PERBANYAKAN IN VITRO DAN INDUKSI AKUMULASI ALKALOID PADA TANAMAN JERUJU (Hydrolea spinosa L.)

NOFIA HARDARANI

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2011
2. Dilihat mengemukakan dan memperbaikah elaporan catu seluluh karya lulus di kolom bentuk oparan pada lembar IPB.
3. Penduduk yang melengkapi laporan harian yang valid.
4. Penduduk yang melengkapi laporan harian yang valid.
5. Penduduk yang melengkapi laporan harian yang valid.
6. Penduduk yang melengkapi laporan harian yang valid.
Dengan ini saya menyatakan bahwa tesis yang berjudul Perbanyakan In Vitro dan Induksi Akumulasi Alkaloid pada Tanaman Jeruju (*Hydrolea spinosa* L.) adalah karya saya dengan arahan komisi pembimbing dan belum diajukan dalam bentuk karya apapun kepada perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir tesis ini.

Bogor, Juli 2011

Nofia Hardarani
NRP A253080121
ABSTRACT

NOFIA HARDARANI. In Vitro Micropropagation and Induction of Alkaloid Accumulation in Jeruju (Hydrolea spinosa L.). Supervised by AGUS PURWITO and DEWI SUKMA.

Hydrolea spinosa is one of the potential plant for antimalarial drugs. Alkaloid compound in this plant has antiplasmodial activity. Conventional vegetative propagation through auxilarry branching was inhibited cause required its habitation, i.e. wetland. Tissue culture as an alternative propagation technique of this plant was required a protocol of its micropropagation. This method was also used in the effort of the improvement of alkaloid content through various of manipulation methods. The objectives of these research were to find out the effect of plant regulators and explants types on shoot induction, proliferation and elongation, calli induction of *H. spinosa* tissue culture, and to improved alkaloid content with several methods in vitro. Shoot induction and proliferation was studied using shoot tip and node segments within various concentration of BAP, whereas calli induction from young leaf and stem explants used various concentration of auxins (2,4-D and NAA) with high level of cytokinin (BAP). Shoot elongation was carried using different strength of MS salts (full-, a half-, one-quarter strength) and with or without addition of gibberellin (GA3). Precursor amino acids (tryptophan), elicitor (salicylic acids) and high sucrose feeding (6%) used to improve alkaloid content in calli and shoot cultures. Cytokinin level produced a significant response on the numbers of shoot formed per explants and also showed effect on node number. Both of shoot tip and node segments had an equal potential as explants in shoot induction and proliferation. The presence of plant growth regulator was important to induce calli but the level was no significant effect on calli initiation. The young leaf explants was rather than stem in calli induction. The half strength of MS salts produced rooting of the shoot with vigorous performance. Planlets produced from elongation phase were acclimatized and had viability as 75%. All of the treatments were not improve the alkaloid content qualitatively.

Keywords: *Hydrolea spinosa*, in vitro micropropagation, alkaloid, precursor, elicitor
Bogor Agricultural University

Hak Cipta Millik IPB (Institut Pertanian Bogor)
RINGKASAN

NOFIA HARDARANI. *Perbanyakan In Vitro dan Induksi Akumulasi Alkaloid pada Tanaman Jeruju (Hydrolea spinosa L.)*. Dibimbing oleh AGUS PURWITO dan DEWI SUKMA.

Hydrolea spinosa merupakan salah satu tanaman yang berpotensi sebagai obat antimalaria. Masyarakat setempat di Kalimantan Selatan menyebut tanaman ini sebagai Jeruju. Senyawa alkaloid dalam tanaman ini memiliki aktivitas antiplasmodial. Pertumbuhan tunas aksilar tanaman ini terhambat apabila dibudidayakan menggunakan media tanah karena membutuhkan lingkungan seperti habitat aslinya, yaitu di lahan basah. Kultur jaringan menjadi alternatif teknik perbanyakan sehingga diperlukan protokol perbanyakan *in vitro* untuk tanaman ini. Teknik ini juga digunakan dalam upaya peningkatan kandungan senyawa alkaloid melalui beberapa metode manipulasi. Tujuan dari penelitian ini adalah untuk menemukan pengaruh zat pengatur tumbuh dan jenis eksplan terhadap induksi, proliferasi dan elongasi tunas, juga induksi kalus pada kultur jaringan tanaman jeruju serta untuk menginduksi akumulasi senyawa alkaloidnya melalui beberapa metode secara *in vitro*. Induksi dan proliferasi tunas menggunakan eksplan pucuk dan buku dengan berbagai konsentrasi BAP, sedangkan induksi kalus dari eksplan daun muda dan batang menggunakan perlakuan berupa beberapa konsentrasi aksin (2.4-D and NAA) dengan sitokin (BAP) konsentrasi tinggi. Elongasi tunas dilakukan menggunakan media MS dengan berbagai konsentrasi hara (penuh, setengah dan seperempat konsentrasi hara) dan dengan atau tanpa penambahan giberelin (GA3). Prekursor asam amino (triptofan), elisitor (asam salisilat) and pemberian sukrosa konsentrasi tinggi (6%) digunakan untuk menginduksi akumulasi alkaloid pada kultur kalus dan tunas. Konsentrasi sitokin memberikan pengaruh yang berbeda nyata bagi jumlah tunas per eksplan dan jumlah buku per eksplan. Baik eksplan pucuk maupun buku memiliki potensi yang sama sebagai bahan tanam dalam induksi dan proliferasi tunas. Keberadaan zat pengatur tumbuh penting bagi induksi kalus namun konsentrasi yang berpengaruh nyata terhadap induksi kalus. Dalam induksi kalus, eksplan daun lebih baik daripada eksplan batang. Media MS dengan setengah konsentrasi hara menghasilkan perakaran dan tunas yang vigor. Tunas hasil elongasi pada media MS ½ diaklimatisasi dan memilik daya tumbuh sebesar 75%. Semua perlakuan induksi akumulasi alkaloid total tidak dapat menunjukkan peningkatan aenyawa secara kualitatif.

Keywords: *Hydrolea spinosa*, *perbanyak* in vitro, alkaloid, prekursor, elisitor
Hak Cipta Milik IPB (Institut Pertanian Bogor)
Hak Cipta Dilindungi Undang-undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan atau menyebutkan sumbernya. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik, atau tinjauan suatu masalah; dan sebagian besar pengutipan tersebut tidak merugikan kepentingan yang wajar IPB.

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh Karya Tulis dalam bentuk apapun tanpa setujui IPB.
1. Dilihat menuangkan reboisasi ekologi atau seluas karya limpik ini ditempatkan agar pun tumpu. (alight)
2. Dilihat menuangkan reboisasi ekologi atau seluas karya limpik ini ditempatkan agar pun tumpu. (alight)
3. Dilihat menuangkan reboisasi ekologi atau seluas karya limpik ini ditempatkan agar pun tumpu.
PERBANYAKAN IN VITRO DAN INDUKSI AKUMULASI ALKALOID PADA TANAMAN JERUJU (Hydrolea spinosa L.)

NOFIA HARDARANI

Tesis
Sebagai salah satu syarat untuk memperoleh gelar Magister Sains pada
Mayor Pemuliaan dan Bioteknologi Tanaman

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2011
Dosen Penguji : Dr. Ir. Shinto Wahyuning Ardie, M.Si.
Judul Tesis : Perbanyakan In Vitro dan Induksi Akumulasi Alkaloid pada Tanaman Jeruju (Hydrolea spinosa L.)

Nama : Nofia Hardarani
NRP : A253080121

Disetujui
Komisi Pembimbing

Dr. Ir. Agus Purwito, M.Sc.Agr. Ketua
Dr. Dewi Sukma, SP, M.Si
Anggota

Diketahui
Koordinator Mayor
Agronomi dan Hortikultura

Dekan Sekolah Pascasarjana

Dr. Ir. Trikoesoemaningtyas, M.Sc.
Dr. Ir. Dahrul Syah, M.Sc. Agr.

Tanggal Ujian: 25 Juli 2011
Tanggal Lulus:

Semoga Karya Ilmiah ini memberikan manfaat bagi banyak pihak.

Bogor, Juli 2011

Nofia Hardarani
1. Dilihat karakteristik daun memperlihatkan sebagian atau seluruh karya tuli di kolom bawah op clip in IPB.
2. Dilihat karakteristik Hepatus yang wajar IPB.
3. Penutupan hirup missal Hepatus penutupan panasipan penutupan Hepatus karya limus, penutupan Hepatus karya tuli di kolom bawah op clip, dan penutupan Hepatus karya tuli di kolom bawah inipong.
RIWAYAT HIDUP

DAFTAR ISI

DAFTAR TABEL.. xi
DAFTAR GAMBAR... xii
DAFTAR LAMPIRAN... xiii

PENDAHULUAN.. 1
Latar Belakang.. 1
Tujuan.. 3
Hipotesis.. 3

INJAUAN PUSTAKA... 5
Tanaman Jeruju (Hydrolea spinosa L.) sebagai Obat Anti Malaria.... 5
Tanaman Jeruju sebagai Obat Tradisional.. 6
Penyakit Malaria dan Permasalahannya... 7
Penelitian Jeruju sebagai Obat Anti Malaria..................................... 8
Peran Kultur Jaringan dalam Pengembangan Tanaman Obat Anti
Malaria.. 9
Perbanyakan Tanaman secara In Vitro... 10
Penggunaan Zat Pengatur Tumbuh pada Kultur Jaringan................. 11
Upaya Peningkatan Kandungan Metabolit Sekunder secara In
Vitro... 13
Kultur Kalus dalam Upaya Peningkatan Kandungan Senyawa
Metabolit Sekunder... 20

METODOLOGI PENELITIAN... 22
Waktu dan Tempat... 22
Bahan dan Alat... 22
Metode Percobaan .. 23
Persiapan Bahan Tanam ... 23
Sterilisasi Eksplan.. 23
Pembuatan Media Tanam In Vitro.. 24
Perbanyakan Tanaman secara In Vitro... 24
Induksi dan Proliferasi Tunas.. 24
Elongasi Tunas In Vitro... 26
Induksi Akumulasi Alkaloid Total secara In Vitro............................. 27
Induksi Kalus... 27
Induksi Akumulasi Alkaloid Total ... 29

HASIL DAN PEMBAHASAN... 31
Perbanyakan Tanaman secara In Vitro... 31
Induksi dan Proliferasi Tunas.. 31
Elongasi Tunas In Vitro... 38
Induksi Akumulasi Alkaloid Total secara In Vitro............................. 44
Induksi Kalus... 44
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rataan waktu muncul tunas dari eksplan pucuk dan buku...........</td>
</tr>
<tr>
<td>Interaksi konsentrasi BAP dengan eksplan pucuk dan buku terhadap jumlah tunas per eksplan pada pengamatan 4 MST</td>
</tr>
<tr>
<td>Interaksi konsentrasi BAP dengan eksplan pucuk dan buku terhadap jumlah buku per eksplan pada pengamatan 4 MST..............................</td>
</tr>
<tr>
<td>Rataan tinggi tunas dan bobot basah tunas umur 4 MST pada media elongasi (tinggi awal eksplan 0.5 cm).................................</td>
</tr>
<tr>
<td>Rataan waktu muncul akar serta panjang dan jumlah akar umur 4 mst pada media elongasi..</td>
</tr>
<tr>
<td>Rataan waktu muncul kalus dan bobot basah kalus dari eksplan daun dan batang..</td>
</tr>
<tr>
<td>Interaksi jenis dan konsentrasi ZP T dengan eksplan daun dan batang terhadap persentase jumlah eksplan yang membentuk kalus pada 4 MST ..</td>
</tr>
<tr>
<td>Rataan pertambahan bobot basah kalus hingga akhir waktu induksi alkaloid dan kadar air kalus..</td>
</tr>
<tr>
<td>Rataan pertambahan bobot basah tunas hingga akhir waktu induksi alkaloid dan kadar air tunas...</td>
</tr>
<tr>
<td>Analisis kandungan senyawa alkaloid secara kualitatif dengan metode Bouchardat dan Mayer...</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

Halaman

1. Bagan alir pelaksanaan penelitian ... 4
2. Tanaman jeruju pada habitatnya (a) dan yang ditanam di polybag (b) ... 5
3. Struktur kimia asam amino triptofan (a) dan asam salisilat (b) 16
4. Biosintesis alkaloid indol dengan prekursor triptofan (Kutchan 1995) ... 16
5. Signaling kunci pada reaksi yang dipicu oleh proses elisitasi (Vasconsuelo dan Boland 2007) ... 18
6. Tanaman jeruju in vivo di media air (a), sumber eksplan in vivo (b) dan sumber eksplan in vitro (c) ... 24
7. Pendugaan hubungan linier antara jumlah tunas per eksplan pada 4 MST (Y) dan konsentrasi BAP (X) dari eksplan pucuk dan buku 33
8. Representasi tunas pada media induksi dan proliferasi tunas: (a) eksplan awal (dari pucuk dan buku batang); (b) MS + BAP 0.0 ppm pada umur 4 MST; (c) MS + BAP 5.0 ppm pada umur 4 MST 36
9. Representasi tinggi tunas pada media elongasi pada umur 4 MST: (a) MS ½; (b) MS ¼ + GA3 1 ppm ... 39
10. Tunas aksilar tumbuh setelah batang dekat ujung patah karena nekrosis [tanda panah] (a); tunas aksilar yang tumbuh pada tahap proliferasi [tanda panah] (b) ... 40
11. Representasi perbandingan akar tunas pada media elongasi umur 4 MST: (a) MS ¼; (b) MS ½; (c) MS; (d) MS ¼ + GA3 1 ppm; (e) MS ½ + GA3 1 ppm; (f) MS + GA3 1 ppm ... 42
12. Representasi planlet sebelum aklimatisasi (a) dan bibit hasil aklimatisasi umur 3 MST (b) ... 43
13. Representasi : eksplan daun awal (a); eksplan daun yang tidak berkala pada umur 4 MST (b); eksplan daun yang berkala pada umur 4 MST (c); eksplan batang awal (d); eksplan batang yang tidak berkala pada umur 4 MST (e); eksplan batang yang berkala pada umur 4 MST (f) ... 46
14. Representasi kalus yang berakar dari media dengan penambahan NAA (a) dan kalus yang berwarna kehijauan (b) ... 50
Hasil analisis alkaloid secara kualitatif menggunakan reagen Bouchardat (a) dan reagen Mayer (b).
<table>
<thead>
<tr>
<th>No</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data kasus malaria di Kalimantan Selatan</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>Lokasi pengambilan sumber tanaman</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>Hasil identifikasi/determinasi tumbuhan</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>Komposisi hara dalam media Murashige and Skoog</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>Cara membuat reagen Mayer dan Bouchardat</td>
<td>72</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar Belakang

Optimasi dalam induksi tunas dan akar menjadi tahapan penting dalam protokol perbanyakan tanaman secara in vitro. Dalam upaya peningkatan kandungan alkaloid melalui kultur kalus, produksi kalus merupakan tahapan penting yang perlu dilakukan pengkajian optimasinya (Pandiangan dan Nainggaon 2006). Jenis dan konsentrasi zat pengatur tumbuh (ZPT) untuk pembentukan tunas, akar dan multiplikasinya serta induksi kalus dan proliferasinya menjadi penelitian awal yang perlu dilaksanakan.

