Annals of Nutrition & Metabolism

An Official Journal of

International Union of Nutritional Sciences (IUNS)

Federation of European Nutrition Societies (FENS)

ABSTRACTS

19th International Congress of Nutrition

October 4–9, 2009, Bangkok, Thailand

Editors

K. Tontisirin, Bangkok
E. Wasantwisut, Bangkok

S. Karger
Medical and Scientific Publishers
Basel · Freiburg · Paris
London · New York ·
Bangalore · Bangkok · Shanghai
Singapore · Tokyo · Sydney
Contents

Scientific Program

Plenary Lectures

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL1-1</td>
<td>Global Efforts Towards Achieving the Millennium Development Goals (MDGs) and Nutrition Well-being</td>
<td>A. Alvan</td>
<td>1</td>
</tr>
<tr>
<td>PL1-2</td>
<td>Contribution of Agriculture and Food Security on Nutrition: the Global Harmonization Efforts</td>
<td>A. A. Muller</td>
<td>1</td>
</tr>
<tr>
<td>PL2-1</td>
<td>Genetics of Human Hypertension: Dietary Influence of Genetic Expression</td>
<td>G. H. Williams</td>
<td>1</td>
</tr>
<tr>
<td>PL3-1</td>
<td>Global Partnerships for Combating Obesity and Chronic Diseases</td>
<td>K. Srinath Reddy</td>
<td>1</td>
</tr>
<tr>
<td>PL3-2</td>
<td>Global Partnerships for Combating Obesity and Chronic Diseases</td>
<td>W. P. T. James</td>
<td>1</td>
</tr>
<tr>
<td>PL4-1</td>
<td>Nutrition, Lifestyle and Cancer</td>
<td>J. Milner</td>
<td>1</td>
</tr>
<tr>
<td>PL5-1</td>
<td>Nutrition as a Sound Investment for Human Capital</td>
<td>J. Rivera</td>
<td>2</td>
</tr>
<tr>
<td>PL5-2</td>
<td>Nutrition as a Sound Investment for Human Capital</td>
<td>S. Horton</td>
<td>2</td>
</tr>
</tbody>
</table>

Cascade Lectures

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL1</td>
<td>Role of Bioactive Food Components in Chemoprevention</td>
<td>J.H.Y. Park</td>
<td>3</td>
</tr>
<tr>
<td>CL2</td>
<td>Food Policy and Systems in Time of Global Crisis</td>
<td>H. Herren</td>
<td>3</td>
</tr>
<tr>
<td>CL3</td>
<td>Fetus to Adults: What have We Learned?</td>
<td>D. Barker</td>
<td>3</td>
</tr>
<tr>
<td>CL4</td>
<td>Advances in Nutrigenomics</td>
<td>B. van Ommen, M. Muller</td>
<td>3</td>
</tr>
<tr>
<td>CL5</td>
<td>Long-chain Polyunsaturated Fatty Acids in Pregnancy, Lactation and Infancy</td>
<td>B. Koletzko</td>
<td>3</td>
</tr>
<tr>
<td>CL7</td>
<td>Paradigms in Applied Nutrition</td>
<td>U. Jonsson</td>
<td>4</td>
</tr>
<tr>
<td>CL8</td>
<td>Global Action Plan for Scaling-up Nutrition</td>
<td>M. Sjekar</td>
<td>4</td>
</tr>
</tbody>
</table>

EV McCollum Lecture

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Dialogues

<table>
<thead>
<tr>
<th>Dialogue</th>
<th>Title</th>
<th>Speaker</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Control of Iron Deficiency: Rewards And Risks</td>
<td>G. Brittenham, B. Lonnerdal</td>
<td>6</td>
</tr>
<tr>
<td>D2</td>
<td>Dietary Diversity to Enhance Nutrition among Deprived Populations</td>
<td>S. de Pee, R. Gibson</td>
<td>6</td>
</tr>
</tbody>
</table>

Symposia

<table>
<thead>
<tr>
<th>Symposium</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01</td>
<td>Polyunsaturated Fatty Acids and Human Health: Getting the Balance Right</td>
<td>7</td>
</tr>
<tr>
<td>S02</td>
<td>Bridging Agriculture and Health through Nutrition</td>
<td>8</td>
</tr>
<tr>
<td>S03</td>
<td>Innovative Tools and indicators for Program Planning and Advocacy: Mathematical Modelling Tools for Infants, Young Children and Women of Reproductive Age</td>
<td>9</td>
</tr>
<tr>
<td>S04</td>
<td>Various Food Practices for Nutrition and Health</td>
<td>10</td>
</tr>
<tr>
<td>S05</td>
<td>Meeting the Nutritional Needs of Adults and Children Living</td>
<td>10</td>
</tr>
<tr>
<td>S06</td>
<td>Correction of iodine deficiency in populations: strategies for control and the changing epidemiology of thyroid disorders with changes in iodine intake</td>
<td>11</td>
</tr>
</tbody>
</table>
Oral Presentations

