ANALISIS HUBUNGAN ANTARA PEUBAH EKONOMI DENGAN Kesejahteraan Menggunakan Metode PLS (PARTIAL LEAST SQUARES)

SRI PINGIT WULANDARI

PROGRAM PASCASARJANA INSTITUT PERTANIAN BOGOR

2000
Katakanlah:

Wahai Tuhan yang mempunyai kerajaan (kekuasaan), Engkau berikan kerajaan kepada orang yang Engkau kehendaki, dan Engkau cabut kerajaan dari orang yang Engkau kehendaki. Engkau muliakan orang yang Engkau kehendaki, dan Engkau hinakan orang yang Engkau kehendaki. Ditangan Engkaulah segala kebajikan. Sesungguhnya Engkau Maha Kuasa atas segala sesuatu.
(QS 3:26)
RINGKASAN

SRI PINGIT WULANDARI. Analisis Hubungan antara Peubah Ekonomi dengan Kesejahteraan Menggunakan Metode PLS (Partial Least Squares). (Dibawah bimbingan AJI HAMIM WIGENA, AUNUDDIN, dan BUDI SUSETYO)

Metode Partial Least Squares (PLS) selain untuk mengatasi kolinearitas dapat juga digunakan untuk menganalisis hubungan suatu objek yang terdiri atas dua kelompok peubah, dimana masing-masing kelompok peubah saling berkorelasi. Dalam hal ini jika digunakan pendekatan Analisis Korelasi Kanonik (AKK) akan menghasilkan koefisien kanonik yang tidak stabil.

Metode AKK mengatasi kolinearitas melalui Analisis Komponen Utama (AKU) sedangkan metode PLS mengatasi kolinearitas secara langsung. Hasil metode PLS menunjukkan bahwa tanda maupun besaran koefisien korelasi dan skor tidak berubah. Metode AKK memberikan hasil yang berbeda. Selain itu, proporsi keragaman peubah asal yang dihasilkan metode PLS lebih tinggi dari proporsi keragaman peubah asal yang dihasilkan oleh metode AKK.
peubah-peubah berikut. Semakin rendah jumlah pekerja sektor pertanian \((X_4)\), jumlah pekerja keluarga \((X_6)\), jumlah PDRB sektor pertanian \((X_2)\) semakin rendah pula jumlah RT dengan BBM minyak tanah/kayu \((Y_6)\), angka kelahiran total \((Y_{13})\), beban tanggungan anak \((Y_{12})\), angka kematian bayi \((Y_{10})\) dan semakin tinggi jumlah pekerja sektor lain \((X_3)\), jumlah pekerja sektor industri \((X_3)\) suatu propinsi, maka akan semakin tinggi pula jumlah penduduk dengan pendidikan SLA/PT \((Y_8)\), jumlah RT yang memiliki TV/video/LD \((Y_3)\), jumlah RT dengan penerangan listrik/petromak \((Y_2)\), jumlah penduduk dengan pengeluaran di atas UMR per kapita per bulan \((Y_1)\), angka harapan hidup waktu lahir \((Y_{11})\).
ANALISIS HUBUNGAN ANTARA PEubah Ekonomi
DENGAN KESEJAHTERAAN MENGGUNAKAN METODE
PLS (PARTIAL LEAST SQUARES)

Oleh
SRI PINGIT WULANDARI
STK 96154

Tesis
sebagai salah satu syarat untuk memperoleh gelar
Magister Sains
pada
Program Pascasarjana Institut Pertanian Bogor

PROGRAM PASCASARJANA
INSTITUT PERTANIAN BOGOR
2000
Judul Tesis : ANALISIS HUBUNGAN ANTARA PEUBAH EKONOMI DENGAN KESJAHTERAAN MENGGUNAKAN METODE PLS (PARTIAL LEAST SQUARES)

Nama : Sri Pingit Wulandari
Nomor Pokok : 96154
Program Studi : STATISTIKA

Menyetujui :
1. Komisi Pembimbing

Ir. H. Aji Hamim Wigena, MSc
(Ketua)

Dr. Ir. Aunuddin
(Anggota)

Dr. Ir. Budi Susetyo, MS
(Anggota)

2. Ketua Program Studi

Dr. Ir. Aunuddin

3. Direktur Program Pascasarjana

Prof. Dr. Ir. H. Sjafrida Manuwoto

Tanggal Lulus : 26 Mei 2000
RIWAYAT HIDUP

Penulis menikah pada tanggal 14 Februari 1988 dengan Bambang Irwanto dan hingga kini telah dikenal seorang puteri dan dua orang putera, yakni Sandy, Ayu dan Dimas.

KATA PENGANTAR

Alhamdulillah, dengan memanjatkan puji syukur kehadirat Allah SWT yang telah melimpahkan rahmat dan karunia-Nya, sehingga penulis dapat menyelesaikan penyusunan tesis ini. Penyusunan tesis ini sebagai salah syarat untuk memperoleh gelar Magister Sains pada Program Studi Statistika, Program Pascasarjana-IPB.

Penulis mengucapkan terima kasih kepada Ir. H. Aji Hamim Wigena, MSc sebagai ketua komisi pembimbing, Dr. Ir. Aunuddin, dan Dr. Ir. Budi Susetyo, MS sebagai anggota komisi pembimbing yang telah memberikan arahan dan bimbingan kepada penulis selama penyusunan tesis ini. Terima kasih yang tak terhingga penulis haturkan buat Ir. Harmini, MS yang telah memberikan ijin penggunaan data dan literaturnya. Tak terlupakan rekan-rekan dari ITS yang ada di Bogor atas segala kebaikannya serta rekan-rekan Angkatan ’96 diantaranya Kudus, Aan, Ridwan dll. Kepada om Dwi dan tante Ipung serta seluruh keluarga di Surabaya atas segala dorongan dan bantuanannya. Terakhir kepada Suami dan anak-anakku tercipta, terima kasih atas do'a dan pengorbanannya.

Penulis menyadari sepenuhnya bahwa tesis ini masih jauh dari sempurna, oleh karena itu saran dan kritik dari pembaca sangat penulis harapkan.

Bogor, Mei 2000

Penulis
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAR TABEL</td>
<td>vii</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>viii</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>viii</td>
</tr>
<tr>
<td>I. PENDAHULUAN</td>
<td></td>
</tr>
<tr>
<td>1.1 Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Tujuan Penelitian</td>
<td>3</td>
</tr>
<tr>
<td>II. TINJAUAN PUSTAKA</td>
<td></td>
</tr>
<tr>
<td>2.1 Regresi Linear Ganda (RLG) dengan Peubah Respon Tunggal</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Regresi Linear Ganda (RLG) dengan Peubah Respon Ganda</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Analisis Komponen Utama (AKU)</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Regresi Komponen Utama (RKU)</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Partial Least Square (PLS)</td>
<td>9</td>
</tr>
<tr>
<td>2.5.1 Model PLS</td>
<td>9</td>
</tr>
<tr>
<td>2.5.2 Algoritma PLS</td>
<td>10</td>
</tr>
<tr>
<td>2.5.3 Penentuan Banyak Komponen</td>
<td>13</td>
</tr>
<tr>
<td>III. METODE PENELITIAN</td>
<td></td>
</tr>
<tr>
<td>3.1 Data</td>
<td>15</td>
</tr>
<tr>
<td>3.2 Metodologi</td>
<td>16</td>
</tr>
<tr>
<td>IV. HASIL DAN PEMBAHASAN</td>
<td></td>
</tr>
<tr>
<td>4.1 Koefisien Korelasi antar Peubah EK</td>
<td>19</td>
</tr>
</tbody>
</table>
4.2 Koefisien Korelasi antar Peubah KESRA .. 20
4.3 Koefisien Korelasi antara Peubah EK dengan Peubah KESRA 21
4.4 Pembentukan Peubah Baru dengan Metode PLS 22
4.5 Pembentukan Peubah Baru dengan Metode AKK 23
4.6 Penentuan Jumlah Komponen ... 24
4.7 Vektor Pembobot (Loading) ... 25
4.8 Vektor Skor (Skor Komponen) .. 27
4.9 Koefisien Korelasi antar Peubah Baru .. 28
4.10 Koefisien Korelasi antara Peubah Baru dengan Peubah EK 28
4.11 Koefisien Korelasi antara Peubah Baru dengan Peubah KESRA 30
4.12 Analisis Procrustes ... 31
4.13 Pembahasan .. 32
V. KESIMPULAN DAN SARAN .. 35
5.1 Kesimpulan .. 35
5.2 Saran ... 36
DAFTAR PUSTAKA .. 37
LAMPIRAN .. 39
<table>
<thead>
<tr>
<th>No.</th>
<th>Judul Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Koefisien Korelasi antar Peubah EK</td>
<td>20</td>
</tr>
<tr>
<td>2.</td>
<td>Koefisien Korelasi antar Peubah KESRA</td>
<td>20</td>
</tr>
<tr>
<td>3.</td>
<td>Koefisien Korelasi antara Peubah EK dengan Peubah KESRA</td>
<td>21</td>
</tr>
<tr>
<td>4.</td>
<td>Banyaknya Komponen Hasil Metode PLS</td>
<td>22</td>
</tr>
<tr>
<td>5.</td>
<td>Banyaknya Komponen Hasil Metode AKK</td>
<td>23</td>
</tr>
<tr>
<td>6.</td>
<td>Nilai Pembobot Dua Peubah Baru EK Hasil Metode PLS dan Metode AKK</td>
<td>26</td>
</tr>
<tr>
<td>7.</td>
<td>Nilai Pembobot Dua Peubah Baru KESRA Hasil Metode PLS dan Metode AKK</td>
<td>27</td>
</tr>
<tr>
<td>8.</td>
<td>Koefisien Korelasi Dua Peubah Baru dari EK dan KESRA</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Hasil Metode PLS dan Metode AKK</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Koefisien Korelasi antara Peubah EK dengan Dua Peubah Barunya</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Berdasarkan Metode PLS dan Metode AKK</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Koefisien Korelasi antara Peubah KESRA dengan Dua Peubah Barunya</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Berdasarkan Metode PLS dan Metode AKK</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Nilai R² antara Data Asal (EK dan KESRA) dengan Matriks Skor</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Peubah Baru Berdasarkan Metode PLS dan Metode AKK</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Peubah-Peubah Penting dari Kelompok Peubah EK dan Kelompok</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Peubah KESRA Berdasarkan Metode PLS dan Metode AKK</td>
<td></td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

1. AKU untuk kasus dua peubah dan skor proyeksiinya 7
2. Hubungan internal ... 10
3. $\|F_a\|$ dan banyaknya komponen .. 14
4. PRESS dan banyaknya komponen ... 14

DAFTAR LAMPIRAN

1. Data Peubah Ekonomi ... 40
2. Data Peubah Kesejahteraan ... 41
3. Skor Dua Peubah Baru Pertama EK untuk Setiap Propinsi dengan Metode PLS dan Metode AKK .. 42
4. Skor Dua Peubah Baru Pertama KESRA untuk Setiap Propinsi dengan Metode PLS dan Metode AKK ... 43
I. PENDAHULUAN

1.1 Latar Belakang

Dalam kehidupan sehari-hari, seringkali kelompok beberapa peubah penjelas mempengaruhi kelompok peubah respon yang antar peubah respon tersebut saling berkorelasi. Model hubungan antara kedua kelompok peubah tersebut diupayakan untuk pendugaan nilai peubah respon ganda berdasarkan informasi pada peubah-peubah penjelas yang tersedia. Hal ini dapat terjadi dalam berbagai bidang yaitu bidang pendidikan, pertanian, sosial, kesehatan, ekonomi, industri dan sebagainya.

