangkut komponen kimia kayu, maka perlu dibedakan antara komponen-komponen makromolekul utama dinding sel yaitu selulosa, hemiselulosa (poliosa) dan lignin, yang terdapat pada semua kayu, serta komponen-komponen minor dengan berat molekul kecil (ekstraktif dan zat-zat mineral), yang biasanya lebih berkaitan dengan jenis kayu tertentu dalam jenis dan jumlahnya (Fengel dan Wegener, 1995).

Selulosa

Selulosa merupakan komponen utama dinding sel kayu. Sekitar 40% - 45% bahan kering kayu dalam sebagian besar spesies adalah selulosa, terutama terdapat dalam dinding sel. Selulosa merupakan polimer glukan yang terdiri dari rantai lurus ikatan 1,4-β unit anhidropiranosa. Jumlah unit gula dalam satu rantai molekul ditunjukkan sebagai derajat polimerisasi (DP). Selulosa kayu mempunyai DP kurang lebih 9000 – 10000. DP 10000 dapat artikan bahwa panjang rantai lurus diperkirakan 5 μm dalam kayu. Unit terkecil dari selulosa adalah selobiosa yang terdiri dari dua monomer glukosa, dimana unit ulangan polimer terikat melalui ikatan glukosida β(1→4).

Sebagian besar selulosa terikat dalam dinding sel dan tidak sebagai molekul-molekul yang berdiri sendiri tapi tersusun rumit dalam kelompok molekul. Sebelum menjadi bagian dinding sel, molekul-molekul selulosa yang berbentuk seperti rantai panjang membentuk

Kayu dapat didegradasi secara biologis karena organisme perusak kayu mempunyai sistem enzim spesifik yang mampu menghidrolisis polimer polisakarida pada dinding sel menjadi unit yang dapat dicerna. Selulosa terutama bertanggung jawab terhadap kekuatan kayu karena selulosa mempunyai berat molekul tinggi. Selulosa yang terdegradasi melalui reaksi oksidasi, hidrolisasi, dan dehidrasi menyebabkan berkurangnya kekuatan kayu (Rowell, 1984).

Hemiselulosa

Hemiselulosa adalah campuran sintesis polisakarida dalam kayu yang berasal dari glukosa, manosa, galaktosa, xilosa, arabinosa, asam 4-0-metilglukuronat, dan sisa asam galakturonat. Umumnya hemiselulosa larut dalam alkali dan mudah terhidrolisis oleh asam.
Struktur hemiselulosa kayu daun jarum dicirikan oleh galaktoglukomanan (± 20%) yang terbentuk dari ikatan 1,4-ß-D-glukopiranosa, ß-D-manopiranosa, dan galaktosa. Galaktoglukomanan mudah mengalami depolimerisasi oleh asam dan terutama ikatan antara galaktosa dan rantai utama. Sedangkan hemiselulosa kayu daun lebar, komponen utamanya adalah O-asetil-4-O-metil glukuronono-ß-D-xilan atau glukuronoxilan. Kandungan berkisar 15 % - 30 % dari berat kering kayu (Sjöström, 1981).

Lignin

Lignin merupakan zat organik polimer yang terdiri dari unit fenilpropana. Fenilpropana adalah unit dasar dari lignin sudah diketahui sejak lama, tetapi sulit diterima karena ada gugus aromatik. Adanya gugus aromatik dibuktikan oleh Lange tahun 1954 dalam Fengel dan Wegener 1995 dengan spektroskopi ultraviolet. Dengan teknik penandaan radioisotop \(^{14}\text{C}\), dipastikan bahwa prazat lignin adalah koniferil alkohol, p-koumaril alkohol dan sinapil alkohol (Gambar 1)

![Diagram Lignin](image)

Gambar 1. Unit pembentuk lignin: p-koumaril alkohol (I), koniferil alkohol (II), dan sinapil alkohol (III) (Fengel dan Wegener, 1995).

Menurut Achmadi (1990) lignin dapat dibagi kedalam beberapa kelompok menurut unsur strukturalnya:

1. Lignin guaiasil : terdapat pada kayu daun jarum (26-32%) dengan prazat koniferil alkohol.

Penggolongan lain dapat juga dilakukan. Contohnya pada kayu tekan, terdapat pula jenis p-hidroksi fenil disamping unit guaiasil yang normal. Istilah lignin siringil dan lignin p-hidroksi fenil kadang-kadang digunakan untuk menyatakan unsur struktural yang dianggap khas.

Konsentrasi lignin tinggi dalam lamela tengah dan rendah dalam dinding sekunder. Karena tebalnya, paling sedikit 70% lignin kaya daun jarum menumpati dinding sekunder. Disamping distribusi lignin didalam dinding sel, kandungan lignin bagian pohon yang berbeda tidak sama. Sebagai contoh kandungan lignin yang tinggi adalah khas untuk bagian batang yang paling rendah, paling tinggi dan paling dalam (Fengel dan Wegener, 1995).

Biosintesis lignin dimulai dengan glukosa yang diperoleh dari fotosintesis. Ia diubah menjadi asam shikamatt yang merupakan senyawa antara dari jalur asam shikamat. Dua asam amino aromatik L-fenilalanil dan L-tirosin dibentuk berdasarkan aminasi reduktif melalui asam prefenat sebagai senyawa-senyawa akhir dari jalur tersebut. Pada sisi lain zat-zat tersebut adalah zat-zat awal (kelompok asam amino) untuk metabolisme enzimatik fenil propanoid (jalur asam sinamat) yang menghasilkan tidak hanya tiga sinamil alkohol melalui turunan asam sinamat teraktivasi, tetapi juga komponen ekstraktif seperti flavonoid atau stilbena. Asam-asam amino diaminasi oleh enzim diaminase menjadi asam sinamat. Langkah-langkah utama lebih lanjut adalah hidroksilasi (oleh fenolase) dan metilasi (oleh 0-metittransferase) menghasilkan asam p-koumarat, asam kaifcat, asam ferulat, asam 5-hidroksi-ferulat dan asam sinatif.

Proporsi unit-unit sinapil lebih tinggi dalam lignin kaya daun lebar daripada dalam lignin kaya daun jarum, diperkirakan karena afinitas 4-0-metil-transferase angiosperminal yang lebih tinggi terhadap asam 5-hidroksi-ferulat dibandingkan dengan transferase gimnospermae. Keteraturan produksi lignin ternyata dikendalikan sejak dini oleh aktivitas deaminasi yang berbeda pada berbagai keadaan dalam hal faktor-faktor seperti cahaya dan ketersediaan hormon (Fengel dan Wegener, 1995).
Ekstraktif dan Keawetan alami Kayu

Browning (1967) mendefinisikan ekstraktif sebagai zat-zat dalam kayu yang mudah larut dalam pelarut netral atau pelarut organik. Zat ekstraktif ini bukan merupakan bagian struktural dinding sel kayu, tetapi sebagai zat pengisi rongga sel.

Ketahanan kayu terhadap serangan mikroorganisme salah satunya dipengaruhi oleh faktor lingkungan, seperti misalnya, temperatur, pH, tekanan O₂ dan CO₂ parsial, dan kadar air (Higley dan Kirk, 1979 dalam Syafii, et al., 1994). Disamping itu ada faktor yang secara langsung mempengaruhi ketahanan kayu terhadap serangan mikroorganisme yaitu adanya zat ekstraktif yang terdapat didalam kayu tersebut, dimana zat ekstraktif ini merupakan penyebab utama keawetan alami kayu yang bersangkutan.

Zat ekstraktif beberapa jenis kayu telah terbukti mengandung zat bio-aktif yang dapat menghambat pertumbuhan jamur, seperti misalnya ekstrak air panas kayu Mahoni

Panshin dan de Zeew (1980) menyatakan bahwa ketahanan alami kayu terhadap serangga mikroorganisme dapat juga di sebabkan oleh faktor-faktor berikut:

- Dinding sel kayu terdiri dari komplek tingkat tinggi, polimer dengan berat molekul tinggi yang tidak larut. Substansi ini harus diubah (depolimerisasi) oleh enzim yang dihasilkan pada serangga organisme menjadi produk yang lebih sederhana, sehingga dapat digunakan sebagai sumber energi.

- Lignifikasi kayu menghasilkan halangan fisik bagi serangga enzim pada polisakarida. Oleh karena itu hanya organisme yang mempunyai enzim lignase saja yang mampu menghancurkan lignin.

- Depolimerisasi lignin terbatas hanya pada daerah amor dari selulosa. Selulosa kayu lebih bersifat kristalin daripada jaringan tanaman lain, maka kayu mempunyai ketahanan yang lebih besar terhadap kerusakan oleh jamur dan bakteri.

- Kayu mempunyai kandungan nitrogen yang rendah, antara 0,03 - 0,10% berdasarkan berat, lain halnya dengan tanaman herba yang biasanya mengandung 1 - 5% nitrogen. Kandungan nitrogen yang rendah ini menyebabkan kayu tidak mudah terpengaru oleh pelapukan.

- Kadar air yang lebih tinggi diperlukan untuk terjadinya deteriorasi pada kayu dari pada jaringan tanaman lain. Sebagai contoh pada serat kapas, kadar air 10% cukup untuk terjadinya kerusakan oleh mikroorganisme.

Penggolongan Zat Ekstraktif

Sjöström (1981) menggolongkan zat ekstraktif kedalam tiga sub grup yaitu:

1. Komponen alifatik (lemak, lilin dan komponennya)
2. Terpena dan terpenoid
3. Senyawa Fenolik

1. Komponen alifatik (lemak, lilin dan komponennya)

Lemak didefinisikan sebagai ester asam karbosilat tingkat tinggi (asam lemak) dengan gliserol, sedangkan lilin adalah ester asam lemak dengan alkohol tinggi (Gambar 2). Lemak dan lilin dapat diekstraksi dari kayu dengan pelarut organik (dietil eter, petroleum eter, aseton dan sebagainya). Disamping lemak dan lilin, asam lemak bebas dan alkohol juga merupakan komponen ekstraktif. Namun demikian, kebanyakan asam lemak yang berada dalam ekstraktif kayu merupakan gabungan, yang dominan adalah esterifikasi dengan gliserol. Diantara gliserida (lemak) maka trigliserida 'merupakan yang dominan bila dibandingkan dengan mono dan digliserida. Kandungan asam lemak bebas pada kayu teras lebih tinggi dibandingkan kayu gubal. Ekstrak eter Betula
Gambar 2. Klasifikasi zat ekstraktif kayu yang dihasilkan dari empat macam teknik ekstraksi (Fengel dan Wegener, 1995)

Saponifikasi terhadap trigliserida *Quercus alba* menghasilkan 75% asam linoleat, 10% asam stearat dan 10% asam palmitat (Chen, 1970, dalam Fengel dan Wegener, 1995).
<table>
<thead>
<tr>
<th>Lemak</th>
<th>H⁻⁺·CO⁻·R₁</th>
<th>H⁻⁺·CO⁻·R²</th>
<th>H⁻⁺·CO⁻·R₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lilin</td>
<td>C₁₆H₃₁₂O₂</td>
<td>C₁₆H₃₁₂O₂</td>
<td>C₁₆H₃₁₂O₂</td>
</tr>
<tr>
<td>Asam-asam lemak</td>
<td>[Diagram of fatty acids]</td>
<td>[Diagram of fatty acids]</td>
<td>[Diagram of fatty acids]</td>
</tr>
<tr>
<td>Alkohol</td>
<td>C₁₀H₂₀O₁ (Einhexanol)</td>
<td>C₁₂H₂₄O₁ (Dodekanol)</td>
<td>C₁₄H₂₆O₁ (Tetradekanol)</td>
</tr>
</tbody>
</table>

Gambar 3. Srtuktur kimia lemak, lilin dan komponen-komponennya yang diisolasi dari kayu (Fengel dan Wegener, 1995)

2. Terpena dan terpenoid

Terpena merupakan hidrokarbon murni, sedangkan terpenoid dapat mengandung gugus-gugus fungsi hidroksil, karbonil, karboksil dan ester. Salah satu contoh dari terpenoid adalah poliprenol (Fengel dan Wegener, 1995).

Terpenoid mencakup sejumlah besar senyawa dalam tumbuhan. Semua terpenoid didasarkan pada unit-unit isoprena CH₂=C(CH₃)-CH=CH₂ dan kerangka karbonnya dibentuk dari gabungan dua atau lebih unit C₃. Menurut jumlah unit isoprena yang menyusunnya terpena dikelompokkan menjadi monoterpena (2 unit), seskuiterpena (3 unit), diterpena (4 unit), sesterterpena (5 unit), triterpena (6 unit) dan politerpena (unit > 8). Unit isoprena terikat menurut aturan isoprena yang berarti bahwa
ekor satu unit terikat dengan kepala senyawa berikutnya. Aturan ini dapat diikuti sampai 5 unit isoterpena, sedangkan banyak struktur triterpena harus diterangkan dengan komposisi dua seskuiterpena dengan ikatan ekor dengan ekor.

Tabel 1. Golongan utama terpenoid tumbuhan (Suradikusumah, 1989).

<table>
<thead>
<tr>
<th>Jumlah unit isoprena</th>
<th>Jumlah karbon</th>
<th>Nama golongan</th>
<th>Contoh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C₅</td>
<td>Isoprena</td>
<td>Isoprena</td>
</tr>
<tr>
<td>2</td>
<td>C₁₀</td>
<td>Monoterpenoid</td>
<td>Tropolone</td>
</tr>
<tr>
<td>3</td>
<td>C₁₅</td>
<td>Sesquiterpenoid</td>
<td>Absisin</td>
</tr>
<tr>
<td>4</td>
<td>C₂₀</td>
<td>Diterpenoid</td>
<td>Giberellin</td>
</tr>
<tr>
<td>6</td>
<td>C₃₀</td>
<td>Triterpenoid</td>
<td>Sterol</td>
</tr>
<tr>
<td>8</td>
<td>C₄₀</td>
<td>Tetraterpenoid</td>
<td>Karotenoid</td>
</tr>
<tr>
<td>n</td>
<td>Cₙ</td>
<td>Poliisoprena</td>
<td>Karet</td>
</tr>
</tbody>
</table>

Gambar 4. Struktur dasar berbagai terpena (Fengel dan Wegener, 1995)

Beberapa kayu tropis mengandung triterpena glikosida dan steroid yang menimbulkan busa didalam air, yang dinamakan saponin. Saponin aglikon dinamakan sapogenin. Saponin dengan aglikon dari asam hidroksi – aleanolik dan dihidroksi – aleanolik bertanggung jawab pada ketahanan kayu zapota (Manilkara zapota) terhadap serangan jamur dan rayap (Sandermann dan Funke, 1970 dalam Fengel dan Wegener, 1995).

