The 3rd International Symposium

“Sustainability in Food Production, Agriculture and the Environment in Asia”

28 September-1 October 2009
Faculty of Agriculture, Niigata University, JAPAN
Home Page http://www.agr.niigata-u.ac.jp/
Contents

Preface 1
Time Table 2
Introduction to Faculty of Agriculture Niigata University 7

Session

Crop Science and Horticultural Science

O-1 Heilongjiang 50 billion Kg yield project. Yankun Sun 16
O-2 In vitro seed germination, corm enlargement and corm acclimatization in Zephyra elegans D. Don. A. K. Vidal T., Y. Niimi, M. Nakano and D-S Han 16
O-3 Changes of food reserves during rhizome formation of Curcuma alismatifolia gagnep. A. Chidburee, T. Ohyama and S. Ruamrungsri 16
O-6 Interaction between gibberellin and ethylene in growth of rice. Y. Adachi and H. Watanabe 18
O-7 A novel elicitor (PiPE) from Phytophthora infestans induces active oxygen species and the hypersensitive response in potato. N. Furuichi, and K. Yokokawa 19

Poster Session

P-3 Visualization of multiple phytohormones within cucumber (Cucumis 20
sativus L.) ovary using immunohistochemical localization. Y. Ohta, Y. Saito, S. Chino and K. Kojima

P-4 Changes in abscisic acid, ethylene and indole-3-acetic acid of ‘Le Lectier’ pears during low-temperature treatment. K. Kojima, Y. Ohta, Y. Sakai, C. Araki, K. Koshikizawa, Y. Saito, S. Kurosaka, T. Matsumoto and S. Chino

P-8 Flower color modification in the liliaceous ornamental Tricyrtis hirta by RNAi suppression of the chalcone synthase (CHS) gene. Y. Kamiishi, H. Takagi, S. Mori, H. Kobayashi, D-S. Han and M. Nakano

P-9 Characterization of Tricyrtis hirta plants transformed with the gibberellin 2-oxidase gene from Torenia fournieri. S. Meguro, H. Gondaira, M. Hayashi, T. Niki, T. Nishijima, M. Koshioka, D-S. Han and M. Nakano

P-10 Chromosome doubling of Lychnis spp. by in vitro spindle toxin treatments of node segments. T. Nonaka, E. Oka, M. Asano, T. Godo, D-S. Han and M. Nakano

P-11 Advances in vegetative propagation via callus induction in Zephyra elegans D. Don. A. K. Vidal T., Y. Niimi, M. Nakano and D-S. Han

P-12 Effect of brown rice vinegar lees compost on growth in Tomato. T. Abe, Y. Niimi, M. Nakano and D-S. Han

P-13 Effect of low temperature on developmental phase changes in seedlings of Lilium rubellum. T. Kakuda, S. Otsuka, Y. Niimi, M. Nakano, and D-S. Han

P-14 Synteny analysis of Brassica genomes based on genetic linkage map

P-15 Polyploidy of *Fallopia* species in Japan. H. Ohsawa, T. Morita and K. Okazaki

P-16 Potential use of plant growth regulators for improving the recovery rate of fertilizer in rice - effect of L-β-phenyllactic acid on growth of rice seedlings -. Y. Adachi, Y. Saruhashi, K. Kimura, M. Saigusa and H. Watanabe

P-17 No-tillage direct seeding culture in rice with single basal application of controlled released fertilizer in heavy clayey paddy field. Y. Saruhashi, Y. Adachi, M. Saigusa and H. Watanabe

P-19 Morphological study of arbuscular mycorrhiza fungi infected *Curcuma alismatifolia* gagnep. A. Thepsukhon, S. Choonluchanon, S. Tajima and S. Ruamrungsri

P-22 Regulation of nodulation and nodule growth by N and C compounds in soybean. T. Kato, T. Sasaki, N. Ohtake, K. Sueyoshi and T. Ohyama

P-23 Two-component high-affinity nitrate transport system in barley: Membrane localization and a direct protein-protein interaction. M. Ohishi, S. Naganuma, S. Ishikawa, N. Ohtake, T. Ohyama, K. Sueyoshi