Pendekatan yang telah dilakukan untuk pembuatan model hubungan tersebut adalah melalui Regresi Linear Ganda (RLG). Tobias (1995) menyatakan bahwa RLG merupakan cara terbaik untuk menyajikan data menjadi informasi jika : (1) jumlah peubah penjelas relatif sedikit, (2) tidak ada kolinearitas antar peubah penjelas, dan (3) peubah penjelas berhubungan erat dengan peubah respon. Tetapi jika salah satu kriteria diatas tidak terpenuhi, RLG menjadi tidak efisien dan tidak tepat. Selain itu, hal lain yang sering menjadi masalah dalam RLG adalah harus terpenuhinya asumsi.

Menurut Tobias (1995), metode PLS merupakan metode pemodelan lunak (soft modelling), dimana : (1) bentuk fungsional yang menghubungkan dua jenis
peubah tidak diketahui, (2) tidak memerlukan asumsi yang sangat ketat, dan (3) aplikasi metode lebih ditekankan untuk pendugaan peubah respon daripada bentuk modelnya. Model dugaan yang eksplisit tidak terlalu penting, namun ketepatan kedua kriteria berikut dipenuhi, yakni kesesuaian model dugaan dengan seluruh data yang ada dan kesesuaian model dengan data baru (validasi), sehingga metode PLS kurang tepat digunakan dalam menyeleksi peubah penjelas yang mempengaruhi peubah respon. Metode ini dapat digunakan untuk jumlah peubah penjelas yang lebih banyak dari jumlah pengamatan atau antar kelompok peubah penjelas X dan antar kelompok peubah respon Y saling berkorelasi.

Ruang lingkup yang luas dan "keluwasan" dari pendekatan metode PLS dicerminkan oleh banyaknya variasi pemodelan PLS yang ditunjukkan dalam model hubungan internal maupun eksternal yang bersifat linear ataupun non linear dan tidak diketahui bentuknya. Metode ini bisa menangani data berskala rasio, interval, ordinal maupun kategorik (Wold, 1982).

1.2 Tujuan Penelitian

Tujuan penelitian adalah menerapkan metode PLS untuk analisis hubungan dua kelompok peubah dan perbandingannya dengan metode AKK dalam hal efektifitas menangani kolinearitas, kesesuaian tanda koefisien korelasi dengan skor dan proporsi keragaman peubah asal yang dapat diterangkan oleh peubah barunya.
II. TINJAUAN PUSTAKA

2.1 Regresi Linear Ganda (RLG) dengan Peubah Respon Tunggal

Permasalahan model RLG biasa melibatkan sebuah objek yang diamati pada m peubah penjelas \(x_j \) \((j=1,...,m) \) dan peubah respon tunggal \(y \). Tujuan dari model RLG adalah untuk menentukan hubungan linear antara peubah penjelas dengan peubah respon. Model hubungan ini dapat dinyatakan sebagai:

\[y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_m x_m + e \]

dimana:

\(y \) = peubah respon
\(x_j \) = peubah penjelas ke-\(j \), \(j = 1,2,...,m \)
\(b_j \) = koefisien regresi peubah penjelas ke-\(j \).
\(e \) = galat

atau:

\[y = x' b + e \]

dimana:

\(x' \) = vektor baris peubah penjelas
\(b \) = vektor kolom koefisien regresi peubah penjelas.

Persamaan (1) dan (2) menyatakan hubungan linear ganda untuk sebuah obyek.

Untuk \(n \) buah obyek, hubungan ini dapat dinyatakan sebagai:

\[y = Xb + e \]

dimana:

\(y \) = vektor kolom peubah respon
\[b = \text{vektor kolom koefisien regresi peubah penjelas} \]
\[X = \text{matriks peubah penjelas} \]

Geladi dan Kowalski (1986) mengemukakan bahwa penyelesaian persamaan (3) bergantung pada nilai \(n \) dan \(m \), yaitu:

1. Pada keadaan \(m > n \), nilai \(b \) tidak unik sehingga model RLG menjadi tidak tepat, karena banyak nilai \(b \) yang dapat memenuhi persamaan (3).

2. Pada keadaan \(m = n \), nilai \(b \) unik. Dalam penerapannya tidak biasa ditemui pada model RLG, walau demikian kondisi ini menghasilkan \(e = 0 \), \(e \) adalah vektor sisaan yang dalam kasus ini adalah vektor nol.

3. Pada keadaan \(m < n \), nilai \(b \) tidak unik. Namun demikian bisa diperoleh penyelesaian dengan cara meminimumkan panjang dari vektor sisaan \(e \) yang dikenal dengan nama metode kuadrat terkecil (MKT) dan memberikan penyelesaian berbentuk:

\[
b = (X'X)^{-1}X'y
\]

Persamaan (4) menjadi penyelesaian bagi model RLG dengan peubah respon tunggal untuk keadaan \(m < n \). Jika ada kasus kolinearitas maka invers matriks \(X'X \) tidak ada (Leon, 1990). Berikut ini secara singkat diuraikan perluasan RLG peubah respon tunggal menjadi RLG peubah respon ganda.

2.2 Regresi Linear Ganda (RLG) dengan Peubah Respon Ganda

Misalkan terdapat 2 jenis peubah respon \(y_1 \) dan \(y_2 \), maka diperoleh dua model RLG pada persamaan (3) dengan vektor koefisien \(b_1 \) dan \(b_2 \), yaitu:

\[
y_1 = Xb_1 + e_1
\]
\[y_2 = Xb_2 + e_2 \] \tag{6}

Atau persamaan (5) dan (6) dapat digabungkan menjadi:

\[Y = XB + E \] \tag{7}

dimana:

\[Y = (y_1, y_2)', \ B = (b_1, b_2)' \text{ dan } E = (e_1, e_2)' \]

Penyelesaian persamaan (7) menggunakan konsep yang sama dengan penyelesaian persamaan (3). Jika \(m > n \) atau invers matriks \(X'X \) tidak ada maka metode MKT tidak dapat digunakan, sehingga diperlukan pendekatan lain untuk mengatasi hal ini. Metode alternatif untuk menyelesaikan model RLG adalah metode AKU dan metode PLS. Berikut ini akan diuraikan mengenai kedua metode tersebut.

2.3 Analisis Komponen Utama (AKU)

Matriks \(X \) berpangkat \(r \) dapat didekomposisi menjadi penjumlahan \(r \) matriks \(M \) berpangkat satu:

\[X = M_1 + M_2 + \ldots + M_r \] \tag{8}

Matriks berpangkat satu, \(M_h \), bisa dituliskan sebagai perkalian dari dua vektor, vektor berdimensi \(n \) sebagai vektor skor \(t_h \) dan vektor berdimensi \(m \) sebagai vektor muatan (loading) \(p_h' \):

\[X = t_1p_1' + t_2p_2' + \ldots + t_rp_r' \] \tag{9}

atau \(X = TP' \) (\(P' \) tersusun atas vektor baris \(p_h' \) dan \(T \) tersusun atas vektor kolom \(t_h \)).

Untuk mengilustrasikan apa yang dimaksud \(t_h \) dan \(p_h' \), diberikan teladan dua peubah pada bidang berdimensi dua (Gambar 1). Komponen utama adalah garis yang memberikan hasil terbaik terhadap titik-titik data.
Gambar 1. AKU untuk kasus dua peubah dan skor proyekssinya.

Garis terbaik berarti jumlah kuadrat sisaan x_1 dan x_2 minimum (Gambar 1.a). Garis ini juga merupakan rataan dari kedua garis regresi, yang memanjang dari $-\infty$ sampai $+\infty$, sedangkan p_{ik} adalah vektor baris berukuran $l \times 2$, yang elemennya adalah p_1 dan p_2, merupakan cosinus sudut arah vektor atau proyeksi vektor satuan sepanjang komponen utama terhadap suatu absis dari plot. Vektor skor t_k adalah vektor kolom berukuran $n \times l$. Elemenannya adalah koordinat dari titik bersangkutan terhadap garis komponen utama (Gambar 1.b). Panjang dari p'_k diinginkan satu. Aturan serupa berlaku untuk dimensi lebih dari dua.

Salah satu metode yang dapat memproyeksikan kolom-kolom dan baris-baris X ke dimensi tunggal (tiap kolom dan baris X diwakili skalar) adalah metode Non Linear Iteratif Partial Least Squares (NIPALS). Menurut Geladi dan Kowalski (1986) metode NIPALS tidak menghitung semua komponen utama sekaligus tetapi satu demi satu. Algoritma ini menghitung t_1 dan p'_1 dari matriks X. Kemudian matriks X dikurangi dengan hasil perkalian dari $t_1 p'_1$, sehingga diperoleh sisaan E_1.
Sisaan ini bisa digunakan untuk menghitung \(t_2 \) dan \(p^*_2 \), dan seterusnya. Proses ini dapat ditulis seperti berikut:

\[
E_i = X - t_i p^*_i ; \quad E_2 = E_i - t_2 p^*_2 ; \ldots \\
E_h = E_{h-1} - t_h p^*_h ; \ldots ; \quad E_{m(x)} = 0 = E_{m-1(x)} - t_{m(x)} p^*_{m(x)} \\
\] \hspace{1cm} (10)

Algoritma NIPALS adalah sebagai berikut:

1. Ambil vektor \(x_j \) dari \(X \) dan sebut sebagai \(t_i = x_j \) \hspace{1cm} (11)
2. Hitung \(p'_i : p'_i = t'_iX/ t'_it_i \) \hspace{1cm} (12)
3. Normalkan \(p'_i \) dengan panjang satu:
 \[
p'_{i+1} = p'_i / \| p'_i \| \\
\quad \hspace{1cm} \text{(*)} \hspace{1cm} (13)
4. Hitung \(t_{i+1} = X p'_{i+1} / p'_{i+1} p_{i+1} \) \hspace{1cm} (14)
5. Jika \(t_i = t_{i+1} \), maka berhenti, selainnya kembali ke langkah 2 (i = 1, 2, 3, \ldots).

(Perhatikan bahwa setelah komponen utama pertama diperoleh, \(X \) pada langkah 2 dan 4 harus diganti dengan sisannya).

2.4 Regresi Komponen Utama (RKU)

RKU digunakan untuk mengatasi kolinearitas ganda yang sering dijumpai pada model RLG (khususnya jika \(m < n \)), baik yang respon tunggal maupun respon ganda, (lihat persamaan (3) dan (7)).

Matriks skor \(T \) adalah komponen utama hasil transformasi matriks data \(X \), dengan transformasi berdasarkan persamaan (9), yaitu:

\[
T = XP = TP'P = TL_n \\
\] \hspace{1cm} (15)

Sehingga rumusan model RLG pada persamaan (7) bisa dituliskan menjadi:
\[Y = TB + E \quad \text{penyelesaian} \quad \hat{\beta} = (T'T)^{-1}T'Y \quad \] (16)

Penyelesaian pada persamaan (16) diperoleh dengan menggunakan metode MKT dari peubah komponen utama, sehingga persamaan (7) dan persamaan (3) dapat diselesaikan. Peubah-peubah \(X \) diganti oleh peubah baru (komponen utama) yang memiliki sifat lebih baik (orthogonal) dan merentang dimensi ganda ruang matriks \(X \). Matriks kebalikan \(T'T \) tidak lagi menjadi masalah karena keortogonalan skor. RKU dapat menyelesaikan masalah kolinearitas (melalui jaminan matriks non singular) dengan dimensi yang lebih kecil (Jackson, 1991).