Tujuan

Tujuan penelitian ini adalah:
1. Memperoleh protokol perbanyakan tanaman secara in vitro, yaitu konsentrasi ZPT yang terbaik untuk induksi, proliferasi dan elongasi tunas serta untuk induksi kalus.
2. Memperoleh metode induksi akumulasi alkaloid yang dapat meningkatkan alkaloid secara kualitatif.

Hipotesis

Terdapat konsentrasi BAP yang terbaik untuk induksi dan proliferasi tunas in vitro jeruju dari eksplan pucuk dan buku.
Terdapat media yang terbaik untuk elongasi tunas in vitro jeruju.
Terdapat konsentrasi dan jenis ZPT yang terbaik untuk induksi kalus jeruju dari eksplan daun dan batang.
Terdapat pengaruh dari metode penginduksi akumulasi alkaloid secara in vitro pada kultur kalus dan tunas in vitro jeruju.
Gambar 1 Bagan alir pelaksanaan penelitian.
TINJAUAN PUSTAKA

Tanaman Jeruju (Hydrolea spinosa L.) sebagai Obat Anti Malaria

Tanaman Hydrolea spinosa L. merupakan salah satu tanaman yang tumbuh di habitat rawa (Gambar 2). Tanaman ini banyak ditemukan di daerah dengan ketinggian < 50 m di atas permukaan laut (mdpl), yaitu tepian sungai dan rawa di Kalimantan Selatan. Masyarakat setempat menyebut tanaman ini dengan nama lokal yaitu Jeruju (Dharmono 2007).

Gambar 2 Tanaman jeruju pada habitatnya di lahan rawa (a) dan yang ditanam di polybag dengan media tanah (b).

Secara taksonomi, klasifikasi tanaman jeruju adalah sebagai berikut.

Kingdom : Plantae
Subkingdom : Tracheobionta
Superdivision : Spermatophyta
Division : Magnoliophyta
Class : Dicotyledonae
Subclass : Asteridae
Order : Tubiflorae (Solanales)
Family : Hydrophyllaceae
Genus : Hydrolea
Spesies : Hydrolea spinosa L.

Tanaman Jeruju sebagai Obat Tradisional

Bagian tanaman yang berkhasiat diseduh dan diminum airnya (Heryani et al. 2008).

Penyakit Malaria dan Permasalahannya

masalah yang serius karena mengakibatkan terjadinya kegagalan dalam pengobatan dan meningkatnya kematian akibat malaria. Hal ini telah mendorong para peneliti untuk berupaya menemukan antimalaria baru guna menggantikan obat antimalaria, seperti klorokuin yang sudah tidak efektif lagi (Syamsudin 2008).

Pengobatan penyakit malaria di suatu daerah dengan menggunakan tanaman yang tumbuh di daerah tersebut telah dilakukan penduduk secara turun-temurun. Adanya tanaman sebagai obat mengindikasikan adanya kandungan senyawa bioaktif pada tanaman tersebut (Aryanti et al. 2006). Upaya yang dilakukan untuk mengetahui senyawa bioaktif yang terkandung pada suatu tanaman yang berkhasiat obat dilakukan melalui eksplorasi senyawa aktif dari tanaman tersebut, seperti tanaman obat yang secara tradisional digunakan masyarakat untuk mengobati malaria. Tumbuhan obat merupakan salah satu sumber bahan bakat antimalaria karena beberapa senyawa aktif yang terkandung di dalam tumbuhan tersebut memiliki efek antimalaria yang kemungkinan memiliki mekanisme kerja yang berlainan serta dapat dikembangkan sebagai antigen dan vaksin antimalaria (Syamsudin 2008).

Penelitian Jeruju sebagai Obat Anti Malaria

Uji aktivitas antiplasmodial terhadap senyawa alkaloid yang berasal dari ekstrak daun tanaman ini dilakukan oleh tim penelitian dari Fakultas Kedokteran Unlam. Hasil pengujian menunjukkan bahwa ekstraksi tanaman ini memiliki kemampuan menurunkan jumlah parasitemia Plasmodium. Pada perlakuan 300 mg/kg ekstrak tanaman ini memberikan penurunan parasitemia Plasmodium sebesar 68.40% (Istiana dan Hayatie 2009).

1. Peran Kultur Jaringan dalam Pengembangan Tanaman Obat Anti Malaria

Sebagian besar senyawa tersebut diextrak dari spesies tumbuhan yang tumbuh di alam secara liar atau yang telah dibudidayakan. Cara tersebut memiliki kelemahan, seperti sangat dipengaruhi oleh musim, memerlukan waktu yang lama dan keterbatasan lahan pertanian. Permasalahan juga dapat ditemui dalam budidaya tanaman secara konvensional, seperti sulitnya tanaman dalam beradaptasi dengan lingkungan pembudidayaan. Hal ini terjadi pada tanaman jeruju dimana percabangan tunas aksilar tanaman ini lebih terhambat jika ditanam di media tanah. Tanaman ini memerlukan lingkungan tumbuh yang sesuai dengan habitatnya, yaitu di rawa-rawa untuk dapat tumbuh dengan percabangan tunas aksilar yang banyak. Tunas yang banyak diperlukan sebagai bahan simplisia yang memiliki khasiat obat sehingga diperlukan bibit dalam jumlah besar untuk memenuhi kebutuhan ekstraksi senyawa aktif.

Biji tanaman ini juga tumbuh lambat sehingga tidak ideal jika digunakan sebagai bahan tanam dalam produksi tanaman yang cepat (Nisa et al. 2009). Kebutuhan akan budidaya alternatif untuk menghasilkan bibit dalam jumlah besar dengan waktu yang relatif singkat pada tanaman ini menjadi semakin tinggi.
Teknik in vitro merupakan teknik yang potensial untuk memenuhi kebutuhan tersebut.

Metode kultur jaringan juga menjadi alternatif cara untuk mengatasi permasalahan yang dihadapi dalam budidaya tanaman *Artemisia annua* L. Tanaman ini mengandung senyawa artemisinin yang diketahui efektif terhadap Plasmodium. Perbanyakan tanaman ini secara konvensional di Indonesia menghasilkan senyawa artemisinin yang rendah sehingga dilakukan upaya peningkatan senyawa ini melalui kultur akar rambut (BB Biogen 2007).

Perbanyakan Tanaman secara In Vitro

Kultur jaringan sebagai teknik budidaya sel, jaringan dan organ tanaman dalam keadaan aseptik mengandung dua konsep dasar, yaitu bahan tanam yang bersifat totipotensi dan budidaya terkendali. Sifat totipotensi lebih banyak dimiliki oleh bagian tanaman yang masih juvenil dan terdapat pada daerah meristem tanaman dibandingkan dengan bagian tanaman yang sudah dewasa. Sifat bahan yang totipotensi saja tidak cukup untuk kesuksesan perbanyakan tanaman melalui kultur jaringan. Komposisi media tempat tumbuh, lingkungan yang mempengaruhinya (kelembaban, temperatur dan cahaya) serta keharusan sterilitas adalah hal mutlak yang harus dikendalikan (Santoso dan Nursandi 2000).

Perbanyakan melalui teknik kultur jaringan memiliki keunggulan lain dibandingkan teknik perbanyakan konvensional, yaitu pekerjaan yang dilakukan di laboratorium sehingga pelaksanaannya tidak tergantung pada musim dan faktor lingkungan lain serta tidak memerlukan tempat pembibitan yang luas (Lestari 2008). Selain itu, teknik ini dapat mengatasi kendala yang umumnya dialami dalam upaya pemenuhan permintaan bibit berskala besar, yaitu masalah transportasi. Penggunaan bibit yang berasal dari kultur jaringan dapat menghemat waktu dan biaya yang cukup besar dalam hal transportasi (Hendaryono dan Wijayani 1994).

Dalam kultur jaringan diperlukan beberapa komponen utama, yaitu bahan awal (starting materials), media dan lingkungan kultivasi yang sesuai. Bahan awal yang dapat digunakan untuk kultur jaringan (eksplan) dapat berupa buku, daun muda, tunas apikal dan aksilar, tangkai daun, akar, antera, polen, ovul dan...
sebagainya (Yuwono 2008). Pemilihan penggunaan jenis eksplan tergantung pada tipe kultur yang akan diinisiasi, tujuan kultur dan jenis tanaman yang digunakan (George dan Sherrington 1984).

Pada keadaan alamiah pertumbuhan tanaman, selain dipengaruhi oleh faktor tanah, pupuk dan agroklimat pertanaman (faktor luar) juga ditentukan oleh faktor dalam seperti faktor genetik dan kondisi hormonal. Dengan prinsip yang sama, keberhasilan kultur jaringan sebagai teknik perbanyakan sangat ditentukan oleh eksplan, media tumbuh dan lingkungan. Salah satu unsur penting dalam media adalah zat pengatur tumbuh (ZPT). Penentuan jenis dan konsentrasi ZPT dapat menentukan arah pertumbuhan dan perkembangan eksplan.

Penggunaan Zat Pengatur Tumbuh pada Kultur Jaringan

tepat. Pengaruh setiap golongan ZPT dapat merupakan perannya secara mandiri atau hasil kerjasamanya dengan golongan ZPT yang lain (Santoso dan Nursandi 2001).

Dalam kultur jaringan, dua kelompok zat pengatur tumbuh yang sangat penting adalah auksin dan sitokinin (Chawla 2002). Auksin diproduksi secara alami oleh tanaman dalam bentuk indole acetic acid (IAA) yang disintesis pada primordia daun, daun muda dan benih yang sedang berkembang. Senyawa ini umumnya disintesis dari triptofan dan diangkut dari sel ke sel, terutama pada kambium jaringan pembuluh dan juga sel epidermal. Transpor ke akar juga terjadi pada toem (Davies 2004). Bentuk sintetis dari auksin yang biasa digunakan adalah 2,4-dichlorophenoxy acetic acid (2,4-D), α-naphthalene acetic acid (NAA), 3,6-dichloroanic acid (dikamba) dan 4-amino-3,5,6-trichloropicolinic acid (pikloram) (Wattimena et al. 1992). Auksin dapat berperan dalam elongasi sel, fototropisme, geotropisme, dominansi apikal, pembentukan akar baru, perkembangan buah, induksi kalus dan embriogenesis (Arteca 1996).

Sitokinin merupakan suatu senyawa adenine (6-aminopurine) yang menstimulasi terjadinya sitokinesis (pembelahan sel). Senyawa ini disintesis pada ujung akar dan biji yang berkembang. Secara alami sitokinin ditemukan dalam bentuk 4-hydroxi-3-methyl-trans-2-butenylaminopurine (zeatin) dan 2-isopentyl adenine (2-IP). Bentuk sintesis sitokinin yang biasa digunakan dalam kultur jaringan adalah kinetin (6-furfurylaminopurine) dan BAP (6-benzylaminopurine).

Pengaruh sitokinin pada tanaman selain dalam pembelahan sel juga terlihat dalam inisiasi tunas aksilar selama morfogenesis, penundaan senesensi daun, pembentukan kloroplas, pembentukan umbi pada kentang, pemecahan dormansi dan pembukaan stomata (Davies 2004).

Upaya Peningkatan Kandungan Metabolit Sekunder secara In Vitro

Metabolit sekunder adalah golongan senyawa yang terkandung dalam buah mikroorganisme, flora dan fauna yang terbentuk melalui proses metabolisme sekunder yang disintesis dari banyak senyawa metabolisme primer, seperti asam amino, asetil koenzim A, asam mevalonat dan senyawa antara dari jalur shikimat. Beberapa hal penting yang membedakan antara senyawa metabolisme sekunder dengan senyawa metabolisme primer adalah tidak diperlukannya senyawa hasil metabolisme sekunder untuk kelangsungan hidup sel namun diperlukan dalam mempertahankan kelangsungan hidup tanaman.
Metabolit sekunder diproduksi sebagai hasil interaksi tanaman dengan lingkungannya dan penyebabannya lebih terbatas serta memiliki sifat dan karakteristik yang berbeda untuk tiap famili, spesies bahkan organ tanaman tertentu (Herbert 1995).