3. Senyawa Fenolik

Senyawa ini sangat heterogen, dan dibedakan atas lima golongan, yaitu :

a. Tanin terhidrolisis : merupakan kelompok bahan dasar yang dalam hidrolisis menghasilkan asam galat dan glukosa sebagai produk utama.
b. Tanin terkondensasi (flavonoid) : merupakan polifenol yang mempunyai rantai karbon \(C_6C_3C_6\), misalnya krisin dan toksipolin.

c. Lignan : merupakan dimer 2 unit phenilpropana \((C_6C_3)\), contohnya asam piktat, pinoresinol dan konidendrin.

d. Stilbena : bersifat reaktif, karena memiliki konyugasi ikatan rangkap dua, contohnya pinosilvin.

e. Tropolon : mempunyai kelehasan berupa cincin karbon beranggotakan tujuh yang tidak jernih, contohnya \(\alpha, \beta\) dan \(\gamma\)-tujaplisin yang di isolasi dari thuja plicata.

Meskipun fenolik terkondensasi didalam kayu keras dan kulit serta hanya sedikit yang terdapat didalam xilem, namun fenolik ini mempunyai fungsi sebagai fungisida dan secara efektif melindungi kayu dari serangan organisme perusak kayu. Nicholas (1973) menyatakan bahwa zat-zat ekstraktif yang dikenal menghambat pelapukan adalah senyawa-senyawa fenolik.

Diantara fenol sederhana yang dapat diisolasi dari ekstraktif \textit{Picea abies} adalah vanilin, p-hidroksibenzal dehidra, koniferil alkohol, guaiasil gliserol, p-etylfenol, maupun koniferin dan siringin

Gambar 5. Beberapa contoh fenol sederhana yang diekstraksi dari kayu daun lebar (Fengel dan Wegener, 1995)
Kelompok senyawa yang selalu dikaitkan dengan ekstraktif kayu pinus adalah *Lignan*. Dari kayu daun lebar, terutama dari jenis alnus, quercus, ulmus, lignan yang di kenal adalah siringaresinol, lioniresinol, asam tomasat dan tomasidoat (Gambar 5).

Gambar 6. Beberapa contoh lignan yang diekstraksi dari kayu daun lebar (Fengel dan Wegener, 1995)

Berikut ini senyawa-senyawa yang termasuk flavonoid dan sumber tumbuhannya (Tabel 2).
<table>
<thead>
<tr>
<th>Struktur panela</th>
<th>Koordinat OH (C13)</th>
<th>Nama</th>
<th>Verdapatnya</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 7, 3', 4'</td>
<td>Fisetin</td>
<td>Acerin, Rhiz, Schisandri</td>
<td></td>
</tr>
<tr>
<td>3, 7, 4'</td>
<td>Kaempferol</td>
<td>Aflatoxin</td>
<td></td>
</tr>
<tr>
<td>3, 7, 3', 4'</td>
<td>Quercetin</td>
<td>Acacia, Robinia, Schisandra</td>
<td></td>
</tr>
<tr>
<td>3, 3', 4'</td>
<td>Quercetin</td>
<td>Acacia, Robinia, Quercus</td>
<td></td>
</tr>
<tr>
<td>3, 7, 3', 4'</td>
<td>Morin</td>
<td>Caloburnarse</td>
<td></td>
</tr>
<tr>
<td>3, 7, 3', 4'</td>
<td>Flavonoid</td>
<td>Acacia</td>
<td></td>
</tr>
<tr>
<td>3, 7, 3', 4'</td>
<td>Mollissinin</td>
<td>Acacia, Gleditsia</td>
<td></td>
</tr>
<tr>
<td>3, 7, 3', 4'</td>
<td>Kaetin</td>
<td>Acacia, Schisandra</td>
<td></td>
</tr>
<tr>
<td>3, 4, 7, 3', 4'</td>
<td>Leucoasterigenin</td>
<td>Acacia</td>
<td></td>
</tr>
<tr>
<td>3, 7, 3', 4'</td>
<td>Batocepin</td>
<td>Acacia, Kalima</td>
<td></td>
</tr>
<tr>
<td>3, 7, 3', 4'</td>
<td>Fusan</td>
<td>Acacia, Schisandra</td>
<td></td>
</tr>
<tr>
<td>5, 7, 4'</td>
<td>Procatein</td>
<td>Pterost. - x</td>
<td></td>
</tr>
<tr>
<td>5, 7, 4', (7)</td>
<td>Saini</td>
<td>Pterost. - x, Pterost. - y, Pterost. - z</td>
<td></td>
</tr>
<tr>
<td>3, 4, 7, 3'</td>
<td>Butein</td>
<td>Acacia, Cuscutae</td>
<td></td>
</tr>
<tr>
<td>3, 4, 7, 3', 4'</td>
<td>Obein</td>
<td>Cuscutae, Cyclocarya</td>
<td></td>
</tr>
<tr>
<td>3, 4, 7, 3', 4'</td>
<td>Obein</td>
<td>Cuscutae, Cyclocarya</td>
<td></td>
</tr>
<tr>
<td>3, 4, 7, 3', 4'</td>
<td>Obein</td>
<td>Cuscutae, Cyclocarya</td>
<td></td>
</tr>
<tr>
<td>3, 4, 7, 3', 4'</td>
<td>Obein</td>
<td>Cuscutae, Cyclocarya</td>
<td></td>
</tr>
<tr>
<td>6, 3', 4'</td>
<td>Selustrein</td>
<td>Pseudobinorinore</td>
<td></td>
</tr>
<tr>
<td>6, 3', 4', (6)</td>
<td>Rangsin</td>
<td>Pseudobinorinore, Melanorinone, Pseudoexone, Schisandra</td>
<td></td>
</tr>
<tr>
<td>2, 6, 3', 4'</td>
<td>Tetrandrostililin</td>
<td>Pseudobinorinore, Melanorinone, Pseudoexone, Schisandra</td>
<td></td>
</tr>
<tr>
<td>2, 6, 3', (4')</td>
<td>Tetrandrostililin</td>
<td>Pseudobinorinore, Melanorinone, Pseudoexone, Schisandra</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Fengel dan Wegener, 1995

Isoflavon dan kalkon dengan tambahan pembentukan cincin diisolasi dari kayu, contoh adalah Pterocarpin dari *Pterocarpus santalinus* dan mopol dari *Goniocarpus marginata* (Gambar 6). Sejumlah flavonoid menentukan warna masing-masing kayu, misalnya fisetin, morin dan santal. Yang lain (butein, sulforetin, rangsin) menyebabkan noda-noda warna dalam pulp kayu tropika (Ohtani et al., 1982 dalam Fengel dan Wegener, 1995).
Gambar 7. Struktur kimia flavonoid dengan pembentukan cincin tambahan (Fengel dan Wegener, 1995)

Gambar 8. Struktur kimia tanin terkondensasi (Fengel dan Wegener, 1995)

Rayap Tanah *Coptotermes curvignathus* Holmgren

Morfologi

Coptotermes curvignathus Holmgren termasuk genus Coptotermes, subfamili Coptotermitidae, famili Rhinotermitidae dan ordo Isoptera (Krisnna dan Wessner, 1969). Secara deskripsi jenis rayap ini adalah sebagai berikut:

- Imago (Alates) : kepala berwarna coklat; labrum dan labial pulpi berwarna kekuning-kuningan; pronotum kuning kecoklatan dengan ciri bentuk Y; abdomen coklat pucat; fontanel jelas; antena dengan 21 segmen; mata bulat; ocelus oval; sayapnya hyaline; costotal margin kekuning-kuningan; membran sayap padat
ditutupi dengan rambut-rambut kecil. Panjang dengan sayap 14 mm, tanpa sayap 6 mm, lebar kepala 1,44 mm, lebar pronotum 1,31 mm.

- Reproduktif primer (jantan) : Serupa pada alates tetapi tanpa sayap, sedangkan reproduktif primer (ratu) : mirip pada alate, tanpa sayap; abdomennya membesar, kulit luar dari abdomen berwarna putih susu, panjang badan 21 mm; panjang abdomen 19 mm.

- Reproduktif sekunder (betina) : kepala kuning, mandible kuning pucat dengan ujung coklat; antena dan kaki kuning pucat; torak berwarna kuning ditutupi rambut-rambut kecil; abdomen putih susu dan kuning pucat; kepala bundar dengan sebuah ciri Y; fontanel bundar keputihan; mata bulat, tak beragam, ocelli bulat keputih-putihan; labrun berbentuk lidah yang memanjang pada mandible; antena 17 segmen, segmen kedua sampai segmen keempat sama panjangnya; abdomen agak sedikit membesar; panjang badan 12 mm; panjang abdomen 9 mm, lebar kepala 1,34 mm, lebar pronotum 1,25 mm.

- Prajurit : Kepala berwarna kuning; anteclypeus putih kekuning-kuningan; antena, labrun dan pronotum kuning pucat; mandibel coklat kekuningan; abdomen dan kaki berwarna kuning jerami; kepala berambut sedikit; pronotum sedang, dikelilingi rambut-rambut pendek; bagian perut rata ditutupi dengan rambut berduri. Kepala berbentuk lingkaran, sedikit panjang dari pada lebaranya; pontunel lebar, berlubang; anteclypeus sempit, kurang lebih berbentuk segi empat; torak mempunyai rambut-rambut; antena dengan 15 segmen; mandibel berbentuk seperti arit dan melengkung diujungnya; batas sebelah dalam dari mandibel kanan rata; pronotum subreniform; mosonotum oval; metanotum serupa mesonotum panjang badan 5,5 – 6 mm;
panjang kepala dengan mandibel 2,46 – 2,66 mm; panjang kepala tanpa mandibel 1,56 – 1,68 mm lebar kepala 1,4 – 1,44 mm; lebar pronotum 1-1,03 mm; panjang pronotum 0,56 mm.

- Pekerja : kepala putih kekuning-kuningan; torak dan abdomen berwarna putih susu; mandibel kuning pucat; antena keputih-putihan, kepala ditutupi bulu-bulu lembut; antena dengan 14 segmen; pronotum lebih menyempit dari pada kepala; panjang badan 4-4,5 mm; lebar kepala 1,37 – 1,44 mm; lebar pronotum 1,37 – 1,44 mm; panjang pronotum 0,81 – 0,93 mm.

Biologi

Coptotermes termasuk jenis rayap yang dapat cepat menyesuaikan diri terhadap keadaan berbeda dengan habitat sebelumnya. Bila habitat aslinya diganggu karena diubah menjadi hutan tanaman, maka koloni-koloni rayap akan mempertahankan hidupnya dengan mempergunakan sisa-sisa kayu, kayu-kayu terbakar dan tunggak-tunggak sebagai bahan makanannya. Bahkan rayap ini dapat merubah menjadi rayap rumah bila daerahnya diubah menjadi perumahan.

Oshima (1919) menyatakan bahwa sarang rayap jenis *Coptotermes* di letakan pada kedalaman 2 sampai 3 meter pada pusat dibawah tanah. Sarang ini berbentuk bundar dan

Kasta pekerja *Coptotermes curvignathus* yang berwarna putih pucat mampu memperluas serangannya karena kelompok pekerja ini mampu membentuk saluran-saluran yang ditutupi oleh tanah yang melekat pada tembok maupun kayu. Disamping sebagai tempat perlindungan dari predator dan sinar matahari juga tanah tanah tersebut berfungsi untuk mempertahankan kelembaban dan suhu sehingga keadaan seperti habitat aslinya yang jauh didalam tanah dapat tetap terkendali.

- Sifat cryptobiotic, yaitu sifat rayap untuk menjauhi cahaya. Sifat ini tidak berlaku terhadap rayap yang bersayap (calon kasta reproduktif) dimana mereka selama periode yang pendek didalam hidupnya memerlukan cahaya (terang).
trhadap flagelata, sedangkan flagelata menyumbangkan enzim selulosa untuk pencernaan rayap.

Di dalam usus rayap Coptotermes curvignathus terdapat tiga genus flagelata yaitu genus Preudotricchonimpa, Holomastigotoidea dan Spirotrichonimpha. Pertumbuhan populasi flagelata tersebut dipengaruhi oleh makanan yang dinamakan oleh rayap, karena setiap kayu mempunyai kandungan zat ektraktif yang berbeda.

Sifat-sifat rayap yang penting untuk diketahui yaitu:

- Sifat trophalaxis, yaitu sifat rayap untuk berkumpul saling menjilat serta mengadakan pertukaran bahan makanan.

- Sifat cryptobiotic, yaitu sifat rayap untuk menjauhi cahaya. Sifat ini tidak berlaku terhadap rayap yang bersayap (calon kasta reproduktif) dimana mereka selama periode yang pendek didalam hidupnya memerlukan cahaya (terang).
- Sifat kanibalisme, yaitu sifat rayap untuk memakan individu sejenis yang lemah atau sakit, saat ini lebih menonjol bila rayap berada dalam keadaan kekurangan makanan.

- Sifat necrophagy, yaitu sifat rayap untuk memakan bangkai sesamanya.

Rayap sebagai Hama dan Alternatif Pengendaliannya

Rayap di daerah tropika dikenal sebagai serangga yang menyerang kayu dan bangunan gedung, namun karena kebutuhan nutrisi rayap adalah selulosa maka rayap juga dapat menyerang dan menyebabkan kerusakan pada tanaman pertanian, perkebunan dan kehutanan. Perubahan kondisi habitat alami rayap karena aktivitas manusia seringkali merubah status serangga itu menjadi hama yang menyerang tanaman dan merusak kayu serta bangunan gedung. Pembukaan lahan gambut dan hutan primer atau bekas tebang untuk perluasan pertanian, perkebunan atau pembangunan HTI seringkali menyisakan tunggak kayu yang berserakan di atas tanah sehingga menciptakan habitat yang disenangi oleh rayap. Pada tahun pertama rayap akan memperoleh sumber makanan yang melimpah, namun pada tahun-tahun berikutnya setelah koloni rayap berkembang, serangan ini harus mencari sumber makanan baru termasuk tanaman di areal tersebut. Pada saat itulah rayap berperan sebagai hama.

Rahmawati (1995) memperkirakan di masa yang akan datang nilai kerugian akibat serangan rayap akan semakin tinggi. Faktor-faktor yang di gunakan untuk memperkirakan kerugian ekonomis akibat serangan rayap tersebut adalah Jumlah rumah yang terserang, nilai kayu dipasaran, dan konstata kerugian (C). Hubungan antara faktor tersebut terhadap nilai kerugian ekonomis (Px) dijelaskan dalam persamaan matematis berikut; P = S rumah x harga kayu perunit rumah (Rp) pada tahun ke-XXC. Konstanta nilai kerugian ekonomis diperoleh dari nilai rata-rata kerugian ekonomis akibat serangan rayap perunit rumah.