2.5 Partial Least Square (PLS)

Metode yang hampir sama dengan AKU adalah PLS. Pada AKU komponen utama dihitung masing-masing pada peubah-peubah \(X \) dan peubah-peubah \(Y \) secara terpisah, sedangkan pada PLS komponen utama disusun berdasarkan konsep NIPALS dengan cara dekomposisi nilai tunggal (Single Value Decomposition). Pada setiap iterasi dalam PLS keragaman peubah-peubah \(X \) dan keragaman peubah-peubah \(Y \) saling mempengaruhi, dimana struktur ragam kelompok peubah \(Y \) mempengaruhi kombinasi linear kelompok peubah \(X \) dan sebaliknya, struktur ragam kelompok peubah \(X \) mempengaruhi kombinasi linear kelompok peubah \(Y \) (Young, 1994).

2.5.1 Model PLS

Model PLS terdiri atas hubungan eksternal (outer) yaitu hubungan kelompok \(X \) dan kelompok \(Y \) secara individual, dan hubungan internal (inner) yaitu hubungan antara kedua kelompok (Jackson, 1991).
Hubungan eksternal untuk kelompok X adalah:

\[X = TP' + E = \sum t_h p'_h + E \] \hspace{1cm} (17)

dengan cara yang sama hubungan eksternal untuk kelompok Y adalah:

\[Y = UQ' + F* = \sum u_h q'_h + F* \] \hspace{1cm} (18)

Hubungan antara X dan Y terbaik diperoleh pada kondisi \(E = 0 \) dan \(||F*|| \) minimum. Hubungan tersebut bisa dilihat secara visual dengan menggambarkan antara skor kelompok Y(u) dengan skor kelompok X(t) untuk setiap komponen (Gambar 2). Model hubungan internal antara X dan Y adalah:

\[\hat{u}_h = b_h t_h \] \hspace{1cm} (19)

dengan \(b_h = u'_h t_h / t'_h t_h \). Vektor \(b_h \) memiliki kesamaan dengan koefisien regresi, \(b \), pada model RLG dan model RKU.

![Gambar 2. Hubungan internal](image)

2.5.2 Algoritma PLS

Geladi dan Kowalski (1986) mengemukakan bahwa seperti halnya metode NIPALS model pada persamaan (17) dan (18) bisa dinyatakan dalam bentuk
algoritma. Algoritma PLS untuk penghitungan komponen pada kedua kelompok
dilakukan secara terpisah, sehingga hubungan keduanya lemah.

Untuk kelompok X:
1. ambil \(t_0 \) = beberapa \(x_j \), \(t_i = t_0 \)
2. \(p'_i = t'_i X / t'_i t_i \)
3. \(p'_i+1 = p'_i / \| p'_i \| \)
4. \(t_{i+1} = X p_{i+1} / p'_{i+1} p_{i+1} \)
5. Jika \(t_i = t_{i+1} \), maka berhenti, selainnya kembali ke langkah 2 (i = 1, 2, 3, ...).

Untuk kelompok Y:
1. ambil \(u_0 \) = beberapa \(y_j \), \(u_i = u_0 \)
2. \(q'_i = u'_i Y / u'_i u_i \)
3. \(q'_i+1 = q'_i / \| q'_i \| \)
4. \(u_{i+1} = Y q_{i+1} / q'_{i+1} q_{i+1} \)
5. Jika \(u_i = u_{i+1} \), maka berhenti, selainnya kembali ke langkah 2 (i = 1, 2, 3, ...).

Hubungan kedua kelompok di atas akan lebih baik jika algoritma digabung dengan
mempertukarkan antara \(t \) dengan \(u \) pada langkah 2 untuk kelompok X dan Y agar
salah satu kelompok memperoleh informasi tentang kelompok lainnya, maka algoritma
menjadi:
1. ambil \(u_0 \) = beberapa \(y_j \), \(u_i = u_0 \)
2. \(p'_i = u'_i X / u'_i u_i \)
3. \(p'_i+1 = p'_i / \| p'_i \| \)
4. \(t_i = X p_{i+1} / p'_{i+1} p_{i+1} \)
5. \(q'_i = t'_i Y / t'_i t_i \)
6. $q_{i+1} = q_i / \| q_i \|

7. u_{i+1} = Yq_{i+1} / q_{i+1} q_{i+1}

8. Jika $t_{i-1} = t_i$, maka berhenti, selainnya kembali ke langkah 2 (i = 1, 2, 3, . . .).

Pada kasus kelompok Y data hanya ada satu peubah, langkah 5-8 bisa dihilangkan dengan memberi nilai $q=1$.

Algoritma ini umumnya sangat cepat konvergen dalam menghasilkan komponen bagi kelompok X dan Y. Untuk menghasilkan vektor skor t yang orthogonal, dilakukan iterasi tambahan setelah tercapai kekonvergenan pada algoritma di atas (Young, 1994).

9. $p_{i+1}^* = t_i^*X / t_i^*t_i$

10. $t_{i+1} = t_i \| p_{i+1}^* \|

Kemudian vektor skor t bisa digunakan untuk hubungan internal pada persamaan (19), dan sisaan bisa dihitung dari $E_i = X - t_i^*p_i$ dan $F_i^* = Y - u_iq_i$.

Secara umum dapat dituliskan:

$$E_h = E_{h-1} = t_{h} p_{h}^*$$ \hspace{1cm} $X = E_0$ \hspace{4cm} (20)

$$F_h^* = F_{h-1}^* - u_{h}q_{h}^*$$ \hspace{1cm} $Y = F_0$ \hspace{4cm} (21)

Pada hubungan eksternal untuk kelompok Y, u_h diganti dengan penduga $u_h = b_h t_h$ sehingga persamaan (21) menjadi hubungan campuran yang dapat ditulis:

$$F_h = F_{h-1} - b_{h}t_{h}q_{h}^*$$ \hspace{4cm} (22)

Hubungan campuran menjamin kemampuan penggunaan parameter model untuk menduga respon. Selanjutnya, karena pangkat matriks Y tidak menurun satu persatu untuk setiap komponen, proses dapat dilanjutkan sampai pangkat matriks X habis.
2.5.3 Penentuan Banyak Komponen

Jika model hubungan antara X dan Y bersifat linear, banyaknya komponen untuk menggambarkan model sama dengan dimensi model tersebut. Tetapi jika tak-linear, maka diperlukan tambahan komponen untuk menggambarkan ketaklinearan. Penentuan banyak komponen yang digunakan merupakan sifat penting dari model PLS.

Meskipun dimungkinkan untuk menghitung komponen PLS sebanyak pangkat matriks kelompok X, tetapi umumnya tidak semua komponen terpakai karena data yang diukur tidak pernah bebas galat dan beberapa komponen yang terakhir hanya menerangkan galat sehingga dapat menyebabkan kolinearitas. Ini berarti harus ada suatu kriteria penghentian proses. Salah satunya bisa ditemukan pada persamaan (22), jika panjang F_n minimum.

Gambar 3 memberikan plot $||F_n||$ terhadap banyaknya komponen. Pilihlah suatu batas dan berhenti ketika $||F_n||$ lebih rendah daripada batas tersebut. Cara lain adalah dengan melihat selisih antara nilai $||F_n||$ dan $||F_{n-1}||$ dan berhenti sebelum selisih ini lebih rendah dari suatu ukuran yang telah ditentukan sebelumnya. Gabungan dari penggunaan batas dan selisih ini umumnya lebih disukai (Geladi dan Kowalski, 1986).

Analisis ragam dengan uji F terhadap relasi internal bisa digunakan untuk validasi model. Dalam hal ini identik dengan uji F dalam regresi linear. Metode-metode di atas berguna dalam membangun model PLS. Jika pendugaan yang diinginkan maka banyaknya komponen ditentukan dengan statistik yang menilai akurasi pendugaan, yaitu PRESS (Prediction Residual Sum of Squares). Gambar 4
menampilkan teladan plot antara PRESS dan banyaknya komponen. Pilih banyak komponen yang memiliki PRESS terkecil karena memberikan kestabilan lebih tinggi terhadap model jika ada data amatan baru (Shao, 1993).

Lokasi dari nilai minimum tidak selalu terdefinisi dengan baik. Evaluasi terhadap banyaknya komponen analog dengan konsep pendeteksian, yaitu sinyal terlembah yang bisa dideteksi dalam keberadaan gangguan (Geladi dan Kowalski, 1986).

Gambar 3. ||F_n|| dan banyaknya komponen Gambar 4. PRESS dan banyaknya komponen
III. METODE PENELITIAN

3.1 Data

Data dalam penelitian ini diperoleh dari penelitian Harmini (1997), yang berasal dari Survei Penduduk Antar Sensus (SUPAS) dan Survei Sosial Ekonomi Nasional (SUSENAS) tahun 1995. Data terdiri dari kelompok peubah EK (X) dan kelompok peubah KESRA (Y), yang diamati pada 27 propinsi di Indonesia. Peubah-peubah tersebut sebagai berikut:

a. Peubah-peubah EK adalah:

\[X_1 = \text{Persentase Produk Domestik Regional Bruto (PDRB) sektor industri} \]
\[X_2 = \text{Persentase PDRB sektor pertanian} \]
\[X_3 = \text{Persentase pekerja sektor industri} \]
\[X_4 = \text{Persentase pekerja sektor pertanian} \]
\[X_5 = \text{Persentase pekerja sektor lainnya} \]
\[X_6 = \text{Persentase pekerja keluarga} \]

b. Peubah-peubah KESRA adalah:

\[Y_1 = \text{Persentase penduduk dengan pengeluaran di atas Upah Minimal Regional (UMR) per kapita per bulan} \]
\[Y_2 = \text{Persentase rumah tingga dengan penerangan listrik/petromak} \]
\[Y_3 = \text{Persentase rumah tingga yang memiliki TV/Video/Laserdisk} \]
\[Y_4 = \text{Persentase rumah tingga dengan fasilitas sumber air minum} \]
\[Y_5 = \text{Persentase rumah tingga dengan fasilitas buang air sendiri} \]
$Y_6 = \text{Persentase rumah tangga dengan bahan bakar minyak tanah/ kayu bakar untuk memasak}$

$Y_7 = \text{Persentase penduduk dengan pendidikan tamat SD}$

$Y_8 = \text{Persentase penduduk dengan pendidikan SLA/PT}$

$Y_9 = \text{Persentase penduduk yang tidak mengeluh sakit selama sebulan yang lalu}$

$Y_{10} = \text{Angka kematian bayi per 100 kelahiran}$

$Y_{11} = \text{Angka harapan hidup waktu lahir}$

$Y_{12} = \text{Beban tanggungan anak}$

$Y_{13} = \text{Angka kelahiran total (TFR)}$

$Y_{14} = \text{Persentase migrasi masuk}$

3.2 Metodologi

Hubungan antara peubah EK dan KESRA dianalisis dengan metode PLS. Hasilnya dibandingkan dengan metode AKK dalam penelitian Harmini (1997).

sedangkan langkah-langkah pengerjaan penelitian ini adalah sebagai berikut:

1. Menghitung koefisien korelasi antar peubah EK, antar peubah KESRA serta antara peubah EK dan KESRA.
2. Membakukan data EK dan KESRA.
3. Membuat peubah baru (komponen).
4. Menentukan jumlah komponen yang akan dianalisis selanjutnya.
5. Menghitung vektor pembobot.
7. Membuat diagram pencar antar komponen.
8. Menghitung koefisien korelasi antar komponen.
9. Mencari koefisien korelasi antara komponen dengan peubah EK.
10. Mencari koefisien korelasi antara komponen dengan peubah KESRA.
11. Menghitung nilai R^2 Procrustes.

