PENELITIAN GIZI DAN MAKANAN

THE JOURNAL OF NUTRITION AND FOOD RESEARCH

Non-Food Risk Factors of Anemia among Child-Bearing Age Women (15-45 years) in Indonesia (Faktor Risiko Non-Makanan terhadap Kejadian Anemia pada Perempuan Usia Subur [15-45 tahun] di Indonesia)

Dodi Briawan dan Hardinsyah

Karacteristik Remaja Hamil Umur 10-21 tahun di Indonesia (Characteristics of Pregnant Adolescents Aged 10-21 years in Indonesia)

Anies Irawati dan Sri Prihatini

Perubahan Total Goiter Rate (TGR) Anak Sekolah di Beberapa Kabupaten di Jawa Barat: Kaitannya dengan penggunaan garam beriodium dalam rumah tangga (The Total Goiter Rate Changes among School Children in Some Districts in the Province of West Java: In relation to the use of iodized salt at household level)

Basuki Budiman

Pengaruh Pemulihan Gizi Buruk Rawat Jalan Secara Komprehensif terhadap Kenaikan Berat Badan, Panjang Badan, dan Status Gizi Anak Balita (Effect of Comprehensive Outpatient Care on Weight and Height Increment and Nutritional Status among Severely Malnourished Children Under Three Years of Age)

Amelia, Anies Irawati, Astuti Lamid, Tetra Fajarwati dan Rika Rakhamawati

Tingkat Kesegaran Jasmani dan Aktivitas Fisik Murid SMP Non-Anemia yang Tinggal di Wilayah Kota dan Desa (The Physical Fitness and Activities Level of Non-Anemia Secondary School Students in Rural and Urban Area)

Yuniar Rosmalina dan Dewi Permaesih

Pengaruh Pengolahan Kedelai menjadi Tempe dan Pemasakan Tempe terhadap Kadar Isoflavon (Effects of Soybean Processing becoming Tempeh and the Cooking of Tempeh on Isoflavones Level)

Diah M. Utari, Rimbawan, Hadi Riyadi, Muhifai dan Purwantyastuti

Konsumsi Makanan ibu selama Kehamilan Hubungannya dengan Kemampuan Menghasilkan ASI Awal (Maternal Food Consumption during Pregnancy Associated with Ability to Produce the Early Breast-Milk)

Tjiptop Syanti Hidayat, Hermina dan Nurli Afniasyah

Pengembangan Permainan (Game-Play) Edukasi Gizi Berbasis-Komputer untuk Murid Sekolah Dasar (Development of Computer-Based Nutritional Education Game-Play for Primary School Students)

Hermina, dan Nurli Afniasyah

Kandungan Natrium Beberapa Jenis Sambal Kemasan serta Uji Tingkat Penerimaannya (The Sodium Content of Some Chili Sauces and Its Sensory Evaluation)

Suryana Purnawisata dan Heru Yuniati

Suplementasi Daun Torbangun (Coleus Ambboinicus Lour) untuk Menurunkan Keluhan Sindrom Pamenstruasi pada Remaja Putri (Supplementation of Torbangun Leaves [Coleus Ambboinicus Lour] in Reducing the Complaints of Pre-Menstrual Syndrome [PMS] among Teenage Girls)

Mazamer Dewi, Hidayat Syarief, Rizal Damanik, Ahmad Sulaeman, Budi Selawian, dan Rosmal DAewi

Terakreditasi (Accredited) B No. 207/AU1/P2MBI/08/2009

KEMENTERIAN KESEHATAN REPUBLIK INDONESIA
Badan Penelitian dan Pengembangan Kesehatan
PUSAT PENELITIAN DAN PENGEMBANGAN GIZI DAN MAKANAN
(Center for Research and Development in Nutrition and Food)

Jalan Dr Sumeru No 63, Tel (0251) 8324583, 8321763; Fax (0251) 8326348
Bogor 16112
PENELITIAN GIZI DAN MAKANAN
(The Journal of Nutrition and Food Research)

SUSUNAN DEWAN REDAKSI

Penanggung Jawab : dr. Siswanto, MHP, DTM

Pemimpin Redaksi : Nurfi Afriansyah, SKM, MScPH

Anggota Redaksi : Suryana Purawisastra, MSc
: Ir. Yuniar Rosmalina, MSc
: Ir. Sri Prihatini, MKes
: Dr. Ir. Heryudarini Harahap, MKes
: Ir. Arnelia, MSc