Semua alkaloid mengandung paling sedikit satu atom nitrogen yang biasanya bersifat basa dan dalam sebagian besar atom nitrogen ini merupakan bagian dari cincin heterosiklik (Lenny 2006). Alkaloid diklasifikasikan
berdasarkan sifat dasar dari struktur dasar cincin yang mengandung nitrogen, seperti pirolidin, piperidin, quinolin, isoquinolin, indol dan sebagainya. Atom nitrogen dalam alkaloid berasal dari asam amino sehingga beberapa asam amino terlibat dalam biosintesis alkaloid sebagai prekursornya (Dewick 2003).

Teknik kultur jaringan telah dikembangkan dan digunakan untuk beberapa tanaman obat, karena terbukti multiplikasinya lebih cepat dan aman. Regenerasi tanaman dengan teknik kultur jaringan ini terbukti menghasilkan bahan kimia yang sama dengan tanaman induknya. Beberapa diantaranya telah berhasil dilakukan terhadap tanaman obat, seperti tanaman Cryptolepis sanguinolenta yang merupakan herbal anti malaria penghasil alkaloid kriptolepin (Ansah et al. 2005), tanaman Camptotheca acuminata yang menghasilkan kampotesin, senyawa anti tumor (Silvestrini et al. 2002), tanaman Atropa belladonna, penghasil alkaloid hyosiamin dan kalistegin (Rothe dan Drager 2002), tanaman Catharanthus roseus yang banyak menghasilkan senyawa farmasetik (Gaines 2004), tanaman Scopolia parviflora dengan senyawa skopolamin (Kang et al. 2004) dan lain-lain.

Gambar 3 Struktur kimia asam amino triptofan (a) dan asam salisilat (b).

Gambar 4 Biosintesis alkaloid indol dengan prekursor triptofan (Kutchan 1995).

Dalam kultur jaringan untuk memproduksi senyawa yang diinginkan, jumlah pendekatan dilakukan dalam peningkatan produksi, salah satunya adalah perlakuan dengan prekursor (Biondi et al. 2004). Dalam penelitian Fujita et al. (1990), diperoleh hasil bahwa penambahan 3 mM L-triptofan pada kultur sel Catharanthus roseus dapat meningkatkan kandungan katarantin.

Beberapa senyawa atau stimulan dapat digunakan untuk meningkatkan produksi metabolit sekunder dan dikenal sebagai elisor. Secara umum, elisor diklasifikasikan berdasarkan asal dan struktur molekulnya. Setiap tipe elisor menurut karakteristiknya dapat menginduksi respon spesifik yang tergantung pada interaksi antara elisor dengan tanaman yang dikulturkan (Vasconsuelo dan Boland 2007). Salah satu elisor yang telah dipelajari secara luas dalam menginduksi senyawa metabolit sekunder adalah asam salisilat (Gambar 3b).

Pada tanaman, asam salisilat terakumulasi setelah adanya pelukaan atau serangan patogen yang dikenal sebagai reaksi patogenesis dengan memacu ekspresi beberapa gen yang berhubungan dengan patogenesis (PR gene) yang berat molekulnya rendah. Aplikasi asam salisilat eksogen diketahui memiliki efek yang sama dengan respon pertahanan tanaman yang diinduksi oleh patogen dengan mengaktifkan gen PR-1 dan PR-2. Gen-gen tersebut kemudian menginduksi pembentukan enzim yang berperan dalam biosintesis senyawa metabolit sekunder sebagai salah satu respon SAR (systemic acquired resistance) (Ignatov et al. 1996).

Pada prinsipnya, kerja elisor adalah menstimulasi peningkatan produksi enzim yang berperan dalam biosintesis senyawa metabolit sekunder. Lintasan signaling yang terlibat dalam respon sel terhadap elisor merupakan satu
rangkaian proses seperti yang terlihat pada Gambar 5 yang secara singkat dijelaskan sebagai berikut.

- Pengikatan elisitor pada daerah reseptor dalam membran plasma yang dilanjutkan dengan aktivasi G-protein.
- Stimulasi adenil siklase (AC) dan fosfolipase C (PLC) yang dimediasi oleh G-protein.
- Peningkatan jumlah pembawa pesan kedua (cAMP, DAG, IP₃) yang berpasangan dengan aktivasi kinase target (PKA, PKC).
- Pembahuan konsentrasi Ca²⁺ sitoplasmi: keterlibatan fluks Ca²⁺ melalui membran plasma atau kolam intraseluler.
- Aktivasi dari aliran protein kinase secara cepat yang menginduksi perubahan dalam fosforilasi dari MAPKs dan translokasinya ke dalam inti.
- Aktivasi transkripsi enzim dari lintasan sintesis metabolit sekunder (Vasconsuelo dan Boland 2007).

Gambar 5 Signaling kunci pada reaksi yang dipacu oleh proses elisitasi (Vasconsuelo dan Boland 2007).

Elisitor merupakan senyawa yang berinteraksi dengan reseptor spesifik yang dapat menginduksi respon ketahanan. Asam salisilat diketahui sebagai
senyawa sinyal penting yang mengaktifkan respon ketahanan tanaman melawan serangan patogen dan cekaman lain (Nugroho et al. 2002). Dalam kerjanya, asam salisilat berinteraksi dengan reseptor di membran sel tanaman yang meningkatkan sintesis alkaloid. Senyawa ini merupakan senyawa signaling pada produksi alkaloid dalam kultur akar tanaman Scopolia parviflora (Komaraiah et al. 2005).

Asam salisilat tidak memiliki efek negatif terhadap pertumbuhan tanaman apabila diberikan dalam waktu yang pendek dan saat tanaman mengalami fase pertumbuhan aktif, tidak seperti metiljasmonat, serta tidak menstimulasi pencoklatan pada akar. Asam salisilat merupakan stimulator dari produksi metabolit sekunder dan memiliki regulasi negatif terhadap lintasan jasmonat dalam tanaman. Pada kultur tanaman Morinda citrifolia, alkaloid tertinggi diperoleh pada konsentrasi asam salisilat 100 µM (Komaraiah 2005). Pada perlakuan asam salisilat 1 mM, dapat meningkatkan indeks pertumbuhan akar hingga 4%. Asam salisilat dan senyawa kimia turunannya dapat meningkatkan produktivitas beberapa metabolit sekunder pada kultur jaringan dan sel tanaman (Kang et al. 2004).

Pendekatan umum yang dapat digunakan untuk memperoleh kadar alkaloid yang lebih tinggi adalah menggunakan sistem kultur dengan dua tahap proses. Tahap pertama adalah dengan menggunakan media pertumbuhan tanpa senyawa induksi untuk memperoleh biomassa maksimum. Pada tahap kedua, jaringan yang terakumulasi ditransfer ke dalam media yang mengandung senyawa induksi sebagai media produksi yang mungkin membatasi pertumbuhan tetapi merangsang biosintesis alkaloid (Kee et al. 2000).

Selain penggunaan prekursor dan elisitor, upaya peningkatan kandungan metabolit sekunder juga dilakukan dengan sukrosa konsentrasi tinggi. Sukrosa pada media bekerja sebagai sumber karbon pada kultur. Penambahan sukrosa dalam kultur sel dan organ tanaman dapat meningkatkan akumulasi senyawa sekunder (Rothe et al. 2001). Sukrosa menjadi bagian dari rantai sinyal untuk menginduksi metabolisme alkaloid, seperti pada kultur akar tanaman Atropa belladonna dimana alkaloid meningkat dengan pemberian 100 mM sukrosa (Rothe dan Drager 2002).
Pada umumnya, sumber karbon menjadi komponen nutrisi yang paling cepat digunakan oleh sel selama fase stasionary. Produksi alkaloid dipengaruhi oleh pemberian sukrosa tanpa banyak mempengaruhi pertumbuhan sel. Pemberian 5% sukrosa dalam kultur tanaman Morinda citrifolia pada hari ke-12 menunjukkan efek maksimum, yaitu peningkatan alkaloid hingga dua kali lipat dibandingkan kontrol (Komaraiah et al. 2005). Sukrosa merupakan sumber karbon dimana transpor utamanya terjadi dalam apoplas dapat meningkatkan produksi alkaloid pada tanaman Neotyphodium uncinatum pada kisaran 500-750 ppm hingga 12 kali lipat dibandingkan dengan produksi alkaloid pada kultur yang diberi manitol (Blankenship et al. 2001). Pada kultur akar tanaman Atropa belladonna dengan pemberian sukrosa 5% dapat meningkatkan konsentrasi alkaloid (Rothe et al. 2001).

Kultur Kalus dalam Upaya Peningkatan Kandungan Senyawa Metabolit Sekunder

Sejak penelitian kultur jaringan berkembang dengan pesat, ditemukan bahwa sel-sel dalam kultur menghasilkan juga persenyawaan-persenyawaan yang dibutuhkan manusia dengan tingkat produksi per unit bobot kering yang setara atau bahkan lebih tinggi dari tanaman asalnya (Kristina et al. 2008). Penelitian mengenai metabolit sekunder saat ini telah mengalami kemajuan yang pesat. Salah satu aspek yang semakin berkembang adalah pendekatan proses produksi metabolit sekunder melalui kultur jaringan tanaman. Penelitian banyak berkembang terutama pada proses induksi kalus pada tanaman yang umum dikenal sebagai tanaman obat (Baldi dan Dixit 2008).

Kalus merupakan sel-sel parenkim yang mempunyai ikatan yang renggang dengan sel-sel lain dan selalu melakukan proses dediferensiasi. Kalus dapat dihasilkan dari potongan organ, seperti daun, hipokotil, kotiledon dan batang yang ditumbuhkan pada media yang mengandung auksin, namun terkadang memerlukan penambahan sitokinin juga. Pembentukan kalus dari jaringan dipengaruhi oleh umur fisiologi jaringan yang diisolasi, musim dan waktu bahan tanaman diisolasi, bagian tanaman yang digunakan serta jenis tanaman (Lestari 2008).

Kalus sebagai bahan senyawa sekunder dan produk lainnya dapat dipacu pembentukan dan pertumbuhannya dengan pemakaian zat pengatur tumbuh dari golongan auksin, seperti 2.4-D yang dikombinasikan dengan BAP. Induksi kalus optimal pada tanaman Dianthus caryophyllus L. diperoleh pada perlakuan 2.4-D 0.5 ppm + BAP 1.0 ppm (Jain et al. 2001) sedangkan pada tanaman Flacourtia jangomas diperoleh pada perlakuan 2.4-D 2.0 ppm + BAP 0.5 ppm (Chandra dan Bhanja 2002). Kombinasi antara BAP dengan NAA juga sering membentuk kalus yang terbaik seperti pada induksi kalus tanaman Trema orientalis yang diperoleh pada perlakuan BAP 0.5 ppm + NAA 2.5 ppm (Samantaray et al. 2005) sementara kalus tanaman Cucumis sativus dapat diinduksi oleh BAP 4.44 µM + NAA 2.69 µM (Selvaraj et al. 2007).

Ditemukannya alkaloid indol pada kalus tanaman Brucea javanica yang tidak ditemukan pada tanaman asalnya memiliki arti penting dalam upaya pemanfaatan tanaman sebagai sumber senyawa berkhasiat. Melalui teknik kultur jaringan pada tanaman ini, diperoleh pertambahan bobot kalus paling tinggi pada media MS + 2.4-D 2 mg l⁻¹. Jenis dan jumlah ZPT yang ditambahkan ke dalam media mempengaruhi pertumbuhan kalus B. javanica (Alam 1994).
METODOLOGI PENELITIAN

Waktu dan Tempat

Bahan dan Alat

Peralatan yang digunakan berupa ember untuk kultur *in vivo*, sedangkan peralatan dalam pelaksanaan kultur *in vitro* berupa *Laminar Air Flow Cabinet*, timbangan analitik, autoklaf, mikropipet, alat-alat diseksi (pinset, gunting, dan
skalpel), pH meter, botol kultur, plastik, karet, peralatan gelas dan bunsen. Alat yang digunakan dalam analisis alkaloid, yaitu penangas air dan tabung reaksi.

Metode Percobaan

Penelitian ini terdiri dari dua perobaan, yaitu:

1. Perbanyakan tanaman secara in vitro yang meliputi dua tahap, yaitu:
 a. Induksi dan proliferasi tunas.
2. Induksi akumulasi alkaloid total secara in vitro yang terbagi menjadi dua sub perobaan, yaitu:
 a. Induksi kalus
 b. Induksi akumulasi alkaloid total.

Persiapan Bahan Tanam

Sebelum dilakukan penelitian dengan serangkaian percobaan tersebut, dilakukan persiapan bahan tanam untuk sumber eksplan berupa kultur tanaman dengan media air secara in vivo yang dilaksanakan pada bulan Januari 2010. Bahan tanam berupa tanaman jeruju yang ditanam pada ember-ember yang berisi air sebagai media tanam (Gambar 6a). Pucuk dan tiga buku batang teratas dari setiap tanaman digunakan sebagai sumber eksplan in vivo (Gambar 6b) yang kemudian disterilisasi dan ditumbuhkan secara in vitro pada media prekondisi untuk mendapatkan sumber eksplan in vitro (Gambar 6c).