Berdasarkan persamaan matematis tersebut pada tahun 1995 dimana populasi rumah sebanyak 45.276 juta, nilai kayu perunit rumah 2.94 ribu rupiah, dan nilai konstata kerugian 12.5 % maka nilai kerugian ekonomis mencapai 1,67 milyar rupiah.

dan di Hawaii kerugian akibat serangan serangga diperkirakan mencapai 6 juta dolar dan 1 juta dolar setiap tahun.

Memasuki milenium baru upaya pengendalian rayap pun masuk kedalam era baru dimana mulai di kembangkan pendekatan baru, yaitu pengendaina hama rayap secara terpadu. Pengendalian rayap secara terpadu memiliki dasar ekologis, biologis dan tingkah laku serangga ini dan menyadarkan diri pada faktor-faktor mortalitas alami seperti musuh alami dan rekayasa tempat tumbuh, serta penggunaan teknik pengendalin lain yang memiliki dampak negatif minimal.

Pengendalian hayati meliputi penggunaan musuh-musuh alami, seperti jamur, nematoda dan virus, disamping organisme lain seperti semut dan predator pemakan laron yang biasa berhubungan dengan rayap tetapi tidak memberikan pengaruh yang berbahaya kecuali apabila berada pada jumlah yang besar. Pengendalian ini diarahkan untuk memanipulasi musuh-musuh alami tersebut sehingga dapat mengurangi populasi rayap sampai tingkat yang dapat diterima secara ekonomis.

Jamur Pelapuk Kayu

Di bawah kondisi yang menguntungkan jamur berkembang sangat cepat didalam contoh kayu dengan pertumbuhan hifa. Jalur paling mudah untuk pengembangan hifa adalah
lumina perenkin dan sel-sel pembuluh. Perpindahan dari satu sel lainnya terjadi dengan penetrasi noktah atau dengan melalui dinding-dinding sel. Hifa sejumlah jamur dapat tumbuh didalam lamela tengah majemuk atau didalam dinding sekunder (Gambar 9). Hifa mengeluarkan enzim-enzim yang membusukkan komponen komponen dinding sel kayu.

Gambar 9. Bagian jalur pertumbuhan hifa : (1) didalam lumina sel parenkim, (2) didalam lumina sel pembuluh (3) jalur sederhana, noktah setengah berbatas dan noktah berbatas (4) melalui dinding-dinding sel dan (5) didalam lamela tengah majemuk dan dinding-dinding sel (Fengel dan Wegener, 1995)

Fengel dan Wegener (1995) mengelompokan empat macam tipe jamur pelapuk kayu, yaitu:

Cartwright dan Findlay (1958) mendefinisikan pelapukan kayu sebagai berkurangnya kepadatan kayu yang disebabkan terjadinya kerusakan bahan dasar kayu oleh jamur yang digunakan untuk proses respirasi. Karena jamur tidak mempunyai kemampuan untuk membentuk bahan organik sendiri, maka bahan-bahan organik kompleks yang ada dalam kayu dirombak untuk dijadikan sebagai sumber energi. Hasil dari proses respirasi oleh jamur tersebut berupa CO₂ dan H₂O, dengan proses reaksi sebagai berikut :

\[\text{C}_6\text{H}_{10}\text{O}_5 \text{ CO}_2 \rightarrow 5 \text{ H}_2\text{O} + 6 \text{ CO}_2 \]

Perombakan hemiselulosa dan lignin menyebabkan kekuatan kayu menjadi berkurang. Serangan jamur perusak kayu ini bersifat menghancurkan dan membusukkan bahan organik kayu, karena sebagian dari massa kayu dirombak secara biokimia.
Tabel 3. Perbandingan dampak serangan white rot dan brown rot terhadap karakteristik kayu.

<table>
<thead>
<tr>
<th>No.</th>
<th>White rot</th>
<th>Brown rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Warna kayu</td>
<td>Putih, atau keputih-putihan</td>
</tr>
<tr>
<td>2.</td>
<td>Bagian yang dirombak</td>
<td>Holoselulosa dan lignin</td>
</tr>
<tr>
<td>3.</td>
<td>Pengerutan</td>
<td>Mendekati normal</td>
</tr>
<tr>
<td>4.</td>
<td>Kekuatan statis</td>
<td>Agak sedikit menurun</td>
</tr>
<tr>
<td>5.</td>
<td>Kekerasan</td>
<td>Cepat berkurang, bahkan pada tahap awal</td>
</tr>
<tr>
<td>6.</td>
<td>Efek pada derajat polimerisasi</td>
<td>Menurun</td>
</tr>
<tr>
<td>7.</td>
<td>Hasil produksi pulp</td>
<td>Hampir sama dengan kayu yang tidak diserang</td>
</tr>
<tr>
<td>8.</td>
<td>Kualitas serat</td>
<td>Hampir sebanding dengan kayu yang tidak diserang</td>
</tr>
<tr>
<td>9.</td>
<td>Kelarutan dalam alkali (NaOH 1%)</td>
<td>Hampir sama dengan kayu normal</td>
</tr>
<tr>
<td>10.</td>
<td>Penyebaran serangan</td>
<td>Kayu daun lebar</td>
</tr>
</tbody>
</table>

Sumber: Koliman and Cote. 1968

Schizophyllum Cummune Fr.

Jamur pelapuk *S. cummune* Fr. Termasuk dalam famili Agaricaceae dan tersebar luas di dunia, oleh karena itu jenis jamur ini dianggap kosmopolit (Martawijaya, 1972).

Martawijaya (1972), menyatakan *S. cummune* Fr. dikenal dengan tanda tubuh buah tidak bertangkai, bagian bawah menyempit hingga berbentuk kipas, bagian atas berwarna putih keabu-abuan pada waktu muda dan setelah tua berwarna abu-abu, tersusun secara radial, ujung tubuh buah kadang-kadang pecah pada arah memanjang, ujung pecah ini melengkung, pada waktu segar *S. cummune* Fr. liat dan kenyal dan setelah kering menjadi kaku.

Pengujian yang telah dilakukan pada 25 jenis kayu dengan menggunakan "Kolle flask", memberikan kesimpulan bahwa *S. cummune* Fr. merupakan jenis jamur pelapuk kayu yang ganas (Martawijaya, 1972).
terhadap 3 jenis jamur perusak kayu yaitu : *S. cummune* Fr., *Pycnoporus sanguineus* (Fr.) Karst., dan *Dacryopinax spatularia* (schw.) Marst. Dari penelitian tersebut diperoleh keterangan bahwa jenis jamur *S. cummune* merupakan jenis jamur yang paling ganas dalam penyerangan kayu dibandingkan dengan dua jenis jamur lainnya. Rata-rata persentase penurunan berat kayu yang disebabkan oleh ketiga jamur tersebut masing-masing : *S. cummune* 19,19%, *P. sanguineus* 14,04% dan *D. spatularia* sebesar 13,86%.
METODOLOGI PENELITIAN

Tempat dan Waktu Penelitian

Bahan dan Alat Penelitian

Prosedur Penelitian

1. Ekstraksi

Kayu teras dari masing-masing jenis kayu dibuat serbuk dengan ukuran 40-60 mesh kemudian dikerkingkan hingga kadar air 15%. Sebanyak 2100 gram (kering udara) serbuk contoh dimasukkan kedalam ember plastik (dengan penutupnya) dan sedikit demi sedikit kedalamannya dimasukkan pelarut aseton, hingga seluruh serbuk terendam. Larutan diaduk
dengan Vacum-fest volume 1000 ml, residu diekstrak lagi dengan aseton dan disaring kembali hingga diperoleh larutan ekstrak yang relatif jernih dengan cara dan waktu yang sama.

Ekstrak aseton yang diperoleh dipakatkan dengan rotatry evaporator pada suhu 30-40°C hingga 1000 ml. Untuk mengetahui kadar ekstraktif, diambil 10 ml dari larutan ekstrak diatas dan dimasukkan labu erlenmeyer yang kering dan telah diketahui beratnya untuk dievaporasikan hingga kering. Selanjutnya dilakukan pengeringan dengan oven pada suhu ±105°C selama ± 3 jam, setelah kering, erlenmeyer yang berisi ekstrak didinginkan dalam desikator, kemudian ditimbang. Kadar ekstraktif ditentukan dengan menggunakan rumus:

\[\text{Kadar ekstraktif} = \frac{W_a}{W_b} \times 100\% \]

dimana: \(W_a \) = berat kering oven padatan ekstraktif (gram)

\(W_b \) = berat kering oven serbuk (gram)

Ekstrak aseton yang telah dipakatkan diatas kemudian difraksinasi secara bertingkat (successive extraction) menggunakan n-heksan, etil eter dan etil asetat dengan cara sebagai berikut:

Dari sebanyak 990 ml larutan ekstrak aseton yang tersisa diambil sebanyak 500 ml, kemudian dievaporasikan hingga diperoleh volume sebanyak 100 ml. Larutan ekstrak aseton yang telah kental tersebut selanjutnya dimasukkan kedalam funnel separator, kemudian ditambahkan aguades sebanyak 20 ml dan pelarut n-heksan sebanyak 75 ml.
Campuran larutan selanjutnya dikocok ± 10 menit dan diibarkan sampai terjadi pemisahan. Fraksi n-heksan yang diperoleh dimasukan ke dalam botol yang tertutup rapat. Fraksi ini dilakukan sampai tiga kali ulangan.

Residu hasil fraksinasi dengan n-heksan yang tertinggal dalam funnel separator selanjutnya ditambahkan lagi dengan pelarut etil eter sebanyak 75 ml. Kemudian dikocok dan diibarkan sampai terjadi pemisahan seperti halnya fraksinasi dengan n-heksan. Perlakuan ini dilakukan sebanyak tiga kali.

Tahap terakhir dari fraksinasi bertingkat ini adalah dengan menggunakan pelarut etil asetat. Residu hasil fraksinasi dengan pelarut etil eter yang tertinggal dalam funnel separator ditambahkan etil asetat sebanyak 75 ml. Fraksinasi ini dilakukan sama seperti pelarut sebelumnya dan dilakukan sebanyak tiga kali fraksinasi.

Untuk lebih jelasnya tahap fraksinasi bertingkat dengan empat macam pelarut diatas secara skematis dapat dilihat pada Gambar 10.

Ekstrak dari masing-masing fraksi (n-heksan, etil eter dan etil asetat) dipetakkan menggunakan rotary evaporator pada suhu 30-40°C. Ekstrak kental yang diperoleh dikeringkan didalam oven 50-60°C untuk mendapatkan ekstrak kering. Dari hasil ekstraksi diperoleh empat macam ekstrak kering, yaitu ekstrak n-heksan, ekstrak etil eter, ekstrak etil asetat dan residu.
Gambar 10. Skema urutan proses ekstraksi bertahap dengan menggunakan 4 pelarut

2. *Pengujian Toksisitas Terhadap Rayap Tanah*

Seberat ± 0,5 gram contoh uji (kertas selulosa) yang telah ditambah zat ekstraktif dengan konsentrasi 2%, 4%, 6%, 8%, dan 10% (w/w) dimasukkan kedalam botol uji (Ø 5 cm, tinggi 6,5 cm), kemudian kedalam botol tersebut dimasukkan 50 ekor rayap *C. curvignathus*. Botol uji ditutup dengan aluminium foil berlubang dan disimpan di kamar gelap selama empat minggu. Untuk menjaga kelembaban, contoh uji ditetesi aquades. Masing-masing perlakuan diulang tiga kali. Pada akhir pengamatan dihitung laju konsumsi dan mortalitas rayap.

Mortalitas rayap dihitung menggunakan rumus dari Sornnuwat *et al.* (1995), yaitu:

\[\text{Mortalitas rayap (\%)} = \frac{N_2}{N_1} \times 100\% \]

- \(N_1 \) = jumlah rayap awal
- \(N_2 \) = jumlah rayap yang mati setelah pengumpanan

Kehilangan berat umpan (laju konsumsi) dihitung menggunakan rumus dari Sornnuwat *et al.* (1995):

\[\text{Kehilangan berat (\%)} = \frac{W_1 - W_2}{W_1} \times 100\% \]

- \(W_1 \) = berat umpan mula-mula (mg)
- \(W_2 \) = berat umpan setelah pengumpanan (mg)
3. Pengujian Toksitisitas Terhadap Jamur Pelapuk

Pengujian terhadap *Schizophyllum commune* Fr. dilakukan dengan menggunakan metode yang dikembangkan oleh Loman (1970) dalam Syafii et al. (1987) dengan beberapa modifikasi. Komposisi Medium bioesai adalah sebagai berikut : dalam satu liter larutan diperlukan 25 gram Malt extract, 15 gram Agar, dan 20 gram dextrose. Padatan ekstraktif dari setiap fraksi dilarutkan dengan aseton sebelum ditambahkan kedalam medium bioesai dengan konsentrasi 2, 4, 6, 8 dan 10% (berat/berat). Media tersebut kemudian diautoclave selama 15 menit pada 120°C dan tekanan 1,05 kg/cm².

Inokulum jamur yang diperoleh dari biakan berumur 5 hari dinokulasikan kedalam cawan petri, kemudian di inkubasikan pada 26,5°C selama 2 (dua) minggu. Masing-masing perlakuan diulang tiga kali. Pertumbuhan miselium jamur *S. commune* Fr. dievaluasi pada akhir masa inkubasi dengan cara mengukur diameter pertumbuhan dan membandingkannya dengan pertumbuhan miselium kontrol.
4. Analisis Data

Untuk mengetahui pengaruh jenis pelarut ekstrak dan konsentrasi larutan zat ekstraktif terhadap besarnya mortalitas yang dicapai, dan pengaruhnya terhadap tingkat serangan rayap pada contoh uji paper pads digunakan analisis statistik dengan menggunakan rancangan faktorial tersarang (Sudjana, 1985), dengan:

\[Y_{ijk} = \mu + A_i + B_j(i) + E_k(ij) \]
\[i = 1, 2, \ldots a \]
\[j = 1, 2, \ldots b \]
\[k = 1, 2, \ldots c \]

dimana:

- \(Y_{ijk} \) = respon karena pengaruh taraf ke-\(i \) faktor B yang tersarang pada taraf ke-\(j \) faktor A pada ulangan ke-\(k \)
- \(\mu \) = nilai rata-rata
- \(A_i \) = pengaruh dari taraf ke-\(i \) faktor A (jenis pelarut ekstrak)
- \(B_j(i) \) = pengaruh taraf ke-\(j \) faktor B (konsentrasi larutan ekstrakt)
- \(E_k(ij) \) = kesalahan percobaan pada taraf ke-\(i \) faktor A, pada ulangan ke-\(k \)

Untuk mengetahui pengaruh jenis dan konsentrasi dari masing-masing larutan jenis dan konsentrasi dari masing-masing larutan ekstraksi, maka dilakukan analisis sidik ragam. Untuk mengetahui apakah pengaruh dari jenis dan konsentrasi larutan ekstrak berbeda nyata satu sama lain, maka dilakukan Uji F. Jika \(F \) hitung lebih besar dari \(F \) tabel, maka faktor perlakuan berpengaruh nyata. Selanjutnya dilakukan Uji rata-rata Duncan dengan taraf Uji 5%.