P-25 The effects of the deep placement of fertilizer lime nitrogen on the yield and quality of the soybean. K. Tanaka, T. Kaushal, Y. Nagumo, Y. Takahashi, N. Ohtake, K. Sueyoshi, T. Ohyama

P-26 Genetic variability of *Milk vetch dwarf virus* isolates. K. Nomizu and
Environment -land use and water system-

O-8 Distribution of Indonesian forestry recent condition as based for future utilization: Scenario and Multi criteria Analysis. M. Buce Saleh

O-9 Extracting appropriate sites for the swans visiting in winter of Niigata City using GIS and satellite data. N. Abe

O-10 Can paddy fields mitigate flood disaster? Study on the flood mitigation measure by a Paddy Field Dam project. N. Yoshikawa

O-11 Influence of Climate Change on the Hydrological Regime in a Headwater Basin, Niigata, Japan. Whitaker, A.C., A. Yoshimura and T. Sekiguchi

O-12 Organic rice farming its various effect on preservation of environment and on food safety. T. Aoda, K. Inaba and A. Kojima

O-14 Will global warming change the reproduction traits of forest trees? ---Seed production by /Fraxinus platypoda/ in a riparian forest, central Japan----. H. Sakio

Poster session

P-27 Effects of difference in canopy tree species on understory plant species composition in a temperate broadleaved deciduous forest, central Japan. T. Ohyama, T. Saito, T. Kamitani

P-28 Plant species hotspot created by flood disturbance in the Hayade River, central Japan. E. Saito, S. Ishida, Y. Takanose, T. Kamitani

P-29 Ecological connectivity between rivers and farmlands demonstrated by vegetation similarity in the largest Japanese alluvial plain. S. Ishida, Y. Takanose and T. Kamitani
Comparison of vegetation succession and regeneration between oak and artificial canopy gaps in a secondary broad-leaved forest, central Japan. T. Saito, T. Ohyama, T. K. Kamitani

Effects of tillage and irrigation practice on the establishment of wetland native plants at fallow paddy fields. Y. Takanose, S. Ishida and T. Kamitani

Factors affecting seasonal changes in ozone vertical distribution over mountains of Sado Island and inland Niigata prefecture, Japan. S. Nihira, M. Nakata, N. Take, T. Ohara and T. Ohizumi

The structure and species composition of natural Cryptomeria japonica forest on Sado Island. M. Ohno, Y. Nakano, Y. Kaneko, K. Honma, H. Sakio

Laboratory introduction. Niigata University Agricultural System Engineering Researchers, Faculty of agriculture, Niigata University, Japan

Sustainability, Social and Economic analysis

Rural development problem and strategy in Heilong Province. Ying Nie

Sustainable agriculture in the highlands of northern Thailand: food safety. Danai Boonyakiat

Sustainability in horticultural production and postharvest management in Thailand. Sirichai Kanlayanarath

Food Balance of Mongolia. N. Nyamaa

Residents’ Participation in Common-pool Resources and Accumulation of Social Capital. Shinichi Furusawa, Lily Kiminami

Poster session

Food security of urban poor in China: Case study from Yinchuan City. T. Ichikawa and L. Kiminami

Regeneration of shallow landslide slope by seed bank soil and indigenous arbuscular mycorrhizal (AM) fungi in Niigata forest area. T. Buto, N. Harada and M. Nonaka

Comparative nitrogen dynamics in organic and conventional tomato cultivation in Niigata prefecture. Y. Fujino, N. Harada and M. Nonaka

Arbuscular mycorrhizal fungi (AMF) colonizing with coastal pants in...
Niigata, T. Kaidzu, N. Harada and M. Nonaka

P-39 Changes in chemical properties and bacterial communities in soil amended with food waste. S. Iio, N. Harada and M. Nonaka

Food Science and Biotechnology

O-21 Effect of time defoliation and vegetative part of fodder Indigofera on growth, herbage production and its quality at first harvesting time. Luki Abdulah

O-22 Immunological functions of fermented rice bran extract: Anti-allergic activity of fermented rice bran extract. Kyoung Min Choi, Da Hye Choi, Bo-Young Jeong, Dong Yeop Kim, Jiang Ping Fan, Hyun Sil Park, Hyun Chae Chung, Han-Sup Kim, You Hyuk Ko, Gyoung Woo Kim, and Gi Dong Han