Sterilisasi Eksplan

Tahap sterilisasi eksplan dilakukan dengan mencuci pucuk dan buku pada air yang mengalir dan direndern dalam larutan deterjen selama 20 menit, kemudian direndern dengan larutan streptomycin dan dithane-45 masing-masing 0.2% selama ± 24 jam. Di dalam laminar air flow cabinet, sterilisasi dilanjutkan dengan merendam eksplan berturut-turut, yaitu pada alkohol 70% selama 1 menit, bacyclin 10% selama 10 menit, baycllin 5 % selama 5 menit dan beberapa tetes betadine selama 30 menit.
Setelah dilakukan prosedur sterilisasi di atas, eksplan ditanam pada media prekondisi berupa media Hyponex 0.2% selama satu minggu untuk mendapatkan eksplan yang bebas dari kontaminan cendawan dan bakteri. Eksplan yang steril kemudian dipindahkan ke media MS yang ditambah dengan BAP 3 ppm selama empat minggu untuk menumbuhkan tunas \textit{in vitro}. Penyeragaman sumber eksplan dilakukan dengan memotong tunas yang telah tumbuh dan mempunyai 3-4 buku kemudian ditanam ke media MS (MS tanpa ZPT) selama empat minggu (Gambar 6c).

Gambar 6 Tanaman jeruju \textit{in vivo} di media air (a), sumber eksplan \textit{in vivo} (b) dan sumber eksplan \textit{in vitro} (c).

Pembuatan Media Tanam \textit{In Vitro}

Media tanam \textit{in vitro} yang digunakan dalam penelitian ini terdiri atas dua jenis berdasarkan tujuan penggunaannya, yaitu media prekondisi dan media perlakuan. Media prekondisi digunakan untuk menumbuhkan eksplan tanaman \textit{in vivo} menjadi sumber eksplan \textit{in vitro}. Dalam penelitian ini digunakan tiga macam media prekondisi, yaitu media Hyponex 0.2%, media MS + BAP 3 ppm dan media MS. Hyponex digunakan sebagai media prekondisi karena mengandung beberapa unsur hara yang dapat mendukung pertumbuhan eksplan di awal pertumbuhan. Media perlakuan yang digunakan adalah media dasar MS yang ditambah dengan beberapa macam ZPT untuk media yang digunakan dalam induksi kultur kalus dan media dalam percobaan perbanyakan \textit{in vitro}. Pada media
yang digunakan dalam induksi akumulasi alkaloid ditambah dengan beberapa senyawa penginduksi alkaloid.

Media Hyponex 0.2% dibuat dengan menimbang Hyponex sebanyak 2 g yang ditambah dengan vitamin dan myo-inositol dengan konsentrasi yang sama seperti dalam media MS, kemudian dilarutkan dalam 1 l aquades. Media MS dibuat dengan mengambil setiap komponen media MS (Lampiran 4) dari larutan stok yang telah dibuat sebelumnya. Semua media yang digunakan ditambahkan dengan gula 30 g l⁻¹, agar 7 g l⁻¹ dan memiliki pH 5.8. Media yang telah dibuat kemudian dimasukkan ke dalam botol kultur steril yang kemudian disterilisasi menggunakan autoklaf pada suhu 121 °C dan tekanan 1.5 kg cm⁻² selama 10 menit.

Perbanyakan Tanaman secara In Vitro

Percobaan perbanyakan tunas secara in vitro terbagi menjadi dua tahap, yaitu:

Induksi dan Proliferasi Tunas

Percobaan ini menggunakan rancangan acak kelompok faktorial dua faktor. Faktor pertama berupa jenis eksplan yang terdiri atas dua taraf, yaitu pucuk dan buku. Faktor kedua adalah konsentrasi BAP yang terdiri dari tujuh taraf, yaitu media MS yang ditambah dengan 0.0, 0.5, 1.0, 2.0, 3.0, 4.0 dan 5.0 ppm. Terdapat 14 (empat belas) perlakuan dengan tiga kelompok berdasarkan waktu tanam. Setiap kelompok terdiri atas lima botol tanam sehingga diperoleh 210 satuan percobaan dengan dua eksplan per botol tanam. Bahan tanam berupa pucuk dan buku batang ketiga dan keempat dari tunas in vitro. Eksplan ditanam selama 12 (dua belas) minggu pada media perlakuan. Kultur dipelihara dalam ruang kultur dengan fotoperiodisitas 24 jam terang, suhu 25 °C dan intensitas cahaya 1500 lux.

Pengamatan

Pengamatan meliputi peubah saat muncul tunas (minggu setelah tanam (MST)) yang dilakukan setiap minggu pada setiap unit percobaan, jumlah tunas per eksplan, jumlah buku per eksplan dan laju multiplikasi tunas yang dihitung berdasarkan jumlah tunas per eksplan pada minggu keempat setelah tanam.
Analisis Data

Model linier aditif yang digunakan dalam percobaan ini adalah sebagai berikut:

\[Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \rho_k + \epsilon_{ijk} \]

Keterangan:
- \(Y_{ijk} \): Nilai pengamatan jenis eksplan ke-\(i\), konsentrasi BAP ke-\(j\) dan kelompok ke-\(k\)
- \(\mu \): Rataan umum
- \(\alpha_i \): Pengaruh jenis eksplan ke-\(i\)
- \(\beta_j \): Pengaruh konsentrasi BAP ke-\(j\)
- \((\alpha\beta)_{ij} \): Komponen interaksi antara jenis eksplan ke-\(i\) dan konsentrasi BAP ke-\(j\)
- \(\rho_k \): Pengaruh kelompok ke-\(k\)
- \(\epsilon_{ijk} \): Pengaruh galat percobaan jenis eksplan ke-\(i\), konsentrasi BAP ke-\(j\) dan kelompok ke-\(k\).

Dimana:
- \(i \): 1, 2.
- \(j \): 1, 2, ..., 7.
- \(k \): 1, 2, 3.

Hasil percobaan dianalisis dengan menggunakan analisis ragam (uji F) pada taraf nyata \((\alpha) = 5\% \) dengan menggunakan program SAS. Apabila hasil uji nyata, dilanjutkan dengan uji jarak berganda Duncan (DMRT).

Elongasi Tunas In Vitro

Dalam percobaan ini rancangan lingkungan yang digunakan adalah rancangan acak lengkap satu faktor berupa jenis media enam taraf, yaitu MS 1 kali konsentrasi hara (MS), MS ½ kali konsentrasi hara (MS ½), MS ¼ kali konsentrasi hara (MS ¼), MS + GA3 1 ppm, MS ½ + GA3 1 ppm dan MS ¼ + GA3 1 ppm. Terdapat enam perlakuan dimana setiap perlakuan diulang diulang sebanyak tiga kali dan setiap ulangan berupa satu eksplan per botol tanam sehingga diperoleh 30 satuan percobaan. Sebagai eksplan awal dalam tahap elongasi, digunakan tunas yang berukuran 0.5 cm. Bahan tanam berupa tunas dari media proliferasi yang terbaik kemudian ditanam selama empat minggu pada media elongasi. Kultur dipelihara dalam ruang kultur dengan fotoperiodisitas 24 jam terang, suhu 25 °C dan intensitas cahaya 1500 lux.
Tunas dari media elongasi yang terbaik kemudian diaklimatisasi. Media tanam yang digunakan dalam aklimatisasi berupa campuran arang sekam, tanah dan kompos dengan perbandingan 1:1:1. Selama aklimatisasi, media tanam disiram dengan media MS ½.

Pengamatan

Pengamatan meliputi peubah saat muncul akar (MST) yang diamati pada setiap minggu serta tinggi tunas (cm), bobot basah tunas (g), jumlah akar dan panjang akar (cm) yang diamati pada minggu keempat setelah tanam.

Analisis Data

Model linier aditif yang digunakan dalam percobaan ini adalah sebagai berikut:

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

Keterangan:

- Y_{ij}: Nilai pengamatan jenis media ke-i dan ulangan ke-j
- μ: Rataan umum
- τ_i: Pengaruh jenis media ke-i
- ε_{ij}: Pengaruh galat percobaan jenis media ke-i ulangan ke-j.

Dimana $i: 1, 2, ..., 6$.

Dimana $j: 1, 2, ..., 5$.

Hasil percobaan dianalisis dengan menggunakan uji F pada $\alpha = 5\%$ dengan menggunakan program SAS. Apabila hasil uji nyata, dilanjutkan dengan DMRT.

Induksi Akumulasi Alkaloid Total secara In Vitro

Percobaan induksi akumulasi alkaloid secara *in vitro* terbagi menjadi dua sub percobaan, yaitu:

Induksi Kalus

Percobaan ini menggunakan rancangan acak kelompok faktorial dua faktor. Faktor pertama berupa sumber eksplan yang terdiri atas dua taraf, yaitu daun dan batang. Faktor kedua adalah kombinasi ZPT dengan tujuh taraf, yaitu perlakuan kontrol (tanpa ZPT), BAP 5.0 ppm + 2.4-D 0.1 ppm, BAP 5.0 ppm + 2.4-D 0.5 ppm, BAP 5.0 ppm + 2.4-D 1.0 ppm, BAP 5.0 ppm + NAA 0.1 ppm,
BAP 5.0 ppm + NAA 0.5 ppm dan BAP 5.0 ppm + NAA 1.0 ppm. Semua perlakuan menggunakan media dasar MS. Terdapat 14 (empat belas) perlakuan dengan tiga kelompok berdasarkan waktu tanam. Setiap kelompok terdiri dari 5 botol tanam sehingga diperoleh 210 satuan percobaan dan setiap botol tanam terdiri atas dua eksplan. Eksplan ditanam pada media induksi kalus selama empat minggu. Kultur dipelihara dalam ruang kultur dengan penggelapan dan suhu 25 oC.

Pengamatan

Pengamatan dilakukan terhadap peubah saat muncul kalus (MST) yang diamati pada setiap minggu, jumlah eksplan yang membentuk kalus (%) dan bobot kalus yang dilakukan pada minggu keempat setelah tanam. Setelah itu, kalus diproliferasi menggunakan media induksi yang terbaik selama 12 (dua belas) minggu.

Analisis Data

Model linier aditif yang digunakan dalam percobaan ini adalah sebagai berikut (Mattjik dan Sumertajaya 2006):

\[Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \rho_k + \varepsilon_{ijk} \]

Keterangan :

- \(Y_{ijk}\): Nilai pengamatan sumber eksplan ke-\(i\), konsentrasi ZPT ke-\(j\) dan kelompok ke-\(k\)
- \(\mu\): Rataan umum
- \(\alpha_i\): Pengaruh sumber eksplan ke-\(i\)
- \(\beta_j\): Pengaruh konsentrasi ZPT ke-\(j\)
- \((\alpha\beta)_{ij}\): Komponen interaksi antara sumber eksplan ke-\(i\) dan konsentrasi ZPT ke-\(j\)
- \(\rho_k\): Pengaruh kelompok ke-\(k\)
- \(\varepsilon_{ijk}\): Pengaruh galat percobaan sumber eksplan ke-\(i\), konsentrasi ZPT ke-\(j\) dan kelompok ke-\(k\).

Dimana

- \(i\) : 1, 2.
- \(j\) : 1, 2, ..., 7.
- \(k\) : 1, 2, 3.

Hasil percobaan dianalisis dengan menggunakan uji F pada \(\alpha = 5\%\) dengan menggunakan program SAS. Apabila hasil uji nyata, dilanjutkan dengan DMRT.
Induksi Akumulasi Alkaloid Total

Percobaan ini menggunakan rancangan acak lengkap satu faktor yang berupa penambahan asam salisilat (SA) 0 dan 138 ppm selama dua hari, sukrosa 3% dan 6% selama empat hari serta triptofan 0 dan 100 ppm selama tujuh hari. Media dasar yang digunakan adalah media MS + BAP 5 ppm untuk tunas dan media MS + BAP 5 ppm + 2.4D 0.1 ppm untuk kalus. Terdapat tujuh perlakuan dan setiap perlakuan diulang sebanyak tiga kali sehingga diperoleh 30 satuan percobaan. Bahan tanam yang digunakan adalah kalus yang diperoleh dari induksi kalus dan tunas in vitro hasil dari proliferasi tunas. Setiap botol tanam terdiri atas kalus dan tunas dengan bobot awal ± 1.0 g. Kultur tunas dipelihara dalam ruang kultur dengan suhu 25 °C, fotoperiodisitas 24 jam terang dan intensitas cahaya 1500 lux sedangkan untuk kalus dikulturkan dengan penggelapan.

Pengamatan

Pengamatan dilakukan pada akhir perlakuan induksi terhadap peubah bobot basah kalus (g), bobot kering kalus (g), alkaloid total pada kalus, bobot basah tunas (g), bobot kering tunas (g) dan alkaloid total pada tunas. Bobot kering untuk kalus dan tunas dipelihara dari hasil pengeringan dalam oven dengan suhu 60 °C selama 72 jam lalu ditimbang dengan neraca analitik. Analisis alkaloid total secara kualitatif dilakukan dengan menggunakan pereaksi Bourchardat dan Mayer di Laboratorium Analisis Fitokimia BALITTRO Cimanggu Bogor.

Analisis Alkaloid Total

larutan diberi skoring yang disesuaikan dengan standar di Laboratorium Analisis Fitokimia BALITTRO. Skoring tersebut, yaitu: (-) : tidak terdeteksi, (+) : positif lemah, (++) : positif, (+++) : positif kuat dan (++++) : positif sangat kuat.