36
5. Penentuan Komponen Aktif Kimia Kayu

Penentuan fraksi teraktif dilakukan dengan metoda kromatografi lapis tipis pada plat silikagel GF$_{254}$, sebagai larutan pengembang digunakan heksan: etil asetat = 6:4 (v/v). Kemudian disemprot anisaldehid dengan asam sulfat dan dipanaskan pada plat panas (70°C) maka akan muncul spot-spot yang dapat digunakan dalam penentuan golongan senyawa kimianya (pembentuk warna).

HASIL DAN PEMBAHASAN

Kadar Air dan Ekstraksi

Hasil ekstraksi dari 2100 gram serbuk kayu (40-60 mesh) menunjukkan bahwa jumlah ekstraktif yang terekstrak oleh aseton dari Sonokembang (P. indicus Willd) mencapai 6,40%, sedangkan dari kayu Nyathoh (P. gutta Baill) hanya 0,74% (Tabel 4).

<table>
<thead>
<tr>
<th>Fraksi ekstrak</th>
<th>Kadar ekstraktif</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sonokembang</td>
</tr>
<tr>
<td>gram</td>
<td>%</td>
</tr>
<tr>
<td>n-heksan</td>
<td>9,56</td>
</tr>
<tr>
<td>Ethyl ether</td>
<td>77,94</td>
</tr>
<tr>
<td>Ethyl asetat</td>
<td>19,86</td>
</tr>
<tr>
<td>Residu</td>
<td>25,24</td>
</tr>
<tr>
<td>Aseton</td>
<td>134,51</td>
</tr>
</tbody>
</table>

Persentase kadar zat ekstraktif seperti tercantum pada Tabel 4 diatas didasarkan pada berat kering serbuk kayunya, karena kayu merupakan bahan yang bersifat higroskops dan akan mudah menyerap dan mengeluarkan air yang ada didalamnya sesuai dengan kondisi lingkungan. Atas dasar itu maka akan diperoleh nilai yang relatif konstan dalam penentuan kadar ekstraktif.

Dari Tabel 4 dapat dilihat bahwa padatan zat ekstraktif paling banyak diperoleh dengan menggunakan pelarut aseton, karena merupakan total padatan ekstraktif dari ketiga tahapan ekstraksi selanjutnya. Hal ini menunjukkan bahwa pelarut aseton memiliki nilai polaritas yang paling tinggi dibandingkan ketiga pelarut lainnya. Dengan demikian zat ekstraktif yang terlarut n-heksan, ethyl ether, dan ethyl asetat dapat terlarut pula dalam
(Terpenoid dan Fenolik) (Orsa dan Holmbom, 1994; Labosky, 1979 dalam Fengel dan Wegener, 1995; Nursal et al., 1997; Koketsu et al., 1996).

Tabel 5. Rata-rata mortalitas rayap tanah *C. curvignathus* Holmgren pada empat minggu pengumpulan.

<table>
<thead>
<tr>
<th>Fraksi ekstrak (%)</th>
<th>Mortalitas rayap (% per minggu)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pterocarpus indicus</td>
<td>Paquium gutta</td>
</tr>
<tr>
<td></td>
<td>n-heksan</td>
<td>Etil</td>
</tr>
<tr>
<td>0 (kontrol)</td>
<td>8,6</td>
<td>8,6</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>85,3</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>87,3</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>89,3</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>92,6</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Mekanisme terjadinya efek toksik terhadap kelangsungan hidup rayap diduga disebabkan adanya kerusakan pada komponen struktural membran sel rayap sehingga dapat mengganggu transport nutrisi yang diperlukan bagi kelangsungan hidup rayap, juga terhambatnya proses metabolisme sel rayap.
Efekasi Zat Ekstraktif Kayu pada Paper Pads terhadap Serangan Rayap Tanah

Hasil penelitian pada akhir pengumpanan selama 4 minggu menunjukkan bahwa rata-rata persentase penurunan berat umpan paper pads (berdasarkan berat kering) pada berbagai tingkat konsentrasi zat ekstraktif berkisar antara 4,38-21,19% untuk kayu Sonokembang dan 5,78-19,77% untuk zat ekstraktif kayu Nyatoh (Tabel 6). Umpan kontrol (tanpa zat ekstraktif) pada kayu Sonokembang mengalami pengurangan berat 22,71% dan umpan kontrol pada kayu Nyatoh sebesar 22,34%.

Dari data mortalitas rayap pada konsentrasi 2% (minggu III), fraksi n-heksan kayu Sonokembang menunjukkan efek toksik yang ampuh terhadap kelangsungan hidup rayap dan pada konsentrasi yang sama (2%) pada Tabel 6, pengurangan berat akibat serangan rayap sebesar 10,80%. Kondisi ini menunjukkan adanya fraksi larut n-heksan mampu menahan pengurangan berat umpan (paper pads) sebesar 52,4% terhadap umpan kontrol (22,71%). Dari hasil tersebut dapat diduga bahwa fraksi n-heksan mengandung komponen bioaktif yang dapat menahan serangan rayap tanah.

Efek toksik yang ditunjukkan oleh fraksi larut ethyl ether dari kayu Nyatoh pada konsentrasi 2% (minggu III), terjadi pengurangan berat umpan sebesar 18,89%; dengan demikian fraksi ini mampu menahan kehilangan berat umpan dari serangan rayap tanah sebesar 15,4% terhadap umpan kontrol (22,34%).

Dari hasil analisis sidik ragam (Lampiran 5) diketahui bahwa faktor konsentrasi dan faktor jenis pelarut pada jenis kayu Sonokembang menunjukkan pengaruh yang berbeda terhadap pengurangan berat umpan dari serangan rayap. Pada jenis kayu Nyatoh faktor jenis pelarut tidak memberikan pengaruh yang berbeda terhadap pengurangan berat umpan.
Hasil uji Duncan pada jenis kayu Sonokembang (Lampiran 6) menunjukkan bahwa pengurangan berat umpan pada fraksi etil asetat lebih besar dan berbeda sangat nyata dibandingkan dengan fraksi lainnya pada konsentrasi yang sama (Tabel 6).

Tabel 6. Rata-rata pengurangan berat paper pads (%) setelah empat minggu pengamatan.

<table>
<thead>
<tr>
<th>Konsentrasi ekstrak (%)</th>
<th>Kayu</th>
<th>Fraksi ekstrak aseton</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n-heksan</td>
<td>Etil eter</td>
<td>Etil asetat</td>
<td>Residu</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Pterocarpus sp.</td>
<td>22,71</td>
<td>22,71</td>
<td>22,71</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10,80</td>
<td>13,26</td>
<td>21,19</td>
<td>10,22</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10,11</td>
<td>11,01</td>
<td>20,44</td>
<td>9,08</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10,08</td>
<td>8,10</td>
<td>16,22</td>
<td>6,85</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7,09</td>
<td>7,44</td>
<td>15,32</td>
<td>4,50</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7,16</td>
<td>7,07</td>
<td>9,32</td>
<td>4,38</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Palagium sp.</td>
<td>22,34</td>
<td>22,34</td>
<td>22,34</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16,71</td>
<td>18,89</td>
<td>19,77</td>
<td>15,44</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12,91</td>
<td>15,99</td>
<td>19,77</td>
<td>14,91</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10,57</td>
<td>12,17</td>
<td>19,41</td>
<td>13,48</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8,66</td>
<td>7,48</td>
<td>9,82</td>
<td>10,97</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9,82</td>
<td>7,56</td>
<td>9,82</td>
<td>11,35</td>
<td></td>
</tr>
</tbody>
</table>

Gambar 15. Rata-rata pengurangan berat paper pads (%) pada empat minggu pengamatan

Sifat toksik fraksi etil asetat kurang efektif sebagai termitisida. Pada konsentrasi 2% (minggu III) dari fraksi etil asetat mortalitas rayap sebesar 54,6% lebih rendah dari fraksi n-heksan dan fraksi etil eter, demikian pula pada Tabel 6 rata-rata pengurangan berat
mencapai 21,19% lebih tinggi dari fraksi lainnya pada konsentrasi yang sama (2%). Hal ini berarti senyawa ekstraktif yang terisolasi (larut) dalam etil asetat hanya mampu berperan 6,6% untuk memakan serangan rayap terhadap umpan kontrol (22,71%).

Senyawa-senyawa ekstraktif kayu Sonokembang dan Nyatoh merupakan potensi sumberdaya nabati yang perlu diteliti dan dikembangkan sebagai sumber senyawa pestisida nabati, terutama untuk menanggulangi organisme perusak kayu. Teknik yang digunakan dalam pengendalian rayap ini adalah dengan menggunakan metode pengumpanan (*baiting*). Sesuai dengan pendapat dari French (1994) bahwa pengendalian dengan menggunakan metode pengumpanan akan menjadi andalan pengendalian rayap dimasa akan datang. Teknik ini memiliki keuntungan diantaranya lebih ramah lingkungan karena bahan kimia yang digunakan tidak mencemari tanah, memiliki sasaran yang spesifik (rayap), mudah dalam penggunaannya, dan mempunyai kemampuan mengeliminasi koloni secara total.

Prinsip teknologi pengumpanan ini adalah memanfaatkan sifat tropalaksis rayap, dimana racun yang dimakan disebarkan kedalam koloni oleh rayap pekerja. Keandalan umpan rayap juga telah dievaluasi di Florida, Amerika Serikat pada rayap *R. flavipes* Kollar dan *C. formosanus* Shiraki. Dengan 4-1,500 mg bahan umpan, populasi rayap tanah dapat dikerangi sebesar 90-100% dari satu koloni rayap yang berjumlah 0,17-2,8 juta ekor (Su, 1994). Keberhasilan penggunaan tergantung pada tingkah laku dari aktivitas jelajah rayap, jenis umpan yang digunakan (bentuk, ukuran dan kandungan bahan aktif), daya tarik umpan dan cara bagaimana umpan racun ditempatkan dilapangan.

Terjadinya mortalitas rayap yang tinggi pada beberapa perlakuan pengujian dibandingkan dengan kontrol, kematian rayap terjadi setelah memakan umpan (racun) sehingga proses enzimatik yang terjadi didalam pencernaan rayap tidak normal. Sesuai
dengan pendapat Steller dan Labosky (1982) yang melaporkan hasil penelitiannya bahwa kematian rayap tanah disebabkan terganggunya saluran pencernaan rayap oleh efek toksik zat ekstraktif dari kulit kayu pinus, shabark hickory dan kulit sassafras yang ditunjukkan oleh tingginya aktifitas makan dan berkurangnya berat paper pads (10%).

Proses pencernaan rayap terjadi dengan adanya bantuan enzim-enzim, khususnya enzim selulase yang dihasilkan dari hubungan mutualisme antara rayap dengan mikroorganisme. Rayap memberikan perlindungan berupa tempat tinggal yang anaerob dan makanan kepada flagellata. Sementara itu flagellata menyumbangkan enzim selulase untuk mencerna selulosa dari kayu yang dikonsumsi oleh rayap. Rayap juga memanfaatkan hasil akhir dari metabolisme selulase yang berupa asam asetat dengan menggunakanannya sebagai salah satu sumber energi.

Efek Ekstraktif Kayu terhadap Pertumbuhan Miselium Jamur *S. commune* Fr.

Hasil pengujian aktivitas anti jamur selama dua minggu menunjukkan bahwa komponen-komponen kimia yang larut ethyl ether dan larut n-heksan dari kayu Sonokembang (*P. indicus*) mampu menghambat pertumbuhan miselium jamur *S. commune* seperti tampak pada Tabel 7.

Hasil analisis sidik ragam (Lampiran 9) menunjukkan bahwa faktor konsentrasi dan faktor jenis pelarut memberikan pengaruh yang berbeda terhadap pertumbuhan miselium jamur *S. commune* Fr. Dari hasil analisis rata-rata Duncan memperlihatkan bahwa ekstrak aseton kayu Sonokembang (*P. indicus*) yang terlarut dalam fraksi ethyl ether dan fraksi n-heksan lebih berpengaruh terhadap pertumbuhan miselium jamur dibandingkan dengan dua pelarut lainnya.
Tabel 7. Rata-rata pertumbuhan miselai jamur *S. commune* (%) pada medium MEA berisi ekstraktif kayu Sonokembang dan Nyatoh.

<table>
<thead>
<tr>
<th>Jenis Kayu</th>
<th>Fraksi</th>
<th>Konsentrasi ekstraktif (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Sonokembang</td>
<td>n-heksan</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Ethyl ether</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Ethyl asetat</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Residu</td>
<td>100</td>
</tr>
<tr>
<td>Nyatoh</td>
<td>n-heksan</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Ethyl ether</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Ethyl asetat</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Residu</td>
<td>100</td>
</tr>
</tbody>
</table>

Gambar 16. Rata-rata pertumbuhan relatif miselai jamur *S. commune* dalam media MEA berisi fraksi ekstrak kayu Sonokembang setelah dua minggu masa inkubasi.
Gambar 19. Perbandingan pertumbuhan miselium jamur antara kontrol dengan fraksi n-heksan pada konsentrasi 4%.

Senyawa-senyawa ekstraktif pada kayu teras Nyatoth (*P. gutta*) yang terisolasi (larut) dalam pelarut ethyl asetat dan ethyl ether lebih berpengaruh terhadap pertumbuhan miselium jamur *S. commune* dibandingkan dengan pelarut n-heksan dan residunya (Tabel 7).

Pada Tabel 7 aktivitas pertumbuhan miselium jamur mulai dapat dihambat oleh senyawa ekstraktif dalam fraksi ethyl asetat pada konsentrasi 10%, yaitu hanya mampu tumbuh 47,3%, hal ini berarti senyawa ekstraktif yang terisolasi (larut) dalam pelarut ethyl asetat pada kyu Nyatoth (*P. gutta*) mampu menghambat pertumbuhan miselium sebesar 52,7% terhadap pertumbuhan miselium kontrol (100%).