O-23 Anti-oxidative effects of fermented rice bran extract on oxidative stress in adipocytes and podocytes. Mr. Dongyeop Kim, Bo Young Jeong, Jiang Ping Fan, Hyun Sil Park, Hyun Chae Chung, Han-Sup Kim, You Hyuk Ko, Gyoung Woo Kim, and Gi Dong Han

O-24 Rapid determination of ppm-order concentration of organophosphorus pesticide based on near-infrared spectroscopy. Chen Jingjing, Peng Yankun, Li Yongyu

O-25 Differences in fungicidal efficiency against Aspergillus flavus for subacidic and strongly acidic electrolyzed. Ke Xiong

O-26 Effects of vacuum cooling on chemical properties during storage of red cabbage. P. Maniwara, D. Boonyakiat, U. Chanasut

O-27 Effects of a high-pressure treatment on the physical properties and palatability of pork loin. Y.J. Kim, T. Nishiumi and A. Suzuki

O-28 Perspective of postharvest handling consideration for leafy green vegetables in Thailand. Somsak Kramchote, Varit Srilaong and Sirichai Kanlayarat

O-29 Basic mechanism and nutritional regulation of autophagy. Md. Razaul Karim, Kenji Kaneshiro, Hisay Kawanago and Motoni Kadowaki

O-31 PROTEOME analysis of Theobroma cacao using de novo sequence
analysis of derivatized peptides. Azwan Awang, Rafiah Karim, and Toshiaki Mitsui

Poster session

P-40 Effects of a high-pressure treatment on the enzyme digestion of β-lactoglobulin. T. Baba, S. Yamamoto, T. Hara, S. Odani, A. Suzuki5 and T. Nishiumi

P-41 Dietary protein level changes the glutamate related enzyme mRNA expression in muscle. H. Kobayashi, W. Takano, M. Shibata, M. Kadowaki, and S. Fujimura

P-42 Regulation of meat quality by dietary lysine and arginine levels. Y. Ito, T. Matsumoto, Y. Watanabe, M. Imanari, M. Kadowaki, S. Fujimura

P-43 Biosynthesis pathway of eight-carbon volatiles in Pleurotus ostreatus. T. Kudo, R. Shimizu, T. Hara, T. Joh

P-44 The relationship between the conversion activity of soybean isoflavone glucosides to aglycones and the substrate specificity of β-glucosidase in lactic acid bacteria from plants. Y. Ueno, R. Mizutani, X. Li, T. Kudo, T. Hara, T. Joh

P-45 Lactobacillus paracasei K71 isolated from Sake lees (Sakekasu) suppresses serum IgE levels in ovalbumin-immunized Balb/c Mice. Naoya Shigeyama, T. Hara, T. Kumagai, M. Saito, S. Okada, T. Watanabe and T. Joh

P-46 Ingestion of Lactobacillus paracasei K71 ameliorates the development of atopic dermatitis-like skin lesions in NC/Nga mice. H. Yamazaki, T. Hara, T. Kumagai, M. Saito, N. Shigeyama, T. Watanabe and T. Joh

P-47 Suppressive effect of g-aminobutyric acid (GABA) on histamine release in rat basophilic RBL-2H3 cells and rat peritoneal mast cells. A. Hori, T. Hara and T. Joh

P-48 Oral administration of inositol hexaphosphate (IP6) induces mRNA expression of b-defensins (mBD-1 and mBD-14) in the mouse colon. K. Saída, T. Hara, Y. Shinohara and T. Joh

P-49 Effect of high pressure on the extraction of antiallergic substance from mushrooms. Y. Nozawa, A. Igarashi, K. Sato, T. Hara, T. Joh

P-50 Role of three aromatic residues in the chitin binding domain of Chi18aC from Streptomyces coelicolor A3(2). M. Uemura, N. Yamada, K. Akagi,
S. Yoshio, T. Ikegami, K. Suzuki, and T. Watanabe

P-54 Squalene synthase from Methylococcus capsulatus: Inhibitory activity and mode action of FPMP, which is an analog of FPP substrate. R. Amano, T. Sato and T. Hoshino

P-56 Effect of Cooking on Rice Prolamin Digestibility. M. Kubota, Y. Saito, T. Masumura, C. Ohno, T. Kumagai, R. Watanabe, S. Fujimura and M. Kadowaki