Analisis Data

Hasil percobaan dianalisis menggunakan uji t (t test) yang dibandingkan dengan kontrol masing-masing pada $\alpha = 5\%$.
HASIL DAN PEMBAHASAN

Perbanyakan Tanaman secara In Vitro

Induksi dan Proliferasi Tunas

Perlakuan sitokinin 6-benzylaminopurine (BAP), berpengaruh sangat nyata terhadap waktu muncul tunas, yaitu antara jenis eksplan yang ditumbuhkan pada media yang mengandung BAP dengan media tanpa BAP (kontrol). Pemberian BAP dapat mempercepat induksi tunas namun perbedaan konsentrasi BAP tidak berpengaruh nyata terhadap waktu muncul tunas (Tabel 1). Tanpa BAP, rata-rata tunas baru muncul pada 1.67 MST sedangkan pada pemberian BAP, rata-rata tunas dapat muncul antara 1.17-1.50 MST. Sumber eksplan juga tidak berpengaruh nyata terhadap waktu muncul tunas seperti yang terlihat pada Tabel 1. Tunas dari eksplan pucuk rata-rata muncul pada 1.48 MST sedangkan rataan waktu muncul tunas pada eksplan buku adalah 1.21 MST.

Tabel 1 Rataan waktu muncul tunas dari eksplan pucuk dan buku

<table>
<thead>
<tr>
<th>Perlakuan Waktu muncul tunas (MST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAP (ppm)</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
</tr>
<tr>
<td>4.0</td>
</tr>
<tr>
<td>5.0</td>
</tr>
<tr>
<td>Jenis eksplan</td>
</tr>
<tr>
<td>Pucuk</td>
</tr>
<tr>
<td>Buku</td>
</tr>
</tbody>
</table>

Keterangan : MST = minggu setelah tanam
Angka yang diikuti huruf yang sama pada kolom tidak berbeda nyata pada DMRT dengan α = 5%

Hasil penelitian ini menunjukkan bahwa perlakuan BAP pada kultur in vitro jeruju memberikan pengaruh terhadap kemampuan eksplan dalam menginduksi pembentukan tunas. Ketidadaan BAP dalam media menyebabkan kemampuan eksplan dalam menginduksi tunas menjadi sangat kecil namun
Hok Cipta Dilindung Undang Undang

1. Diurut mengurut dari bawah ke atas
2. Pengurutan tidak berdasarkan arus
3. Pengurutan tidak berdasarkan warna
4. Pengurutan tidak berdasarkan ukuran

perbedaan konsentrasi BAP tersebut tidak menyebabkan waktu induksi tunas berbeda. Induksi tunas lebih dipengaruhi oleh ada tidaknya BAP dalam media. Eksplan pucuk merupakan bagian tanaman yang paling muda (juvenille) sehingga memiliki jaringan meristematis yang sel-selnya aktif membelah (Wattimena et al. 1992), dan daerah buku juga mengandung banyak sel meristematis yang pertama kali tumbuh menjadi tunas (Xu et al. 2008). Pengaturan siklus sel dan banyaknya siklus sel yang terjadi dalam meristem dan organ primordia merupakan target utama sitokinin.

Dalam penelitian ini, baik eksplan pucuk maupun buku memiliki kemampuan yang sama dalam menginduksi pertumbuhan tunas dimana inisiasi tunas ditentukan oleh keberadaan sitokinin namun waktu yang tidak dipengaruhi oleh konsentrasi sitokinin yang diberikan. Dalam kultur jaringan tanaman dikotil, sitokinin eksogen menjadi penting untuk inisiasi tunas (Dodds dan Roberts 1999). BAP merupakan sitokinin yang aktif karena terjadi substitusi N6 pada iso pentenil oleh gugus benzil (Rohayati 2002).

Tabel 2 Interaksi konsentrasi BAP dengan eksplan pucuk dan buku terhadap jumlah tunas per eksplan pada pengamatan 4 MST

<table>
<thead>
<tr>
<th>Perlakuan BAP (ppm)</th>
<th>Pucuk</th>
<th>Buku</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.00 i</td>
<td>1.67 hi</td>
</tr>
<tr>
<td>0.5</td>
<td>1.73 hi</td>
<td>2.07 gh</td>
</tr>
<tr>
<td>1.0</td>
<td>2.00 gh</td>
<td>3.93 de</td>
</tr>
<tr>
<td>2.0</td>
<td>3.00 f</td>
<td>2.73 fg</td>
</tr>
<tr>
<td>3.0</td>
<td>3.07 f</td>
<td>3.40 ef</td>
</tr>
<tr>
<td>4.0</td>
<td>4.40 cd</td>
<td>5.60 ab</td>
</tr>
<tr>
<td>5.0</td>
<td>5.07 bc</td>
<td>6.07 a</td>
</tr>
</tbody>
</table>

Keterangan : MST = minggu setelah tanam
Angka yang diikuti huruf yang sama pada baris dan kolom tidak berbeda nyata pada DMRT dengan $\alpha=5\%$

Konsentrasi BAP pada media memberikan pengaruh yang berbeda nyata terhadap jumlah tunas per eksplan seperti yang terlihat pada Tabel 2. Begitu juga dengan jenis eksplan serta interaksi antara BAP dan jenis eksplan. Hasil rataan menunjukkan bahwa eksplan buku pada media dengan BAP 5.0 ppm mampu menghasilkan jumlah tunas per eksplan paling banyak, yaitu 6.07 tunas dan
berbeda nyata dengan perlakuan lain kecuali pada perlakuan BAP 4.0 ppm. Berdasarkan banyaknya tunas yang terbentuk pada setiap eksplan sebelum dilakukan subkultur, dapat terlihat laju multiplikasi tunas dari satu buku. Dengan demikian laju multiplikasi tunas tertinggi dihasilkan pada perlakuan BAP 5.0 ppm yang berasal dari eksplan buku, yaitu 6.07 tunas.

Berdasarkan analisis regresi (Gambar 7), terlihat hubungan antara konsentrasi BAP dengan jumlah tunas per eksplan pada setiap eksplan buku memiliki persamaan linier \(\hat{Y} = 1.842 + 0.811X \). Model dugaan di atas memberikan makna bahwa setiap peningkatan 1 ppm BAP akan menambah jumlah tunas per eksplan sebanyak 0.811 tunas. Persamaan linier untuk eksplan pucuk adalah \(\hat{Y} = 1.189 + 0.770X \) yang berarti setiap peningkatan 1 ppm BAP akan menambah jumlah tunas per eksplan sebanyak 0.770 tunas.

Pada penelitian ini terlihat bahwa BAP dengan konsentrasi tertinggi (5.0 ppm) dapat menghasilkan jumlah tunas per eksplan yang paling tinggi pula dimana eksplan buku lebih baik daripada eksplan pucuk. Hal ini sejalan dengan yang dikemukakan Ntui et al. (2009) yang menyatakan bahwa induksi tunas tertinggi pada tanaman *Colocynthis citrullus* L. diperoleh pada media MS yang ditambah dengan 5 ppm BAP, yaitu sebanyak 3.5 tunas. Interaksi antara

BAP meningkatkan kemampuan regenerasi dengan menstimulasi kemampuan pembelahan sel dalam jaringan. Pengaruh aplikasi BAP bekerja melalui siklus pembelahan sel dengan mengendalikan aktivitas enzim cyclin-dependent kinase (CDKs) pada akhir fase S, M dan G1 (Taiz dan Zeiger 2002). Respons terhadap sinyal hormonal tersebut menunjukkan sel-sel dalam eksplan menjadi kompeten (Sugiyama 1999). Semakin tinggi konsentrasi BAP menyebabkan semakin banyak sel yang kompeten dalam satu jaringan sehingga potensi regenerasi menjadi lebih tinggi (Veltcheva dan Svetleva 2005).

Pertumbuhan tunas aksilar sering menjadi target dalam proliferasi tunas karena dapat menghasilkan tanaman yang secara genetik seragam dan lebih stabil serta laju proliferasinya yang relatif tinggi (Wattimena et al. 1992). Hal ini sangat diperlukan dalam produksi bibit dalam skala besar dengan variasi somaklonal yang dapat diminimalisir.

Regenerasi tunas adventif terjadi pada bagian yang tidak biasa pada jaringan yang dikulturkan, seperti daun, ruas batang dan tangkai daun dimana meristem tidak terjadi secara alami (Chawla 2002). Pembentukan tunas adventif juga dapat diperoleh dari eksplan tunas aksilar (Miller et al. 1991). Meristematik
pada bagian ini akan muncul melalui proses organogenesis yang diinduksi oleh aplikasi ZPT yang juga mempengaruhi level dari hormon endogen (George dan Sherrington 1984). Proliferasi tunas adventif juga diperlukan karena memiliki laju proliferasi melalui organogenesis yang lebih tinggi daripada proliferasi tunas aksilar (Kantia dan Kothari 2002). Efisiensi pertumbuhan tunas yang tinggi dari teknik ini menjadi persyaratan untuk transformasi genetik yang efisien (Miller et al. 1991).

Laju proliferasi tunas dihitung berdasarkan banyaknya tunas yang dibentuk pada setiap eksplan sebelum dilakukan subkultur. Dengan demikian laju multiplikasi tunas tertinggi dihasilkan pada perlakuan BAP 5.0 ppm yang berasal dari eksplan buku, yaitu 6.07 tunas per empat minggu. Laju proliferasi tunas pada setiap subkultur belum stabil. Hal ini diduga disebabkan oleh konsentrasi hara dari media serta jenis dan konsentrasi zat pengatur tumbuh yang digunakan belum mampu menjaga kestabilan proliferasi tunas.

<table>
<thead>
<tr>
<th>Perlakuan BAP (ppm)</th>
<th>Jenis eksplan</th>
<th>Pucuk</th>
<th>Buku</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>16.93 b</td>
<td>9.93 c</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>17.07 b</td>
<td>10.07 c</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>18.93 b</td>
<td>13.73 bc</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>14.73 bc</td>
<td>14.00 bc</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>19.40 b</td>
<td>10.00 c</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>25.60 a</td>
<td>28.20 a</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>19.73 b</td>
<td>19.73 b</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan : MST = minggu setelah tanam
Angka yang diikuti huruf yang sama pada baris dan kolom tidak berbeda nyata pada DMRT dengan α=5%
Jumlah buku per eksplan juga menunjukkan respon yang berbeda terhadap perbedaan konsentrasi BAP dan jenis eksplan (Tabel 3). Semakin tinggi konsentrasi BAP tunggal (hingga 4.0 ppm) memberikan kecenderungan jumlah buku yang semakin banyak pula namun menurun pada konsentrasi BAP 5.0 ppm. Pada eksplan pucuk perlaku BAP 4.0 ppm, rataan jumlah buku per eksplannya sebanyak 25.60 dan dari eksplan buku sebanyak 28.20.

Gambar 8 Representasi tunas pada media induksi dan proliferasi tunas: (a) eksplan awal (dari pucuk dan buku batang); (b) MS + BAP 0.0 ppm pada umur 4 MST; (c) MS + BAP 5.0 ppm pada umur 4 MST.

Ujung tunas muda merupakan bagian aktif untuk biosintesis auksin sehingga eksplan ini memerlukan sitokinin dosis tinggi untuk proliferasi tunas (Madhuri and Rajam 1993). Aplikasi sitokinin memecah dominansi apikal dan meningkatkan rangkaian ekspresi gen yang kompleks menghasilkan pembentukan tunas (Arigita et al. 2005). Pola yang sama diduga juga terjadi pada eksplan buku. Pengaruh dominansi apikal dari tunas aksilar yang pertama kali tumbuh terlihat...
pada pertambahan buku tunas tersebut. Pembentukan buku maksimal tercapai pada perlakuan BAP 4.0 ppm dan menurun pada konsentrasi BAP 5.0 ppm karena sel-sel meristematik lebih bekerja ke arah inisiasi tunas baru.

Eksplan pucuk tunas berkembang baik menjadi primoria daun dan meristem apikal tunas. Demikian juga dengan sel-sel lapisan sub-epidermis pada buku mengalami banyak pembelahan yang menghasilkan perkembangan primordia tunas tanpa melalui kalus (Kantia dan Kothari 2002). Organogenesis langsung membentuk tunas pada eksplan melalui peristiwa pembelahan sel, pertumbuhan sel dan penentuan polaritas sel (Rohayati 2002).

Elongasi Tunas In Vitro

Selama tahap proliferasi tunas, diperoleh pertumbuhan tunas yang banyak dan berakar namun tunas yang tumbuh memiliki buku batang yang rapat sehingga memberikan penampilan tunas yang kerdiril. Oleh sebab itu, dilakukan tahap elongasi tunas agar diperoleh tunas yang lebih tinggi dengan menggunakan media MS dalam konsentrasi hara yang berbeda dan dengan atau tanpa penambahan giberelin (GA₃).

Aplikasi GA₃ pada media elongasi sangat berpengaruh nyata terhadap tinggi dan bobot tunas seperti yang terlihat pada Tabel 4. Perlakuan GA₃ dapat meningkatkan tinggi tunas pada setiap konsentrasi hara media MS. Sebaliknya untuk bobot basah tunas, penambahan GA₃ memberikan peningkatan bobot basah tunas yang kecil. Tunas yang tertinggi diperoleh dari media MS 1/4 + GA₃ 1 ppm yang berbeda nyata dengan media lain, yaitu sebesar 3.80 cm sedangkan media yang memberikan bobot basah tunas tertinggi adalah media MS ½ dan MS ¼ masing-masing sebesar 0.28 dan 0.25 g.
Tabel 4 Rataan tinggi tunas dan bobot basah tunas umur 4 MST pada media elongasi (tinggi awal eksplan 0.5 cm)

<table>
<thead>
<tr>
<th>Media</th>
<th>Tinggi tunas (cm)</th>
<th>Bobot basah tunas (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>1.00 c</td>
<td>0.13 b</td>
</tr>
<tr>
<td>MS ½</td>
<td>1.50 c</td>
<td>0.28 a</td>
</tr>
<tr>
<td>MS ¼</td>
<td>1.30 c</td>
<td>0.25 a</td>
</tr>
<tr>
<td>MS + GA₃ 1 ppm</td>
<td>1.40 c</td>
<td>0.04 c</td>
</tr>
<tr>
<td>MS ½ + GA₃ 1 ppm</td>
<td>2.50 b</td>
<td>0.07 bc</td>
</tr>
<tr>
<td>MS ¼ + GA₃ 1 ppm</td>
<td>3.80 a</td>
<td>0.09 bc</td>
</tr>
</tbody>
</table>

Keterangan : MST = minggu setelah tanam

Angka yang diikuti huruf yang sama pada kolom pada masing-masing peubah tidak berbeda nyata pada DMRT dengan α=5%

Tinggi tunas pada media MS ½ hanya sebesar 1.50 cm namun memberikan bobot basah tunas yang tertinggi. Tunas yang tumbuh juga tampak vigor sedangkan tunas yang diberi perlakuan GA₃ cenderung terlihat kurus dan tidak kokoh dengan bobot basah tunas yang rendah (Gambar 19).