Mitra Bestari : Prof. Dr. Hardinsyah, MS (Dep. Gizi Masyarakat, FEMA-IPB)
 : Prof. Dr. Herman Sudiman, SKM (Puslitbang Gizi dan Makanan)
 : Prof. Dr. Komari, MSc (Puslitbang Gizi dan Makanan)
 : Dr. Susilowati Herman, MSc (Puslitbang Gizi dan Makanan)
 : Dr. Abas Basuni Jahari, MSc (Puslitbang Gizi dan Makanan)
 : Dr. Djoko Kartono, MSc (Puslitbang Gizi dan Makanan)

Redaktur Pelaksana : Nurhasnah Husin, SKM, MKes
 : Drs. Damanhuri

Sekretaris Redaksi : Yessy Desviyanti

Tata Usaha : Maemunah

Alamat Redaksi : Pusat Penelitian dan Pengembangan Gizi dan Makanan
Jalan Dr Sumeru No. 63
Tel (0251) 8324583, 8321763
Fax (0251) 8326348
Bogor 16112

Izin mengutip : bebas dengan menyebutkan sumber
PENELITIAN GIZI DAN MAKANAN
(The Journal of Nutrition and Food Research)

Non-Food Risk Factors of Anemia among Child-Bearing Age Women (15-45 years) in Indonesia
Faktor Risiko Non-Makanan terhadap Kejadian Anemia pada Perempuan Usia Subur (15-45 tahun) di Indonesia
Dedik Briawan and Hardinsyah

Karakteristik Remaja Hamil Umur 10-21 tahun di Indonesia
Characteristics of Pregnant Adolescents Aged 10-21 years in Indonesia
Anies Irawati dan Sri Prithatini

Perubahan Total Goiter Rate (TGR) Anak Sekolah di Beberapa Kabupaten di Jawa Barat: Kaitannya dengan penggunaan garam beriodum di rumah tangga
The Total Goiter Rate Changes among School Children in Some Districts in the Province of West Java: In relation to the use of iodized salt at household level
Basuki Budiman

Pengaruh Pemulihan Gizi Buruk Rawat Jalan Secara Komprehensif terhadap Kenaikan Berat Badan, Panjang Badan, dan Status Gizi Anak Balita
Effect of Comprehensive Outpatient Care on Weight and Height Increament and Nutritional Status among Severally Malnourished Children Under Three Years of Age
Arnieal, Anies Irawati, Astuji Lamid, Tefra Fajarwati dan Rika Rakhmayati

Tingkat Kesegaran Jasmani dan Aktivitas Fisik Murid SMP Non-Anemia yang Tinggal di Wilayah Kota dan Desa
The Physical Fitness and Activities Level of Non-Anemia Secondary School Students in Rural and Urban Area
Yuniar Rosmalina dan Dewi Permaesh

Pengaruh Pengolahan Kedelai menjadi Tempe dan Pemasakan Tempe terhadap Kadar Isoflavon
Effects of Soybean Processing becoming Tempeh and the Cooking of Tempeh on Isoflavones Level
Diah M. Utari, Rimbawan, Hadi Riyadi, Muhilal dan Purwantayustuti

Hubungan Konsumsi Makanan Itu selama Kehamilan dan Pemberian ASI Pertama Kali setelah Melahirkan
Association of Maternal Food Consumption during Pregnancy and the First Time Breastfeeding after Delivery
Tjetjiup Syarif Hidayat, Herminda dan Nurfi Afiarsyah

Pengembangan Permainan (Game-Play) Edukasi Gizi Berbasis-Komputer untuk Murid Sekolah Dasar
Development of Computer-Based Nutritional Education Game-Play for Primary School Students
Herminda dan Nurfi Afiarsyah

Kandungan Natrium Beberapa Jenis Sambal Kemasan serta Uji Tingkat Penerimaannya
The Sodium Content of Some Chili Sauces and Its Sensory Evaluation
Suyana Purwiasstra and Heru Yunianti

Suplementasi Daun Torbangun (Coleus Amboinicus Leaf) untuk Menurunkan Keluhan Sintomas Premenstruasi pada Remaja Putri
Supplementation of Torbangun Leaves (Coleus Amboinicus Leaf) in Reducing the Complaints of Pre-Menstrual Syndrome (PMS) among Teenage Girls
Mazaria Devi, Hidayat Syarie, Rizal Damanik, Ahmad Sulaeman, Budi Setiawan, dan Roumala Dewi