Terjadinya penghambatan aktivitas pertumbuhan miselium jamur *S. commune* Fr disebabkan sifat toksik komponen-komponen aktif yang terisolasi (larut) pada pelarut n-heksan dan ethyl ether dari kayu Sonokembang dan pelarut ethyl asetat dari kayu Nyatoth.
Banyak dilaporkan bahwa pelarut-pelarut seperti aseton, n-heksan, ethyl ether dan ethyl asetat merupakan pelarut yang baik untuk mendapatkan senyawa-senyawa ekstraktif dari golongan lipofilik, khususnya golongan terpenoid dan fenolik. Beberapa kayu tropis mengandung triterpena glikosida dan steroid yang menimbulkan busa didalam air, yaitu saponin. Saponin dengan aglikon dari asam hidroksi-oleanolik dan dihidroksi-oleanolik bertanggung jawab pada ketahanan kayu zapota (Manilkara zapota) terhadap serangan jamur dan rayap (Sandermann dan Funke, 1970 dalam Fengel dan Wegener, 1995).

![Gambar 20. Perbandingan pertumbuhan miselium jamur antara kontrol dengan fraksi ethyl asetat pada konsentrasi 10%](image)

metaresinol, conidendrin, hydroxymatairesinol dan liovil, akan tetapi hanya matairesinol dan hydroksi matairesinol yang mampu menghambat aktivitas pertumbuhan Fomes annosus (Skain, 1970 dalam Syafii dan Yoshimoto, 1993). Senyawa anti jamur yang diisolasi dari Aspidistra elatior Blume, yaitu aspidistrin (diosgenin 3-0-β-lycotetraoside) mampu menghambat aktivitas pertumbuhan jamur Saccharomyces cerevisiae, Hansenula anomala, Mucor mucendo dan Candida albicans (Koketsu et al., 1996).

Penentuan Fraksi Aktif Komponen Ekstraktif Kayu

Hasil pemisahan menggunakan kromatografi lapis tipis (KLT) untuk melihat komponen-komponen pada fraksi *n*-heksan dan fraksi ethyl ether dari ekstraktif kayu Sonokembang (*P. indicus* Willd) memperlihatkan bahwa eluen dengan perbandingan Heksan : Ethyl asetat = 6:4 (v/v) memberikan hasil yang terbaik dengan 5-6 spot dengan nilai Rf berkisar antara 0,20 hingga 0,86. Hasil analisis secara fotokimia dengan menggunakan reagen semprot anisaldehi-asam sulfat dan bantuan lampu UV-I (Pan UN Lamp) menunjukkan adanya kandungan senyawa fenolik (biru muda), terpenoid (coklat-kemerahan) dan steroid (hijau lembayung).

Identifikasi Komponen Aktif Ekstraktif Kayu

Hasil analisis kromatografi gas - spektra massa, menunjukkan bahwa pada fraksi *n*-heksan yang mempunyai daya antirayap terdapat 19 komponen yang dapat dideteksi. Hasil kromatografi memperlihatkan terdapat 7 puncak yang terpisah dengan baik (Gambar 21).

Puncak ke 1, 6, 7, 14 dan 17, komponen-komponen tersebut secara berturut mempunyai waktu retensi dan berat molekul : 5,1 (214); 41,36 (222); 42,13 (222); 50,50 (238) dan 58,98 (280).
Gambar 21. Pola kromatogram komponen utama dari fraksi n-heksan

Hanya komponen nomor 6, 7 dan 17 yang dapat diduga bahwa komponen tersebut adalah \(\text{C}_{15}\text{H}_{26}\text{O}\) (guaiol), \(\text{C}_{16}\text{H}_{29}\text{O}\) (2-Naphthalenemethanol) dan \(\text{C}_{18}\text{H}_{32}\text{O}_2\) (9,12-Octadecadienoic acid) dengan fragmentasi sebagai berikut :

Gambar 22. Spektramassa komponen \(\text{C}_{15}\text{H}_{26}\text{O}\) (guaiol)

Gambar 23. Spektramassa komponen \(\text{C}_{15}\text{H}_{26}\text{O}\) (2-Naphthalenemethanol)
Gambar 24. Spektramassa komponen C_{18}H_{32}O_2 (9,12-Octadecadienoic acid)

Pada fraksi ethyl ether yang mempunyai daya anti jamur terdapat 16 komponen yang dapat dideteksi. Hasil kromatogram memperlihatkan terdapat 6 puncak yang terpisah dengan baik (Gambar 25).

Gambar 25. Pola kromatogram komponen utama dari fraksi ethyl ether

Puncak ke 1, 2 dan 11 secara berturut mempunyai waktu retensi dan berat molekul : 5,2 (109); 5,6 (106) dan 51,8 (238). Dari ketiga komponen ini tidak ada nilai yang cocok dengan beberapa alternatif data yang tersedia dalam data National Institute Standard of Technology (NIST) Library. Fragmentasi komponen-komponen tersebut adalah sebagai berikut :
Gambar 26. Spektra massa komponen X_1 dari fraksi ethyl ether

Gambar 27. Spektra massa komponen X_2 dari fraksi ethyl ether

Gambar 28. Spektra massa komponen X_3 dari fraksi ethyl ether

Hasil identifikasi komponen anti rayap dan anti jamur dari setiap spektra massa tidak mempunyai nilai Linier Retention Indices (LRI) yang cocok dengan pola spektra massa yang tersedia dalam komputer (NIST 12.LIB-20 dan NIST 62.LIB-20). Identifikasi yang sempurna dalam golongan senyawa kimia sangat tergantung pada pengenalan sifat lain dan kemudian membandingkan dengan pustaka. Sifat lain tersebut mencakup titik didih, rotasi optis, Rf atau RRt, sifat spektrum (ultra violet dan infra merah), resonansi magnit inti (NMR) dan spektrum massanya.

Fragmentasi hasil analisis kromatografi gas spektra massa dari fraksi n-heksan dan fraksi ethyl ether secara lengkap tersaji dalam Lampiran.
KESIMPULAN DAN SARAN

Kesimpulan

Berdasarkan hasil penelitian dapat dikemukakan beberapa kesimpulan sebagai berikut:

1. Kadar ekstraktif kayu Sonokembang (Pterocarpus indicus Willd) termasuk kelas komponen tinggi, yaitu sebesar 6,4%.

2. Kadar ekstraktif kayu Nyatohe Palaquium gutta Baiill) termasuk kelas komponen rendah, yaitu sebesar 0,74%.

3. Fraksi n-heksan kayu Sonokembang pada konsentrasi ekstraktif 2% bersifat toksik terhadap rayap tanah Coptotermes curvignathus Holmgren.

4. Fraksi ethyl ether kayu Nyatohe pada konsentrasi ekstraktif 2% bersifat toksik terhadap rayap tanah Coptotermes curvignathus Holmgren.

5. Efikasi zat ekstraktif kayu Sonokembang (P. indicus) yang terfraksinasi dalam pelarut n-heksan pada konsentrasi ekstraktif 2% mampu menghambat serangan rayap tanah C. curvignathus terhadap pengurangan berat umpan (paper pads) sebesar 52,4% terhadap umpan kontrol.

6. Ekstrak aseton kayu Sonokembang (P. indicus) pada konsentrasi ekstraktif 2% yang terfraksinasi dalam pelarut ethyl ther sangat toksik terhadap pertumbuhan miselium jamur Schizophyllum commute Fr.

7. Ekstraktif aseton kayu Nyatohe (P. gutta) pada konsentrasi ekstraktif 10% yang terfraksinasi dalam pelarut ethyl asetat hanya mampu menghambat pertumbuhan miselium jamur Schizophyllum commute Fr sebesar 52,7%.
8. Dari 19 komponen utama yang terdeteksi pada fraksi n-heksan ekstrak kayu Sonokembang, hanya ada tiga komponen utama yang diduga tergolong kelompok guaiol (C_{15}H_{26}O), 2-Napthalenemethanol (C_{15}H_{26}O) dan 9,12-Octadecadiconic acid (C_{18}H_{32}O_2). Sedangkan pada fraksi ethyl ether terdapat tiga komponen utama yang berindikasi anti jamur, tetapi komponen tersebut tidak dapat diduga karena pola spektra massanya tidak cocok dengan beberapa alternatif data yang tersedia dalam NIST Library.

Saran

Ekstraktif kayu Sonokembang (*Pterocarpus indicus* Willd) dapat menjadi sumber senyawa pestisida. Dari hasil penelitian ini ada petunjuk bahwa beberapa golongan ekstraktif yang larut pada pelarut n-heksan dari pelarut ethyl ether diduga mengandung komponen bioaktif yang dapat menahan serangan rayap tanah dan jamur. Untuk itu perlu dilakukan serangkaian penelitian lanjutan untuk mengetahui senyawa kimia aktif (bioaktif) apa yang paling menentukan ketahanan kayu Sonokembang (*P. indicus*) terhadap organisme perusak kayu, khususnya rayap dan jamur.
DAFTAR PUSTAKA

Lampiran 1. Daftar sidik ragam mortalitas rayap C. curvignathus Holmgren pada setiap fraksi ekstrak kayu Pterocarpus sp. setelah empat minggu pengumpanan.

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>Fhitung</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsentrasi</td>
<td>16</td>
<td>29022.08</td>
<td>1813.88</td>
<td>33.08256</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Fraksi Ekstrak</td>
<td>3</td>
<td>25997.19</td>
<td>8665.73</td>
<td>158.0504</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Minggu</td>
<td>3</td>
<td>108858.20</td>
<td>36286.07</td>
<td>661.8057</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Konsentrasi-Minggu</td>
<td>48</td>
<td>8441.28</td>
<td>175.86</td>
<td>3.207433</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Fraksi Ekstrak-Minggu</td>
<td>9</td>
<td>4258.26</td>
<td>473.14</td>
<td>8.629392</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Galat</td>
<td>160</td>
<td>8772.62</td>
<td>54.82889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>185349.60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 2. Uji beda rata-rata Duncan mortalitas rayap C. curvignathus Holmgren pada setiap fraksi ekstrak kayu Pterocarpus sp. setelah empat minggu pengumpanan.

<table>
<thead>
<tr>
<th>Faktor Jenis Ekstrak</th>
<th>Rata-Rata</th>
<th>Group Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Residu</td>
<td>39.20430</td>
<td>A</td>
</tr>
<tr>
<td>2. Etil eter</td>
<td>47.65423</td>
<td>B</td>
</tr>
<tr>
<td>3. Etil asetat</td>
<td>48.82778</td>
<td>B</td>
</tr>
<tr>
<td>4. N-heksan</td>
<td>67.68336</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>Fhitung</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsentrasi</td>
<td>16</td>
<td>33791.52</td>
<td>2111.97</td>
<td>21.52004</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Fraksi Ekstrak</td>
<td>3</td>
<td>21542.37</td>
<td>7180.79</td>
<td>73.16907</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Minggu</td>
<td>3</td>
<td>101330.90</td>
<td>33776.98</td>
<td>344.1725</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Konsentrasi-Minggu</td>
<td>48</td>
<td>15970.56</td>
<td>332.72</td>
<td>3.39027</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Fraksi Ekstrak-Minggu</td>
<td>9</td>
<td>8527.05</td>
<td>947.45</td>
<td>9.654096</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Galat</td>
<td>160</td>
<td>15702.35</td>
<td>98.13969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>196664.60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faktor Jenis Ekstrak</th>
<th>Rata-Rata</th>
<th>Group Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. N-heksan</td>
<td>51.17302</td>
<td>A</td>
</tr>
<tr>
<td>2. Etil asetat</td>
<td>51.42658</td>
<td>A</td>
</tr>
<tr>
<td>3. Residu</td>
<td>64.88611</td>
<td>B</td>
</tr>
<tr>
<td>4. Etil eter</td>
<td>73.56550</td>
<td>C</td>
</tr>
</tbody>
</table>

Lampiran 5. Daftar sidik ragam kehilangan berat paper puds kayu *P. indicus* Willd setelah empat minggu pengumpanan terhadap rayap *C. curvignathus* Holmgren.

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>df</th>
<th>JK</th>
<th>KT</th>
<th>Fhitung</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsentrasi</td>
<td>16</td>
<td>456.6448</td>
<td>28.5403</td>
<td>2.812636</td>
<td>0.0041*</td>
</tr>
<tr>
<td>Fraksi Ekstrak</td>
<td>3</td>
<td>796.2774</td>
<td>265.4258</td>
<td>26.15762</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Galat</td>
<td>40</td>
<td>405.8868</td>
<td>10.14717</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>1658.809</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faktor Jenis Ekstrak</th>
<th>Rata-Rata</th>
<th>Group Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Residu</td>
<td>6.973333</td>
<td>A</td>
</tr>
<tr>
<td>2. N-heksan</td>
<td>9.000000</td>
<td>A</td>
</tr>
<tr>
<td>3. Etil asetat</td>
<td>9.266666</td>
<td>A</td>
</tr>
<tr>
<td>4. Etil eter</td>
<td>16.573333</td>
<td>B</td>
</tr>
</tbody>
</table>

Lampiran 7. Daftar sidik ragam pengurangan berat paper puds kayu *Palaquium gutta* Baill dengan model faktorial tersarang (konsentrasi tersarang pada fraksi ekstrak)

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>df</th>
<th>JK</th>
<th>KT</th>
<th>Fhitung</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsentrasi</td>
<td>16</td>
<td>945.1373</td>
<td>59.07108</td>
<td>4.26683</td>
<td>0.0001*</td>
</tr>
<tr>
<td>Fraksi Ekstrak</td>
<td>3</td>
<td>19.38</td>
<td>6.46</td>
<td>0.46651</td>
<td>0.7073tn</td>
</tr>
<tr>
<td>Galat</td>
<td>40</td>
<td>553.9</td>
<td>13.8475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>1518.417</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 8. Daftar sidik ragam pertumbuhan miselia jamur pasca medium MEA ditambah ekstrak kayu dari Pterocarpus indicus Willd. dengan model faktorial tersarang (konsentrasi tersarang pada fraksi ekstrak).