P-57 Molecular analysis of ammonium transporter gene isolated from barley. H. Yamagishi, N. Ohtake, T. Ohyama, K. Sueyoshi

Undergraduate Students Session

O-32 Contemplation of acceleration program to reach self-sufficiency of beef in 2010 in Indonesia. Muhammad Sarwar Khan, Yuni Wijayanti, Henny Nuraini

O-33 Fermented coconut milk (Cocogurt) as the potential of functional probiotic product that rich in medium Chain Triglycerides. Ayupry Diptasari, Tomi Ertanto, R.H. Fitri Faradilla, Riyanti Ekaaftri, Mujiono, Tetuko Dito W, and Ratih Dewanti-Hariyadi

O-34 Potential of Sweet Potato (*Ipomoea batatas*) and Its Secondary Product as the Alternative for Healthy Street Food Production in Middle Class
Industry in Cikarawang, Bogor, West Java, Indonesia. Saskia Piscesa, Rizal Damanik

O-35 Laserpuncture Application for Synchronization Estrous of Garut’s 74 Ewes. Wulan Widi Ifafah

O-36 Organic farming in Malaysia. Chin Weng Fei 74

O-37 Sustainable oil palm cultivation in Malaysia. Syed Muhammad Adam bin Syd Abdul Rahman

List of participants 77

Organizing committee 80

University map 81
produces 3.3 million tons equal as dry coconut. Coconut milk, as one of traditional processing products of coconut potentially becomes main ingredient for probiotics yoghurt making. As a source of medium chain triglycerides, mainly composed by lauric acid (C12), coconut milk has great potential as functional food. This research was conducted to have the right Lactic Acid Bacteria (LAB) combination to make cocogurt. Viscosity, pH, and titratable acidity were measured. Increasing of skim milk addition was increasing pH of cocogurt and decreasing of titratable acidity. Cocogurt viscosity was affected by lactic acid bacteria strain, final product acidity, and skim milk addition. Cocogurt with Lactobacillus casei subspecies Rhamnosus as a starter individually had a lower pH than cocogurt prepared with L. casei combined with Lactobacillus bulgaricus, L. casei with Streptococcus thermophilus, or the combination of three of them. Cocogurt viability ranged from 7 to 9 Log CFU/ml. In terms of color, odor, and rancidity, L. casei with 5% skim milk statistically was not different from control (α =0.005); however, for taste, texture, and viscosity, it was significantly different (α =0.005) from control. Proximate analysis shows that fat content of cocogurt was 9.09% which 46% composed by lauric acid. During storage, cocogurt show decrease of LAB viability and pH, however for viscosity and titratable acidity were increased.

Keywords: Cocogurt, Coconut milk, fermentation, Lactic Acid bacteria, Medium Chain Triglyceride

O-34 Potential of Sweet Potato (Ipomoea batatas) and Its Secondary Product as the Alternative for Healthy Street Food Production in Middle Class Industry in Cikarawang, Bogor, West Java, Indonesia

Saskia Piscesa 1), Rizal Damanik 2)

1) Students; Department of Community Nutrition; Faculty of Human Ecology; Bogor Agricultural University

2) Lecturer; Department of Community Nutrition; Faculty of Human Ecology; Bogor Agricultural University

saskia.piscesa@gmail.com

Nutrition plays an important role in our daily lives. Food choice affects individual’s nutritional status, and food choice influenced by eating behavior that formed by hunger feeling, physiological, and psychological needs. People prefer consuming street food due to economic reason; cheap and sold in flexible quantities. Sweet potato has high productivity, high economic values, and the flour containing high nutritional values but less popular than any other carbohydrate source. On the one hand, street food stimulates the demand for traditional ingredients and produce, best provided by local enterprises and agriculture. Challenge to applied sweet potatoes as an alternative street food ingredient is to develop creative idea because sweet potato is less popular to consume than any other carbohydrate source.

The street food produced by “Kelompok Tani Hurip” in Cikarawang, Bogor, West Java,
Indonesia is mainly various kinds of Indonesian traditional cakes made of sweet potato. Related to the street food production from sweet potato and the nutrition value analysis of sweet potato, it is true if sweet potato and its flour can be as the alternative for healthy street food.

