III KERANGKA PEMIKIRAN

Kerangka Pemikiran Teoritis

Menurut Assauri (2004), pengertian produksi adalah kegiatan yang
mengubah bahan-bahan masukan (input) menjadi keluaran (output), tercakup semua
aktivitas atau kegiatan yang menghasilkan barang atau jasa, serta kegiatan-
kegiatan lain yang mendukung atau menunjang usaha untuk menghasilkan produk
barang atau jasa yang diinginkan.

Produksi merupakan gambaran atas suatu hubungan antara masukan dan
keluaran yang dinilai dalam bentuk fungsi produksi. Dalam hal ini, masukan
bahan-bahan yang akan diolah untuk menghasilkan suatu produk atau
faktor-faktor yang mempengaruhi proses produksi. Keluaran merupakan produk
dari suatu proses produksi.

Produksi dapat dibedakan menjadi empat berdasarkan sifat proses
produksi (Swastha dan Sukotjo, 2000) yaitu:

1) Proses ekstraktif

Proses yang mengambil bahan-bahan langsung dari alam, biasanya terdapat
dalam industri proses produksi dasar. Contoh: proses pengembangan batu
basa dan perkebunan minyak.

2) Proses analitik

Proses memisahkan dari suatu bahan menjadi beberapa macam barang yang
hampir memperlihat bentuk dan jenis aslinya. Contoh: penyulingan minyak.
2) Pola trend, muncul ketika observasi data menaik atau menurun pada periode yang panjang. Pola musiman, muncul apabila observasi data dipengaruhi oleh faktor musiman. Komponen musiman mengacu pada suatu pola perubahan yang terjadi dengan sendirinya dari tahun ke tahun.

Pola siklis, muncul ketika observasi data memperlihatkan kenaikan dan penurunan pada periode yang tidak tetap. Komponen siklis mirip fluktuasi dalam waktu terhadap trend yang sering dipengaruhi oleh kondisi ekonomi.

Metode Peramalan

Metode kualitatif
Metode kualitatif dapat digunakan jika data historis maupun empiris dari variabel yang diramal tidak ada, tidak cukup atau kurang dapat dipercaya. Hasil ramalan bersifat intuisi, pendapat, pengetahuan dan pengalaman dari penyusunnya.

2) Metode kuantitatif
membantu tiga kondisi, yaitu: 1) Adanya data historis, 2) Informasi tersebut dapat dikuantifikasikan dalam bentuk data numerik, 3) Dapat diasumsikan bahwa pola data masa lalu akan berkelanjutan pada masa yang akan datang (asumsi kontinuitas).

Metode Peramalan Kuantitatif Model Time Series

Model *time series* merupakan suatu teknik peramalan yang didasarkan pada analisis periode atau nilai masa lalu suatu variabel yang disusun menurut urutan waktu. Model ini memiliki beberapa kelebihan, yaitu penggunaannya cepat, serta biaya yang murah.

Identifikasi dan pemahaman pola historis data sangat diperlukan di dalam menggunakan teknik peramalan yang akan digunakan. Menurut Hanke, *et. al.*, (2003), untuk memilih teknik peramalan yang sesuai dengan benar, peramalan harus dapat mengerjakan hal-hal berikut:

1. Menetapkan sifat dasar masalah peramalan
2. Menjelaskan sifat dasar data yang sedang diteliti
3. Mendeskripsikan kemampuan data dan keterbatasan potensial dari teknik-teknik peramalan yang kemungkinan sangat berguna
4. Mengembangkan sejumlah kriteria yang ditentukan terlebih dahulu sebagai dasar untuk memilih keputusan.

Berdasar keempat pola data yang mengacu pada deret waktu, terdapat beberapa teknik peramalan yang dapat dipertimbangkan untuk digunakan (Hanke, *et. al.*, 2003), yaitu sebagai berikut:

1. Teknik peramalan untuk data stasioner
Teknik-teknik yang perlu dipertimbangkan pada peramalan deret stasioner 1. Direksi dari metode naive, metode rata-rata sederhana, rata-rata bergerak, pemulihan eksponensial linier Holt sederhana, dan model rata-rata terintegrasi autoregresif (ARIMA) atau, model metode Box-jenkins.

Teknik peramalan untuk data dengan trend

Teknik yang perlu dipertimbangkan ketika melakukan peramalan deret ber-trend adalah pemulihan eksponensial linier Holt, regresi linier sederhana, regresi polinomial, model eksponensial, dan model rata-rata bergerak terintegrasi autoregresif (ARIMA) atau model Box-Jenkins.

Teknik peramalan untuk data dengan musiman
tak-teknik yang perlu dipertimbangkan ketika meramalkan deret musiman terdiri dari dekomposisi klasik, pemulihan eksponensial winter, dan model ARIMA (metode Box-Jenkins).