Terakreditasi (Accredited) B No. 207/AU1/P2MBI/08/2009

KEMENTERIAN KESEHATAN REPUBLIK INDONESIA
Badan Penelitian dan Pengembangan Kesehatan
PUSAT PENELITIAN DAN PENGEMBANGAN GIZI DAN MAKANAN
(Center for Research and Development in Nutrition and Food)
Jalan Dr Sumeru No 63, Tel (0251) 8324583, 8321763; Fax (0251) 8326348
Bogor 16112
NON-FOOD RISK FACTORS OF ANEMIA AMONG CHILD-BEARING AGE WOMEN (15-45 YEARS) IN INDONESIA

(FAKTOR RISIKO NON-MAKANAN TERHADAP KEJADIAN ANEMIA PADA PEREMPUAN USIA SUBUR [15-45 TAHUN] DI INDONESIA)

Dodik Briawan¹ dan Hardinsyah¹

ABSTRAK

Kata kunci: anemia defensiensi-besi, perempuan usia subur, faktor risiko, indeks massa tubuh

INTRODUCTION

The World Health Organization (WHO) estimates about 50 percent of the world’s population (more than two billion individuals) suffered from iron-deficiency anemia.¹ The groups with the highest prevalence are preschool-age children 47.4 percent, pregnant women 41.8 percent, and non-pregnant women 30.2 percent.² The prevalence of anemia in developing countries is about four times than in the developed countries. Current estimates for anemia in pregnant women in the developing and developed countries respectively are 56 and 18 percent.¹

At certain periods of life, iron requirements are particularly high; therefore less likely to be met. Women have a substantially higher prevalence of anemia than men, because about half of their iron requirement is needed to replace iron losses in menstruation. This explains why most women enter pregnancy with depleted iron stores.

In Indonesia, the nutrition and health status are relatively lower than other ASEAN countries. The Indonesian MDGs 2010 report showed that the maternal mortality rate was 390 in 1991, and then improve became 290 in 2007.³ This indicators related with the high prevalence of anemia among pregnant mothers that about 40-50 percent, and Indonesia was considered as high (40.1%).⁴ Multi-country studies in Asia and Africa showed that maternal mortality is about 20-30 percent due to anemia, and other factors such as infection and pre-eclampsia. Severe maternal anemia (Hb <8.0 g/dL) is almost certainly a greater mortality risk factor than mild or moderate anemia.⁵

¹ Staf pengajar pada Departemen Gizi Masyarakat, FEMAI FB

²
OBJECTIVES

The objectives of study generally are to compare the selected characteristics between anemic and non-anemic groups, and to identify the non-dietary risk factors of anemia at the child-bearing age women 15-45 years (CBAW) in Indonesia.

METHODS

Design of this research was cross-sectional study. Data used in this analysis based on the National Health Surveys (SURKESNAS) in 2001. Generally, this survey was objected to provide the national pictures related on the common health at community. Anemia status is one of the many variables at the SURKESNAS, since not all of the subjects were assessed their hemoglobin (Hb).

Total samples in this survey were 13,000 men and women with age more than 15 years. Criteria's sample for this study were women, age between 15-45 years, and Hb tested. Based on those criteria the number of 4893 samples was eligible for analysis. Data was collected with interviewed using the structural questionnaire. Hemoglobin level was tested with the cyanmethemoglobin by finger-prick blood. Women categorized as anemic if their Hb < 12.0 g/dL.

To address the above objectives, it was hypothesized that the selected characteristics are proposed for the risk factors of anemia among the child-bearing age women (Figure 1). Since those actual direct variables were not available at the data set of SURKESNAS, authors used the proxy and indirect variables to represent the selected variables.