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>Fhitung</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsentrasi</td>
<td>16</td>
<td>382.304</td>
<td>23.894</td>
<td>1.72551</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Fraksi Ekstrak</td>
<td>3</td>
<td>19933.26</td>
<td>6644.421</td>
<td>479.8282</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Galat</td>
<td>40</td>
<td>16.8616</td>
<td>0.42154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>20332.43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faktor Jenis Ekstrak</th>
<th>Rata-Rata</th>
<th>Group Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Etill etar</td>
<td>0.3021298</td>
<td>A</td>
</tr>
<tr>
<td>2. Etill asetat</td>
<td>5.734074</td>
<td>B</td>
</tr>
<tr>
<td>3. Residu</td>
<td>5.734074</td>
<td>B</td>
</tr>
<tr>
<td>4. N-heksan</td>
<td>45.70402</td>
<td>C</td>
</tr>
</tbody>
</table>

Lampiran 10. Daftar sidik ragam pertumbuhan miselia jamur pada medium MEA yang mengandung ekstrak kayu P. gutta Baill

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>Fhitung</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsentrasi</td>
<td>16</td>
<td>5220.192</td>
<td>326.262</td>
<td>63.33537</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Fraksi Ekstrak</td>
<td>3</td>
<td>3050.373</td>
<td>1016.761</td>
<td>197.3838</td>
<td>0.0000*</td>
</tr>
<tr>
<td>Galat</td>
<td>40</td>
<td>206.0536</td>
<td>5.15134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>8476.619</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 11. Uji beda rata-rata Duncan pertumbuhan miselia jamur pasca medium MEA ditambah ekstrak kayu dari P. gutta Baill.

<table>
<thead>
<tr>
<th>Faktor Jenis Ekstrak</th>
<th>Rata-Rata</th>
<th>Group Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Etill asetat</td>
<td>69.09734</td>
<td>A</td>
</tr>
<tr>
<td>2. Etill etar</td>
<td>78.73939</td>
<td>B</td>
</tr>
<tr>
<td>3. N-heksan</td>
<td>85.80422</td>
<td>C</td>
</tr>
<tr>
<td>4. Residu</td>
<td>87.02296</td>
<td>C</td>
</tr>
</tbody>
</table>
Lampiran 12. Rata-rata mortalitas rayap tanah *C. curvignathus* Holmogren selama empat minggu pengumpulan ekstrak kayu.

<table>
<thead>
<tr>
<th>Fraksi ekstrak (%)</th>
<th>Mortalitas rayap (% per minggu)</th>
<th>Pterocarpus indicus</th>
<th>Palaquium gutta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>0 (kontrol)</td>
<td></td>
<td>0 4 6,6 8,6</td>
<td>0 0 8,6 11,3</td>
</tr>
<tr>
<td>n-heksan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>53,3 100 100</td>
<td>0 0 65,3 84,6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>75,3 100 100</td>
<td>4,0 16,6 75,3 92,0</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>83,3 100 100</td>
<td>8,0 26,6 82,4 100</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>86,6 100 100</td>
<td>10,0 65,3 100 100</td>
</tr>
<tr>
<td>10</td>
<td>68,6</td>
<td>95,6 100 100</td>
<td>10,0 84,6 100 100</td>
</tr>
<tr>
<td>Etil eter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,6</td>
<td>30,0 59,3 85,3</td>
<td>24,0 50,0 100 100</td>
</tr>
<tr>
<td>4</td>
<td>1,0</td>
<td>32,0 62,6 87,3</td>
<td>38,0 90,0 100 100</td>
</tr>
<tr>
<td>6</td>
<td>14,0</td>
<td>34,6 77,3 89,3</td>
<td>43,3 96,0 100 100</td>
</tr>
<tr>
<td>8</td>
<td>16,0</td>
<td>37,3 79,3 92,6</td>
<td>43,3 96,0 100 100</td>
</tr>
<tr>
<td>10</td>
<td>30,6</td>
<td>4,6 95,3 100</td>
<td>62,6 100 100 100</td>
</tr>
<tr>
<td>Etil asetat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>34,6 54,6 70,6</td>
<td>3,3 9,3 43,3 84,0</td>
</tr>
<tr>
<td>4</td>
<td>2,0</td>
<td>42,6 57,6 77,3</td>
<td>24,6 27,3 64,6 88,0</td>
</tr>
<tr>
<td>6</td>
<td>14,6</td>
<td>58,6 70,6 92,6</td>
<td>26,0 44,5 86,6 93,0</td>
</tr>
<tr>
<td>8</td>
<td>16,6</td>
<td>60,6 72,0 94,6</td>
<td>28,0 50,0 86,6 100</td>
</tr>
<tr>
<td>10</td>
<td>28,6</td>
<td>82,6 86,6 98,6</td>
<td>46,0 93,3 100 100</td>
</tr>
<tr>
<td>Residu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10,0 39,3 39,3</td>
<td>25,3 28,0 64,0 87,3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>10,0 63,3 63,3</td>
<td>31,3 38,0 85,3 100</td>
</tr>
<tr>
<td>6</td>
<td>10,6</td>
<td>32,0 76,6 76,6</td>
<td>32,6 46,0 100 100</td>
</tr>
<tr>
<td>8</td>
<td>11,3</td>
<td>32,6 91,3 91,3</td>
<td>40,6 87,3 100 100</td>
</tr>
<tr>
<td>10</td>
<td>20,0</td>
<td>74,6 100 100</td>
<td>84,0 90,0 100 100</td>
</tr>
</tbody>
</table>
Lampiran 13. Pola kromatogram dan spektra massa komponen utama dari fraksi n-heksan.

![Graph Image]

*** CLASS-5000 *** Report No. = 1 Data : HEX-PTE.D01 99/12/26 11:54:25
Sample : Hexan Pterocar

<table>
<thead>
<tr>
<th>PKNO</th>
<th>R.Time</th>
<th>I.Time - F.Time</th>
<th>Area</th>
<th>Height A/H(sec)</th>
<th>MK xTot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.109</td>
<td>4.525 - 5.192</td>
<td>933883096</td>
<td>37257205</td>
<td>25.058</td>
</tr>
<tr>
<td>2</td>
<td>5.808</td>
<td>5.656 - 5.992</td>
<td>134458347</td>
<td>26732521</td>
<td>5.026</td>
</tr>
<tr>
<td>3</td>
<td>6.153</td>
<td>5.992 - 6.258</td>
<td>110454549</td>
<td>21129076</td>
<td>5.228</td>
</tr>
<tr>
<td>5</td>
<td>38.455</td>
<td>37.859 - 39.725</td>
<td>22091875</td>
<td>1107325</td>
<td>19.915</td>
</tr>
<tr>
<td>6</td>
<td>41.359</td>
<td>40.525 - 41.525</td>
<td>54523054</td>
<td>16600857</td>
<td>32.845V</td>
</tr>
<tr>
<td>7</td>
<td>42.130</td>
<td>41.525 - 42.456</td>
<td>561678955</td>
<td>19122133</td>
<td>29.364V</td>
</tr>
<tr>
<td>8</td>
<td>45.031</td>
<td>44.292 - 45.425</td>
<td>57160933</td>
<td>3206515</td>
<td>17.815</td>
</tr>
<tr>
<td>9</td>
<td>45.789</td>
<td>45.425 - 45.982</td>
<td>48895021</td>
<td>6347437</td>
<td>7.703</td>
</tr>
<tr>
<td>10</td>
<td>49.585</td>
<td>46.225 - 48.892</td>
<td>38740167</td>
<td>2177977</td>
<td>17.787</td>
</tr>
<tr>
<td>11</td>
<td>47.130</td>
<td>46.892 - 47.392</td>
<td>56131401</td>
<td>6561823</td>
<td>8.859</td>
</tr>
<tr>
<td>12</td>
<td>48.479</td>
<td>48.156 - 48.592</td>
<td>48707369</td>
<td>5635901</td>
<td>8.642</td>
</tr>
<tr>
<td>13</td>
<td>50.040</td>
<td>49.758 - 50.225</td>
<td>46078971</td>
<td>4693359</td>
<td>9.817</td>
</tr>
<tr>
<td>14</td>
<td>50.501</td>
<td>50.225 - 51.358</td>
<td>292217470</td>
<td>15170385</td>
<td>19.131V</td>
</tr>
<tr>
<td>15</td>
<td>51.625</td>
<td>51.358 - 51.892</td>
<td>24135042</td>
<td>1945946</td>
<td>12.403</td>
</tr>
<tr>
<td>16</td>
<td>53.577</td>
<td>53.058 - 54.025</td>
<td>61228536</td>
<td>4125159</td>
<td>15.012</td>
</tr>
<tr>
<td>17</td>
<td>58.956</td>
<td>58.325 - 59.092</td>
<td>144598805</td>
<td>6218772</td>
<td>23.279V</td>
</tr>
<tr>
<td>18</td>
<td>59.208</td>
<td>59.082 - 59.858</td>
<td>72519844</td>
<td>5632900</td>
<td>12.876 V</td>
</tr>
<tr>
<td>19</td>
<td>67.364</td>
<td>66.725 - 67.625</td>
<td>110022123</td>
<td>5333969</td>
<td>20.627</td>
</tr>
</tbody>
</table>

Total 3378073872 100.
Lampiran 13 (lanjutan)

*** CLASS-5000 *** Report No. = 1 Data : HEX-PTE.D01 09/12/26 11:54:2b
Sample : Hexan Pterocar
ID : fik
Operator : Susanto
Method File Name : CW40.MET

<Unknown Spectrum>
PKNO : 1 Mass Peak # : 102 Ret. Time : 5.110
Scan # : 99 B.G. Scan # : 108
Base Peak : 43.00(1276088)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol. Wgt.</th>
<th>Mol. Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>91</td>
<td>116</td>
<td>CBH1202</td>
<td>123-42-2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>116</td>
<td>CBH1202</td>
<td>123-42-2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>116</td>
<td>CBH1202</td>
<td>123-42-2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>86</td>
<td>116</td>
<td>CBH1202</td>
<td>4016-14-2</td>
<td></td>
</tr>
</tbody>
</table>

2-Pentanone, 4-hydroxy-4-methyl- $$ Acetonyldimethyldcar
2-Pentanone, 4-hydroxy-4-methyl-
2-Pentanone, 4-hydroxy-4-methyl-
Oxirane, (1-methylethoxy)methyl - $$ Propane, 1,2-epox
Unknown Spectrum
- **PKRD**: 2
- **Mass Peak #: 91**
- **Retention Time**: 5.800
- **Scan #: 182**
- **B.G. Scan #: 204**
- **Base Peak**: 91.00 (7372426)

Hit List

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol. Wgt.</th>
<th>Mol. Form./Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>91</td>
<td>106</td>
<td>C8H10 Ethylbenzene</td>
<td>100-41-4</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
<td>106</td>
<td>C8H10 Benzene, 1,2-dimethyl-</td>
<td>95-47-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o-Dimethylbenzene s o-Methyl</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>106</td>
<td>C8H10 Ethylbenzene</td>
<td>100-41-4</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>106</td>
<td>C8H10 Benzene, 1,3-dimethyl-</td>
<td>108-38-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C8H10 benzene, 1,2-dimethyl-</td>
<td>95-47-6</td>
</tr>
</tbody>
</table>

Library Name
- (1) NIST12.LIB
- (2) NIST62.LIB

67
<Unknown Spectrum>
FKMO: 3 Mass Peak #: 90 Ret. Time: 6.180
Scan #: 225 B.G. Scan #: 236
Base Peak: 91.00 (6152051)

<Hit List>

No SI Mol.Wgt. Mol.Form./Compound Name CAS No. Library Name
1 93 106 C8H10 Benzene, 1,2-dimethyl- 95-47-6 (1) NIST12.LIB
2 93 106 C8H10 o-Dimethylbenzene 95-47-6
3 92 106 C8H10 Benzene, 1,2-dimethyl- 108-38-3
4 91 108 C8H10 Benzene, 1,3-dimethyl- 95-47-6
5 91 106 C8H10 p-Xylene 108-42-3

$\$ p-Dimethylbenzene
Unknown Spectrum

PENO: 4
Mass Peak #: 75
Ret. Time: 6.960
Scan #: 321
B. G. Scan #: 344
Base Peak: 91.00(3097264)

Hit List

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>M.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96</td>
<td>106</td>
<td>Benzene, 1,2-dimethyl-C8H10</td>
<td>95-47-6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>106</td>
<td>Benzene, 1,2-dimethyl- o-Dimethylbenzene</td>
<td>95-47-6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>106</td>
<td>Benzene, 1,2-dimethyl- n-Hexane</td>
<td>95-47-6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>95</td>
<td>106</td>
<td>Benzene, 1,3-dimethyl- o-Xylene</td>
<td>108-38-3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>84</td>
<td>106</td>
<td>Benzene, 1,3-dimethyl- m-Dimethylbenzene</td>
<td>106-42-3</td>
<td></td>
</tr>
</tbody>
</table>

Library Name

(1) NIST12.LIB (2) NIST62.LIB
Unknown Spectrum

- **PKNO:** 5
- **Mass Peak #:** 97
- **Retention Time:** 38.450
- **Scan #:** 4100
- **B.G. Scan #:** 4132
- **Base Peak:** 135.000 (297277)

Hit List

<table>
<thead>
<tr>
<th>No</th>
<th>SI Mol.Wt</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>82 190</td>
<td>C13H18O</td>
<td>74672-09-6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzene, 1-(1,3-dimethyl-3-butenyl)-3-methoxy-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>80 180</td>
<td>C11H16O2</td>
<td>828-51-3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adamanand-1-carboxylic acid $$ Tricyclo 3.3.1.1<3,7>- $$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>78 214</td>
<td>C10H15Br</td>
<td>768-80-1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-Bromoadamantane $$ Tricyclo 3.3.1.1<3,7>- decane, 1-b $$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>79 181</td>
<td>C10H15NO2</td>
<td>7575-82-8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tricyclo 3.3.1.13,7 decane, 1-nitro- $$ Adamantane, 1-n $$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>79 179</td>
<td>C10H13NO2</td>
<td>536-69-6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-Pyridinecarboxylic acid, 5-butyl- $$ Picolinic acid, $$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Library Name
- (1) NIST12.LIB
- (2) NIST62.LIB
<Unknown Spectrum>
PKNO : 6 Mass Peak # : 114 Ret . Time : 41.360
Scan # : 4449 B.G. Scan # : 4468
Base Peak : 161.00 (1173568)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI Mol.Wgt</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88</td>
<td>C15H26O, 1,2,3,4,4a,5,6,7-octahydro-<alph></td>
<td>1209-71-8</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>C15H26O</td>
<td>489-86-1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>86</td>
<td>C15H26O</td>
<td>489-86-1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>86</td>
<td>C15H26O</td>
<td>489-86-1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>86</td>
<td>C15H26O</td>
<td>489-86-1</td>
<td>2</td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST82.LIB
<Unknown Spectrum>
PKNO : 7 Mass Peak #: 128 Ret .Time : 42.130
Scan #: 4541 B.G. Scan #: 4580
Base Peak : 59.00 (3331332)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>222</td>
<td>C15H26O, 2-Naphthalenemethanol, decahydro-.alpha.-.alpha.-4a,8-t</td>
<td>51317-06-9</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>222</td>
<td>C15H26O, 2-Naphthalenemethanol, 1,2,3,4,4a,5,6,8a-octahydro-.alp</td>
<td>473-16-5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>84</td>
<td>222</td>
<td>C15H26O, Guaiol</td>
<td>488-86-1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>83</td>
<td>222</td>
<td>C15H26O, Guaiol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>83</td>
<td>222</td>
<td>C15H26O, Cyclohexanemethanol, 4-ethenyl-.alpha.-.alpha.-4-trimet</td>
<td>638-99-6</td>
<td>2</td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST62.LIB
<Unknown Spectrum>
PKNO : 8 Mass Peak # : 139 Ret .Time : 45.030
Scan # : 4889 B.G. Scan # : 4936
Base Peak : 59.00 (400008)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77</td>
<td>C10H16O2</td>
<td>96-08-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methyloxiran)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>77</td>
<td>C10H16O2</td>
<td>96-08-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methyloxiran)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>76</td>
<td>C10H16O2</td>
<td>96-08-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methyloxiran)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>76</td>
<td>C10H16O2</td>
<td>96-08-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methyloxiran)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>C10H16O2</td>
<td>96-08-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methyloxiran)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST62.LIB
<Unknown Spectrum>
PKNO : 9 Mass Peak # : 124 Ret .Time : 45.800
Scan # : 4981 B.G. Scan # : 5004
Base Peak : 43.00(950034).