Teknik peramalan untuk data ber-siklis

tak-teknik yang perlu dipertimbangkan ketika meramalkan deret ber-siklis terdiri dari dekomposisi klasik, indikator ekonomi, model ekonometrik, regresi berganda, dan model ARIMA (metode Box-Jenkins).

Metode peramalan dengan model time series terdiri dari beberapa metode yang mengacu pada deret waktu. Metode-metode tersebut pada dasarnya memiliki maksud dan tujuan yang sama. Berikut beberapa metode pada model time series:

1) Metode Trend

Metode Trend menggambarkan pergerakan data yang meningkat atau menurun dalam jangka waktu yang panjang. Metode ini menggambarkan
hubungan antara periode dan variabel yang diramal dengan menggunakan analisis

2. Apabila pola data yang digunakan memiliki unsur musiman, maka

Kompren musiman dapat juga dicoba dalam metode ini.

Metode Naive

Metode naive didasarkan pada asumsi bahwa data pada periode terakhir

dalam beberapa hal baik untuk periode berikutnya. Peramalan dengan metode

naive berarti merujuk pada pengamatan terkini yang tersedia.

Penggunaan metode naive pada peramalan memiliki kelamahan, yaitu

memiliki kemampuan menangkap pola trend atau melihat data yang telah terjadi sejak periode waktu terakhir dan juga

atau sejalan dengan trend. Selain itu pada metode ini tidak ada penjelasan

mengenai latar belakang kaitan-kaitan kausal (sebab-akibat) yang menghasilkan

metode ini untuk dikembangkan, menyimpan data, dan menggunakan

(Arkobang, 2002).

Metode Rata-rata

Metode ini menggunakan suatu bentuk rata-rata tertimbang dari observasi

masa lalu dalam memuaskan fluktuasi jangka pendek. Asumsi dibelakang metode

ini adalah bahwa fluktuasi di masa lampau mewakili selisih acak dari suatu kurva

yang mulus. Kurva yang teridentifikasi akan dapat diproyeksikan ke masa depan

sehingga menghasilkan suatu ramalan (Hanke, et al., 2003).
a. Metode Rata-rata Sederhana (Simple Average)

Metode ini menggunakan rata-rata semua data historis yang relevan untuk periode yang akan datang. Metode rata-rata sederhana merupakan teknik yang tepat apabila gejolak yang membentuk deret waktu telah stabil dan lingkungan dimana deret-deret berada secara umum tidak berubah. Metode ini sebaiknya digunakan bila datanya bersifat stasioner, yaitu tidak mempunyai pola trend, musiman ataupun pola sistematis lainnya.

b. Metode Rata-rata Bergerak Sederhana (Simple Moving Average)

c. Metode Rata-rata Bergerak Ganda (Double Moving Average)

Hasil peramalan dengan Metode ini diperoleh dengan melakukan pengrata-rataan bergerak sebanyak dua kali (ganda), yaitu satu kelompok rata-rata bergerak dihitung dan kemudian kelompok kedua dihitung rata-rata bergerak hasil pada kelompok pertama.

d. Metode Pemulusan (Smoothing) Eksponensial

Menurut Aritonang (2002) metode pemulusan eksponensial merupakan peramalan yang diperlukan, dimulai dengan dilakukan atas ramalan berdasarkan pengalaman
terkini. yaitu melakukan penggabungan rata-rata (penghalusan) nilai dari serentetan data
lalu dengan cara menguranginya secara eksponensial. Hal itu dilakukan
tingkat tingkat memberikan bobot tertentu pada tiap data. Metode Pemulihan
Eksponensial terdiri dari:

Penghalusan Eksponensial tunggal (Single Exponential Smoothing)

Metode ini sangat baik diterapkan pada serial data yang memiliki pola
stasioner dan kemungkinan tidak efektif dalam menangani perubahan yang serial
dan dalam situasi di mana data memiliki komponen trend dan pola musiman. Hal ini diuji jika
diterapkan pada serial data yang memiliki trend, ramalan yang dibuat akan
bermengalir dibanding yang nilai aktual atau trend tersebut. Metode penghalusan
eksponensial tunggal dapat mengatasi masalah penyimpanan nilai-nilai historis
untuk variabel yang harus dilakukan pada metode rata-rata bergerak sederhana.
Metode ini mengurangi masalah penyimpanan data, karena tidak perlu lagi
menyimpan semua data historis, hanya pengamatan terakhir, ramalan terakhir dan
sebagainya yang harus disimpan.