Figure 1
Framework Non-food Risk Factors of Anemia Status at the Child-Bearing Age Women (CBAW)

The elementary and statistical test was as follows:
- a. Elementary statistic such as mean, standard deviation, frequency for the continuous variables and median for the categorical variables,
- b. T-test and Mann-Whitney U were applied to compared the continues and categorical variables respectively,
- c. Mantel-Haenszel test is used to analyzed significance of Odd Ratio (OR) two-by-two variables, where the confidence interval (CI) was set at 95%,
- d. Risk factors analysis by the logistic regression for multiple variables with formula:
\[Y = \alpha + \beta X_1 + \beta X_2 + \beta X_3 + \beta X_4 + \beta X_5 + \beta X_6 + \beta X_7 \]

Where,

- \(Y \) = anemia status (0=anemia, Hb<12 g/dL; 1=non-anemia, Hb\geq12 g/dL)
- \(X_1 \) = age (0=15-19 years, 1=20-45 years)
- \(X_2 \) = marital status (0=not yet married, 1=married or ever-married)
- \(X_3 \) = education (0=up to secondary school; 1=higer than secondary school)
- \(X_4 \) = body mass index (1<18.5 kg/m²; 2=18.5-24.9 kg/m²; 3=\geq25.0 kg/m²)
- \(X_5 \) = current smoking status (0=not smoking, 1=smoking)
- \(X_6 \) = current alcohol drinking (0=not drinking, 1=drinking alcohol)
- \(X_7 \) = diastole (0=\leq80 mmHg, 1=diastole \geq80 mmHg)

RESULTS AND DISCUSSION

The number of total samples from SURKESNAS data was 13,000 persons. After excluding criteria of this study (women, age 15-45 years, Hb tested), it was found number of 4893 eligible samples. The prevalence of anemic of this study was 1377 (28.1%), and it was lower compared with prevalence of non-pregnant women at the national data (SKRT) in 1985 (36.5%) and relatively the same with data in 2001 (27.9%). The mean hemoglobin level between the two groups were significantly different (p<0.01), namely 10.9±1.1 g/dL and 13.2±0.9 g/dL at the anemic and non-anemic groups respectively (CI 95%: 2.9-3.1).

Table 1
Selected Characteristics According to the Anemia Status

<table>
<thead>
<tr>
<th>No</th>
<th>Characteristics</th>
<th>Anemic Group(^1) (n=1377)</th>
<th>Non-anemic Group(^1) (n=3516)</th>
<th>Mean difference (CI 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hemoglobin (g/dL)(^2)</td>
<td>9.8±1.2</td>
<td>12.9±1.9</td>
<td>2.9-3.1</td>
</tr>
<tr>
<td>2.</td>
<td>Age (years)</td>
<td>29.8±8.7</td>
<td>29.2±8.5</td>
<td>0.2-1.4</td>
</tr>
<tr>
<td>3.</td>
<td>Weight (kg)</td>
<td>48.2±8.5</td>
<td>50.3±8.9</td>
<td>1.4-2.9</td>
</tr>
<tr>
<td>4.</td>
<td>Height (cm)</td>
<td>150.5±5.5</td>
<td>151.3±5.8</td>
<td>0.2-1.2</td>
</tr>
<tr>
<td>5.</td>
<td>Body mass index (kg/m²)</td>
<td>21.4±3.5</td>
<td>22.1±3.7</td>
<td>0.4-1.0</td>
</tr>
<tr>
<td>6.</td>
<td>Waist (cm)(^2)</td>
<td>72.1±9.2</td>
<td>74.3±10.3</td>
<td>1.3-3.2</td>
</tr>
<tr>
<td>7.</td>
<td>Hip (cm)(^2)</td>
<td>87.4±8.2</td>
<td>90.1±9.9</td>
<td>1.6-3.7</td>
</tr>
<tr>
<td>8.</td>
<td>Waist-hip ratio</td>
<td>0.83±0.07</td>
<td>0.82±0.07</td>
<td>0.007-0.009</td>
</tr>
<tr>
<td>9.</td>
<td>Family income (Rp/months)</td>
<td>593,885±513,803</td>
<td>615,707±525,014</td>
<td>24,837-24,130</td>
</tr>
<tr>
<td>10.</td>
<td>Physical activities related to working (hours/week)</td>
<td>7.0±2.7</td>
<td>7.1±2.8</td>
<td>0.2-0.3</td>
</tr>
<tr>
<td>11.</td>
<td>Blood pressure (diastole, mmHg)</td>
<td>76.9±13.4</td>
<td>77.8±10.0</td>
<td>0.5-2.3</td>
</tr>
<tr>
<td>12.</td>
<td>Blood pressure (sistol, mmHg)</td>
<td>116.5±17.8</td>
<td>118.5±15.3</td>
<td>0.1-3.9</td>
</tr>
<tr>
<td>13.</td>
<td>Current smoking (0=no, 1=yes)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>-</td>
</tr>
<tr>
<td>14.</td>
<td>Education (0=\leq SMP, 1=\geq SMP)</td>
<td>0 (0.0)</td>
<td>0 (0.1)</td>
<td>-</td>
</tr>
<tr>
<td>15.</td>
<td>Drinking alcohol (0=no 1=yes)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>-</td>
</tr>
<tr>
<td>16.</td>
<td>Marital status (0=not married, 1=married)</td>
<td>1 (1.1)</td>
<td>1 (1.1)</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^1\) Plus-minus values are means ± SD. Other values are medians (25th and 75th percentiles)