OR01: Obesity and Chronic Diseases
OR02: Nutrition and Cognition
OR03: Nutrition and Cancer I
OR04: Nutritional Supplementation
OR05: Nutrition in the Elderly
OR06: Nutrition, Immunity and Morbidity
OR07: Nutrition Assessment
OR08: Capacity Building and Empowerment
OR09: Bioactive Compounds & NCD
OR10: Food Security and Indigenous Diets
OR11: Nutrition and Chronic Diseases
OR12: Food, Nutrition and Health Claims
OR13: Health Promotion and Poverty Alleviation
OR14: Developmental Nutrition I
OR15: Body Composition and Determinants
OR16: Obesity and Chronic Diseases
OR17: Metabolism and Chronic Diseases
OR18: Protein & Amino-Acids
OR19: Fatty Acid Metabolism
OR20: Micronutrient Intervention
OR21: Developmental Nutrition II
OR22: Food Fortification & Biofortification
OR23: Food-based Strategies & Dietary Diversity
OR24: Nutrition and Cancer II
OR25: Micronutrient Metabolism

Poster Presentations Part I

DP1: Macronutrients (Protein/Carbohydrates/Lipids) I
DP2: Micronutrients I
DP3: Bioactive Ingredients in Foods
DP4: Nutrition Assessment I
DP5: Infant and Young Child Nutrition (breastfeeding, complementary foods, etc.) I
DP6: Food Fortification for Optimal Nutrition I
DP7: Food-based Strategies/Interventions I
DP8: Agriculture and Food Systems I
DP9: Food Cultures, Cuisines & Indigenous Diets I
DP10: Right to Adequate Food & Nutrition
DP11: Nutrition & Infection I
DP12: Obesity
DP13: Nutrition-related Chronic Diseases
DP14: Nutrition Throughout Life Course I
DP15: Nutrition / Food Policy & Program I
DP16: Food & Nutrition Interventions for Health I
DP17: Frontiers in Nutrition Research I
DP18: Macronutrients (Protein/Carbohydrates/Lipids) II
DP19: Micronutrients II
DP20: Bioactive Ingredients in Foods & Others
DP21: Nutrition Assessment II
DP22: Clinical Nutrition
DP23: Infant and Young Child Nutrition (breastfeeding, complementary foods, etc.) II
DP24: Food Fortification for Optimal Nutrition II
DP25: Food-based Strategies/Interventions II
DP26: Agriculture and Food Systems II
DP27: Food Cultures, Cuisines & Indigenous Diets II
DP28: Nutrition & Infection II
DP29: Obesity II
DP30: Nutrition-Related Chronic Diseases II
DP31: Nutrition Throughout Life Course II
DP32: Nutrition / Food Policy & Program II
DP33: Food & Nutrition Interventions for Health II
DP34: Frontiers in Nutrition Research II