Inti macro program PLS yang digunakan adalah:

Data ek-kesra;
if n=27;
%global xvar yvar pred res xscr yscr num_x num_y;
%let titles=PLS Analisis;
%let xvar= x1 x2 x3 x4 x5 x6;
%let yvar= y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14;
%let ypred= yh1 yh2 yh3 yh4 yh5 yh6 yh7 yh8 yh9 yh10 yh11 yh12 yh13 yh14;
%let yres= yr1 yr2 yr3 yr4 yr5 yr6 yr7 yr8 yr9 yr10 yr11 yr12 yr13 yr14;
%let pred=yh;
%let res=res;
%let xscr=xscr;
%let yscr=yscr;
%let num_y=14;
%let num_x=6;
proc pls data=ek-kesra method=pls outmodel=est1 cvtest (stat=press);
 model y1-y14 = x1-x6;
 output=outpls p= yh1-yh14 yresi=yr1-yr14 xresi=xr1-xr6
 xscr=xscr yscr=yscr stdy=stdy stdx=stdx h=h press=press;
run;

Dalam hal pengukuran besarnya informasi data asal yang dapat diterangkan oleh peubah baru nya, umumnya digunakan akar ciri. Untuk metode PLS akar ciri diperoleh dengan cara memaksimalkan keragaman kedua kelompok peubah, sedangkan metode AKK diperoleh dengan cara memaksimalkan korelasi kedua kelompok peubah. Akar ciri yang diperoleh dengan metode PLS digunakan untuk
mengukur keragaman data yang dapat diterangkan oleh peubah barunya, sedangkan metode AKK digunakan untuk mengukur tingkat keeratan pasangan peubah barunya.

IV. HASIL DAN PEMBAHASAN

Sebelum dilakukan analisis menggunakan metode PLS, terlebih dahulu akan diuraikan kondisi data yang digunakan. Data peubah penjelas ekonomi (EK) dapat dilihat pada Lampiran 1 sedangkan data peubah respon kesejahteraan (KESRA) dapat dilihat pada Lampiran 2.

Berdasarkan data peubah EK dapat diperoleh beberapa catatan berikut: (1) negara Indonesia merupakan negara pertanian karena sebagian besar bekerja di sektor pertanian (52,84 %), (2) persentase pekerja dari dalam keluarga sendiri cukup besar (22,16 %), (3) sumbangan PDRB didominasi oleh sektor pertanian (26,85 %); sedangkan berdasarkan data peubah KESRA, dapat diketahui: (1) tingkat kesejahteraan masyarakat Indonesia belum baik karena persentase penduduk dengan pengeluaran diatas UMR kecil (11,40 %), (2) persentase kepemilikan televisi rendah (38,67 %), (3) persentase kepemilikan fasilitas buang air besar rendah (48,47 %), (4) persentase penduduk berpendidikan SD tinggi (29,31 %), (5) persentase penduduk berpendidikan SMU rendah (14,30 %), dan (6) angka kematian bayi tinggi (54,78 %).

4.1 Koefisien Korelasi antar Peubah EK

Hubungan antar peubah EK dapat dilihat berdasarkan koefisien korelasinya yang terdapat pada Tabel 1. Berdasarkan tabel tersebut dapat dinyatakan bahwa:

1. Sektor industri cenderung merupakan komplementer dari sektor pertanian.
2. Sebagian besar tenaga kerja pertanian berasal dari dalam keluarga sendiri.
3. Semakin tinggi persentase pekerja pertanian maka semakin tinggi persentase PDRB dari sektor pertanian.

4. Semakin tinggi PDRB sektor industri, maka partisipasi tenaga kerja dalam keluarga akan semakin rendah.

Tabel 1. Koefisien Korelasi antar Peubah EK

<table>
<thead>
<tr>
<th>Peubah</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2</td>
<td>0.482</td>
<td>-0.543</td>
<td>-0.560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td>0.703</td>
<td>-0.508</td>
<td>-0.848</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td>0.341</td>
<td>-0.617</td>
<td>0.130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>0.847</td>
<td>0.616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X6</td>
<td>-0.587</td>
<td>-0.611</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Koefisien Korelasi antar Peubah KESRA

Hubungan antar peubah KESRA dapat dilihat berdasarkan koefisien korelasinya yang terdapat pada Tabel 2.

Tabel 2. Koefisien Korelasi antar Peubah KESRA

<table>
<thead>
<tr>
<th>Peubah</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
<th>Y6</th>
<th>Y7</th>
<th>Y8</th>
<th>Y9</th>
<th>Y10</th>
<th>Y11</th>
<th>Y12</th>
<th>Y13</th>
<th>Y14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>0.55</td>
<td>0.62</td>
<td>0.27</td>
<td>0.15</td>
<td>-0.79</td>
<td>0.00</td>
<td>0.79</td>
<td>-0.18</td>
<td>-0.47</td>
<td>0.50</td>
<td>-0.66</td>
<td>-0.70</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Y2</td>
<td>0.76</td>
<td>0.60</td>
<td>0.07</td>
<td>-0.62</td>
<td>0.36</td>
<td>0.67</td>
<td>0.02</td>
<td>-0.37</td>
<td>0.37</td>
<td>-0.77</td>
<td>-0.77</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y3</td>
<td>0.65</td>
<td>0.40</td>
<td>-0.80</td>
<td>0.26</td>
<td>0.70</td>
<td>0.25</td>
<td>-0.55</td>
<td>0.55</td>
<td>-0.65</td>
<td>-0.65</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y4</td>
<td>0.52</td>
<td>-0.50</td>
<td>0.36</td>
<td>0.51</td>
<td>0.21</td>
<td>-0.49</td>
<td>0.48</td>
<td>-0.47</td>
<td>-0.47</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y5</td>
<td>-0.45</td>
<td>-0.02</td>
<td>0.35</td>
<td>0.25</td>
<td>-0.56</td>
<td>0.54</td>
<td>-0.20</td>
<td>-0.22</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y6</td>
<td>0.00</td>
<td>-0.82</td>
<td>-0.10</td>
<td>0.55</td>
<td>-0.57</td>
<td>0.56</td>
<td>0.62</td>
<td>-0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y7</td>
<td>0.04</td>
<td>0.33</td>
<td>-0.19</td>
<td>0.16</td>
<td>-0.25</td>
<td>-0.22</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y8</td>
<td>0.12</td>
<td>-0.62</td>
<td>0.63</td>
<td>-0.58</td>
<td>-0.64</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y9</td>
<td>-0.42</td>
<td>0.42</td>
<td>0.26</td>
<td>0.17</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y10</td>
<td>-1.0</td>
<td>0.50</td>
<td>0.56</td>
<td>-0.13</td>
<td></td>
</tr>
<tr>
<td>Y11</td>
<td>-0.50</td>
<td>-0.56</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>Y12</td>
<td>0.99</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>Y13</td>
<td>-0.32</td>
<td></td>
</tr>
</tbody>
</table>
Berdasarkan tabel tersebut dapat dinyatakan bahwa (1) semakin tinggi angka kematian bayi maka usia harapan hidup semakin rendah, (2) semakin tinggi angka kelahiran total maka semakin tinggi beban tanggungan anak dan (3) semakin tinggi persentase rumah tangga dengan BBM maka semakin tinggi persentase pengeluaran diatas UMR.

4.3 Koefisien Korelasi antara Peubah EK dengan Peubah KESRA

Hubungan antara peubah EK dengan KESRA dapat dilihat berdasarkan koefisien korelasinya yang terdapat pada Tabel 3.

<table>
<thead>
<tr>
<th>Peubah</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>X_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>0.085</td>
<td>-0.500</td>
<td>0.559</td>
<td>-0.738</td>
<td>0.740</td>
<td>-0.519</td>
</tr>
<tr>
<td>Y_2</td>
<td>0.501</td>
<td>-0.553</td>
<td>0.654</td>
<td>-0.850</td>
<td>0.525</td>
<td>-0.844</td>
</tr>
<tr>
<td>Y_3</td>
<td>0.603</td>
<td>-0.707</td>
<td>0.549</td>
<td>-0.788</td>
<td>0.603</td>
<td>-0.739</td>
</tr>
<tr>
<td>Y_4</td>
<td>0.420</td>
<td>-0.303</td>
<td>0.212</td>
<td>-0.432</td>
<td>0.327</td>
<td>-0.512</td>
</tr>
<tr>
<td>Y_5</td>
<td>0.195</td>
<td>-0.269</td>
<td>0.095</td>
<td>-0.179</td>
<td>0.315</td>
<td>-0.125</td>
</tr>
<tr>
<td>Y_6</td>
<td>-0.296</td>
<td>0.593</td>
<td>-0.529</td>
<td>0.788</td>
<td>-0.817</td>
<td>0.701</td>
</tr>
<tr>
<td>Y_7</td>
<td>0.429</td>
<td>0.125</td>
<td>0.166</td>
<td>-0.182</td>
<td>-0.080</td>
<td>-0.270</td>
</tr>
<tr>
<td>Y_8</td>
<td>0.062</td>
<td>-0.545</td>
<td>0.373</td>
<td>-0.734</td>
<td>0.900</td>
<td>-0.609</td>
</tr>
<tr>
<td>Y_9</td>
<td>0.280</td>
<td>-0.033</td>
<td>-0.288</td>
<td>0.032</td>
<td>0.169</td>
<td>-0.148</td>
</tr>
<tr>
<td>Y_{10}</td>
<td>-0.209</td>
<td>0.365</td>
<td>-0.180</td>
<td>0.351</td>
<td>-0.497</td>
<td>0.305</td>
</tr>
<tr>
<td>Y_{11}</td>
<td>0.182</td>
<td>-0.365</td>
<td>0.193</td>
<td>-0.366</td>
<td>0.518</td>
<td>-0.309</td>
</tr>
<tr>
<td>Y_{12}</td>
<td>-0.350</td>
<td>0.562</td>
<td>-0.732</td>
<td>0.731</td>
<td>-0.378</td>
<td>0.570</td>
</tr>
<tr>
<td>Y_{13}</td>
<td>-0.318</td>
<td>0.579</td>
<td>-0.723</td>
<td>0.754</td>
<td>-0.453</td>
<td>0.590</td>
</tr>
<tr>
<td>Y_{14}</td>
<td>-0.001</td>
<td>-0.465</td>
<td>0.210</td>
<td>-0.476</td>
<td>0.650</td>
<td>-0.287</td>
</tr>
</tbody>
</table>

Berdasarkan tabel tersebut dapat dinyatakan bahwa:

1. Daerah yang persentase penduduk bekerja di sektor pertanian tinggi cenderung tingkat kesejahteraannya rendah. Hal ini tergambar pada tingginya angka koefisien korelasi antara persentase penduduk disektor pertanian (X_4) dengan
peubah KESRA seperti penerangan listrik (Y_2), kepemilikan televisi (Y_3), pendidikan SLA/PT (Y_6), dan angka kelahiran (Y_{13}).