\(^2\) T-test, significantly different (p<0.05)

\(^3\) Mann-Whitney U Test, significantly different p=0.01 (SMP=secondary school)
The selected characteristics of samples between anemic and non-anemic were shown on the Table 1. The women age of reproductive was analyzed into two different of age: adolescents (15-19 years) and adult women (20-45 years). Based on this two categories, the number adolescent was 788 (16.1%) and 4105 (83.9%) for adult women. There is a tendency that body weight and height are lower among the anemic group than the non-anemic group. The average weight of anemic group 48.2 kg and non-anemic group 50.3 kg was significantly different (p<0.01), and not significant for the height 150.5 cm and 151.3 cm respectively. Most of the women were categorized at the normal level of BMI (18.5-24.9 kg/m²). However, the BMI anemic group was significantly lower (21.4 ± 3.5 kg/m²) than the non-anemic group (22.1 ± 3.7 kg/m²) (CI 95%: 0.4-1.0). Figure 2 present the mean of hemoglobin among the thin, normal, and overweight women were significantly different (p<0.01).

![Figure 2
Mean of Hemoglobin Based on the BMI](image)

Other anthropometric indicators such as waist and hip was significantly lower at the anemic compared with the non-anemic group (P<0.01). Since most of the samples were adult (83.9%), the waist-hip ratio was not significantly different between the two groups, namely 0.83 ± 0.07 (anemic) and 0.82 ± 0.07 (non-anemic) (CI 95%: 0.00-0.009). It seems that this ratio may more sensitive for the older age group rather than an anemic. The deposit of fat accumulated at the waist and hip area and started appear at the age 30-40 years.

Most of the samples (74.8%) in this analysis has beer (or ever) married. By the Mann-Whitney U test, the median of marital status was not significantly different among anemic and non-anemic group, and both mostly ever married. The marital status was a proxy for the frequency of childbirth (parity) status, where the high parity tend to be anemia. The physical activities among two groups were almost the same, when they allocated about 7 hour per week related to their work. The physical activity was proposed as anemia risk factor; since heavy working was tend to reduce the life of red blood cells. However, in this study between the groups there was not different at time spending for working. Other characteristics that may relate to anemia status were smoking and alcohol drinking. Smoker needs more vitamin C to decrease free radicals, meanwhile this vitamin needed for iron absorption. Alcohol drinking may also inhibit the absorption of iron at the intestine. It was found that only a few samples having habits of smoking 170 (3.5%) as well as alcohol drinking 41 (0.8%). The median of both variables were not significantly different between the anemic and non-anemic groups.
Blood pulses was measured with diastole, and it was categorized prehypertension when the diastole >80 mmHg.\(^{11}\) Liver disorder was one of the cause of hypertension, and this possible lead to disturbing erythropoiesis (developing of red blood cell).\(^{9}\) In fact, the diastole between the two groups were not significantly different (p>0.05), namely 76.9 mmHg in anemic and 77.8 mmHg in non-anemic group (CI 95%: 0.5-2.3). The association between diastole with anemia was low (OR=1.3), although it was statistically significant (p=0.00) (Table 2).

Mandatory of minimum education in Indonesia was a nine years at the formal schools (elementary and secondary school). However, there were 3531 samples (72.1\%) having education below the standard of minimum education. And among of them mostly (53.8\%) were graduated at the elementary school, including 8.7 percent were never entering the elementary school. Meanwhile only 4.8 percent of total samples were having academic background at the university level. The national data in 2010 showed the number of Indonesian having education at the elementary school was 95.2 percent.\(^{4}\) The median education level was lower at the anemic group than non-anemic groups (P<0.01). The women having education less than secondary school tend to be anemic 1.35 times than those having higher education, and it was shown the OR=1.35 (CI 95%: 1.17-1.56). The low education may related to the limited access on social, economic, health facilities, and that all caused the women fall into the vulnerable groups.