Poster Presentations Part II

P1: Lipids & Fatty Acids I
P2: Protein & Amino-acids I
P3: Energy
P4: Micronutrients I
P5: Bioactive Ingredients in Foods I
P6: Nutrient Requirements & Metabolism: Others I
P7: Isotopic Techniques
P8: Novel Techniques for Field Use
P9: Nutrition Monitoring & Evaluation I
P10: Nutritional Assessment: Others I
P11: Nutrition Assessment of Hospitalized Patients I
P12: Nutrition Management of Diabetes I
P13: Enteral & Parenteral Nutrition
P14: Clinical Nutrition: Others I
P15: Infant and Young Child Nutrition I
P16: Food Fortification for Optimal Nutrition I
P17: Dietary Diversification/Modification I
P18: School Nutrition I
P19: Food-based Strategies/Interventions for Optimal Nutrition (Others)
P20: Food Processing for Improved Nutrition I
P21: Asian Diet (including spices, condiments and herbs in Asian Diet)
P22: Food Cultures, Cuisines, & Traditional Diets
P23: Nutrition & HIV/AIDS I
P24: Nutrition & Infection
P25: Nutrition & Respiratory Infection
P26: Nutrition & Allergy
P27: Obesity I
P28: Metabolic Syndrome I
P29: Diabetes I
P30: Cardiovascular Diseases I
P31: Hypertension I
P32: Nutrition & Cancer I
P33: Obesity & Nutrition-related Chronic Diseases I
P34: Double Burden of Malnutrition I
P35: Micronutrient Deficiencies and their Prevention I
P36: Growth & Development I
P37: Nutritional and Human Capital Development
P38: Country Efforts Towards Achieving the MDGs
P39: Capacity Building in Food and Nutrition Revisited (Institution, Program, Policy) I
P40: Community-based Interventions I
P41: Nutrition and Physical Activity I
P42: Nutrition Education/Communication and Behavioral Changes I
P43: Food Based Dietary Guidelines
P44: Nutrient Supplementation (single, multiple combinations) I
P45: Food & Nutrition Intervention for Health (Others) I
P46: The Human Microbiome and its Relevance to Human Health
P47: Lipids & Fatty Acids II
P48: Protein & Amino-acids II
P49: Micronutrients II
P50: Bioactive Ingredients in Foods II
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>441. P110:</td>
<td>Food Composition and Biodiversity II</td>
</tr>
<tr>
<td>445. P111:</td>
<td>Agriculture & Food Systems: Others</td>
</tr>
<tr>
<td>445. P112:</td>
<td>Right to Food and Adequate Nutrition I</td>
</tr>
<tr>
<td>448. P113:</td>
<td>Nutritional Benefit-Risk Assessment of Foods and Food Consumption Patterns I</td>
</tr>
<tr>
<td>450. P114:</td>
<td>Nutrition & HIV/AIDS III</td>
</tr>
<tr>
<td>452. P115:</td>
<td>Nutrition & Infection, Immunity, Inflammation II</td>
</tr>
<tr>
<td>455. P116:</td>
<td>Obesity III</td>
</tr>
<tr>
<td>461. P117:</td>
<td>Metabolic Syndrome III</td>
</tr>
<tr>
<td>464. P118:</td>
<td>Diabetes III</td>
</tr>
<tr>
<td>466. P119:</td>
<td>Cardiovascular Diseases III</td>
</tr>
<tr>
<td>469. P120:</td>
<td>Nutrition & Cancer III</td>
</tr>
<tr>
<td>472. P121:</td>
<td>Nutrition & Osteoporosis</td>
</tr>
<tr>
<td>474. P122:</td>
<td>Micronutrient Deficiencies and their Prevention III</td>
</tr>
<tr>
<td>477. P123:</td>
<td>Growth & Development III</td>
</tr>
<tr>
<td>479. P124:</td>
<td>Nutrition and Neural/Brain Function I</td>
</tr>
<tr>
<td>481. P125:</td>
<td>Developmental Nutritional Exposures that May Affect Health Across the Life Cycle</td>
</tr>
<tr>
<td>484. P126:</td>
<td>Regional Highlights - Food and Nutrition for Better Health</td>
</tr>
<tr>
<td>486. P127:</td>
<td>Capacity Building in Food and Nutrition Revisited (Institution, Program, Policy) III</td>
</tr>
<tr>
<td>487. P128:</td>
<td>Community-based Interventions III</td>
</tr>
<tr>
<td>489. P129:</td>
<td>Nutrition and Physical Activity III</td>
</tr>
<tr>
<td>492. P130:</td>
<td>Nutrition Education/Communication and Behavioral Changes III</td>
</tr>
<tr>
<td>498. P131:</td>
<td>Nutrient Supplementation (single, multiple combinations) III</td>
</tr>
<tr>
<td>499. P132:</td>
<td>Food & Nutrition Intervention for Health (Others) III</td>
</tr>
<tr>
<td>500. P133:</td>
<td>Gene Polymorphisms in Determining the Response to Foods and Components</td>
</tr>
<tr>
<td>502. P134:</td>
<td>Lipids & Fatty Acids IV</td>
</tr>
<tr>
<td>504. P135:</td>
<td>Protein & Amino-acids IV</td>
</tr>
<tr>
<td>506. P136:</td>
<td>Carbohydrates II</td>
</tr>
<tr>
<td>508. P137:</td>
<td>Micronutrients IV</td>
</tr>
<tr>
<td>511. P138:</td>
<td>Bioactive Ingredients in Foods IV</td>
</tr>
<tr>
<td>516. P139:</td>
<td>Novel Approaches in Dietary Assessment III</td>
</tr>
<tr>
<td>519. P140:</td>
<td>Fetal and Child Growth References/Standards</td>
</tr>
<tr>
<td>520. P141:</td>
<td>Nutrition Monitoring & Evaluation IV</td>
</tr>
<tr>
<td>525. P142:</td>
<td>Nutritional Assessment: Others IV</td>
</tr>
<tr>
<td>529. P143:</td>
<td>Nutrition Assessment of Hospitalized Patients IV</td>
</tr>
<tr>
<td>530. P144:</td>
<td>Nutrition Management of Diabetes IV</td>
</tr>
<tr>
<td>532. P145:</td>
<td>Clinical Nutrition: Others IV</td>
</tr>
<tr>
<td>534. P146:</td>
<td>Infant and Young Child Nutrition IV</td>
</tr>
<tr>
<td>541. P147:</td>
<td>Food Fortification for Optimal Nutrition IV</td>
</tr>
<tr>
<td>543. P148:</td>
<td>Dietary Diversification/Modification II</td>
</tr>
<tr>
<td>546. P149:</td>
<td>School Nutrition IV</td>
</tr>
<tr>
<td>548. P150:</td>
<td>Elderly Nutrition II</td>
</tr>
<tr>
<td>551. P151:</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>553. P152:</td>
<td>Food Safety / Food Borne Diseases II</td>
</tr>
<tr>
<td>555. P153:</td>
<td>Food Processing for Improved Nutrition IV</td>
</tr>
<tr>
<td>557. P154:</td>
<td>Food Composition and Biodiversity III</td>
</tr>
<tr>
<td>560. P155:</td>
<td>Agriculture & Food Systems: Others</td>
</tr>
<tr>
<td>562. P156:</td>
<td>Indigenous Diets in Transition</td>
</tr>
<tr>
<td>564. P157:</td>
<td>Right to Food and Adequate Nutrition II</td>
</tr>
<tr>
<td>568. P158:</td>
<td>Nutritional Benefit-Risk Assessment of Foods and Food Consumption Patterns II</td>
</tr>
<tr>
<td>570. P159:</td>
<td>Increasing Food Costs, Food Aid and Malnutrition</td>
</tr>
<tr>
<td>571. P160:</td>
<td>Nutrition & HIV/AIDS IV</td>
</tr>
<tr>
<td>573. P161:</td>
<td>Obesity IV</td>
</tr>
<tr>
<td>579. P162:</td>
<td>Metabolic Syndrome IV</td>
</tr>
<tr>
<td>581. P163:</td>
<td>Diabetes IV</td>
</tr>
<tr>
<td>584. P164:</td>
<td>Cardiovascular Diseases IV</td>
</tr>
<tr>
<td>587. P165:</td>
<td>Nutrition & Cancer</td>
</tr>
<tr>
<td>589. P166:</td>
<td>Micronutrient Deficiencies and their Prevention</td>
</tr>
<tr>
<td>593. P167:</td>
<td>Growth & Development IV</td>
</tr>
<tr>
<td>594. P168:</td>
<td>Nutrition and Neural/Brain Function II</td>
</tr>
</tbody>
</table>
Special Sessions
SS4: Evidence-Based Nutrition: Different From Or The Same As Evidence-Based Medicine?
SS7: Health and Wellbeing Through Food and Nutrition Security- A Journey Of Macro With Micro
SS8: Applied Metrology For Strengthening Food And Nutritional Measurements: Ways, Means and Outcomes
SS12: Food Composition Data Linking Agriculture, Health, Trade and the Environment
SS13: Management Of Obesity And Metabolic Syndrome: Can Soy Protein Help?