Penghalusan Eksponensial Ganda (Double Exponential Smoothing)

Brown

Metode eksponensial ganda Brown digunakan untuk data deret waktu
yang memiliki komponen trend yang linier. Metode ini menetapkan bahwa
peramalan merupakan hasil perhitungan dua kali penghalusan. Penghalusan tahap
pertama tujuannya untuk menghilangkan sebagian dari random. Penghalusan tahap
dua tujuannya untuk menghilangkan trend.

Metode ini dapat digunakan untuk memodel trend deret waktu dan cara
perhitungannya lebih efisien bila dibandingkan dengan metode rata-rata bergerak.
ganda serta membutuhkan lebih sedikit data karena hanya satu parameter yang

dihitung. Selain itu, pencarian nilai parameter yang optimal tergolong

lebih sulit dibandingkan dengan metode eksponensial ganda (Double Exponential Smoothing) Holt.

Pada metode ini komponen trend dihaluskan secara terpisah dengan

mensimulasikan parameter yang berbeda. Metode ini digunakan untuk menghindari

masalah ada trend (konstan) yang dimiliki data, dimana keadaan tersebut

tidak lagi dianjutasi dengan metode eksponensial tunggal. Metode ini prinsipnya

sama dengan metode Brown, perbedaannya adalah pada metode Holt tidak

mensimulasikan rumus penghalusan berganda secara langsung, tetapi menghaluskan

nilai trend dengan konstanta berbeda dari konstanta yang digunakan pada serial

data.

Winter Multiplikatif

Metode ini merupakan pemulusan eksponensial yang disesuaikan untuk

trend dan variasi musiman. Metode ini merupakan perluasan dari teknik dua

parameter Holt atas musiman dengan menyatakan penghalusan ketiga, yaitu

parameter ketiga untuk menyesuaikan komponen musiman.

Pada metode ini, komponen trend, musiman dan keacakan diperhitungkan

dengan baik, yaitu melalui proses penghalusan eksponensial yang efisien. Selain

itu, parameter-parameternya dapat juga disesuaikan dengan keadaan terakhir,

yaitu melalui algoritma dengan perhitungan yang efisien. Namun demikian,

metode ini akan menjadi terlalu rumit bila komponen trend dan musimannya sulit

untuk diidentifikasi (Aritonang, 2002).
5) Metode Dekomposisi

Metode dekomposisi merupakan prosedur mengidentifikasi faktor-faktor komponen yang mempengaruhi setiap nilai pada deret. Komponen diidentifikasi terpisah, kemudian proyeksi setiap komponen tersebut dapat dikombinasikan yang menghasilkan nilai ramalan masa depan deret waktu (Gardner, et. al., 2003).

Menurut Hanke, et. al., (2003), Dekomposisi dapat dibedakan menjadi dua model, yaitu: 1) model komponen aditif, yaitu model yang memperlakukan nilai-nilai deret waktu sebagai jumlah dari komponen-komponen, 2) model komponen multiplikatif, yaitu model yang memperlakukan nilai-nilai deret waktu sebagai perkalian dari komponen-komponen.

6) Metode ARIMA (Box-Jenkins)

Model autoregressive integrated moving average (ARIMA) atau model gabungan auto-regresi dan rata-rata bergerak, adalah jenis model linier yang mampu mewakili deret waktu yang stasioner maupun non stasioner. Model ARIMA tidak mengikuti variabel bebas dalam pembentuknya dan sangat bergantung pada auto-korelasi data. Model ini menggunakan informasi dalam deret itu sendiri untuk menghasilkan ramalan.
Metode ARIMA biasa digunakan bila hanya sedikit yang diketahui dari variabel-variabel independen yang dapat digunakan untuk menjelaskan variabel utama (dependen). Metode ini digunakan juga bila datanya tersedia dalam jumlah cukup besar sehingga membentuk deret waktu yang cukup panjang (Arnold dan Douglas, 2002).

Pemilihan Metode Peramalan Model Time Series Terbaik.

Menurut Akridakis, et. al., (1999), terdapat enam faktor yang penting dalam melakukan pemilihan metode peramalan, yaitu: horison waktu, pola data, ketepatan, skala waktu, akurasi intuitif dan kesederhanaan serta kemudahan aplikasi, dan tersedia perangkat lunak komputer.

Akurasi peramalan tidak selalu berhubungan dengan kecanggihan atau kerumitan teknik yang dipakai. Meskipun banyak ukuran akurasi tetapi tidak semua ukuran bisa dipakai sebagai yang paling baik, karena setiap ukuran memiliki kelebihan dan kekurangan. Teknik yang memberikan nilai MSE paling kecil dapat dianggap sebagai yang paling baik dan itu berarti bahwa di masa lalu model dapat menirukan kenyataan secara baik.