Family income was proposed influencing the anemia status. Higher income is expected improve iron status through food quality and health access. In this study, the more sensitive indicators, such as income per capita, were not available. Family income (Rp/ family/ month) between the two groups were not significantly different, namely 593,885 ± 513,803 in anemic and 615,707±525,014 in non-anemic.

Two-by-two table present the distribution of selected variables by the anemia status (Table 2). To see the association between two variables, the Odd Ratio (OR) was calculated then tested with Mantel-Haenszel using 95 percent confidence interval (CI). Marital status among women 15-45 years significantly influenced the cases of anemia (p=0.01), where possibility unmarried women was 0.83 times not suffering from anemia than those married/ever married (CI 95%:0.71-0.96). Married or ever married women were as a proxy for parity which related to the anemia cases, since they loss more blood during childbirth.\(^{6}\)
Table 2
Distribution of Sample’s Characteristics between Anemia Status and its Odd Ratio (OR)

<table>
<thead>
<tr>
<th>No</th>
<th>Characteristics</th>
<th>Anemic Group</th>
<th>Non-anemic Group</th>
<th>Total</th>
<th>OR (CI:95%), p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 - 19</td>
<td>223 (28.3%)</td>
<td>565 (71.7%)</td>
<td>788</td>
<td>OR=1.00 (CI:0.85-1.20), p=0.92</td>
</tr>
<tr>
<td></td>
<td>20 - 45</td>
<td>1154 (28.1%)</td>
<td>2951 (71.9%)</td>
<td>4105</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Marital status<sup>2</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not married</td>
<td>312 (25.3%)</td>
<td>921 (74.7%)</td>
<td>1233</td>
<td>OR=0.83 (CI:0.71-0.96), p=0.01</td>
</tr>
<tr>
<td></td>
<td>Married</td>
<td>1065 (29.1%)</td>
<td>2593 (70.9%)</td>
<td>3658</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Education<sup>2</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up to secondary school</td>
<td>1052 (29.8%)</td>
<td>2479 (70.2%)</td>
<td>3531</td>
<td>OR=1.35 (CI:1.17-1.56), p=0.00</td>
</tr>
<tr>
<td></td>
<td>Higher than secondary school</td>
<td>325 (23.9%)</td>
<td>1037 (76.1%)</td>
<td>1362</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Body mass index<sup>2</sup> (kg/m<sup>2</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 18.5</td>
<td>270 (35.4%)</td>
<td>492 (64.6%)</td>
<td>762</td>
<td>OR(1.2)=1.42 (CI:1.20-1.68), p=0.00</td>
</tr>
<tr>
<td></td>
<td>18.5 - 24.9</td>
<td>911 (27.9%)</td>
<td>2354 (72.1%)</td>
<td>3265</td>
<td>OR=2.3 (CI:1.13-1.63), p=0.00</td>
</tr>
<tr>
<td></td>
<td>≥25.0</td>
<td>181 (22.2%)</td>
<td>634 (77.8%)</td>
<td>815</td>
<td>OR(1.3)=1.92 (CI:1.54-2.40), p=0.00</td>
</tr>
<tr>
<td>5</td>
<td>Cigarette smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>52 (30.6%)</td>
<td>118 (69.4%)</td>
<td>170</td>
<td>OR=0.89 (CI:0.64-1.23), p=0.47</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>1325 (28.1%)</td>
<td>3398 (71.9%)</td>
<td>4723</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Drinking alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>18 (43.9%)</td>
<td>23 (56.1%)</td>
<td>41</td>
<td>OR=2.01 (CI:1.98-3.74), p=0.08</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>1359 (28.0%)</td>
<td>3493 (72.0%)</td>
<td>4852</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Diastole<sup>2</sup> (mm Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 80</td>
<td>403 (31.5%)</td>
<td>875 (68.5%)</td>
<td>1278</td>
<td>OR=1.26 (CI:1.08-1.47), p=0.00</td>
</tr>
<tr>
<td></td>
<td>≥80</td>
<td>524 (26.7%)</td>
<td>1437 (73.3%)</td>
<td>1961</td>
<td></td>
</tr>
</tbody>
</table>

¹ OR analyzed by Mantel-Haenszel test
² OR statistically significant (p<0.05)

Someone with low BMI score indicated suffering from chronic energy deficiency. This status was due to the low intake of energy and protein, and usually followed by micro-nutrients deficiency as well. Therefore, the women with low BMI may have a risk of anemia. The thin women (BMI<18.5 kg/m²) are significantly...
tend to be anemia 1.4 times (CI 95%: 1.20 -1.66) and 1.9 times (CI 95%: 1.54 -2.40) than those normal and overweight (p=0.00). Meanwhile, the normal weight was possible to occurred anemia 1.4 times than the overweight women (OR=1.36; CI 95%: 0.13 -1.63).