<table>
<thead>
<tr>
<th>Hit List</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>SI Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>84</td>
<td>C15H28O</td>
<td>473-15-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-Naphthalenemethanol, decahydro-.alpha..alpha..4a-tri</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>78</td>
<td>C15H28O</td>
<td>51317-06-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-Naphthalenemethanol, decahydro-.alpha..alpha..4a,8-t</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>C15H28O</td>
<td>63891-61-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-Naphthalenemethanol, 2,3,4,4a,5,6,7,8-octahydro-.alph</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>C10H18O2</td>
<td>96-08-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methyloxirany</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>74</td>
<td>C10H18O2</td>
<td>96-06-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methyloxirany</td>
<td></td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST62.LIB
Unknown Spectrum

PKNO: 10
Mass Peak #: 137
Retention Time: 46.560
Scan #: 5073
B.G. Scan #: 5112
Base Peak: 41.00 (195581)

Hit List

<table>
<thead>
<tr>
<th>No</th>
<th>Si</th>
<th>M. Wgt.</th>
<th>Mol. Form./Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>220 C14H2002</td>
<td>Ethanone, 1-(1,3,4,5,6,7-hexahydro-4-hydroxy-3,6-dimethyl)</td>
<td>55883-15-3</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>220 C15H240</td>
<td>2H-2,4a-Ethanonaphthalen-8(5H)-one, hexahydro-2,5,5-trimethyl-3,7-dimethyl-1,3-dicarbonitrile</td>
<td>32391-48-1</td>
</tr>
<tr>
<td>3</td>
<td>69</td>
<td>220 C15H240</td>
<td>Cyclohexanol, 1,3,3-trimethyl-2-(3-methyl-2-methylene)</td>
<td>83286-92-0</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>220 C14H2002</td>
<td>2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl)</td>
<td>719-22-2</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>220 C15H240</td>
<td>2(1H)-Naphthalenone, 4a,5,6,7,8,8a-hexahydro-7.alpha.-i</td>
<td>17408-88-1</td>
</tr>
</tbody>
</table>

Library Name

(1) NIST12.LIB (2) NIST82.LIB
Unknown Spectrum

- **PRNO**: 12
- **Mass Peak #**: 132
- **Ret. Time**: 48.480
- **Scan #**: 5303
- **Base Peak**: 59.00 (1444505)

Hit List

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78</td>
<td>156 C10H20O</td>
<td>7-Octen-2-ol, 2,6-dimethyl-</td>
<td>18479-58-8</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>77</td>
<td>174 C10H22O2</td>
<td>1,7-Octanediol, 3,7-dimethyl-</td>
<td>107-74-4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>76</td>
<td>174 C10H22O2</td>
<td>1,7-Octanediol, 3,7-dimethyl-</td>
<td>107-74-4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>76</td>
<td>170 C10H18O2</td>
<td>cis-Linaloloxide</td>
<td>-0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>172 C10H20O2</td>
<td>Octanal, 7-hydroxy-3,7-dimethyl-</td>
<td>107-75-5</td>
<td>1</td>
</tr>
</tbody>
</table>

Library Name

(1) NIST12.LIB (2) NIST62.LIB
<table>
<thead>
<tr>
<th>No</th>
<th>SI Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76</td>
<td>C10H18O, 3-Cyclohexene-1-methanol, alpha., alpha., alpha., 4-trimethyl-</td>
<td>98-55-5</td>
</tr>
<tr>
<td>2</td>
<td>74</td>
<td>C10H18O, 3-Cyclohexene-1-methanol, alpha., alpha., alpha., 4-trimethyl-</td>
<td>98-55-5</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>C15H26O, 2-Naphthenemethanol, decahydro-. alpha., alpha., 4a,8-t</td>
<td>51317-08-9</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>C10H18O, 3-Cyclohexene-1-methanol, alpha., alpha., alpha., 4-trimethyl-</td>
<td>98-55-5</td>
</tr>
<tr>
<td>5</td>
<td>73</td>
<td>C10H18O, 7-Octen-2-ol, 2-methyl-6-methylene-</td>
<td>543-39-5</td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST62.LIB
<Unknown Spectrum>
PKNO : 14 Mass Peak # : 149 Ret. Time : 50.500
Scan # : 5546 B.G. Scan # : 5648
Base Peak : 59.00 (2576885)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76</td>
<td>222</td>
<td>2-Naphthalenemethanol, decahydro-.alpha..alpha..4a,8-t</td>
<td>51317-08-9</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>76</td>
<td>154</td>
<td>3-Cyclohexene-1-methanol, .alpha..alpha..4-trimethyl-</td>
<td>98-55-5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>74</td>
<td>154</td>
<td>3-Cyclohexene-1-methanol, .alpha..alpha..4-trimethyl-$</td>
<td>543-39-5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>74</td>
<td>154</td>
<td>7-Octen-2-ol, 2-methyl-6-methylene- $$ Hyrcenol $$ 2-He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>74</td>
<td>170</td>
<td>cis-Linaloloxide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST62.LIB
<Unknown Spectrum>

PKNO : 15 Mass Peak # : 132 Ret. Time : 51.620
Scan #: 3880 B.G. Scan #: 5712
Base Peak : 59.00(524005)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol. Wgt.</th>
<th>Mol. Form./Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76</td>
<td>174</td>
<td>C10H22O2, 1,7-Octanediol, 3,7-dimethyl-</td>
<td>107-74-4</td>
</tr>
<tr>
<td>2</td>
<td>74</td>
<td>174</td>
<td>C10H22O2, 1,7-Octanediol, 3,7-dimethyl- $$ Citronellol, hydroxy-</td>
<td>107-74-4</td>
</tr>
<tr>
<td>3</td>
<td>74</td>
<td>156</td>
<td>C10H200, 7-Octen-2-ol, 2,6-dimethyl- $$ 2,6-Dimethyl-7-octen-2-ol</td>
<td>18479-58-8</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>222</td>
<td>C15H260, 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a,8-t</td>
<td>51317-08-9</td>
</tr>
<tr>
<td>5</td>
<td>72</td>
<td>138</td>
<td>C6H13ClO, 2-Pentanol, 3-chloro-2-methyl-</td>
<td>74685-49-7</td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST82.LIB
<Unknown Spectrum>

PENO : 1E Mass Peak #: 147 Ret. Time : 53.580
Scan #: 5915 B.G. Scan #: 5988
Base Peak : 43.00 (566348)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI M ol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>Hexadecanoic acid $$ n-Hexadecanoic acid $$ n-Hexadecol</td>
<td>57-10-3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>89</td>
<td>Dodecanamide, N,N-bis(2-hydroxyethyl)- $$ Bis(2-hydroxy</td>
<td>120-40-1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>89</td>
<td>Dodecanoic acid $$ n-Dodecanoic acid $$ Neo-fat 12 $$ A</td>
<td>143-07-7</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td>Tetradecanoic acid $$ Myristic acid $$ n-Tetradecanoic</td>
<td>544-63-8</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>88</td>
<td>Tridecanoic acid</td>
<td>638-53-8</td>
<td></td>
</tr>
</tbody>
</table>

Library Name

(1) NIST12.LIB (2) NIST62.LIB
<Unknown Spectrum>
PR.NO : 17 Mass Peak # : 143 Ret. Time : 53.950
Scan # : 6580 B.G. Scan # : 6578
Base Peak : 67.00(340233)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>91</td>
<td>280</td>
<td>C18H32O2 9,12-Octadecadienoic acid (Z,Z)-cis-8,Cis-12-Octade</td>
<td>60-33-3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>248</td>
<td>C18H32 1,11,2,13-Octadecatriene</td>
<td>80625-36-1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>294</td>
<td>C19H34O2 9,12-Octadecadienoic acid, methyl ester, (E,E)-</td>
<td>2566-97-4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>89</td>
<td>322</td>
<td>C21H38O2 11,14-Eicosadienoic acid, methyl ester</td>
<td>2463-02-7</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>88</td>
<td>264</td>
<td>C18H32O2 9,17-Octadecadienal, (Z)-</td>
<td>56554-35-9</td>
<td>3</td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST62.LIB
Lampiran 13 (lanjutan).

Unknown Spectrum

- **Data:** HEX-PTE.D01
- **Mass Peak #:** 168 **Ret. Time:** 59.208
- **Scan #:** 6590
- **Base Peak:** 41.20 (766717)

Hit List

<table>
<thead>
<tr>
<th>No</th>
<th>SI Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>91</td>
<td>282 C18H34O2 Olieic Acid</td>
<td>112-80-1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>240 C16H32O Oxirane, tetradecyl- ** Hexadecane, 1,2-epoxy- ** Hexad</td>
<td>7320-37-8</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>240 C16H32O Oxirane, tetradecyl-</td>
<td>7320-37-8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td>242 C16H34O 1-Hexadecanol</td>
<td>36653-82-4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>88</td>
<td>214 C14H300 1-Tetradecanole</td>
<td>112-72-1</td>
<td>5</td>
</tr>
</tbody>
</table>

Library Name

(1) NIST12.LIB (2) NIST62.LIB

83
Unknown Spectrum

Data: HEX-PT0.00

Mass Peak #: 147 Ret. Time: 67.267

Scan #: 7569

Base Peak: 151.15 (2947778)

<table>
<thead>
<tr>
<th>Hit List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>45 65 77 91 107 121 135</td>
</tr>
<tr>
<td>153 180 225</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>52 65 77 93 108 123 137 163</td>
</tr>
<tr>
<td>151</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>39 55 67 77 95 105 121 135</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>43 51 65 77 91 107 119 135</td>
</tr>
<tr>
<td>151</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>41 51 65 77 91 107 121 137</td>
</tr>
<tr>
<td>194</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>SI Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79</td>
<td>C11H15N04 3,4-Dimethoxy-dl-phenylalanine</td>
<td>-0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>77</td>
<td>C9H11NO3 alpha-Amino-3'-hydroxy-4'-methoxyacetophenone</td>
<td>-0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>77</td>
<td>C10H12O3 2',4'-Dihydroxy-3'-methylpropiophenone</td>
<td>63876-48-0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>76</td>
<td>C11H14O3 3,4-Dimethoxyphenylacetone $$ Veratryl acetone $$ 2-Pro</td>
<td>776-99-8</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>C12H18O2 Benzene, 4-butyl-1,2-dimethoxy-</td>
<td>59056-76-7</td>
<td>2</td>
</tr>
</tbody>
</table>

Library Name

(1) NIST12.LIB (2) NIST62.LIB

![Graph](image)

<table>
<thead>
<tr>
<th>R.T (sec)</th>
<th>I.T (sec)</th>
<th>F.T (sec)</th>
<th>Area</th>
<th>Height (mm)</th>
<th>A/H (sec)</th>
<th>% Tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.270</td>
<td>4.542</td>
<td>-5.325</td>
<td>366380963</td>
<td>6103312</td>
<td>60.030</td>
</tr>
<tr>
<td>2</td>
<td>5.642</td>
<td>5.325</td>
<td>-5.792</td>
<td>242936680</td>
<td>166485161</td>
<td>14.582</td>
</tr>
<tr>
<td>3</td>
<td>16.428</td>
<td>16.208</td>
<td>16.508</td>
<td>9143901</td>
<td>1510344</td>
<td>6.054</td>
</tr>
<tr>
<td>4</td>
<td>40.999</td>
<td>40.758</td>
<td>41.075</td>
<td>36326366</td>
<td>3812412</td>
<td>10.053</td>
</tr>
<tr>
<td>5</td>
<td>41.493</td>
<td>41.242</td>
<td>41.575</td>
<td>25469126</td>
<td>3565786</td>
<td>7.142</td>
</tr>
<tr>
<td>6</td>
<td>41.753</td>
<td>41.575</td>
<td>41.825</td>
<td>26749985</td>
<td>3866221</td>
<td>6.919</td>
</tr>
<tr>
<td>7</td>
<td>45.809</td>
<td>45.558</td>
<td>45.975</td>
<td>20168037</td>
<td>2697866</td>
<td>7.476</td>
</tr>
<tr>
<td>8</td>
<td>47.235</td>
<td>46.925</td>
<td>47.442</td>
<td>42776505</td>
<td>4179108</td>
<td>10.236</td>
</tr>
<tr>
<td>9</td>
<td>48.510</td>
<td>48.325</td>
<td>48.608</td>
<td>16939108</td>
<td>2222824</td>
<td>7.521</td>
</tr>
<tr>
<td>10</td>
<td>50.172</td>
<td>49.808</td>
<td>50.342</td>
<td>36331973</td>
<td>2961847</td>
<td>12.942</td>
</tr>
<tr>
<td>11</td>
<td>50.837</td>
<td>50.342</td>
<td>51.192</td>
<td>24921385</td>
<td>8693300</td>
<td>28.667</td>
</tr>
<tr>
<td>12</td>
<td>51.880</td>
<td>51.875</td>
<td>51.975</td>
<td>9571809</td>
<td>1519944</td>
<td>6.301</td>
</tr>
<tr>
<td>13</td>
<td>54.122</td>
<td>53.825</td>
<td>54.242</td>
<td>26486705</td>
<td>1229037</td>
<td>21.535</td>
</tr>
<tr>
<td>14</td>
<td>54.398</td>
<td>54.242</td>
<td>54.975</td>
<td>39122211</td>
<td>1870005</td>
<td>20.921</td>
</tr>
<tr>
<td>15</td>
<td>67.037</td>
<td>66.558</td>
<td>67.158</td>
<td>10403543</td>
<td>797197</td>
<td>13.050</td>
</tr>
</tbody>
</table>

Total 1161998463 100.
Lampiran 14 (lanjutan).