2. Daerah dengan persentase penduduk yang bekerja sebagai pekerja dalam keluarga sendiri (X_6) secara umum cenderung tingkat kesejahteraannya rendah.

3. Daerah dengan persentase penduduk yang bekerja di sektor industri (X_3) tinggi, secara umum cenderung tingkat kesejahteraannya tinggi.

4.4 Pembentukan Peubah Baru dengan Metode PLS

Hasil metode PLS beserta nilai keragaman peubah EK dan peubah KESRA dapat dilihat pada Tabel 4. Untuk menentukan banyaknya komponen digunakan nilai PRESS terkecil (Geladi dan Kowalski, 1986). Berdasarkan nilai PRESS terkecil (0.9131) ada dua komponen yang dianggap cukup mewakili keragaman data.

<table>
<thead>
<tr>
<th>Banyaknya Komponen</th>
<th>Peubah EK</th>
<th>Peubah KESRA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Varians</td>
<td>Kumulatif</td>
</tr>
<tr>
<td>1</td>
<td>66.1027</td>
<td>66.1027</td>
</tr>
<tr>
<td>2</td>
<td>15.2436</td>
<td>81.3463</td>
</tr>
<tr>
<td>3</td>
<td>9.1871</td>
<td>90.5334</td>
</tr>
<tr>
<td>4</td>
<td>7.0062</td>
<td>97.5396</td>
</tr>
<tr>
<td>5</td>
<td>2.0446</td>
<td>99.5842</td>
</tr>
<tr>
<td>6</td>
<td>0.4158</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Berdasarkan Tabel 4, terlihat bahwa nilai keragaman peubah KESRA naik sedikit demi sedikit setiap terbentuk peubah baru. Kenaikan tertinggi (8%) terjadi pada saat peubah baru kedua terbentuk. Sedangkan pada komponen 4, 5 dan 6 relatif stabil yaitu naik sekitar 2.5%. Kenaikan keragaman peubah EK lebih besar dibanding
keragaman peubah KESRA. Kenaikan tertinggi (15%) terjadi pada saat peubah baru kedua terbentuk. Pada komponen 3, 4 dan 5 naik relatif kecil yaitu 9%, 7% dan 2%.

Hasil tersebut menunjukkan bahwa saat keragaman peubah EK mencapai 100 %, peubah KESRA hanya 56.85 %. Nilai keragaman kedua peubah (EK dan atau KESRA) diharapkan cukup tinggi pada awal terbentuknya komponen, sehingga dengan dua komponen sudah cukup mewakili peubah asal.

4.5 Pembentukan Peubah Baru dengan Metode AKK

Data yang sama dianalisis dengan menggunakan metode AKK dan berdasarkan nilai p-value sebesar 0.0111 dihasilkan dua komponen (Tabel 5). Pembentukan komponen dengan menggunakan metode AKK mempunyai konsep yang berbeda dengan PLS. Berdasarkan metode AKK komponen dibentuk dengan cara mencari pasangan kombinasi linear dari masing-masing kelompok peubah, yang disebut sebagai peubah kanonik, yang berkorelasi paling erat. Banyaknya pasangan yang diperoleh ialah minimum dari banyaknya peubah asal dari masing-masing kelompok. Urutan besarnya nilai korelasi yang diperoleh terlihat pada Tabel 5.

<table>
<thead>
<tr>
<th>Banyaknya Komponen</th>
<th>Korelasi Kanonik</th>
<th>Likelihood Ratio</th>
<th>F-hitung</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9319</td>
<td>0.0000</td>
<td>3.0122</td>
<td>0.0001</td>
</tr>
<tr>
<td>2</td>
<td>0.6942</td>
<td>0.0014</td>
<td>1.9575</td>
<td>0.0111*</td>
</tr>
<tr>
<td>3</td>
<td>0.5912</td>
<td>0.0252</td>
<td>1.2237</td>
<td>0.2643</td>
</tr>
<tr>
<td>4</td>
<td>0.4810</td>
<td>0.1503</td>
<td>0.8250</td>
<td>0.7059</td>
</tr>
<tr>
<td>5</td>
<td>0.4728</td>
<td>0.4368</td>
<td>0.5606</td>
<td>0.9010</td>
</tr>
<tr>
<td>6</td>
<td>0.4454</td>
<td>0.8016</td>
<td>0.3300</td>
<td>0.9480</td>
</tr>
</tbody>
</table>
Untuk pasangan yang berbeda, peubah kanoniknya tidak berkorelasi baik dalam kelompok peubah yang sama maupun dalam kelompok lainnya. Komponen yang dihasilkan pada Tabel 5 berfungsi sebagai peubah kanonik (peubah baru), dalam hal ini dengan dua komponen pertama sudah cukup mewakili keragaman peubah asal.

4.6 Penentuan Jumlah Komponen

Metode PLS dengan AKK berbeda dalam hal penentuan jumlah komponen yang akan dianalisis. Metode PLS menggunakan nilai PRESS yang terkecil sedangkan metode AKK menggunakan nilai p-value (Wold, 1994 dan Gittins, 1985). Keduanya memberikan hasil jumlah komponen yang sama (dua komponen).

Berdasarkan Tabel 4 dan Tabel 5 kedua metode menghasilkan jumlah komponen yang sama dengan jumlah peubah EK (enam komponen). Hal ini disebabkan oleh jumlah peubah penjelas (EK) yang diamati lebih kecil dari jumlah peubah responnya (KESRA). Jika jumlah peubah EK lebih besar dari jumlah peubah KESRA maka jumlah peubah baru yang terbentuk tidak sama antara metode PLS dengan metode AKK. Pada metode PLS akan terbentuk peubah baru sebanyak peubah EK sedangkan pada metode AKK akan terbentuk sebanyak peubah KESRA.

Pada metode AKK banyaknya peubah baru yang digunakan relatif sedikit karena analisis metode ini bertujuan untuk memaksimumkan korelasi antara dua kelompok peubah. Jika digunakan peubah baru yang lebih banyak, maka interpretasi hasil metode AKK sulit dimengerti. Salah satu alternatif yang disarankan ialah melalui korelasi antara peubah kanonik dengan peubah asal yang membangkitkannya. Hal ini akan lebih mudah jika peubah kanonik yang diambil hanya dua.
Selanjutnya metode PLS dibandingkan dengan metode AKK berdasarkan dua komponen tersebut. Kedua komponen menghasilkan vektor pembobot (*loading*) untuk peubah EK (Tabel 6) dan peubah KESRA (Tabel 7).

4.7 Vektor Pembobot (*Loading*)

Peubah baru pada metode PLS dan AKK berupa faktor *loading* yang saling ortogonal. Pada PLS faktor-faktor dibentuk secara sekuensial dengan memaksimalkan keragaman kelompok peubah KESRA, dengan tetap mempertahankan diantara faktor-faktor tersebut tidak berkorelasi. Setelah diperoleh banyaknya peubah baru (dua komponen) kemudian dicari vektor pembobot (*loading*) untuk peubah EK (dua buah vektor baris, masing-masing berukuran *1 x 6*) dan peubah KESRA (dua buah vektor baris, masing-masing berukuran *1 x 14*).

Peubah-peubah asal yang berperan dalam menentukan skor komponen utama ditunjukkan dalam nilai vektor pembobot yang relatif besar (baik positif maupun negatif). Pada Tabel 6, nilai-nilai P1 dan P2 menentukan skor komponen utama pertama dan kedua dari peubah EK. Skor komponen utama pertama berdasarkan metode PLS, peranan peubah asal (EK) relatif sama (tercermin dari nilai P1 yang homogen), sedangkan berdasarkan metode AKK peranan peubah *X5* lebih mendominasi (P1 = 0.4724).

Skor komponen utama kedua berdasarkan metode PLS didominasi oleh peubah *X1* (P2 = -0.7196) dan *X5* (P2 = 0.6266), sedangkan berdasarkan metode AKK didominasi oleh peubah *X3* (P2 = 0.8126) dan *X3* (P2 = -0.6237).
Tabel 6. Nilai Pembobot Dua Peubah Baru EK Hasil Metode PLS dan Metode AKK

<table>
<thead>
<tr>
<th>Peubah EK</th>
<th>Metode PLS</th>
<th>Metode AKK*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
<td>P2</td>
</tr>
<tr>
<td>Persentase PDRB Industri</td>
<td>0.3065</td>
<td>-0.7196</td>
</tr>
<tr>
<td>Persentase PDRB Pertanian</td>
<td>-0.4143</td>
<td>-0.0531</td>
</tr>
<tr>
<td>Persentase Pekerja Industri</td>
<td>0.3914</td>
<td>-0.2788</td>
</tr>
<tr>
<td>Persentase Pekerja Pertanian</td>
<td>-0.4844</td>
<td>-0.0131</td>
</tr>
<tr>
<td>Persentase Pekerja Lainnya</td>
<td>0.3814</td>
<td>0.6266</td>
</tr>
<tr>
<td>Persentase Pekerja Keluarga</td>
<td>-0.4486</td>
<td>0.0940</td>
</tr>
</tbody>
</table>

* Hasil penelitian Harmini (1997)

Nilai pembobot mencerminkan tingkat kepentingan dari peubah yang bersangkutan. Semakin tinggi nilai pembobot semakin berperan peubah tersebut dalam penghitungan skor komponen. Pada Tabel 6 memperlihatkan peubah paling penting pada P1 berdasarkan metode PLS adalah persentase pekerja pertanian (X4) sedangkan berdasarkan metode AKK adalah persentase pekerja lainnya (X3). Peubah peubah lainnya mempunyai nilai pembobot P1 yang lebih tinggi berdasarkan metode PLS dibanding metode AKK. Nilai P1 peubah EK berdasarkan metode PLS relatif sama kecuali peubah persentase PDRB industri (X1) sedangkan berdasarkan metode AKK nilai-nilai tersebut lebih bervariasi.