Keywords: *Ipomoea batatas*, street food, middle class industry, Cikarawang, Bogor, West Java.

O-35 Laserpuncture Application for Synchronization Estrous of Garut’s Ewes

Wulan Widi Ifafah

e-mail: wulanwidiifafah@gmail.com

Mobile phone: + 6285691801307

*Animal Production and Technology, Bogor Agriculture University_

Jl. Agatis Kampus IPB Darmaga Bogor. 16680, Indonesia

Phone: +251 622841, 624133 Fax: +251 622842

Garut’s sheep is one of the sheep in Indonesia that are really potential to be developed. But there are some problems in developing Garut’s sheep. One of the problem is low reproductive of ewes. Estrous synchronization is the technique to control estrous cycle so that estrous period can be happened at the same time for all ewes simultaneously. Laserpuncture methods had been used to synchronize estrous of Garut’s sheep ewes (*Ovis aries*). This device gives low power electricity which could increase hormone and enzyme tissues. This technique showed that laserpuncture which is treated at 17 reproduction’s accu-points during the luteal phase yielded 100% estrous. While the laser puncture treated at anytime yielded 95% estrous. Using artificial insemination (AI) with liquid semen, estrous was 64% and with frozen semen was 57%. The results of this experiments showed that laserpuncture technique can be used as an alternative technique for estrous synchronization besides hormone treatments. This technique has higher success and low cost.

Keyword: estrous synchronization, laserpuncture, Garut’s ewes, reproductive efficiency, hormone and enzim.

O-36 Organic Farming in Malaysia

Chin Weng Fei

_Undergraduate Student, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.*

Malaysia, situated in the tropical region, has a population of approximately 20 million with diverse culture and heritage. Blessed with various natural resources, Malaysia has been rapidly developing since 1970s. Since the formation of Malaysia on 16th September 1963, Malaysia’s economy which initially depended on mining and agriculture had been slowly shifted to manufacturing sectors. However, in 2002, the 5th Prime Minister of Malaysia, Tun Abdullah Ahmad Badawi realized the decreasing of agricultural activities and also the issues of food security, he has allocated a huge budget to revitalize and modernize the agriculture sector of
Potential of Sweet Potato (*Ipomoea batatas*) and Its Secondary Product as the Alternative for Healthy Street Food Production in Middle Class Industry in Cikarawang, Bogor, West Java, Indonesia

Saskia Piscesa 1), Rizal Damanik 2)

1) Students; Department of Community Nutrition; Faculty of Human Ecology; Bogor Agricultural University
2) Lecturer; Department of Community Nutrition; Faculty of Human Ecology; Bogor Agricultural University

saskia.piscesa@gmail.com

ABSTRACT

Nutrition plays an important role in our daily lives. Food choice affects individual’s nutritional status, and food choice influenced by eating behavior that formed by hunger feeling, physiological, and psychological needs. People prefer consuming street food due to economic reason; cheap and sold in flexible quantities.

Sweet potato has high productivity, high economic values, and the flour containing high nutritional values but less popular than any other carbohydrate source. On the one hand, street food stimulates the demand for traditional ingredients and produce, best provided by local enterprises and agriculture. Challenge to applied sweet potatoes as an alternative street food ingredient is to develop creative idea because sweet potato is less popular to consume than any other carbohydrate source.

The street food produced by “Kelompok Tani Hurip” in Cikarawang, Bogor, West Java, Indonesia is mainly various kinds of Indonesian traditional cakes made of sweet potato. Related to the street food production from sweet potato and the nutritional value analysis of sweet potato, it is true if sweet potato and its flour can be as the alternative for healthy street food.

Keywords: *Ipomoea batatas*, street food, middle class industry, Cikarawang, Bogor, West Java.

I. INTRODUCTION

1. Background

Nutrition has played a significant role in human life. It affects the whole biological process include metabolism, ingestion, digestion, absorption, transport and excretion (Rolfes 2008).

Every day, in several times a day, we make food choices that influence our body’s health for better or worse. Each day’s the choices we made may benefit or harm our health. At the beginning the effect may be only a little but when these choices are repeated over months and or years the results may become major. Therefore, pay more attention to a good eating habit can bring you health benefits in your future life. Conversely, carelessness about food choices can contribute many diseases. In short, a good food choice supports better nutrition.