Addendum

Author Index
susceptible to losses during cooking (~15%) and storage for 4, and 80% RH (~60% in transparent plastic bags and ~45% in light bags). Mean total losses of storage and cooked rice approached
changes were observed.
Storage losses may be considerable and must be taken into account
in the fortification level.

CHARACTERISTICS AND TOTAL MIGRATION

SESAMUNE SOUP (Colesus amboscinic Lour) IN CANNED BEEF

buthylated hydroxy toluen

Devi Marinka & Endang Warsiki

of Community Nutrition, Faculty of Human Ecology, IPB
Bogor, IDN

Health & Nutrition Centre, Monash Asia Institute, Monash
Melbourne, AUS

of AgroIndustrial Technology, IPB University, Bogor, IDN

is a traditional cuisine consumed by Batakinese lactating women
in Indonesia in order to stimulate their breast milk production.

The soup is prepared using fresh leaves and once cooked it should
be served immediately. Efforts to prolong shelf life of the soup should
be made through soup preparation more efficiently. The present study aimed to
investigate the shelf life characteristic of soup in canned which was added buthylated
hydroxy toluene (BHT) in its preparations. Total plate count and thiobarbituric acid
(TBA) number and rancidity assessments were analyzed. Results of the
study showed that the soup shelf life in cool temperature (5-8°C) and 10-12°C
in room temperature (22 vs. 14 days). Total residual migration of BHT into the soup is lower than 10 mg/dm² allowing by
128/EEC for aqueous food simulant. In conclusion, addition of
preparation can prolong the shelf life of Torbangun soup.

ADDITION OF KATUK (Sauropus androgynus Merr) IN RICE REPRODUCTION AND MILK PRODUCTION

Sauropus androgynus Merr) are commonly consumed as diet for
women in Indonesia. This study aimed to study the effect of addition
of Katuk in feed on rice reproduction and milk production. The study
was conducted in a completely random factorial (2x3) with factors: percentage of Katuk
in feed (0, 5 and 10%) and given time of feed (Day-14 during
and day of giving birth). The study results showed that addition of
Katuk had significant effects (P<0.01) on feed consumption of mice.

Feeding of Katuk did not affect litter size and birth weight, and daily body
gain of mice. Significant interaction between the addition level of Katuk and corn of
significant effect (P<0.01) on feed consumption and milk production
and daily weight gain of mice (P<0.05). Addition of 10% Katuk on feed and
14th day of pregnancy had greatest effects on breast milk
and daily weight gain of the newborn.

ADDITION OF TORBANGUN LEAVES (Colesus amboscinic Lour) IN FEED ON RICE REPRODUCTION AND MILK PRODUCTION

Colesus amboscinic Lour is used as herb among Batakinese
communities in Sumatera, Indonesia. In Batakinese tradition, Torbangun leaves
are believed to stimulate breast milk production of lactating
mothers. The aim of this study was to compare effects of addition of Torbangun
leaves in fresh or cooked form, in feed on rice reproduction performance and
milk production. The study design was complete random with two factors:
percentage of addition of Torbangun cooked (0 vs. 2.5% vs. 5%) and Torbangun
leaves (5%). The effects of these factors on feed consumption, milk production,
birth litter size, birth and weaning weight, and daily weight gain of mice were
measured. The results showed that addition of Torbangun (fresh or cooked) in feed
had significant effects (P<0.05) on feed consumption and weaning weight of
mice. Levels of addition of Torbangun did not have significant effect on birth
litter size and daily weight gain.