Pada Tabel 7, nilai-nilai Q1 dan Q2 menentukan skor komponen pertama dan kedua dari peubah KESRA. Peubah-peubah yang mendominasi, dengan menggunakan metode PLS maupun metode AKK hampir sama (nilai-nilai Q1 dan Q2 relatif homogen). Nilai pembobot Q1 berdasarkan metode PLS maupun metode AKK hampir sama, peubah persentase RT memiliki TV (Y3), merupakan peubah paling penting berdasarkan kedua metode. Peubah-peubah lainnya mempunyai urutan kepentingan yang hampir sama dalam menentukan nilai skor komponen.
Tabel 7. Nilai Pembobot Dua Peubah Baru KESRA Hasil Metode PLS dan Metode AKK

<table>
<thead>
<tr>
<th>Peubah KESRA</th>
<th>Metode PLS</th>
<th>Metode AKK*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Persentase Pengeluaran > UMR</td>
<td>0.3146</td>
<td>0.3889</td>
</tr>
<tr>
<td>Persentase RT Berpenerangan Listrik</td>
<td>0.3736</td>
<td>-0.1032</td>
</tr>
<tr>
<td>Persentase RT Memiliki TV</td>
<td>0.3746</td>
<td>-0.0558</td>
</tr>
<tr>
<td>Persentase RT dengan Sumber Air Minum</td>
<td>0.2053</td>
<td>-0.1012</td>
</tr>
<tr>
<td>Persentase RT dengan Tempat Buang Air</td>
<td>0.1098</td>
<td>0.1028</td>
</tr>
<tr>
<td>Persentase RT dengan BBM</td>
<td>-0.3645</td>
<td>-0.2802</td>
</tr>
<tr>
<td>Persentase Penduduk Tertinggi SD</td>
<td>0.0662</td>
<td>-0.4157</td>
</tr>
<tr>
<td>Persentase Penduduk Tertinggi SLA/PT</td>
<td>0.3272</td>
<td>0.5245</td>
</tr>
<tr>
<td>Persentase Penduduk Tak Sakit</td>
<td>0.0225</td>
<td>-0.0220</td>
</tr>
<tr>
<td>Angka Kematian Bayi</td>
<td>-0.1840</td>
<td>-0.1955</td>
</tr>
<tr>
<td>Angka Harapan Hidup</td>
<td>0.1881</td>
<td>0.2242</td>
</tr>
<tr>
<td>Beban Tanggungan Anak</td>
<td>-0.3160</td>
<td>0.0855</td>
</tr>
<tr>
<td>Angka Kelahiran Total</td>
<td>-0.3277</td>
<td>0.0111</td>
</tr>
<tr>
<td>Persentase Migrasi Masuk</td>
<td>0.2132</td>
<td>0.4545</td>
</tr>
</tbody>
</table>

* Hasil penelitian Harmini (1997)

4.8 Vektor Skor (Skor Komponen)

4.9 Koefisien Korelasi antar Peubah Baru

Untuk mengetahui hubungan antara peubah EK dengan peubah KESRA digunakan nilai koefisien korelasi antara peubah baru EK (X\text{ser1} dan X\text{ser2}) dengan peubah baru KESRA (Y\text{ser1} dan Y\text{ser2}). Hubungan koefisien korelasi antar peubah baru tersebut dapat dilihat pada Tabel 8.

Tabel 8. Koefisien Korelasi Dua Peubah Baru dari EK dan KESRA Hasil Metode PLS dan Metode AKK

<table>
<thead>
<tr>
<th>Peubah Baru EK</th>
<th>Peubah Baru KESRA</th>
<th>Metode PLS</th>
<th>Metode AKK*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y\text{ser1}</td>
<td>Y\text{ser2}</td>
<td>Y\text{ser1}</td>
</tr>
<tr>
<td>X\text{ser1}</td>
<td>0.833</td>
<td>0.091</td>
<td>0.932</td>
</tr>
<tr>
<td>X\text{ser2}</td>
<td>0.061</td>
<td>0.806</td>
<td>0</td>
</tr>
</tbody>
</table>

* Hasil penelitian Harmini (1997)

Keceratan hubungan antara peubah EK dengan peubah KESRA dicerminkan oleh nilai korelasi yang tinggi antara peubah baru pertama KESRA (Y\text{ser1}) dengan peubah baru EK (X\text{ser1}) sebesar 0.833 (metode PLS) dan 0.932 (metode AKK). Untuk peubah baru kedua Y\text{ser2} dengan X\text{ser2}, metode PLS menghasilkan korelasi yang lebih tinggi dibanding dengan metode AKK (0.806 dibanding dengan 0.694).

4.10 Koefisien Korelasi antara Peubah Baru dengan Peubah EK

Untuk menentukan peubah-peubah penting dari kelompok peubah EK, digunakan koefisien korelasi antara peubah EK dengan peubah baru pertama (X\text{ser1}) dan peubah baru kedua (X\text{ser2}) atau koefisien korelasi peubah baru dengan peubah lama untuk masing-masing metode. Hasil kedu metode disajikan pada Tabel 9.
Tabel 9. Koefisien Korelasi antara Peubah EK dengan Dua Peubah Barunya Berdasarkan Metode PLS dan Metode AKK

<table>
<thead>
<tr>
<th>Peubah EK</th>
<th>Metode PLS</th>
<th>Metode AKK*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X_{sr1}</td>
<td>X_{sr2}</td>
</tr>
<tr>
<td>Persentase PDRB Industri</td>
<td>0.60847</td>
<td>-0.69236</td>
</tr>
<tr>
<td>Persentase PDRB Pertanian</td>
<td>-0.79797*</td>
<td>-0.08303</td>
</tr>
<tr>
<td>Persentase Pekerja Industri</td>
<td>0.79075*</td>
<td>-0.24441</td>
</tr>
<tr>
<td>Persentase Pekerja Pertanian</td>
<td>-0.96535*</td>
<td>-0.01486</td>
</tr>
<tr>
<td>Persentase Pekerja Lainnya</td>
<td>0.75694*</td>
<td>0.59345</td>
</tr>
<tr>
<td>Persentase Pekerja Keluarga</td>
<td>-0.88621*</td>
<td>0.10892</td>
</tr>
</tbody>
</table>

*Hasil penelitian Harmini (1997)

Peubah-peubah penting EK ditentukan dengan cara memilih korelasi yang cukup tinggi (>0.7) antara peubah baru (X_{sr}) dengan peubah lama (EK). Dari Tabel 9, korelasi tinggi antara peubah baru pertama (X_{sr1}) dengan peubah EK hasil metode PLS adalah X_2,X_3,X_4,X_5 dan X_6, sedangkan hasil metode AKK adalah X_2,X_4,X_5 dan X_6 (bertanda *).

Berdasarkan kedua metode, tidak terdapat korelasi yang tinggi antara peubah baru kedua (X_{sr2}) dengan peubah EK. Hal ini sesuai dengan korelasi antara peubah baru EK dengan peubah baru KESRA (lihat Tabel 8). Pada kedua metode, peubah baru yang pertama (dari EK dan KESRA) mempunyai korelasi yang lebih tinggi dari peubah baru yang kedua (dari EK dan KESRA), sehingga peubah baru yang pertama (dari EK dan KESRA) mempunyai korelasi yang lebih tinggi dengan peubah asalnya dibanding dengan antara peubah baru kedua (dari EK dan KESRA) dengan peubah asal.

Berdasarkan metode PLS korelasi antara peubah baru pertama (X_{sr1}) dengan peubah EK menghasilkan koefisien korelasi yang lebih tinggi dibandingkan dengan metode AKK untuk semua peubah (kecuali X_2) selain itu kedua metode menghasilkan
tanda koefisien korelasi sama, tetapi korelasi antara peubah baru kedua \((X_{sc2}) \) dengan peubah EK tanda koefisien korelasi kedua metode berbeda (lihat Tabel 9).

Peubah \(X_1 \) dengan metode AKK mempunyai korelasi yang rendah dengan peubah baru pertama \((X_{sc1}) \) sebesar 0.2565, tetapi dengan metode PLS menghasilkan korelasi yang tinggi (0.60847) walaupun peubah \(X_1 \) tidak termasuk peubah penting.

4.11 Koefisien Korelasi antara Peubah Baru dengan Peubah KESRA

Peubah-peubah penting dari kelompok peubah KESRA dicari dengan cara yang sama seperti pada kelompok peubah EK. Peubah-peubah yang mempunyai korelasi tinggi dengan peubah barunya (diatas 0.7) dianggap penting dalam menentukan hubungan antara EK dengan KESRA. Peubah-peubah penting berdasarkan metode PLS dan metode AKK ada pada Tabel 10.

Jika memperhatikan tanda koefisien korelasi antara peubah baru pertama \((Y_{sc1}) \) dengan peubah KESRA, kedua metode mempunyai tanda yang sama. Tanda koefisien korelasi antara peubah baru kedua \((Y_{sc2}) \) dengan peubah KESRA kedua metode tidak sama. Peubah-peubah penting berdasarkan metode PLS ada sebanyak 9 buah yaitu \(Y_1, Y_2, Y_3, Y_6, Y_8, Y_{10}, Y_{11}, Y_{12} \) dan \(Y_{13} \) sedangkan berdasarkan metode AKK ada 6 buah peubah yaitu \(Y_1, Y_2, Y_3, Y_6, Y_8 \) dan \(Y_{13} \) (bertanda *). Seperti halnya pada peubah EK, berdasarkan kedua metode tidak terdapat korelasi yang tinggi antara peubah baru kedua \((Y_{sc2}) \) dengan peubah KESRA.
Tabel 10. Koefisien Korelasi antara Peubah KESRA dengan Dua Peubah Barunya Berdasarkan Metode PLS dan Metode AKK

<table>
<thead>
<tr>
<th>Peubah KESRA</th>
<th>Metode PLS</th>
<th></th>
<th>Metode AKK*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y_{sc1}</td>
<td>Y_{sc2}</td>
<td>Y_{sc1}</td>
<td>Y_{sc2}</td>
</tr>
<tr>
<td>Presentase Pengeluaran > UMR</td>
<td>0.79746*</td>
<td>0.49403</td>
<td>0.8727*</td>
<td>0.0512</td>
</tr>
<tr>
<td>Presentase RT Berpenerangan Listrik</td>
<td>0.80317*</td>
<td>-0.17540</td>
<td>0.7476*</td>
<td>0.5086</td>
</tr>
<tr>
<td>Presentase RT Memiliki TV</td>
<td>0.87571*</td>
<td>0.11827</td>
<td>0.8091*</td>
<td>0.1312</td>
</tr>
<tr>
<td>Presentase RT Dengan Sumber Air Minum</td>
<td>0.67347</td>
<td>0.04567</td>
<td>0.4379</td>
<td>0.2722</td>
</tr>
<tr>
<td>Presentase RT Dengan Tempat Buang Air</td>
<td>0.46266</td>
<td>0.45637</td>
<td>0.2105</td>
<td>-0.2230</td>
</tr>
<tr>
<td>Presentase RT Dengan BBM</td>
<td>-0.86242*</td>
<td>-0.43899</td>
<td>-0.8996*</td>
<td>0.0883</td>
</tr>
<tr>
<td>Presentase Penduduk Tamat SD</td>
<td>0.23272</td>
<td>-0.47719</td>
<td>0.0628</td>
<td>0.4859</td>
</tr>
<tr>
<td>Presentase Penduduk Tamat SMA/P.T</td>
<td>0.81045*</td>
<td>0.53468</td>
<td>0.9017*</td>
<td>-0.0870</td>
</tr>
<tr>
<td>Presentase Penduduk Tak Sakit</td>
<td>0.08352</td>
<td>-0.13855</td>
<td>0.0038</td>
<td>-0.4980</td>
</tr>
<tr>
<td>Angka Kematian Bayi</td>
<td>-0.70882*</td>
<td>-0.46814</td>
<td>-0.4821</td>
<td>0.1505</td>
</tr>
<tr>
<td>Angka Harapan Hidup</td>
<td>0.71762*</td>
<td>0.49582</td>
<td>0.5054</td>
<td>-0.1640</td>
</tr>
<tr>
<td>Beban Tunggungan Anak</td>
<td>-0.82417*</td>
<td>0.03652</td>
<td>-0.6604</td>
<td>-0.6090</td>
</tr>
<tr>
<td>Angka Kelahiran Total</td>
<td>-0.85956*</td>
<td>0.11029</td>
<td>-0.7079*</td>
<td>-0.5260</td>
</tr>
<tr>
<td>Presentase Migrasi Masuk</td>
<td>0.56968</td>
<td>0.64001</td>
<td>0.6674</td>
<td>0.3840</td>
</tr>
</tbody>
</table>

*Hasil penelitian Harmini (1997)

4.12 Analisis Procrustes

Dalam membentuk peubah baru (komponen), diharapkan kedua pasangan mempunyai korelasi dan proporsi yang tinggi dalam menggambarkan data asal. Untuk menentukan proporsi antara matriks data asal dengan matriks skor peubah barunya digunakan analisis Procrustes (Krzanowski, 1990), yang ditunjukkan oleh nilai R^2. Semakin besar nilai ini, maka semakin representatif peubah baru (hasil suatu metode analisis) dalam menggambarkan data asal. Hasil analisis Procrustes untuk metode PLS dan metode AKK dapat dilihat pada Tabel 11.