Eating behavior is the way people fulfilling their meals needs, including belief and food choice (Khumaidi 1989). Eating behavior not only formed by hunger feeling, but also influenced by physiological and
psychological needs. Every group has its own pattern in getting, utilizing, and assessing food as their culture uniqueness. This culture influenced people in choosing and consuming food (Suhardjio 1989). Some factors that influence food choice and dietary quality are food preferences (taste, smell, color, texture, temperature, and similarity), nutrition knowledge and beliefs (health concerns, nutritional value, attitudes and values, education, and experience), culture (acceptable, customs, symbolism, and religious beliefs), and practical considerations (cost, convenience, level of hunger, availability, and health status) (Brown 2008).

Cikarawang is a village located in Bogor, West Java, Indonesia, near the campus of Bogor Agricultural University. People of Cikarawang mostly consist of middle to low economic class and has various kinds of occupation, from farmers to seller. This situation has opened a great opportunity for people to develop their own economic life, for example dormitory service, housekeeping service, and food industry. Food industry is one of the most promising sectors, especially street food production.

Street food is the product of crowded cities and means different things to different people, be it the schoolchildren on their way to school or the holidaymaker visiting a big city or the vendor selling the food. It has become a staple food for the commuters, workers, students and schoolchildren, migrants and tourists who find themselves far from home when hunger hits at mealtimes, because it is cheap and sold in flexible quantities.

The popularity of tasty meals like vadai (fried savoury lentil cakes) in India, beef broth in Kenya, nasi lemak (rice with eggs and savoury sambal sauce) in Malaysia, and kerupuk (Indonesian’s famous chips made of flour) prove that people prefer traditional street foods over equally accessible fast food options. Challenge to apply sweet potatoes as an alternative and or substitution for street food ingredient is to develop creative idea because sweet potato is less popular to consume than any other carbohydrate source.

2. Objectives
The objectives of the present study are to study the potential of sweet potato (Ipomoea batatas) and its secondary product as the alternative for healthy street food production in middle class industry in Cikarawang, Bogor, West Java, Indonesia.

II. METHODOLOGY
The methodologies of the present study are the following:

II.1. Analytic-constructive
Analyzing the problems related to Indonesian street food and then the study about sweet potato that has great productivity, economic, and health benefits. The next step is the study of processing sweet potatoes in producing healthy street food.

II.2. Using secondary data from literature study
Various sources such as journals, textbooks, newspaper, internet, and articles will be used for literature study.

II.3. Discussion
Based on the two methods above, the paper about mechanism of sweet potato in producing healthy street food is written.

III. DISCUSSION

1. About Street Food
Street food is ready-to-eat foods or beverages, which includes many types of foods ranging from cereal and fruits to cook meats and drinks. It is usually sold in busy public areas, such as: pavements, roadways,
back alleys of markets, school premises, bus and railway stations, beaches, parks and other public spaces (Unknown 2007).

Street food is served with the minimum amount of fuss in individual portions dished into take-away containers. These containers come in a variety of materials such as disposable plastic, paper and Styrofoam plates, bowls, cups and utensils. Street food has to be convenient (quickly available for people on the go), cheap (important for poor consumers who may not be able to afford a nutritious meal somewhere else), and tasty (authentic and culturally enriching - as opposed to eating the same fast food from food chains with outlets around the world) (Unknown 2007).

2. Potential of Sweet Potato

According to Food and Agriculture Organization (FAO) (2000), Indonesia has so many potential carbohydrate sources that come from plant and roots. There are more than 30 types of roots that commonly cultivated and consumed by the Indonesian. Culturing the roots is easier and cheaper than culturing the rice, for example, culturing the roots only costs one third from the rice. In other hand, the carbohydrate contain in roots is equal with rice.

Sweet potato is chosen from any kinds of roots, as the answer to fulfilling flour’s demand in Indonesia. The taxonomy of sweet potato according to School of Life Sciences and Technology, Bandung Technological Institute, Indonesia (2009); is as follows:

- **Kingdom**: Plantae
- **Division**: Spermatophyta
- **Subdivision**: Angiospermae
- **Class**: Dicotyledonae
- **Order**: Convolvulales
- **Family**: Convolvulaceae
- **Genus**: Ipomoea
- **Species**: Ipomoea batatas

Antarlinia & Sutomo (1999) stated that sweet potato has many varieties that include local types and some excellent variety. Every kind of it has differences in shape, size, color of the roots, color of the skin, self-life, chemical composition, processing type, and harvest age. But in general, sweet potato has round or oval shaped with rough skin that colored white, yellow, purple, or reddish purple depends on its variety (Rukmana 1997).