PI10: Food Composition and Biodiversity II

PI10-01

SELENIUM, ZINC AND COPPER CONTENTS IN NORTHEAST THAI VEGETABLES

Boonsri, Patcharee1; Hongsprabhas, Paniti2; Davuang, Jureerat; Yongvanit, Puangrat1

1Department of Biochemistry, Khon Kaen, THA; 2Department of Medicine, Khon Kaen, THA; 2Department of Medical Technology, Khon Kaen, THA

RATIONALE & OBJECTIVES: Selenium, zinc and copper are trace elements which act as cofactors of antioxidant enzymes in human. Northeast
Thailand usually consume vegetables accompanied with their meal. Therefore, we aim to determine selenium, zinc and copper contents in 23 edible vegetables in
northeast.

MATERIALS & METHODS: The fresh vegetables were purchased from local markets in Khon Kaen during April - September 2008. The concentrations of selenium, zinc and copper were determined by inductive coupled plasma-optical emission
spectroscopy (ICP-OES).

RESULTS & FINDINGS: The studied vegetables exhibited varied selenium, zinc and copper contents. Selenium was found in very low amounts (98.00-0.00 microgram/100g wet wt), whereas zinc and copper concentrations were in the range 2.69-0.01 milligram/100g wet wt. Careya Sphaerica Roxb.C., Barringtonia acutangula Cern., Leucaena leucocephala (Lam).

CONCLUSION: A number of northeast vegetables could be a rich source of
essential minerals.

PI10-02

IRON, ZINC AND PHYTIC ACID LEVELS OF GRAIN AMARANTH COMMONLY USED IN KENYA

Macharia-Mutic, Catherine Wi1; Brouwer, Inge D1; Mwangi, Alice M1; Kok, Frans J.

1Wageningen University, Nairobi Kenya, KEN; 2Wageningen University, Wageningen, NLD; 3University of Nairobi, Nairobi, KEN

RATIONALE AND OBJECTIVE: Grain amaranth is a widely accepted pseudo-cereal. Nutrient composition of the grain amaranth flour in the Kenyan
market is lacking. The objective of this study was to evaluate the proximate and inorganic composition of grain amaranth commonly used in making porridge
flours in Kenya.

MATERIALS AND METHODS: Ten samples collected either as grain or flour
were analyzed. Proximate, iron, zinc and phytate analysis was done in duplicate.

RESULTS: Protein content of the samples ranged between 10.8 and 13.8%/100g DM. The grain samples had higher content of dietary fiber compared to flour
samples. The iron and zinc values of the grain ranged between 12.5-72mg/100g and
3.89g/100gDM respectively. Fermented grain amaranth flour had the highest amount of iron among all the samples. The molar ratios of phytate to minerals were above the critical values except the phytate/iron molar ratio of ferment amaranth flour.

CONCLUSION: Whereas the number of samples analyzed in the present study
were relatively few, it is evident that grain amaranth has high iron content and
its bioavailability can be explored further. Though the phytate/iron ratios of
amaranth are relatively low, this was mainly due to high iron values rather than
low phytate level.
EFFECTS OF ADDITION OF TORBANGUN LEAVES (Coleus amboinicus Lour) IN FEED ON MICE REPRODUCTION AND MILK PRODUCTION

Rizal Damanik1,2), Frans Silitonga3) and P.H. Siagian3)

1) Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, Indonesia.
2) Asia Pacific Health & Nutrition Centre, Monash Asia Institute, Monash University, Melbourne, Australia.
3) Department of Animal Production, IPB University, Bogor, Indonesia.

ABSTRACT

Torbangun plant (Coleus amboinicus Lour) is used as herb among Batak people in North Sumatera, Indonesia. In Batak tradition, Torbangun leaves are consumed with the belief it can stimulate breast milk production of lactating mothers. The aim of this study was to compare effects of addition of Torbangun (either in fresh or cooked form) in feed on mice reproduction performance and milk production. The study design was complete random with two factors: percentage of addition of Torbangun cooked (0 vs. 2.5% vs. 5%) and Torbangun leaves (5%). The effects of these factors on feed consumption, milk production, birth litter size, birth weight, and weaning weight, and daily weight gain of mice were studied. The results showed that addition of Torbangun (fresh or cooked) in feed had significant effects ($P<0.05$) on feed conversion and weaning weight of mice. Levels of addition of Torbangun did not have significant effect on birth litter size and daily weight gain.

Key words: Torbangun, coleus amboinicus Lour, Batak, milk production

Introduction

Traditional ingredient use in Indonesia have old recognized since hundreds of year ago. Data have shown that traditional ingredient use expanded progressively. This matter proven with more company majoring elementary ingredient substance plants exist in Indonesia. Expanding of it traditional ingredient usage go together some advantage for example plant to be made a easy ingredient got by breeder, cheap price relative, and seldom generate side effects.

Torbangun Leaves (Coleus Amboinicus Lour) representing one of substance which used as a traditional ingredient in Indonesia. The plants grow wild on calm place and lowland, woman of Batak which suckling, Torbangun leaves (Coleus amboinicus Lour) trusted able to increase product milk water (having the character of as lactagogue). Effect Lactagogue of Torbangun leaves on woman which suckling has been proved scientifically (Damanik, 2001). This research aim to study the influence of addition and time of gift of Torbangun leaves (Coleus amboinicus Lour) on feed to production irrigate milk of mice and growth of mice child.