![Gambar 9: Representasi tinggi tunas pada media elongasi pada umur 4 MST: (a) MS ½; (b) MS ¼ + GA₃ 1 ppm.](image_url)

Hasil penelitian menunjukkan bahwa penambahan GA₃ 1 ppm pada media elongasi meningkatkan tinggi tunas secara signifikan dibandingkan dengan tinggi tunas tanpa GA₃. Aplikasi GA₃ memberikan pengaruh yang positif terhadap tinggi tunas namun berpengaruh sebaliknya terhadap bobot basah tunas. Tunas yang tumbuh pada media dengan GA₃ menjadi tinggi dan memiliki ruas batang yang panjang namun terlihat kurus dan tidak vigor. Hal ini menyebabkan bobot basah tunas menjadi rendah karena GA₃ yang ditambahkan dalam media hanya...
meningkatkan pertumbuhan batang dengan menstimulasi pembelahan dan pemanjangan sel pada daerah sub-apikal dan menghasilkan pemanjangan ruas batang pada tunas (Arigita et al. 2005).

Jaringan target dari aplikasi gibberelin adalah meristem interkalari dimana pembelahan dan pemanjangan sel-selnya menghasilkan pertumbuhan ruas batang (Taiz dan Zeiger 2002). Gibberelin menginduksi gen transkripsi yang terlibat dalam kedua proses tersebut. Ekspresi beberapa gen yang mengkode *xyloglucan endotransglycosylase* (XET) dan *expansin* diatur oleh gibberelin dalam elongasi ruas batang. XET diperlukan untuk meningkatkan plastisitas dinding sel sebab enzim ini terlibat dalam pembentukan kembali *xyloglucan* melalui pembelahan (Davies 2004) dan memfasilitasi masuknya *expansin* ke dalam dinding sel (Taiz dan Zeiger 2002). *Expansin* merupakan protein ekstraseluler yang menyebabkan pelonggaran dinding sel tanaman, dengan melemahkan ikatan hidrogen antara polisakarida dinding sel (Davies 2004).

Gambar 10 Tunas aksilar tumbuh setelah batang dekat ujung patah karena nekrosis [tanda panah] (a); tunas aksilar yang tumbuh pada tahap proliferasi [tanda panah] (b).

Pertambahan panjang ruas batang yang cepat menyebabkan batang menjadi lemah dan cepat mengalami nekrosis sehingga patah pada bagian dekat ujung tunas. Hal ini juga terjadi pada penelitian Jain et al. (2009), dimana ujung tunas *Harpagophytum procumbens* mengalami nekrosis selama elongasi eksplan. Patahnya bagian apikal tunas menyebabkan hilangnya dominansi apikal sehingga memacu pertumbuhan tunas aksilar. Pertumbuhan tunas aksilar pada buku batang

Tabel 5 menunjukkan rataan kondisi perakaran pada media elongasi. Konsentrasi hara media MS dan keberadaan GA3 tidak berpengaruh nyata terhadap saat muncul akar namun berpengaruh sangat nyata terhadap panjang dan jumlah akar. Akar pada media MS ½ dan MS ¼ terbentuk lebih cepat dibandingkan media lain, yaitu 1.00 MST walaupun tidak berbeda nyata dengan perlakuan lain kecuali dengan media MS ½ + GA3 1 ppm. Berbeda dengan panjang akar dimana panjang tertinggi diperoleh dari media MS ½ yang berbeda nyata dengan perlakuan yang lain, yaitu sebanyak 3.00 cm. Pola yang hampir sama juga ditunjukkan oleh jumlah akar dimana media MS ½ yang menghasilkan jumlah akar terbanyak, yaitu 7.20 dan berbeda nyata dengan perlakuan lain kecuali dengan media MS ¼ yang sebanyak 6.40 akar.

<table>
<thead>
<tr>
<th>Media</th>
<th>Waktu muncul akar (MST)</th>
<th>Panjang akar (cm)</th>
<th>Jumlah akar</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>1.60 ab</td>
<td>1.12 c</td>
<td>5.00 bc</td>
</tr>
<tr>
<td>MS ½</td>
<td>1.00 b</td>
<td>3.00 a</td>
<td>7.20 a</td>
</tr>
<tr>
<td>MS ¼</td>
<td>1.00 b</td>
<td>2.44 b</td>
<td>6.40 ab</td>
</tr>
<tr>
<td>MS + GA3 1 ppm</td>
<td>1.60 ab</td>
<td>0.54 d</td>
<td>3.60 cd</td>
</tr>
<tr>
<td>MS ½ + GA3 1 ppm</td>
<td>2.00 a</td>
<td>0.42 d</td>
<td>2.60 de</td>
</tr>
<tr>
<td>MS ¼ + GA3 1 ppm</td>
<td>1.80 ab</td>
<td>0.42 d</td>
<td>2.00 e</td>
</tr>
</tbody>
</table>

Keterangan : MST = minggu setelah tanam
Angka yang diikuti huruf yang sama pada kolom pada masing-masing peubah tidak berbeda nyata pada DMRT dengan α=5%

Pemberian GA3 pada media cenderung tidak memberikan pengaruh yang positif terhadap perakaran. Keberadaan GA3 mengakibatkan pertumbuhan akar terhambat yang ditunjukkan dengan waktu terbentuk akar yang lebih lama, panjang akar yang lebih pendek dan jumlah akar yang lebih sedikit dibandingkan dengan media MS yang tanpa GA3 seperti yang terlihat pada Gambar 11. Berdasarkan peubah yang diamati terhadap pertumbuhan tunas dan perakaran pada media elongasi menunjukkan bahwa media MS ½ memberikan hasil yang lebih baik daripada media yang lain, kecuali pada tinggi tanaman. Dari semua
jenis media, media MS ½ terlihat menjadi media yang terbaik yang memberikan rataan tertinggi pada bobot tanaman, saat muncul akar, panjang akar dan jumlah akar.

Gambar 11 Representasi perbandingan akar tunas pada media elongasi umur 4 MST: (a) MS ¼; (b) MS ½; (c) MS; (d) MS ¼ + GA₃ 1 ppm; (e) MS ½ + GA₃ 1 ppm; (f) MS + GA₃ 1 ppm.

Selama tahap elongasi tunas juga terjadi pertumbuhan akar. Akar yang tumbuh pada media MS ½ tampak lebih banyak dan panjang daripada tunas yang tumbuh dari media yang mengandung GA₃ serta dapat menginduksi munculnya akar yang lebih cepat walaupun tidak berbeda nyata. Sahoo et al. (1997) menyatakan bahwa media MS ½ menginduksi perakaran pada tunas Morus indica yang beregenerasi. Pertumbuhan tunas yang spontan berakar diduga karena adanya auksin endogen yang cukup tinggi. Induksi akar disebabkan oleh transpor auksin dari jaringan yang memproduksi auksin endogen ke zona perakaran (Ford et al. 2002). Pertumbuhan akar yang terjadi selama tahap elongasi tunas dapat menghilangkan subkultur ke media perakaran (Hartmann et al. 1997).

Kondisi perakaran pada media elongasi menunjukkan bahwa media MS tanpa GA₃ memberikan kecenderungan hasil yang lebih baik daripada media yang diberi GA₃. Keberadaan GA₃ menyebabkan perakaran menjadi terhambat dimana akar yang tumbuh sedikit dan pendek serta memerlukan waktu yang lebih lama
Tunas yang tumbuh pada media MS ½ konsentrasi hara tanpa GA₃ terlihat lebih vigor. Kadar hara dalam media yang jumlahnya hanya ½ dari media MS sudah mampu menumbuhkan tunas dengan pertambahan tinggi tunas yang lebih cepat dibandingkan dari kadar penuh (Hutagaol 2006) dan dapat membentuk perakaran dengan baik (Lee et al 2003). Hal ini menunjukkan media MS ½ dapat meningkatkan kualitas tunas (Du dan Pijut 2008). Tunas yang berkualitas dapat ensintesis auksin endogen pada pucuk yang kemudian diangkut ke bagian basal melalui transpor polar untuk merangsang pertumbuhan akar (Rohayati 2002).

Dalam penelitian ini, tunas dan perakaran dapat tumbuh dengan lebih baik dalam media MS ½ dimana tunas yang tumbuh memiliki batang yang lebih kokoh dengan perakaran yang banyak dan panjang. Dengan demikian perbanyak tanaman jeruju secara in vitro dapat dilakukan dalam dua tahap, yaitu induksi dan oligiferasi tunas dengan penambahan BAP konsentrasi tinggi (5.0 ppm) dan lanjutkan dengan media elongasi tunas pada media MS ½ konsentrasi hara. Prosedur dua langkah tersebut sesuai dan tidak mahal untuk propagasi komersial skala besar (Sen dan Sen 1995).

Gambar 12 Representasi planlet sebelum aklimatisasi (a) dan bibit hasil aklimatisasi umur 3 MST (b).

Persentase keberhasilan tanaman untuk tumbuh setelah diaklimatisasi adalah sebesar 75%. Daya tumbuh tanaman saat diaklimatisasi juga menunjukkan bibit tanaman jeruju yang berasal dari perbanyakan in vitro mampu beradaptasi dan tumbuh pada media tanah. Hal ini memberikan peluang yang lebih besar untuk dilukakannya budidaya konvensional menggunakan bibit hasil kultur jaringan karena tidak lagi menuntut media pertanaman yang sesuai dengan habitat asli tanaman ini, yaitu lahan rawa.

Induksi Akumulasi Alkaloid Total secara In Vitro

Induksi Kalus

Penggunaan kalus sebagai sumber produksi senyawa metabolit sekunder telah banyak dilakukan (Syahid dan Hernani 2001). Dalam percobaan ini, waktu muncul kalus sangat nyata dipengaruhi oleh keberadaan zat pengatur tumbuh (ZPT) (Tabel 6). Semua perlakuan ZPT berpengaruh sangat nyata terhadap kontrol namun waktu muncul kalus dari semua jenis dan konsentrasi auksin yang
diberikan pada media yang mengandung BAP tidak berbeda nyata. Eksplan pada media yang mengandung ZPT dapat mulai menumbuhkan kalus antara 1.21-1.47 MST sementara tanpa adanya ZPT, kalus tidak muncul sampai akhir waktu pengamatan (4 MST). Sumber eksplan juga berpengaruh sangat nyata terhadap waktu muncul kalus, dimana eksplan daun lebih cepat membentuk kalus, yaitu pada 1.21 MST dibandingkan dengan eksplan dari batang dimana kalus muncul pada umur 1.72 MST. Interaksi ZPT dengan sumber eksplan tidak berpengaruh nyata terhadap waktu muncul kalus.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Waktu muncul kalus (MST)</th>
<th>Bobot kalus (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPT (ppm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrol (media MS tanpa ZPT)</td>
<td>- b</td>
<td>0.000 b</td>
</tr>
<tr>
<td>BAP 5 + 2.4-D 0.1</td>
<td>1.29 a</td>
<td>0.149 a</td>
</tr>
<tr>
<td>BAP 5 + 2.4-D 0.5</td>
<td>1.21 a</td>
<td>0.139 a</td>
</tr>
<tr>
<td>BAP 5 + 2.4-D 1.0</td>
<td>1.35 a</td>
<td>0.106 a</td>
</tr>
<tr>
<td>BAP 5 + NAA 0.1</td>
<td>1.34 a</td>
<td>0.108 a</td>
</tr>
<tr>
<td>BAP 5 + NAA 0.5</td>
<td>1.47 a</td>
<td>0.135 a</td>
</tr>
<tr>
<td>BAP 5 + NAA 1.0</td>
<td>1.42 a</td>
<td>0.131 a</td>
</tr>
<tr>
<td>Jenis eksplan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daun</td>
<td>1.21 b</td>
<td>0.166 a</td>
</tr>
<tr>
<td>Batang</td>
<td>1.72 a</td>
<td>0.054 b</td>
</tr>
</tbody>
</table>

Keterangan: MST = minggu setelah tanam
Angka yang diikuti huruf yang sama pada kolom pada masing-masing peubah tidak berbeda nyata pada DMRT dengan α=5%

Pada Tabel 6, terlihat bahwa jenis dan konsentrasi auksin tidak berpengaruh nyata terhadap bobot kalus, yaitu antara 0.106-0.149 g. Tabel 6 juga menunjukkan bahwa eksplan daun menghasilkan bobot kalus yang lebih besar dibandingkan dengan eksplan batang, masing masing sebesar 0.166 g dan 0.054 g. Representasi kalus dapat dilihat pada Gambar 13.
Gambar 13 Representasi : eksplan daun awal (a); eksplan daun yang tidak berkalus pada umur 4 MST (b); eksplan daun yang berkalus pada umur 4 MST (c); eksplan batang awal (d); eksplan batang yang tidak berkalus pada umur 4 MST (e); eksplan batang yang berkalus pada umur 4 MST (f).

enzim-enzim ini yang mempengaruhi aktivitas pembelahan sel-sel kalus (Pandiangan 2006).