Woolfe (1992) explained that sweet potato’s skin contains pigment called carotenoid and anthocyanin that determines the color of the roots. The difference of combination and intensity from both pigments result white, yellow, orange, or purple color for the skin and the roots.

As any other kinds of roots, sweet potato can be found easily in Indonesia. Sweet potato has high productivity, high economic values, and the flour containing high nutritional values. On the one hand, street food stimulates the demand for traditional ingredients and produce, best provided by local enterprises and agriculture.

3. Nutritional Value Analysis

Table 1 Nutritional values of sweet potato (per 100 grams)

(included)

4. Sweet Potato Powder Processing (Flour Making)

Based on SNI 01-4493-1998, roots, especially sweet potato; can be preceded into the powder form. It also can be fortified with any kind nutrient needed to increase the nutritional value. The flour also can be keep longer than roots and it makes the cooking process become easier. The technology to process the roots to become the flour is simple and cheap. It can be produced by the middle class industry, and the result is as good as the one produced by bigger industrial company.

The making of sweet potato flour according to Rukmana (1997):
Prepared the tools and the materials

\[\downarrow \]

Peeled off the skin cleanly

\[\downarrow \]

Washed with clean water, then put it in the different place

\[\downarrow \]

Filtered the water from the sweet potato, to separate the waste and the water

\[\downarrow \]

Put the water into the basket for a night (24 hours)

\[\downarrow \]

Sweet potato became dry and formed flour

5. Street Food Production from Sweet Potato and Its Secondary Product in Cikarawang, Bogor, West Java, Indonesia

Sweet potato as an alternative for ingredient in food is to develop creative idea for food production. Cikarawang Village has its own formal group named “Kelompok Tani Hurip”. This group consists of people who work as a farmer and a seller, and also their housewives. This group acts as the leader for people in Cikarawang who interest to develop sweet potato for street food production.

Firstly, they created the kinds of food by themselves. Due to the lack of idea, tools, and material, they only produce sweet potato flour in the low class industry. But as the industry grows, today, this group already forms middle class industry that produced street food.

The street food produced by “Kelompok Tani Hurip” is mainly cakes and such as brownies and various kinds of Indonesian traditional cakes named putu ayu, kue cucur, and nagasari. They also produce cookies and chips from sweet potato. Related to the street food production from sweet potato and the nutritional value analysis of sweet potato, it is true if sweet potato and its flour can be as the alternative for healthy street food.

This activity has problems related to safety and marketing of the food produced by “Kelompok Tani Hurip”. These problems are still in progress to be solved, helped by the experts from outside Cikarawang where Bogor Agricultural University’s role involved.

Marketing problems can be solved by solving the food safety problems first. Most people bear the consequence of consuming unhealthy food, especially street food. According to streetfood.org that project of the non-profit sector called Consumer International, things people concerned about street food are:

1. Vending area - is it clean, well ventilated and far from garbage and sewage?
2. Appearance of food handlers - do they have good personal hygiene, including clean clothes, shoes, hairnet and clean, trimmed fingernails?
3. Facilities - are there covers for food bins, utensils, clean water for washing and other amenities such as chairs, tables and toilet facilities?
4. Food - How does it smell and taste? If it smells or tastes unpleasant, it is probably not safe.

Further research about its application and commercial production begin with consumer preference test through sensory evaluation. Sensory evaluation is known as information that directly related with sensory quality of the product to meet consumer needs (Lawless and Heymann, 1999).
IV. CONCLUSION

Sweet potato (*Ipomoea batatas*) and its secondary product can be the alternative for healthy street food production as people do in middle class industry in Cikarawang, Bogor, West Java, Indonesia. The secondary products can be in form of flour that has high productivity. It can be processed into many kinds of foods such as cake, cookies, and chips that have more high economic values and containing high nutritional values.

V. REFERENCES