Materials and methods

Location and Time

The research executed at month of July till September 2006, in Spacious Laboratory (cage C), Shares of Non-Ruminants and Expectation Animal (NRSH), Department of Science of Production and Livestock Technology (DIPTP), Faculty of Livestock, Bogor Agriculture Institute (IPB), Bogor. Feed analysis was conducted at Laboratory of Inter University Center (PAU-IPB) in Bogor.

Equipments and items

Sixty mice, 21 days old, were used in this research was 60 mice consisted of 30 male and 30 female with body weight early 22.03 ± 2.15 g/mice. Equipments used are cage, digital weighing-machine, plastic bottle 600 ml, paddy chaff, comb bottle, gauntlet, masker, strand of metal constrictor, cutter. Cage of mice used fairish 36x28x12 cm3.
Research Phase

Cage Preparation. Cage and all equipment used washed out by using soap clean and sterilized by using alcohol 70% later, then the cage pallet arranged in layers with paddy chaff as much 50 gram per cage.

Identify and Balance of Wight Early Mice. Mice were identified by gender later, then each one of female and masculine mice unit in one cage to be married. Balance of weight early after process identification.

Feed Treatment. Flour of Torbangun obtained from aerated the Torbangun leaves during two-day and put to the sun under sunshine run dry later, then milled by refinement before mingled in feed. Feed of treatment consisted by feed of commercial chicken and Torbangun leaves with the following level:

- R1 : Feed 100 + Torbangun (0%)
- R2 : Feed 95 + Torbangun (5%)
- R3 : Feed 90 + Torbangun (10%)

Research Execution

Mice of married female mice with a male placed in one cage. Vaginal plug was used to ascertain the mated of mice, if there are vagina plug is hence expressed as pregnant first day (Sunarti, 1992). Male mice released from cage if estimated female mice have pregnant 14 day in order to do not bother female mice during pregnant till bear. Gift of feed treatment started on 14 day after pregnant and day of moment bear, where before given by treatment of mice consume feed of commercial chicken or without addition of Torbangun leaves. Feed given always made available every day at 07.00 o'clock, every four day once lock up changed with newly before balance of weight body mice. Drinking water also given always made available every day, through bottle with capacities 265 ml gave by aluminum pipe (so that not eaten by mice), and mice suck water of through the pipe.

The Design

The design of the study was completely random design factorial (2x3) with two factors; dosage or Torbangun leaves added on feed (0, 5 and 10%) and time give the feed-containing Torbangun (on the 14th day of pregnant period and on day of giving birth) The significant results were analyzed by Tukey tests. Model mathematics (Steel and Torrie, 1993) used in this research is following:

\[Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk} \]

Note:
- \(Y_{ijk} \): Assess perception at factor A pregnant level to-i, factor B level to-j and restating to-k
- \(\mu \): average
- \(\alpha_i \): Influence of addition of Torbangun Level to-i;
 - i = 0, 5, and 10%
- \(\beta_j \): Gift time influence to-j; j = pregnant age 14 day and day bear
- \((\alpha\beta)_{ij} \): interaction of dosage Torbangun and gift time
- \(\epsilon_{ijk} \): Attempt error of treatment to-i and to-j and also restating to-n; n = 1, 2, 3, 4, 5

Result

Feed Consumption

Result of perception indicate that rate feed consumption is 9.13±1.05 g/mice/day (Table 1). This result indicate that rate feed consumption research supported by opinion Smith and Mangkoewidjojo (1988), expressing that adult mice need feed 3-5 gram every days, and for pregnant mice and lactation can consume more amount.

Result of analysis show that the Torbangun leaves gift time and level influence in feed and also interaction of gift time and level have an effect on very significant (P<0.01) to feed consumption. Level Torbangun in feed R1, R2 and R3 differ very real one another, where downhill consumption very real at the height of level Torbangun in feed each 10,29; 9,01 and 8,10 g/mice/day. Degradation feed consumption with Torbangun leaves level mounting reduced the leaves palatability (Sutardi, 1981; Parakkasi, 1999). Gift
Torbangun time in feed have an effect on very significant (P<0.01) to feed consumption, where 14th day of pregnant period (H1) real compared to day of giving birth (H2) each 9.44 and 8.82 g/mice/day.

Table 1. Rate of Feed Consumption Mice

<table>
<thead>
<tr>
<th>Time Give (day)</th>
<th>Level Torbangun (%)</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 (R1)</td>
<td>5 (R2)</td>
</tr>
<tr>
<td>H1</td>
<td>10.26±0.55</td>
<td>9.34±0.22</td>
</tr>
<tr>
<td>H2</td>
<td>10.32±0.46</td>
<td>8.67±0.19</td>
</tr>
<tr>
<td>Rate</td>
<td>10.29±0.51</td>
<td>9.01±0.40</td>
</tr>
</tbody>
</table>

Superscript of different block letters at same line or column show result very significant (P<0.01)
H1 = 14th day of pregnant period; H2 = day of giving birth