Faktor yang berperan dalam induksi respon yang beragam terhadap jenis dan konsentrasi ZPT salah satunya adalah jenis eksplan yang digunakan. Daun muda yang sedang berkembang dicirikan oleh jaringan yang aktif berdiferensiasi (meliputi pembelahan, pembesaran dan diferensiasi sel). Perlakuan ZPT akan memberikan perbedaan dalam menginduksi kompetensi sel berdasarkan tingkat diferensiasi pada setiap jenis eksplan sehingga menghasilkan respon regenerasi yang berbeda (D’Onofrio dan Morini 2005).

Konsentrasi hormon di dalam sel tergantung pada level hormon endogen dan ZPT eksogen dimana keduanya dipengaruhi oleh proses penyerapan, translokasi dan pola metabolismnya. Respon masing-masing eksplan menunjukkan perbedaan yang disebabkan oleh kondisi biologis eksplan yang berbeda. Bagian eksplan yang terinisiasi membentuk kalus disebabkan oleh sel-sel yang kontak langsung dengan media terdorong menjadi meristematik dan aktif pembelahan (George dan Sherrington 1984)
Tabel 7 menunjukkan adanya pengaruh yang sangat nyata dari ZPT dan sumber eksplan serta interaksi keduanya terhadap persentase jumlah eksplan yang membentuk kalus. Eksplan yang ditanam pada media kontrol tidak satupun yang membentuk kalus. Media yang mampu menginduksi pertumbuhan kalus seluruhnya (100%) adalah media MS dengan penambahan BAP 5.0 ppm + 2.4-D 0.1 ppm untuk eksplan daun dan BAP 5.0 ppm + 2.4-D 0.5 ppm untuk eksplan batang.

<table>
<thead>
<tr>
<th>Perlakuan ZPT (ppm)</th>
<th>Jenis eksplan</th>
<th>Jumlah eksplan berkalus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daun</td>
<td>Batang</td>
</tr>
<tr>
<td>Kontrol (media MS tanpa ZPT)</td>
<td>0.00 e</td>
<td>0.00 e</td>
</tr>
<tr>
<td>BAP 5 + 2.4-D 0.1</td>
<td>100.00 a</td>
<td>94.43 ab</td>
</tr>
<tr>
<td>BAP 5 + 2.4-D 0.5</td>
<td>83.33 abc</td>
<td>100.00 a</td>
</tr>
<tr>
<td>BAP 5 + 2.4-D 1.0</td>
<td>91.67 ab</td>
<td>91.67 ab</td>
</tr>
<tr>
<td>BAP 5 + NAA 0.1</td>
<td>50.00 d</td>
<td>95.83 ab</td>
</tr>
<tr>
<td>BAP 5 + NAA 0.5</td>
<td>94.43 ab</td>
<td>75.00 bc</td>
</tr>
<tr>
<td>BAP 5 + NAA 1.0</td>
<td>66.67 cd</td>
<td>94.43 ab</td>
</tr>
</tbody>
</table>

Keterangan: MST = minggu setelah tanam
Angka yang diikuti huruf yang sama pada baris dan kolom pada masing-masing peubah tidak berbeda nyata pada DMRT dengan α=5%

Eksplan daun pada perlakuan BAP 5.0 ppm + 2.4-D 0.1 ppm dan eksplan batang pada perlakuan BAP 5.0 ppm + 2.4-D 0.5 ppm dapat menumbuhkan kalus pada seluruh eksplan (100%). Pada konsentrasi yang lebih tinggi, terjadi penurunan dalam pembentukan kalus. Hal ini menunjukkan bahwa dalam pembentukan kalus, aplikasi auksin konsentrasi rendah bersinergi dengan auksin endogen pada masing-masing eksplan, yaitu IAA dimana senyawa ini di dalam daun diduga lebih tinggi daripada batang. Oleh sebab itu, konsentrasi 2.4-D eksogen yang diperlukan pada eksplan daun lebih rendah daripada eksplan batang. Al-Juboory et al. (1998) menyatakan bahwa penggunaan auksin konsentrasi rendah akan lebih baik dalam menginduksi kalus dibandingkan dengan konsentrasi tinggi. Pada konsentrasi tertentu, ZPT akan mempengaruhi pertumbuhan menjadi optimal, akan tetapi dapat menghabiskan pertumbuhan dan
perkembangan pada konsentrasii yang tinggi (Pierik 1987). Di lain pihak, penambahan 2.4-D 0.1 ppm pada eksplan batang menyebabkan pembentukan kalus tidak maksimal diduga pada konsentrasi ini belum tercapai keseimbangan antara auksin dengan sitokinin untuk menginduksi kalus.

Secara keseluruhan, kombinasi 2.4-D atau NAA dengan BAP dalam penelitian ini tidak memberikan perbedaan yang nyata terhadap semua peubah yang diamati (waktu muncul kalus, persentase eksplan yang membentuk kalus dan bobot kalus). Penambahan NAA atau 2.4-D pada media yang mengandung BAP dapat menstimulasi pertumbuhan kalus tanaman Euphorbia esula (Xu et al. 2008). Meskipun demikian, terlihat bahwa penambahan 2.4-D memiliki kecenderungan lebih dapat memacu eksplan untuk menumbuhkan kalus sehingga rataan persentase eksplan yang membentuk kalus lebih besar daripada perlakuan dengan NAA. Auksin 2.4-D merupakan salah satu jenis ZPT yang sangat efektif dalam menginduksi pembentukan kalus (George dan Sherrington 1984). Pada dosis yang tepat, 2.4-D dapat menghasilkan pembelahan sel terus-menerus sehingga terbentuk sekumpulan sel yang tidak berdiferensiasi yang disebut kalus (Yunita dan Lestari 2008). Dalam penelitian ini, sinergi auksin 2.4-D dengan sitokinin BAP terlihat lebih baik pengaruhnya daripada NAA karena pada semua peubah pengamatan tampak bahwa penambahan 2.4-D cenderung memberikan hasil yang lebih tinggi daripada NAA pada semua konsentrasi.

Pada semua perlakuan, kalus yang dihasilkan memiliki tekstur kompak dan mengalami hiperhidrisitas dengan warna putih hingga kekuningan. Fenomena hiperhidrisitas terjadi akibat adanya gangguan rigiditas dinding sel-sel parenkim
Selain itu, pada kalus dari media yang mengandung NAA juga tumbuh akar sedangkan yang dari 2.4-D tidak (Gambar 14). Hal ini serupa dengan yang dikemukakan oleh Hutagaol (2006) bahwa eksplan yang ditanam dengan penambahan NAA pada umumnya membentuk kalus dan menunjukkan adanya pembentukan akar yang berambut halus. Peningkatan produksi akar diduga karena degradasi NAA yang lebih lambat karena penggelapan (Lo 1997).

Senyawa alkaloid yang dianalisis dari tanaman jeruju yang dilakukan oleh tim penelitian dari Farmasi Fakultas MIPA Unlam berasal dari pucuk, daun dan batang. Akar tanaman ini tidak digunakan karena berdasarkan kajian etnobotani yang telah dilakukan, masyarakat setempat yang memanfaatkan tanaman ini sebagai obat malaria hanya menggunakan bagian tanaman di atas tanah. Hal ini menyebabkan pertumbuhan akar pada kalus dalam penelitian ini tidak diharapkan.

Gambar 14 Representasi kalus yang berakar dari media dengan penambahan NAA (a) dan kalus yang berwarna kehijauan (b).

Warna dan tekstur kalus yang dihasilkan dari media yang mengandung jenis auksin yang sama pada eksplan daun memiliki kesamaan dengan yang tumbuh dari eksplan batang. Beberapa kalus yang selama masa induksi diinkubasi dalam keadaan terang memiliki bagian yang berwarna hijau. Hal ini terjadi pada semua konsentrasi auksin yang diuji (Gambar 14). Pola yang sama juga terjadi pada daun dan bagian batang tanaman *Lathyrus sativus* yang menginduksi campuran kalus yang kehijauan, kecoklatan dan kekuningan dengan tekstur yang

Induksi Akumulasi Alkaloid Total

Beberapa cara untuk meningkatkan akumulasi alkaloid dapat dilakukan melalui pendekatan respon terhadap elisitasi, penambahan prekursor dan peningkatan suplai karbohidrat (Rothe et al. 2001). Oleh sebab itu, induksi senyawa alkaloid yang dilakukan dalam penelitian ini menggunakan tiga jenis metode, yaitu penambahan asam salisilat sebagai elisitor, triptofan yang merupakan asam amino sebagai prekursor senyawa alkaloid indol dan sukrosa konsentrasi tinggi sebagai sumber karbohidrat. Semua perlakuan diaplikasikan pada kalus dan tunas.

Dalam percobaan ini, lama induksi untuk setiap jenis penginduksi tidak sama, dimana perlakuan asam salisilat 138 ppm diberikan selama dua hari sedangkan sukrosa 6% diberikan selama empat hari dan triptofan 100 ppm diberikan selama tujuh hari. Setiap perlakuan induksi akan dibandingkan dengan perlakuan kontrol (tanpa senyawa induksi) yang disesuaikan dengan lama waktu penginduksian akumulasi senyawa alkaloid. Terdapat tiga perlakuan yang digunakan sebagai kontrol, yaitu asam salisilat 0 ppm selama dua hari, sukrosa 3% selama empat hari dan triptofan 0 ppm selama tujuh hari.

Tabel 8 menunjukkan pertambahan bobot basah kalus yang berbeda nyata antara perlakuan asam salisilat dengan kontrol dua hari dan antar perlakuan triptofan dengan kontrol tujuh hari. Hal ini berbeda dengan perlakuan sukrosa yang tidak berbeda nyata dibandingkan kontrol empat hari. Pertambahan bobot basah kalus antara perlakuan asam salisilat dan triptofan berbeda nyata dengan kontrol masing-masing dimana pertambahan bobot dari perlakuan lebih kecil dibandingkan dengan kontrol. Nilai kadar air kalus yang diperoleh berdasarkan bobot basah dan bobot kering kalus menghasilkan kadar air yang tinggi, yaitu lebih dari 90% kecuali kalus dari perlakuan triptofan (Tabel 8).
Tabel 8 Rataan pertambahan bobot basah kalus hingga akhir waktu induksi alkaloid dan kadar air kalus

<table>
<thead>
<tr>
<th>Perlakuan induksi</th>
<th>Bobot awal kalus (g)</th>
<th>Bobot akhir kalus (g)</th>
<th>Pertambahan bobot kalus (g)</th>
<th>Kadar air kalus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asam salisilat 0 ppm (2 hari)</td>
<td>1.010</td>
<td>1.268</td>
<td>0.258</td>
<td>* 93.02</td>
</tr>
<tr>
<td>Asam salisilat 138 ppm (2 hari)</td>
<td>1.008</td>
<td>1.182</td>
<td>0.174</td>
<td>* 95.08</td>
</tr>
<tr>
<td>Sukrosa 3% (4 hari)</td>
<td>1.010</td>
<td>1.232</td>
<td>0.222</td>
<td>tn 94.24</td>
</tr>
<tr>
<td>Sukrosa 6% (4 hari)</td>
<td>1.010</td>
<td>1.240</td>
<td>0.230</td>
<td>tn 94.88</td>
</tr>
<tr>
<td>Triptofan 0 ppm (7 hari)</td>
<td>1.000</td>
<td>1.280</td>
<td>0.280</td>
<td>* 97.21</td>
</tr>
<tr>
<td>Triptofan 100 ppm (7 hari)</td>
<td>1.000</td>
<td>1.222</td>
<td>0.222</td>
<td>* 89.19</td>
</tr>
</tbody>
</table>

Keterangan:
* = berbeda nyata antar perlakuan dengan kontrol pada uji t dengan α=5%
tn = tidak berbeda nyata antar perlakuan dengan kontrol pada uji t dengan α=5%

Perkara yang diberikan pada tunas sama dengan yang diberikan pada kalus. Pengaruh beberapa perlakuan yang diberikan untuk menginduksi akumulasi alkaloid, yaitu asam salisilat, sukrosa konsentrasi tinggi dan triptofan dapat dilihat pada Tabel 9. Pertambahan bobot tunas hanya terlihat berbeda nyata pada perlakuan asam salisilat terhadap kontrol dua hari sedangkan untuk penambahan sukrosa dan triptofan, tidak berbeda nyata terhadap masing-masing kontrol. Sama halnya dengan kalus, pertambahan bobot basah tunas yang diinduksi dengan asam salisilat lebih kecil dibandingkan kontrol dua hari.