Berdasarkan Tabel 11, dalam membentuk peubah baru pertama (komponen 1) dan peubah baru kedua (komponen 2) metode PLS memberikan nilai R^2 yang lebih tinggi daripada metode AKK (untuk peubah asal X maupun asal Y). Hal ini berarti
bahwa metode PLS lebih representatif daripada metode AKK dalam menggambarkan data asal.

Tabel 11. Nilai R² antara Data Asal (EK dan KESRA) dengan Matriks Skor Peubah Baru Berdasarkan Metode PLS dan Metode AKK

<table>
<thead>
<tr>
<th>Komponen (Peubah baru)</th>
<th>Metode PLS</th>
<th></th>
<th>Metode AKK*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EK</td>
<td>KESRA</td>
<td>EK</td>
<td>KESRA</td>
</tr>
<tr>
<td>1</td>
<td>70.62</td>
<td>50.15</td>
<td>55.13</td>
<td>40.77</td>
</tr>
<tr>
<td>2</td>
<td>82.90</td>
<td>59.17</td>
<td>66.15</td>
<td>48.49</td>
</tr>
</tbody>
</table>

* Hasil penelitian Harmini (1997)

4.13 Pembahasan

Metode AKK bertujuan memperoleh pasangan peubah baru yang berkorelasi maksimum dari dua kelompok peubah. Peubah penting dari masing-masing kelompok peubah ditentukan dengan cara mencari peubah yang berkorelasi erat dengan pasangan peubah baru yang berkorelasi maksimum tersebut sedangkan metode PLS bertujuan mendapatkan peubah baru yang memaksimumkan koefisien regresi antara kelompok peubah penjelas dan kelompok peubah respon, sehingga peubah penting yang diperoleh adalah peubah yang berkorelasi erat dengan peubah baru yang koefisien regresinya maksimum. Dengan AKK, kemungkinan diperoleh peubah penting dari satu kelompok peubah walaupun peubah tersebut relatif tidak memberikan kontribusi keragaman total data, atau sebaliknya tidak termasuk peubah penting dalam AKK tapi memberikan kontribusi keragaman total data (peubah ini menjadi peubah penting dengan metode PLS). Ringkasan urutan peubah-peubah
penting berdasarkan besarnya koefisien korelasi peubah EK dan KESRA (Tabel 9 dan Tabel 10) berdasarkan kedua metode disajikan pada Tabel 12.

Tabel 12. Peubah-PEubah Penting dari Kelompok Peubah EK dan Kelompok Peubah KESRA Berdasarkan Metode PLS dan Metode AKK.

<table>
<thead>
<tr>
<th>Metode PLS</th>
<th>Metode AKK*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peubah EK</td>
<td>Peubah KESRA</td>
</tr>
<tr>
<td>-X₄</td>
<td>+Y₃</td>
</tr>
<tr>
<td>-X₆</td>
<td>-Y₆</td>
</tr>
<tr>
<td>-X₂</td>
<td>-Y₁₃</td>
</tr>
<tr>
<td>+X₃</td>
<td>-Y₁₂</td>
</tr>
<tr>
<td>+X₅</td>
<td>+Y₈</td>
</tr>
<tr>
<td>1+Y₁₁</td>
<td>+Y₁₀</td>
</tr>
</tbody>
</table>

* Hasil penelitian Harmini (1997)

Metode PLS mengoptimalkan hubungan prediksi antar dua kelompok peubah, sehingga metode PLS menghasilkan jumlah peubah penting dari EK maupun dari KESRA lebih banyak daripada metode AKK. Peubah-peubah penting hasil metode AKK juga termasuk peubah penting metode PLS meskipun dengan urutan kepentingan yang berbeda.

Metode AKK menganalisis korelasi yang hanya menunjukkan arah dan kekuatan hubungan antara dua kelompok peubah dan tidak mempermasalahkan adanya hubungan sebab akibat atau kalau ada hubungan sebab akibat tidak mempermasalahkan arah hubungan sebab akibat tersebut. Sedangkan metode PLS menganalisis regresi yang selain menelaah dua hal yang dilakukan oleh analisis
korelasi juga menunjukkan bagaimana dua kelompok peubah tersebut saling berhubungan. Selain itu analisis regresi memperhatikan peubah mana yang mungkin merupakan akibat.

Hasil metode AKK yang dibandingkan tersebut sebelumnya sudah di analisis dengan metode AKU untuk menghilangkan kolinearitas ganda. Jadi data awal peubah X dan Y sudah ditransformasi menggunakan AKU kemudian digunakan sebagai data awal untuk metode AKK. Akibatnya metode AKK mentransformasi peubah sebanyak dua kali yaitu dengan metode AKU kemudian dilanjutkan dengan metode AKK sedangkan metode PLS cukup sekali (sekaligus menghilangkan kolinearitas ganda) sehingga metode PLS lebih efektif. Selain itu metode PLS menghasilkan tanda koefisien vektor pembobot yang sama dengan tanda koefisien korelasi pada peubah baru pertamanya yang berasal dari peubah EK (X_{sort}) maupun peubah KESRA (Y_{sort}) sehingga metode PLS selain lebih efektif juga dalam hal skor dan tanda koefisien korelasi tidak berubah.

Metode PLS dan metode AKK keduanya menghasilkan peubah baru dari EK dan KESRA yang korelasinya tinggi dan tidak jauh berbeda (diatas 0.8) tetapi metode PLS mempunyai nilai R² jauh lebih tinggi dibanding metode AKK, sehingga metode PLS dapat disarankan untuk digunakan sebagai metode untuk mengukur keeratan hubungan antara dua kelompok peubah.
V. KESIMPULAN DAN SARAN

5.1 Kesimpulan

1. Metode PLS dapat digunakan untuk analisis hubungan antara dua kelompok peubah yang berfungsi sebagai peubah penjelas dan peubah respon, atau metode PLS mampu memberikan informasi mengenai keterkaitan antara peubah penjelas dan responnya serta memberikan hasil yang relatif lebih baik daripada metode AKK dalam hal menangani kolinearitas, nilai skor dengan nilai koefisien korelasi baik tanda maupun besaran tidak mengalami perubahan serta proporsi keragaman peubah asal yang dapat diterangkan oleh peubah barunya lebih besar.

2. Metode PLS menghasilkan peubah penting kelompok X (5 buah), AKK (4 buah), sedangkan kelompok Y (9 buah), AKK (6 buah).

3. Peubah penting serta urutannya berdasarkan metode PLS adalah:

3.1. Peubah Ekonomi (EK):

Persentase pekerja sektor pertanian \((X_4) \), persentase pekerja keluarga \((X_6) \), persentase PDRB sektor pertanian \((X_2) \), persentase pekerja sektor industri \((X_3) \), dan persentase pekerja sektor lainnya \((X_5) \).

3.2. Peubah Kesejahteraan (KESRA):

Persentase RT memiliki TV \((Y_3) \), persentase RT dengan BBM tanah/kayu \((Y_6) \), angka kelahiran total \((Y_{11}) \), beban tanggungan anak \((Y_{12}) \), persentase penduduk berpendidikan SLA/PT \((Y_8) \), persentase RT dengan PLN \((Y_2) \), persentase penduduk dengan pengeluaran diatas...
UMR (Y₁), angka harapan hidup waktu lahir (Y₁₁) dan angka kematian bayi per 100 kelahiran (Y₁₀).

3. Semua peubah penting metode AKK termasuk peubah penting dalam metode PLS walaupun dengan urutan kepentingan yang berbeda.

4. Koefisien korelasi hasil metode PLS menunjukkan semakin bersifat industri ekonomi suatu propinsi semakin tinggi tingkat KESRanya. Hal ini ditunjukkan oleh peubah-peubah berikut. Semakin rendah jumlah pekerja sektor pertanian (X₄), jumlah pekerja keluarga (X₆), jumlah PDRB sektor pertanian (X₂) semakin rendah pula jumlah RT dengan BBM minyak tanah/kayu (Y₆), angka kelahiran total (Y₁₃), beban tanggungan anak (Y₁₂), angka kematian bayi (Y₁₀) dan semakin tinggi jumlah pekerja sektor lain (X₃), jumlah pekerja sektor industri (X₃) suatu propinsi, maka semakin tinggi pula jumlah penduduk dengan pendidikan SLA/PT (Y₈), jumlah RT yang memiliki TV/video/LD (Y₃), jumlah RT dengan penerangan listrik/petromak (Y₂), jumlah penduduk dengan pengeluaran di atas UMR per kapita per bulan (Y₁), dan angka harapan hidup waktu lahir (Y₁₁).

5.2 Saran

Supaya diperoleh hasil pembandingan metode yang lebih baik, disarankan menggunakan data peubah-peubah X yang lebih banyak dari peubah-peubah Y, sekaligus metode PLS digunakan untuk keperluan prediksi bagi peubah-peubah Y berdasarkan nilai peubah-peubah X.
DAFTAR PUSTAKA