3.2 Kerangka Demikian Operasional

Produksi merupakan faktor utama yang menghasilkan keuntungan dan memastikan kelangsungan perusahaan. Hal tersebut yang menuntut perusahaan untuk menetapkan target atau sasaran tertentu dalam produksi. Pencapaian sasaran tersebut dimulai dari tahap rumusan perencanaan yang nantinya akan diterapkan di dalam aktualisasi pelaksanaan.
Perencanaan yang baik didasarkan pada suatu prediksi terhadap kondisi perusahaan pada waktu yang akan datang. Prediksi atau peramalan ini disesuaikan dengan kondisi yang sedang berlaku dan yang telah berlalu. Peramalan sangat penting dilakukan di dalam proses perencanaan, hal ini dikarenakan peramalan digunakan sebagai bahan pertimbangan untuk mengambil keputusan yang tepat.

Peramalan produksi akan memberikan gambaran tentang kondisi produksi yang akan datang untuk masa yang akan datang, dengan demikian para pengambil keputusan dalam menentukan suatu keputusan yang akan diterapkan di dalam perusahaan kegiatan perusahaan dengan lebih baik.

PT Perkebunan Nusantara I (PTPN I) menggunakan peramalan produksi CPO untuk menyusun rencana kerja anggaran perusahaan (RKAP) setiap tahun. Dalam proses produksi CPO yang akan dilakukan perusahaan bertumpu pada RKAP yang telah disusun. Dengan demikian, peramalan pada produksi CPO yang baik dan akurat sangat dibutuhkan oleh perusahaan untuk mencapai tujuan yang telah ditetapkan.

Kondisi yang selalu memberikan dampak kurang baik bagi perusahaan PTPN I adalah adanya fluktuasi produksi CPO. Hal ini menyebabkan, peramalan yang dilakukan oleh pihak manajemen sering mengalami kasalahan, yaitu adanya ketidakakuratan sehingga perencanaan perusahaan yang disusun menjadi kurang baik. Selain itu, pihak manajemen perusahaan menggunakan metode tersendiri didalam melakukan peramalan untuk produk CPO. Hal ini yang nantinya diduga sebagai penyebab dari penyusunan perencanaan yang kurang baik.
Pada penelitian ini akan dilakukan pengujian pada metode peramalan kuantitatif terhadap data produksi CPO PTPN I. Metode Peramalan kuantitatif yang digunakan dalam penelitian ini adalah model time series. Metode ini memungkinkan keunggulan yaitu dapat meramal nilai suatu variabel untuk waktu yang akan datang tanpa melihat nilai variabel-variabel lain yang mempengaruhi variabel tersebut sehingga waktu, tenaga dan biaya untuk melakukan peramalan lebih cepat. Pemilihan metode tersebut didasarkan pada pola data yang tersedia.

Analisis pola data dimaksudkan untuk mengetahui faktor-faktor yang mempengaruhi, dan juga untuk melihat kecenderungan yang akan terjadi (naik atau turun) untuk waktu yang akan datang disesuaikan dengan perekonomian yang berlaku. Pola data akan diidentifikasi untuk menentukan model yang sesuai dengan karakteristik data. Identifikasi dilakukan dengan mengamati plot data dan nilai autokorelasinya.

Pemilihan model untuk menghasilkan peramalan yang akurat ditentukan dengan nilai Mean Square Error (MSE). Model yang menghasilkan nilai MSE paling kecil akan dipilih sebagai model time series terbaik/terakurat. Setelah diperoleh metode peramalan yang terbaik, kemudian metode tersebut akan dibandingkan dengan metode peramalan yang digunakan perusahaan. Jika dilakukan perbandingan, maka akan diperoleh metode peramalan yang secara keseluruhan, yang sesuai untuk digunakan dalam peramalan di PTPN I. Hasil dari penelitian ini akan berupa rekomendasi dan implikasi basis peramalan bagi perusahaan. Bagan peramalan akan dilakukan pada penelitian ini dapat dilihat pada...
Gambar 2. Kerangka Pemikiran Operasional

- Fluktuasi produksi CPO
- Peramalan perusahaan tidak akurat dan kurang efisien

Dibutuhkan peramalan produksi CPO yang akurat dan efisien untuk menyusun Rencana Kerja dan Anggaran Perusahaan (RKAP)

Analisis pola data produksi CPO

Peramalan Model Time Series
- Metode Trend
- Metode Naive
- Metode Rata-rata
- Metode Pemodelan Eksponensial
- Metode Dekomposisi
- Metode ARIMA (Box-Jenkins)

Pemilihan metode peramalan terakurat

Membandingkan akurasi metode peramalan terakurat dengan metode peramalan perusahaan

Rekomendasi:
- Model atau teknik peramalan terakurat
- Hasil ramalan satu tahun ke depan

Implikasi hasil ramalan dengan metode terakurat bagi perusahaan