Tabel 9 Rataan bobot basah tunas hingga akhir waktu induksi alkaloid dan kadar air tunas

<table>
<thead>
<tr>
<th>Perlakuan induksi</th>
<th>Bobot awal tunas (g)</th>
<th>Bobot akhir tunas (g)</th>
<th>Pertambahan bobot tunas (g)</th>
<th>Kadar air tunas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asam salisilat 0 ppm (2 hari)</td>
<td>1.004</td>
<td>1.483</td>
<td>0.479</td>
<td>* 92.51</td>
</tr>
<tr>
<td>Asam salisilat 138 ppm (2 hari)</td>
<td>1.003</td>
<td>1.316</td>
<td>0.314</td>
<td>* 96.78</td>
</tr>
<tr>
<td>Sukrosa 3% (4 hari)</td>
<td>1.006</td>
<td>1.568</td>
<td>0.561</td>
<td>tn 94.06</td>
</tr>
<tr>
<td>Sukrosa 6% (4 hari)</td>
<td>1.005</td>
<td>1.496</td>
<td>0.491</td>
<td>tn 93.39</td>
</tr>
<tr>
<td>Triptofan 0 ppm (7 hari)</td>
<td>1.001</td>
<td>1.751</td>
<td>0.750</td>
<td>tn 96.64</td>
</tr>
<tr>
<td>Triptofan 100 ppm (7 hari)</td>
<td>1.003</td>
<td>1.591</td>
<td>0.589</td>
<td>tn 95.74</td>
</tr>
</tbody>
</table>

Keterangan:
* = berbeda nyata antar perlakuan dengan kontrol pada uji t dengan α=5%
tn = tidak berbeda nyata antar perlakuan dengan kontrol pada uji t dengan α=5%

Tabel 9 menunjukkan pengaruh senyawa asam salisilat, sukrosa konsentrasi tinggi dan asam amino triptofan terhadap bobot basah tunas, bobot...
Kering tunas dan kadar air tunas. Seperti halnya kalus, kadar air tunas juga tinggi, dimana pada seluruh perlakuan menghasilkan nilai kadar air tunas di atas 90%.

Berdasarkan hasil pengamatan, perlakuan asam salisilat 138 ppm berbeda nyata dengan perlakuan kontrol dua hari (tanpa penginduksi) terhadap pertambahan bobot kalus dan tunas, sukrosa 6% tidak berbeda nyata dengan perlakuan kontrol empat hari untuk kedua peubah tersebut sedangkan triptofan 100 ppm hanya berbeda nyata dengan perlakuan kontrol tujuh hari pada pertambahan bobot kalus. Perbedaan menunjukkan bahwa perlakuan induksi alfkaloid yang diberikan tidak dapat meningkatkan pertumbuhan sehingga pertambahan bobot kalus maupun tunas lebih kecil daripada kontrol masing-masing. Diduga sel lebih bekerja untuk memproduksi senyawa metabolit sekunder tentu sebagai akibat adanya penambahan senyawa induksi pada media.

Triptofan merupakan asam amino asal dari alkaloid seperti kuinin pada tanaman Cinchona succirubra yang berkhasiat sebagai anti malaria. Perlakuan triptofan diketahui dapat meningkatkan kandungan alkaloid pada tanaman Catharanthus roseus. Sintesis alkaloid meningkat dengan penambahan triptofan dan menyebabkan eksplan mengalami cekaman dari media dengan menghasilkan bobot kalus yang rendah (Pandiangan 2006).

Molekul elisitor, seperti asam salisilat berinteraksi dengan reseptor pada membran sel tanaman dan mengaktifkan gen spesifik melalui mekanisme yang kompleks, menghasilkan sintesis produk sekunder tanaman yang merupakan respon pertahanan dari tanaman dari cekaman (Kang et al. 2004). Penambahan asam salisilat menyebabkan senyawa tersebut terakumulasi dalam sel kalus dan tunas yang kemudian berinteraksi dengan reseptor dan memberikan sinyal pada nukleus untuk memproduksi senyawa alkaloid sebagai produk sekunder pertahanan. Asam salisilat merupakan salah satu hormon yang memiliki pengaruh dalam proses fisiologis dalam tanaman (Davies 2004). Pada konsentrasi yang rendah (50 µM), asam salisilat dapat memacu pertumbuhan namun pada konsentrasi yang tinggi (di atas 250 µM) dapat menghambat pertumbuhan (Kovacik et al. 2009).

Sukrosa merupakan sumber karbon yang umum digunakan dalam kultur in vitro. Konsentrasi optimum sukrosa untuk pertumbuhan pada hampir semua jenis
tanaman adalah sebesar 3% namun pada konsentrasi 4-10% sukrosa dapat menstimulasi sintesis alkaloid (Smith et al. 1993). Kelebihan sukrosa pada perlakuan sukrosa tinggi dapat digunakan sel sebagai sumber energi untuk membentuk senyawa metabolit sekunder yang secara alami diproduksi saat sel mencapai fase stasioner akhir (Wagih et al. 2008). Selain sebagai sumber karbon, sukrosa juga berperan sebagai pengatur osmotikum. Pada konsentrasi tinggi, sukrosa meningkatkan tekanan osmotik sel dan menurunkan potensial osmotik media sehingga mengganggu proses penyerapan unsur hara dan mengakibatkan pertumbuhan menjadi lebih terhambat (Jain et al. 2009).

<table>
<thead>
<tr>
<th>Perlakuan induksi</th>
<th>Metode Bouchardat</th>
<th>Metode Mayer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kalus</td>
<td>Tunas</td>
</tr>
<tr>
<td>Asam salisilat 0 ppm (2 hari)</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Asam salisilat 138 ppm (2 hari)</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Sukrosa 3% (4 hari)</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Sukrosa 6% (4 hari)</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Triptofan 0 ppm (7 hari)</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Triptofan 100 ppm (7 hari)</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Keterangan:
(-) : tidak terdeteksi; (+) : positif lemah; (++) : positif; (+++) : positif kuat; (++++) : positif sangat kuat

Analisis kandungan alkaloid total secara kualitatif ditunjukkan dengan terbentuknya endapan berwarna, yaitu putih terhadap reagen Bouchardat dan coklat pada reagen Mayer (Gambar 15). Hasil analisis yang telah dilakukan seperti yang terlihat pada Tabel 10. Kandungan alkaloid total baik dalam kalus maupun tunas pada semua perlakuan dan kontrol adalah sama, yaitu positif kuat terdeteksi adanya alkaloid. Dengan demikian, pertumbuhan sampai dengan minggu pertama inkubasi (tujuh hari) tidak memberikan pengaruh yang berbeda terhadap kandungan alkaloid total. Hal ini terlihat dari kandungan alkaloid secara kualitatif yang sama pada kalus dan tunas kontrol hari ke-2, 4 dan 7.
Gambar 15 Hasil analisis alkaloid secara kualitatif menggunakan reagen Bouchardat (a) dan reagen Mayer (b)

Perlaku induksi tidak menyebabkan perbedaan pada kadar air kalus dan tunas, dimana rataan kadar airnya tinggi, yaitu lebih dari 90%. Kadar air dalam massa kalus dan tunas sebagai bahan ekstraksi perlu diketahui. Hal ini berkaitan dengan penyiapan bahan yang akan diekstrak agar dapat memenuhi kebutuhan bobot kering minimal yang dibutuhkan dalam analisis senyawa alkaloid. Semakin tinggi kadar air maka semakin banyak pula massa kalus dan tunas yang diperlukan. Hal ini berarti tahap proliferasi menjadi tahapan penting dalam penyiapan kalus dan tunas yang mencukupi kebutuhan agar dapat dianalisis kandungan senyawanya.

Senyawa penginduksi juga tidak memberikan hasil yang berbeda terhadap analisis senyawa alkaloid total secara kualitatif. Hal ini disebabkan analisis alkaloid yang dilakukan masih bersifat kualitatif terhadap alkaloid total. Perubahan senyawa alkaloid akibat perlaku induksi dapat hanya terjadi pada senyawa alkaloid yang lebih spesifik seperti kalistegin pada tanaman *Atropa belladonna* namun secara keseluruhan, alkaloid tropan total yang terbentuk tetap (Rothe et al. 2001). Dalam penelitian Peebles (2008) diperoleh bahwa sintesis alkaloid indol ajmalisin dan vinblastin pada tanaman *Catharanthus roseus* berkorelasi negatif dimana apabila biosintesis ajmalisin meningkat maka produksi vinblastin menurun. Hal ini yang juga menyebabkan perubahan kandungan alkaloid secara total tidak berubah.

Sampai saat ini belum diketahui senyawa alkaloid spesifik yang memiliki peran sebagai senyawa antimalaria pada tanaman jeruju ini. Fraksinasi senyawa
alkaloid perlu dilakukan oleh tim penelitian yang terintegrasi dari bidang farmasi dan biokimia. Apabila senyawa spesifik yang berkhasiat obat diketahui maka upaya peningkatan kandungan senyawa biaktif dapat diukur secara kuantitatif. Perubahan kadar senyawa yang diukur secara kuantitatif dapat lebih terlihat jika dibandingkan dengan hasil analisis senyawa alkaloid total secara kualitatif.
SIMPULAN DAN SARAN

Simpulan

Berdasarkan hasil penelitian yang telah dilakukan, diperoleh beberapa kesimpulan sebagai berikut.

1. Induksi dan proliferasi tunas in vitro jeruju yang terbaik adalah menggunakan media MS dengan BAP 5.0 ppm berdasarkan peubah jumlah tunas per eksplan. Pucuk dan buku dapat digunakan sebagai sumber eksplan perbanyakan in vitro. Penambahan GA3 1 ppm dalam media elongasi meningkatkan panjang ruas batang namun menghasilkan tunas yang tidak vigor dan perakarannya terhambat sehingga media elongasi tunas in vitro jeruju yang terbaik adalah media MS ½.

2. Induksi kalus jeruju dapat diperoleh pada perlakuan media MS dengan BAP 5.0 ppm + 2.4-D 0.1 ppm berdasarkan peubah persentase eksplan berkalus. Eksplan daun lebih baik daripada eksplan batang dalam menginduksi kalus berdasarkan peubah waktu muncul kalus dan bobot basah kalus.

3. Seluruh metode induksi yang digunakan untuk akumulasi alkaloid total belum dapat meningkatkan alkaloid total secara kualitatif.

Saran

Diperlukan analisis senyawa spesifik yang diteliti oleh tim dari Farmasi Fakultas Pertanian Universitas Lambung Mangkurat agar hasil induksi akumulasi alkaloid dapat diukur secara kuantitatif.
DAFTAR PUSTAKA

LAMPIRAN
<table>
<thead>
<tr>
<th>Tahun</th>
<th>Banyaknya kasus</th>
<th>Korban meninggal dunia (jiwa)</th>
<th>Wilayah penyebaran (kabupaten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>800</td>
<td>5</td>
<td>Tanah Bumbu Hulu Sungai Selatan Hulu Sungai Tengah Tabalong Banjar</td>
</tr>
<tr>
<td>2007</td>
<td>747</td>
<td>14</td>
<td>Hulu Sungai Selatan Banjar Barito Kuala</td>
</tr>
<tr>
<td>2008</td>
<td>1167</td>
<td>11</td>
<td>Hulu Sungai Selatan Barito Kuala Hulu Sungai Utara Tapin</td>
</tr>
<tr>
<td>2009</td>
<td>3000</td>
<td>13</td>
<td>Hulu Sungai Selatan Hulu Sungai Utara Tanah Bumbu Tabalong Banjarbaru Tanah Laut Kota Baru</td>
</tr>
</tbody>
</table>

Sumber: DinKes KalSel 2009
Lampiran 2 Lokasi pengambilan sumber tanaman (lingkaran merah)
Lampiran 4 Komposisi hara dalam media Murashige and Skoog

<table>
<thead>
<tr>
<th>Stok</th>
<th>Bahan</th>
<th>Konsentrasi per liter (mg)</th>
<th>Kepekatan larutan stok</th>
<th>Larutan stok 1 l (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NH$_4$NO$_3$</td>
<td>1 650.000</td>
<td>50 x</td>
<td>82.500</td>
</tr>
<tr>
<td>B</td>
<td>KNO$_3$</td>
<td>1 900.000</td>
<td>50 x</td>
<td>95.000</td>
</tr>
<tr>
<td>C</td>
<td>KH$_2$PO$_4$ 170.000</td>
<td>6.200</td>
<td>200 x</td>
<td>34.000</td>
</tr>
<tr>
<td></td>
<td>H$_3$BO$_3$ 6.200</td>
<td>0.830</td>
<td></td>
<td>1.240</td>
</tr>
<tr>
<td></td>
<td>KI 8.30</td>
<td>0.250</td>
<td></td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>Na$_2$MoO$_4$.2H$_2$O 17.000</td>
<td>0.025</td>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>CoCl$_2$.6H$_2$O 200 x 34.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>CaCl$_2$.2H$_2$O 440.000</td>
<td>200 x</td>
<td></td>
<td>88.000</td>
</tr>
<tr>
<td>E</td>
<td>MgSO$_4$.7H$_2$O 370.000</td>
<td>22.300</td>
<td>200 x</td>
<td>74.000</td>
</tr>
<tr>
<td></td>
<td>MnSO$_4$.4H$_2$O 22.300</td>
<td>0.025</td>
<td></td>
<td>4.460</td>
</tr>
<tr>
<td></td>
<td>CuSO$_4$.7H$_2$O 0.025</td>
<td></td>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td>F</td>
<td>Na$_2$EDTA.2H$_2$O 37.300</td>
<td>27.800</td>
<td>100 x</td>
<td>3.730</td>
</tr>
<tr>
<td></td>
<td>FeSO$_4$.7H$_2$O 27.800</td>
<td></td>
<td></td>
<td>2.780</td>
</tr>
<tr>
<td>G</td>
<td>Myo-inositol 100.000</td>
<td>100 x</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Thiamine 0.100</td>
<td>100 x</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nicotine 0.500</td>
<td></td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piridoxine 0.500</td>
<td></td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glycine 2.000</td>
<td></td>
<td>0.200</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 6 Cara membuat reagen Mayer dan Bouchardat

- **Mayer LP**: 60 ml HgCl₂ 2.266% b/v ditambah dengan 10 ml KI 50% b/v kemudian ditera dengan air hingga 100 ml
- **Bouchardat LP**: 2 gr I₂ dan 4 g KI dilarutkan dalam 100 ml air (DepKes RI).