The OR of other characteristics such as age, cigarette smoking and alcohol drinking were presented at Table 2. The proportion of age distribution between the two groups was not different, so the association with anemia was not significant. And then, in the logistic regression analysis the age variables were excluded from analysis.

In this study, alcohol drinking consumption was not associated with anemia, may be due to low number of samples having this habits (0.8%). Indonesians, especially who are Moslem, was not recognized as alcohol drinking. It was the same with smoking variable, when only 3.5 percent women smoked and not related with the anemia. There was no data about how many cigarettes per day, start of smoking, type of cigarette, etc.

Logistic regression used to analyze multi variables related to anemia. However, among the independent variables it was only BMI showed the association with the anemia (p<0.005). Women with BMI >18.5 tend to reduce risk of anemia 0.6 times than those having BMI <18.5 kg/m² (OR=0.57; CI 95%: 0.46-0.72). And the women with BMI < 25.0 kg/m² associated with the risk of anemia 1.3 times than those women’s BMI >25.0 kg/m² (OR=1.31; CI 95%: 1.07-1.61). Study by Permaesih and Herman (2003) revealed at the adolescent boys and girls, the wasting (BMI < 5 percentile) was a risk factor for anemia. Weight reduction were common among the women, therefore the underweight included a risk factor for anemia. Meanwhile, since other women characteristics having several weaknesses for proxy variables, there were not significant associated with the anemia.

<table>
<thead>
<tr>
<th>Variables*</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>Df</th>
<th>Sig.</th>
<th>OR</th>
<th>95.0% C.I. for OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Married</td>
<td>-0.09</td>
<td>0.15</td>
<td>0.28</td>
<td>1</td>
<td>0.60</td>
<td>0.92</td>
<td>0.67 - 1.26</td>
</tr>
<tr>
<td>Education</td>
<td>0.24</td>
<td>0.10</td>
<td>5.93</td>
<td>1</td>
<td>0.02</td>
<td>1.28</td>
<td>1.05 - 1.56</td>
</tr>
<tr>
<td>BMI (0=2.3; 1=1)</td>
<td>-0.56</td>
<td>0.12</td>
<td>22.84</td>
<td>1</td>
<td>0.00</td>
<td>0.57</td>
<td>0.45 - 0.72</td>
</tr>
<tr>
<td>BMI (0=1.2; 1=3)</td>
<td>0.27</td>
<td>0.10</td>
<td>6.64</td>
<td>1</td>
<td>0.01</td>
<td>1.31</td>
<td>1.07 - 1.61</td>
</tr>
<tr>
<td>Smoking</td>
<td>-0.20</td>
<td>0.20</td>
<td>1.03</td>
<td>1</td>
<td>0.31</td>
<td>0.82</td>
<td>0.56 - 1.20</td>
</tr>
<tr>
<td>Alcohol drinking</td>
<td>0.52</td>
<td>0.37</td>
<td>1.94</td>
<td>1</td>
<td>0.16</td>
<td>1.68</td>
<td>0.81 - 3.49</td>
</tr>
<tr>
<td>Diastolic</td>
<td>0.19</td>
<td>0.08</td>
<td>5.24</td>
<td>1</td>
<td>0.02</td>
<td>1.21</td>
<td>1.03 - 1.42</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.60</td>
<td>0.79</td>
<td>0.59</td>
<td>1</td>
<td>0.44</td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>

* Variable(s) entered on step 1: married, education, BMI, smoking, alcohol drinking, and diastolic.
The variable AGE is constant for all selected cases. Since a constant was requested in the model, it will be removed from the analysis.
CONCLUSION

1. The characteristics of anemia among child-bearing age women were lower in hemoglobin, BMI, waist and hip circumferences, and education than the non-anemic.
2. The non-food risk factor for anemia was BMI, where the normal and overweight women tend to be protected from anemia.

ACKNOWLEDGEMENTS

We are grateful to Dr. Soeharsono Soemantri from the National Health Institute of Research and Development, Ministry of Health, for allowing reanalysis the data SURKESNAS 2001.

REFERENCES