*** CLASS-5000 ***
Report No. : 1 Date: BE-PTE.D61 99/12/26 13:29:16
Sample : etil e ter Pterocarp
ID : fik
Operator :Susanto
Method File Name : CW40.MET

<Unknown Spectrum>
PKNO : 1 Mass Peak #: 43 Ret .Time : 5.270
Scan #: 118 B.G. Scan #: 124
Base Peak : 43.00(519538)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI Mol. Wgt.</th>
<th>Mol. Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94</td>
<td>C6H12O2 √</td>
<td>123-42-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-Pentanal, 4-hydroxy-4-methyl-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>94</td>
<td>C6H12O2</td>
<td>123-42-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-Pentanal, 4-hydroxy-4-methyl-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>C6H12O2</td>
<td>123-42-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-Pentanal, 4-hydroxy-4-methyl- ⊓ Acetonyldimethylene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td>C6H12O2</td>
<td>123-42-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-Pentene, 4-hydroxy-4-methyl-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hit List

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95</td>
<td>118</td>
<td>C8H12O2 2-Pentanone, 4-hydroxy-4-methyl-</td>
<td>123-42-2</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>116</td>
<td>C8H12O2 2-Pentanone, 4-hydroxy-4-methyl-</td>
<td>123-42-2</td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>116</td>
<td>C8H12O2 2-Pentanone, 4-hydroxy-4-methyl-</td>
<td>123-42-2</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>116</td>
<td>C8H12O2 2-Pentanone, 4-hydroxy-4-methyl-</td>
<td>123-42-2</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>116</td>
<td>C8H12O2 2-Pentanone, 4-hydroxy-4-methyl-</td>
<td>123-42-2</td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST82.LIB
Lampiran 14. (lanjutan).

<Unknown Spectrum>
PKNO : 3 Mass Peak # : 54 Ret. Time : 16.430
Scan # : 1457 B.G. Scan # : 1466
Base Peak : 119.00 (355185)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SW</th>
<th>MW</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39</td>
<td>134</td>
<td>Benzene, 4-ethyl-1,2-dimethyl- $$ o$$-Xylene, 4-ethyl- $$ $$</td>
<td>934-80-5</td>
</tr>
<tr>
<td>2</td>
<td>82</td>
<td>134</td>
<td>Benzene, 4-ethyl-1,2-dimethyl-</td>
<td>934-80-5</td>
</tr>
<tr>
<td>3</td>
<td>92</td>
<td>134</td>
<td>C10H14</td>
<td>1758-88-9</td>
</tr>
<tr>
<td>4</td>
<td>82</td>
<td>134</td>
<td>Benzene, 2-ethyl-1,4-dimethyl- $$ p$$-Xylene, 2-ethyl- $$ $$</td>
<td>874-41-9</td>
</tr>
<tr>
<td>5</td>
<td>82</td>
<td>134</td>
<td>C10H14</td>
<td>933-98-2</td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST62.LIB
Lampiran 14. (lanjutan)

<Unknown Spectrum>
RENO : 4 Mass Peak # : 102 Ret. Time : 41.000
Scan # : 4405 B.G. Scan # : 4414
Base Peak : 59.00(371343)

okit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol. Wgt.</th>
<th>Mol. Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87</td>
<td>222</td>
<td>C15H26O</td>
<td>489-86-1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>85</td>
<td>222</td>
<td>Guaiol</td>
<td>489-86-1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>85</td>
<td>222</td>
<td>Guaiol</td>
<td>489-86-1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>84</td>
<td>222</td>
<td>Guaiol $$ 5-Azulenesmethanol, 1,2,3,4,5,6,7,8-octahydr-</td>
<td>489-86-1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>84</td>
<td>222</td>
<td>C15H26O</td>
<td>639-88-6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cyclohexanemethanol, 4-ethenyl-alpha...alpha...4-trimet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST62.LIB
<Hit List>

No SI Mol.Wgt Mol.Form./Compound Name CAS No. E
1 82 154 C10H18O 3-Cyclohexene-1-methanol, .alpha.,.alpha.4-trimethyl-$ 98-55-5 1
2 81 222 C15H26O 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a,8-t 51317-08-9 2
3 79 154 C10H18O 7-Octen-2-ol, 2-methyl-6-methylene- $$ Myrcenol $$ 98-55-5 1
4 79 154 C10H18O 3-Cyclohexene-1-methanol, .alpha.,.alpha.4-trimethyl-$ 98-55-5 2
5 78 210 C13H22O2 Linalyl propanoate - 0

Library Name
(1) NIST12.LIB (2) NIST62.LIB
Lampiran 14. (lanjutan).

Unknown Spectrum

PKNO: 6 Mass Peak #: 109 Ret. Time: 41.750
Scan #: 4496 B.G. Scan #: 4504
Base Peak: 59.00(882805)

Hit List

```
<table>
<thead>
<tr>
<th>No</th>
<th>Mol. Wt.</th>
<th>Mol. Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td>C15H28O</td>
<td>51317-08-9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-Naphthalenemethanol, decahydro-..alpha..alpha..4a,8-t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>79</td>
<td>C10H18O</td>
<td>88-55-5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-Cyclohexene-1-methanol, .alpha..alpha..4-trimethyl-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>77</td>
<td>C10H18O</td>
<td>543-39-5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-Octen-2-ol, 2-methyl-6-methylene- $$ Myrcenol $$ 2-Me</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>76</td>
<td>C10H18O</td>
<td>98-55-5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-Cyclohexene-1-methanol, .alpha..alpha..4-trimethyl-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>76</td>
<td>C10H18O</td>
<td>98-55-5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-Cyclohexene-1-methanol, .alpha..alpha..4-trimethyl-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Library Name
(1) NIST12.LIB (2) NIST62.LIB
<table>
<thead>
<tr>
<th>No</th>
<th>SI M.Hg.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methylloxirany</td>
<td>96-08-2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>79</td>
<td>2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a-tri</td>
<td>473-15-4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methylloxirany</td>
<td>96-08-2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>78</td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methylloxirany</td>
<td>96-08-2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>77</td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methylloxirany</td>
<td>96-08-2</td>
<td></td>
</tr>
</tbody>
</table>

Library Name

(1) NIST12.LIB (2) NIST62.LIB
Lampiran 14. (lanjutan).

<Unknown Spectrum>
PKNO : 8 Mass Peak #: 98 Ret. Time : 47.240
Scan #: 5154 S.G. Scan #: 5178
Base Peak : 43.06 (841727)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>MOL.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>168 C10H16O2</td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methyl)oxirany</td>
<td>96-08-2</td>
</tr>
<tr>
<td>2</td>
<td>79</td>
<td>168 C10H16O2</td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methyl)oxirany</td>
<td>96-08-2</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>222 C15H26O</td>
<td>2-Naphthalenemethanol, decahydro-.alpha..alpha..alpha..4a-tri</td>
<td>473-15-4 2</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>168 C10H16O2</td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methyl)oxirany</td>
<td>96-08-2</td>
</tr>
<tr>
<td>5</td>
<td>77</td>
<td>168 C10H16O2</td>
<td>7-Oxabicyclo 4.1.0 heptane, 1-methyl-4-(2-methyl)oxirany</td>
<td>96-08-2</td>
</tr>
</tbody>
</table>

Library Name:
(1) NIST12.LIB (2) NIST62.LIB
Lampiran 14. (lanjutan).

<Unknown Spectrum>
PK.NO : 9 Mass Peak #: 93 Ret. Time : 48.510
Scan #: 5307 B.G. Scan #: 5318
Base Peak : 59.00 (688138)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol. Wgt.</th>
<th>Mol. Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>82</td>
<td>158</td>
<td>C10H200 7-Octen-2-ol, 2,6-dimethyl-</td>
<td>18479-58-8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C10H2202 2,6-Dimethyl-7-octen-2-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>81</td>
<td>174</td>
<td>1,7-Octanediol, 3,7-dimethyl-</td>
<td>107-74-4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Citronellol, hydroxy-C10H200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>156</td>
<td>1-Cyclohexyl-2-methyl-2-propanol</td>
<td>5531-30-8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>79</td>
<td>174</td>
<td>1,7-Octanediol, 3,7-dimethyl-</td>
<td>107-74-4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-Methyl-2-nonanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>78</td>
<td>158</td>
<td>C10H220 2-Nonanol, 2-methyl-</td>
<td>10297-57-1</td>
<td>1</td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST62.LIB
Lampiran 14. (lanjutan).

Unknown Spectrum
- PRNO: 10 Mass Peak #: 99 Ret. Time: 50.170
- Scan #: 5506 B.G. Scan #: 5526
- Base Peak: 59.00(668475)

Hit List

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol. Wgt.</th>
<th>Mol. Form. / Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78</td>
<td>154 C10H18O</td>
<td>3-Cyclohexene-1-methanol, alpha, alpha, alpha, 4-trimethyl-</td>
<td>98-55-5</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>210 C13H22O2</td>
<td>Linalyl propanoate</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>154 C10H18O</td>
<td>3-Cyclohexene-1-methanol, alpha, alpha, alpha, 4-trimethyl-</td>
<td>98-55-5</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>154 C10H18O</td>
<td>7-Octen-2-ol, 2-methyl-6-methylene-</td>
<td>543-39-5</td>
</tr>
<tr>
<td>5</td>
<td>74</td>
<td>114 C7H14O</td>
<td>2,3-Dimethyl-4-penten-2-ol</td>
<td>18781-52-3</td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST62.LIB
Lampiran 14. (lanjutan).

```
<Unknown Spectrum>
PKNO : 11  Mass Peak #: 125  Ret. Time : 50.840
Scan #: 5586  B.G. Scan #: 5629
Base Peak : 59.000  (1800848)
```

```
<Hit List>

1

2

3

4

5

No     SI    Mol.Wgt.  Mol.Form./Compound Name   CAS No.  E
1      77    154    C10H18O                  98-55-5   1
2      78    154    C10H18O                  98-55-5   1
3      78    154    C10H18O                  543-39-5  1
4      78    170    C10H18O2                 51317-08-9 2
5      75    222    C15H26O                  51317-08-9 2

Library Name
(1) NIST12.LIB (2) NIST02.LIB

96
<table>
<thead>
<tr>
<th>No</th>
<th>SI Mol. Wgt.</th>
<th>Mol. Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
<td>C10H200</td>
<td>18479-58-8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-Octen-2-ol, 2,6-dimethyl-$$2,6\text{-D}ime\text{thyl-7-octen-2-ol}$$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>C10H2202</td>
<td>107-74-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,7-Octanediol, 3,7-dimethyl-$$C10H180$$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>74</td>
<td>C10H180</td>
<td>98-55-5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-Cyclohexene-1-methanol, $$\alpha$$,$$\alpha$$,-trimethyl-$$C10H200$$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>74</td>
<td>C10H180</td>
<td>5531-30-6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-Cyclohexyl-2-methyl-2-propanol $$C10H180$$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>74</td>
<td>C10H180</td>
<td>543-39-5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-Octen-2-ol, 2-methyl-6-methylene-$$C10H200$$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Library Name

(1) NIST12.LIB (2) NIST62.LIB
**Unknown Spectrum**

- **PKNO**: 13
- **Mass Peak #**: 59
- **Ret. Time**: 54.120
- **Scan #**: 5980
- **B.G. Scan #**: 5994
- **Base Peak**: 137.00 (106112)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>M.Wt.</th>
<th>Mol. Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67</td>
<td>C13H14O6 3-Furancarboxylic acid, tetrahydro-3-hydroxy-2-(4-methoxyphenyl)</td>
<td>42151-37-1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>C11H14O4 Ethyl homovanillate</td>
<td>80563-13-5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
<td>C10H13NO4 L-4-Hydroxy-3-methoxyphenylalanine</td>
<td>300-46-1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>C4H8Br2 Butane, 1,2-dibromo-</td>
<td>533-88-2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>C10H12O4 Benzenacetic acid, alpha-hydroxy-3-methoxy-, methyl</td>
<td>54845-40-8</td>
<td>2</td>
</tr>
</tbody>
</table>

**Library Name**

(1) NIST12.LIB (2) NIST82.LIB
Lampiran 14 (lanjutan).

<Unknown Spectrum>

PKNO : 14 Mass Peak #: 138 Ret Time : 54.400
Scan #: 6013 B.G. Scan #: 6070
Base Peak : 137.00 (380853)

<Hit List>

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>152</td>
<td>C10H16O</td>
<td>74753-29-0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-Propene, 1-methoxy(1-methyl-2-cyclopenten-1-yl)-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>180</td>
<td>C10H120S</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-(2-Acetyl-1-methylcyclopropyl)thiophene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>71</td>
<td>194</td>
<td>C14H26</td>
<td>55712-52-2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,5-Octadiene, 2,2,4,5,7,7-hexamethyl-, (E,Z)-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>152</td>
<td>C9H18Si</td>
<td>82338-12-9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silane, trimethyl(4-methyl-3-penten-1-ynyl)-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>236</td>
<td>C15H2402</td>
<td>21730-91-6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-Buten-1-ol, 2-methyl-4-(2,6,6-trimethyl-1-cyclohexen-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Library Name
(1) NIST12.LIB (2) NIST62.LIB
**Unknown Spectrum**

<table>
<thead>
<tr>
<th>PKNO</th>
<th>Mass Peak #</th>
<th>Ret. Time</th>
<th>Scan #</th>
<th>B.G. Scan #</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>74</td>
<td>67.040</td>
<td>7530</td>
<td>7544</td>
</tr>
<tr>
<td>Base Peak</td>
<td>151.00</td>
<td>364592</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Hit List**

<table>
<thead>
<tr>
<th>No</th>
<th>SI</th>
<th>Mol.Wgt.</th>
<th>Mol.Form./Compound Name</th>
<th>CAS No.</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81</td>
<td>180</td>
<td>C10H12O3 2',4'-Dihydroxy-3'-methylpropiophenone</td>
<td>63876-46-0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>184</td>
<td>C12H16O2 Benzene, 4-butyl-1,2-dimethoxy-</td>
<td>59056-76-7</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
<td>194</td>
<td>C11H14O3 3,4-Dimethoxyphenylacetone $$ Veratryl acetone $$ 2-Pro</td>
<td>776-99-8</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>79</td>
<td>181</td>
<td>C9H11NO3 alpha-Amino-3'-hydroxy-4'-methoxyacetophenone</td>
<td>-0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>78</td>
<td>166</td>
<td>C10H14O2 1,2-Benzenediol, 4-(1,1-dimethylethyl)- $$ Pyrocatechol</td>
<td>98-28-3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Library Name**

(1) NIST12.LIB (2) NIST62.LIB