Milk Production

Result of analysis show, that level of gift have an significant (P<0.05) and time and also the interaction usher level and time of gift of Torbangun in feed very significant (P<0.01) to milk production of mice. Torbangun 5% in feed which passed to] a pregnant moment 14th day of pregnant period (R2H1) proven to increase milk product (Table 2). This result is supported by Silioniaga study (1993), expressing that production irrigate milk mount mains of rat gave by Torbangun extract was possibly cause by existence of improvement of growth and activity of gland of mammac and also metabolism of rat body. Difference of result of this also happened because improvement of rate of DNA and RNA of gland of mammac and also degradation of concentration of T4 and serum glucose. According to Nurendah (1982), Torbangun leaves have the nature of like hormone oxytocin (nature of oksitosik). Hormone of Oxytocin that is hormone released together with prolactin as suckle response (Ghosh and Slandek, 1995). Torbangun contain calcium which was also important in milk secretion. According to Mephan (1987), ox experiencing of stress will require additional addition sodium as much 1% to prevent degradation of milk secretion irrigate. Deficiencies of sodium cause degradation of weight of body and degradation of milk production.

Tables 2. Rate of Milk Production

<table>
<thead>
<tr>
<th>Time Give (day)</th>
<th>Level Torbangun (%)</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 (R1)</td>
<td>5 (R2)</td>
</tr>
<tr>
<td>H1</td>
<td>0.09±0.02</td>
<td>0.18±0.04</td>
</tr>
<tr>
<td>H2</td>
<td>0.09±0.01</td>
<td>0.08±0.08</td>
</tr>
<tr>
<td>Rate</td>
<td>0.09±0.01</td>
<td>0.13±0.06</td>
</tr>
</tbody>
</table>

Superscript with different lower case and an block letters at same line or column show significant (P<0.05) and very significant (P<0.01)
H1 = 14th day of pregnant period; H2 = day of giving birth

Litter Size Born

Litter size born is full scale of child borne by mice mains of good live and also the death. Result of analysis were presented at Table 3 indicating that rate litter size is 8.57±2.16 mice. According to Malole and Pramono (1989), slimmer first litter size generally than next litter size, and became optimal production of litter to 2-8 which can reach 10-12 mice/ birth. Influence of level and time of gift Torbangun leaves in feed and also interaction of both do not significant to litter size born.

Table 3. Rate of Litter Size Born

<table>
<thead>
<tr>
<th>Time Give (day)</th>
<th>Level Torbangun (%)</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 (R1)</td>
<td>5 (R2)</td>
</tr>
<tr>
<td>H1</td>
<td>9.00±1.41</td>
<td>9.00±1.00</td>
</tr>
<tr>
<td>H2</td>
<td>6.60±3.05</td>
<td>8.80±2.59</td>
</tr>
<tr>
<td>Rate</td>
<td>7.80±2.57</td>
<td>8.90±1.85</td>
</tr>
</tbody>
</table>

H1 = 14th day of pregnant period; H2 = day of giving birth
Weight Newborn Mice
Weight newborn mice to represent weight obtained by considering all child of birth of each mains then divided with amount all of deliberated child. Weight newborn mice child during research is 1.45±0.17 g/mice. Weight born obtained high enough because Malole and Pramono (1989), expressing that weight newborn mice range from 0.5-1.5 g/mice. Excelsior weight newborn mice, meaning progressively the child ability goodness mentioned in using feed given its mains during in utero. Influence of time Torbangun in feed with level and interaction of both do not have an effect on reality to weight newborn. Rate of weight newborn during research take place at Table 4.

Table 4. Rate of Weight Newborn Mice

<table>
<thead>
<tr>
<th>Time Give (day)</th>
<th>Level Torbangun (%)</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 (R1)</td>
<td>1.49±0.18</td>
</tr>
<tr>
<td></td>
<td>5 (R2)</td>
<td>1.49±0.18</td>
</tr>
<tr>
<td></td>
<td>10 (R3)</td>
<td>1.43±0.14</td>
</tr>
<tr>
<td>Rate</td>
<td>1.49±0.18</td>
<td>1.49±0.18</td>
</tr>
</tbody>
</table>

H1 = 14th day of pregnant period; H2 = day of giving birth

Weaning-Weight
Weaning to represent growth phase shall no longer base on milk production of mains and start to consume solid feed and the drinking water. Weight weaning obtained conducted balance at the time of child old age 21 day. Weaning shall be conducted by a age moment wean, because if more early hence the child growth will be lost time. Mice weaned at age 14-16 day will not grow as good as which remain to with mains old age 20-21 day. Rate weaning-weight during research is 8.30±1.73 g/mice (Table 5). Result of analysis show, that leaf Torbangun gift time and interaction of gift time and level have an effect on very significant (P<0.01) to weaning-weight but level influence in feed do not significant. Torbangun contain sodium, calcium give positive respond to growth of mice child. Calcium is one of very important additional mineral at child for the normal growth and also the nerve growth of during in content.

Table 5. Rate of Weaning-Weight

<table>
<thead>
<tr>
<th>Time Give (day)</th>
<th>Level Torbangun (%)</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 (R1)</td>
<td>8.65±0.65</td>
</tr>
<tr>
<td></td>
<td>5 (R2)</td>
<td>10.93±0.67</td>
</tr>
<tr>
<td></td>
<td>10 (R3)</td>
<td>8.99±0.47</td>
</tr>
<tr>
<td>Rate</td>
<td>8.61±0.58</td>
<td></td>
</tr>
</tbody>
</table>

Superscript of different block letters at same line or column show result very significant (P<0.01)
H1 = 14th day of pregnant period; H2 = day of giving birth

Body Weight Gain of the Newborn
Child body weight gain of the newborn is indication from itself child growth. Growth from delivering birth wean most influenced by milk amount yielded by individual health and mains itself. Rate of body weight gain of the newborn during research is 0.35±0.11 g/mice/day. Result of analysis show, that leaf Torbangun gift time and interaction of gift time and level have an effect on very significant (P<0.01) to weaning-weight but level influence in feed do not significant (Table 6).

Table 6. Rate of Body Weight Gain of the Newborn

<table>
<thead>
<tr>
<th>Time Give (day)</th>
<th>Level Torbangun (%)</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 (R1)</td>
<td>0.37±0.18</td>
</tr>
<tr>
<td></td>
<td>5 (R2)</td>
<td>0.50±0.01</td>
</tr>
<tr>
<td></td>
<td>10 (R3)</td>
<td>0.40±0.04</td>
</tr>
<tr>
<td>Rate</td>
<td>0.35±0.19</td>
<td></td>
</tr>
</tbody>
</table>

Superscript of different block letters at same line or column show result very significant (P<0.01)
H1 = 14th day of pregnant period; H2 = day of giving birth
Mortality

Rate of mortality obtained during research was 22.11%. Influence of time Torbangun in feed with level and interaction of both do not have an effect to mortality. Mortality of this research do not because of treatment however the nature of cannibalism mice mains, this matter is proven from carcass inexistence which left behind in cage whereas child amount decrease. Cannibalism of mains can be caused annoying of mains after bearing because often conducted balance of child and mains that is four day once.

Conclusion

Results collected from the present study showed that addition of Torbangun leaves in feed had significant effects (P<0.01) on feed consumption, and milk production (P<0.05) of the mice. The addition of leaves did not affect the litter size and weight of the newborn mice, and the mortality rate. The interaction between the addition level of Torbangun leaves and the given-time of feed, had significant effect (P<0.01) on feed consumption, milk production, weaning-weight and body weight gain of the newborn mice. The interaction, however, did not affect the weight born, litter size of newborn and the mortality rate. In conclusion, the addition of 5% of Torbangun leaves in feed and be given on the 14th day of the pregnancy period had shown the greatest effect on milk production and body weight gain of the newborn.

REFERENCES

World Review of Nutrition and Dietetics

Omega-3 Fatty Acids, the Brain and Retina
Editors: Simopoulos, A.P. (Washington, D.C.); Bazan, N.G. (New Orleans, La.)
Vol. 99
XiI + 164 p., 20 fig., 19 tab., hard cover, 2009
CHF 219.--/EUR 156.50/USD 219.00
ISBN 978-3-8055-9019-8
e-ISBN 978-3-8055-9020-4

Nutrition and Fitness: Cultural, Genetic and Metabolic Aspects
Editor: Simopoulos, A.P. (Washington, D.C.)
Vol. 98
CHF 228.--/EUR 163.--/USD 228.00
ISBN 978-3-8055-8530-9
e-ISBN 978-3-8055-8531-6

Emerging Societies – Coexistence of Childhood Malnutrition and Obesity
Editors: Kalhan, S.C. (Cleveland, Ohio); Prentice, A.M. (London); Yajnik, C.S. (Pune)
Vol. 63
XIV + 274 p., 39 fig., 1 in color, 28 tab., hard cover, 2009
CHF 228.--/EUR 163.--/USD 228.00
ISBN 978-3-8055-9009-9
ne-ISBN 978-3-8055-9010-5

Personalized Nutrition for the Diverse Needs of Infants and Children
Editors: Bier, D.M. (Houston, Tex.); German, J.B. (Davis, Calif.); Lünenberg, B. (Davis, Calif.)
Vol. 62
XX + 262 p., 28 fig., 3 in color, 23 tab., hard cover, 2008
CHF 228.--/EUR 163.--/USD 228.00
ISBN 978-3-8055-8553-8

Food Factors for Health Promotion
Editor: Yoshikawa, T. (Kyoto)
Vol. 61
XII + 240 p., 53 fig., 1 in color, 12 tab., hard cover, 2009
approx. CHF 250.--/EUR 178.50/USD 250.00
ISBN 978-3-8055-9097-6
e-ISBN 978-3-8055-9098-3

The Economic, Medical/Scientific and Regulatory Aspects of Clinical Nutrition Practice: What Impacts What?
Editors: Elia, M. (Southampton); Bistrian, B.R. (Boston, Mass.)
Vol. 12
XIV + 180 p., 9 fig., 26 tab., hard cover, 2009
approx. CHF 198.--/EUR 141.50/USD 198.00
ISBN 978-3-8055-8977-2
e-ISBN 978-3-8055-8978-9

Prices subject to change. EUR price for Germany, USD price for USA only.

Place orders at: orders@karger.com