Lampiran 1. Data Peubah Ekonomi

<table>
<thead>
<tr>
<th>Propinsi</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>X_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI Aceh</td>
<td>13.21</td>
<td>43.25</td>
<td>5.6281</td>
<td>58.9049</td>
<td>11.1452</td>
<td>21.3327</td>
</tr>
<tr>
<td>Riau</td>
<td>29.48</td>
<td>18.59</td>
<td>6.7833</td>
<td>52.7290</td>
<td>10.8976</td>
<td>17.2241</td>
</tr>
<tr>
<td>Jambi</td>
<td>18.39</td>
<td>28.84</td>
<td>5.3218</td>
<td>62.1172</td>
<td>10.2547</td>
<td>14.6383</td>
</tr>
<tr>
<td>Sumsel</td>
<td>17.51</td>
<td>25.95</td>
<td>5.2378</td>
<td>59.8404</td>
<td>7.7559</td>
<td>22.7311</td>
</tr>
<tr>
<td>Bengkulu</td>
<td>3.01</td>
<td>37.04</td>
<td>3.7325</td>
<td>64.7191</td>
<td>8.2453</td>
<td>30.9459</td>
</tr>
<tr>
<td>Lampung</td>
<td>13.26</td>
<td>39.62</td>
<td>5.7300</td>
<td>69.1359</td>
<td>6.0124</td>
<td>29.6970</td>
</tr>
<tr>
<td>DKI Jakarta</td>
<td>21.27</td>
<td>0.22</td>
<td>17.7418</td>
<td>0.8277</td>
<td>27.0662</td>
<td>1.6910</td>
</tr>
<tr>
<td>Jabar</td>
<td>33.93</td>
<td>16.30</td>
<td>17.9031</td>
<td>29.0833</td>
<td>11.6042</td>
<td>9.7225</td>
</tr>
<tr>
<td>Jateng</td>
<td>28.57</td>
<td>23.68</td>
<td>15.9887</td>
<td>40.3519</td>
<td>7.4688</td>
<td>18.8176</td>
</tr>
<tr>
<td>Jatim</td>
<td>28.36</td>
<td>17.13</td>
<td>15.0948</td>
<td>42.5163</td>
<td>7.8498</td>
<td>18.8176</td>
</tr>
<tr>
<td>Bali</td>
<td>8.05</td>
<td>20.05</td>
<td>14.6695</td>
<td>39.5187</td>
<td>10.7132</td>
<td>19.1222</td>
</tr>
<tr>
<td>NTB</td>
<td>4.67</td>
<td>38.23</td>
<td>11.8284</td>
<td>50.3711</td>
<td>6.8740</td>
<td>22.6157</td>
</tr>
<tr>
<td>Timtim</td>
<td>3.17</td>
<td>29.45</td>
<td>3.5505</td>
<td>73.1535</td>
<td>10.2249</td>
<td>30.2175</td>
</tr>
<tr>
<td>Kalbar</td>
<td>20.41</td>
<td>24.7</td>
<td>5.3840</td>
<td>67.8480</td>
<td>7.1681</td>
<td>26.2516</td>
</tr>
<tr>
<td>Kalteng</td>
<td>12.12</td>
<td>40.70</td>
<td>6.1112</td>
<td>64.0626</td>
<td>8.5140</td>
<td>29.3251</td>
</tr>
<tr>
<td>Kalsel</td>
<td>21.93</td>
<td>23.65</td>
<td>11.7896</td>
<td>45.9367</td>
<td>8.6349</td>
<td>23.1828</td>
</tr>
<tr>
<td>Kaltim</td>
<td>18.60</td>
<td>18.33</td>
<td>10.7499</td>
<td>37.5775</td>
<td>14.8363</td>
<td>17.8347</td>
</tr>
<tr>
<td>Sulut</td>
<td>8.74</td>
<td>27.32</td>
<td>6.9854</td>
<td>51.1465</td>
<td>12.5063</td>
<td>15.6141</td>
</tr>
<tr>
<td>Sulteng</td>
<td>7.78</td>
<td>39.86</td>
<td>5.6968</td>
<td>57.5091</td>
<td>10.3468</td>
<td>24.3571</td>
</tr>
<tr>
<td>Sulsel</td>
<td>11.71</td>
<td>39.14</td>
<td>6.7891</td>
<td>53.3501</td>
<td>11.5577</td>
<td>18.4469</td>
</tr>
<tr>
<td>Sultra</td>
<td>9.76</td>
<td>33.42</td>
<td>6.8598</td>
<td>57.3402</td>
<td>11.3784</td>
<td>27.1518</td>
</tr>
<tr>
<td>Maluku</td>
<td>17.54</td>
<td>27.20</td>
<td>4.1523</td>
<td>59.5761</td>
<td>12.2148</td>
<td>21.9873</td>
</tr>
<tr>
<td>Iriya</td>
<td>4.11</td>
<td>19.05</td>
<td>2.4057</td>
<td>74.6041</td>
<td>10.9987</td>
<td>34.5134</td>
</tr>
</tbody>
</table>

Keterangan:

$X_1 = \text{Persentase Produk Domestik Regional Bruto (PDRB) sektor industri}$

$X_2 = \text{Persentase PDRB sektor pertanian}$

$X_3 = \text{Persentase pekerja sektor industri}$

$X_4 = \text{Persentase pekerja sektor pertanian}$

$X_5 = \text{Persentase pekerja sektor lainnya}$

$X_6 = \text{Persentase pekerja keluarga}$
<table>
<thead>
<tr>
<th>Propinsi</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
<th>Y5</th>
<th>Y6</th>
<th>Y7</th>
<th>Y8</th>
<th>Y9</th>
<th>Y10</th>
<th>Y11</th>
<th>Y12</th>
<th>Y13</th>
<th>Y14</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI Aceh</td>
<td>8.62</td>
<td>69.76</td>
<td>32.6</td>
<td>67.33</td>
<td>46.38</td>
<td>94.2537</td>
<td>31.82</td>
<td>16.08</td>
<td>72.28</td>
<td>46</td>
<td>63.35</td>
<td>64.6</td>
<td>3339</td>
<td>0.83955</td>
</tr>
<tr>
<td>Sumut</td>
<td>4.56</td>
<td>78.82</td>
<td>51.7</td>
<td>35.65</td>
<td>52.00</td>
<td>93.2760</td>
<td>28.54</td>
<td>13.25</td>
<td>80.91</td>
<td>50</td>
<td>64.50</td>
<td>65.6</td>
<td>3499</td>
<td>1.01617</td>
</tr>
<tr>
<td>Sumbar</td>
<td>13.20</td>
<td>70.28</td>
<td>40.4</td>
<td>44.42</td>
<td>27.63</td>
<td>96.0183</td>
<td>27.59</td>
<td>17.28</td>
<td>73.00</td>
<td>53</td>
<td>63.80</td>
<td>59.5</td>
<td>3286</td>
<td>1.36154</td>
</tr>
<tr>
<td>Jawa</td>
<td>9.97</td>
<td>63.61</td>
<td>54.8</td>
<td>64.16</td>
<td>71.34</td>
<td>91.7560</td>
<td>32.36</td>
<td>15.10</td>
<td>79.53</td>
<td>47</td>
<td>65.15</td>
<td>61.8</td>
<td>3394</td>
<td>4.28732</td>
</tr>
<tr>
<td>Jambi</td>
<td>7.73</td>
<td>65.70</td>
<td>41.8</td>
<td>49.49</td>
<td>50.37</td>
<td>94.4438</td>
<td>30.61</td>
<td>12.39</td>
<td>77.37</td>
<td>53</td>
<td>63.90</td>
<td>60.4</td>
<td>3212</td>
<td>2.21819</td>
</tr>
<tr>
<td>Sumsel</td>
<td>6.89</td>
<td>63.10</td>
<td>44.1</td>
<td>45.06</td>
<td>50.31</td>
<td>95.6061</td>
<td>32.34</td>
<td>11.03</td>
<td>78.64</td>
<td>58</td>
<td>62.80</td>
<td>62.4</td>
<td>3465</td>
<td>2.00031</td>
</tr>
<tr>
<td>Bengkulu</td>
<td>7.28</td>
<td>77.89</td>
<td>39.3</td>
<td>61.33</td>
<td>49.24</td>
<td>97.2863</td>
<td>29.66</td>
<td>16.68</td>
<td>79.72</td>
<td>52</td>
<td>64.20</td>
<td>61.6</td>
<td>3329</td>
<td>5.28739</td>
</tr>
<tr>
<td>Lampung</td>
<td>3.88</td>
<td>49.87</td>
<td>29.2</td>
<td>65.61</td>
<td>69.31</td>
<td>97.4272</td>
<td>31.31</td>
<td>20.20</td>
<td>74.17</td>
<td>56</td>
<td>63.16</td>
<td>61.5</td>
<td>3375</td>
<td>1.93172</td>
</tr>
<tr>
<td>DKI Jakarta</td>
<td>35.76</td>
<td>99.52</td>
<td>83.3</td>
<td>66.42</td>
<td>70.01</td>
<td>97.5552</td>
<td>27.13</td>
<td>24.07</td>
<td>76.09</td>
<td>30</td>
<td>69.60</td>
<td>63.2</td>
<td>2023</td>
<td>7.14304</td>
</tr>
<tr>
<td>Jateng</td>
<td>10.69</td>
<td>80.24</td>
<td>52.1</td>
<td>50.48</td>
<td>40.30</td>
<td>92.6689</td>
<td>35.71</td>
<td>8.85</td>
<td>70.04</td>
<td>66</td>
<td>60.75</td>
<td>55.6</td>
<td>3032</td>
<td>3.19401</td>
</tr>
<tr>
<td>DIY</td>
<td>11.22</td>
<td>78.33</td>
<td>38.8</td>
<td>45.68</td>
<td>43.63</td>
<td>96.2692</td>
<td>24.24</td>
<td>22.11</td>
<td>68.54</td>
<td>36</td>
<td>68.00</td>
<td>62.8</td>
<td>2705</td>
<td>1.31430</td>
</tr>
<tr>
<td>Jatim</td>
<td>27.27</td>
<td>83.16</td>
<td>51.1</td>
<td>55.51</td>
<td>55.92</td>
<td>90.1032</td>
<td>25.70</td>
<td>11.03</td>
<td>65.97</td>
<td>30</td>
<td>64.50</td>
<td>64.3</td>
<td>1834</td>
<td>6.12813</td>
</tr>
<tr>
<td>Bali</td>
<td>9.24</td>
<td>78.13</td>
<td>36.5</td>
<td>43.48</td>
<td>42.93</td>
<td>95.7116</td>
<td>29.39</td>
<td>11.63</td>
<td>71.50</td>
<td>50</td>
<td>64.50</td>
<td>64.3</td>
<td>2189</td>
<td>1.42349</td>
</tr>
<tr>
<td>NTB</td>
<td>17.53</td>
<td>89.13</td>
<td>58.1</td>
<td>47.56</td>
<td>47.82</td>
<td>87.8173</td>
<td>29.49</td>
<td>19.18</td>
<td>72.75</td>
<td>38</td>
<td>67.45</td>
<td>64.9</td>
<td>1977</td>
<td>2.20028</td>
</tr>
<tr>
<td>NTT</td>
<td>9.03</td>
<td>68.14</td>
<td>20.5</td>
<td>22.45</td>
<td>21.17</td>
<td>98.6738</td>
<td>23.31</td>
<td>9.81</td>
<td>62.56</td>
<td>101</td>
<td>53.56</td>
<td>67.8</td>
<td>3638</td>
<td>1.43833</td>
</tr>
<tr>
<td>Ternate</td>
<td>5.36</td>
<td>28.14</td>
<td>12.5</td>
<td>16.00</td>
<td>62.65</td>
<td>99.7010</td>
<td>29.34</td>
<td>9.20</td>
<td>67.10</td>
<td>54</td>
<td>63.70</td>
<td>65.5</td>
<td>3658</td>
<td>1.06099</td>
</tr>
<tr>
<td>Kalbar</td>
<td>10.41</td>
<td>46.95</td>
<td>40.0</td>
<td>37.43</td>
<td>47.56</td>
<td>97.0108</td>
<td>23.82</td>
<td>8.79</td>
<td>71.16</td>
<td>62</td>
<td>51.55</td>
<td>63.6</td>
<td>3374</td>
<td>3.38585</td>
</tr>
<tr>
<td>Kalimantan</td>
<td>15.37</td>
<td>31.69</td>
<td>37.6</td>
<td>33.03</td>
<td>32.39</td>
<td>97.7114</td>
<td>35.79</td>
<td>13.08</td>
<td>80.93</td>
<td>43</td>
<td>66.35</td>
<td>62.5</td>
<td>3692</td>
<td>2.05750</td>
</tr>
<tr>
<td>Kaltim</td>
<td>10.96</td>
<td>64.69</td>
<td>49.5</td>
<td>35.13</td>
<td>43.95</td>
<td>96.1902</td>
<td>30.96</td>
<td>13.03</td>
<td>69.47</td>
<td>72</td>
<td>59.50</td>
<td>51.3</td>
<td>2899</td>
<td>2.67597</td>
</tr>
<tr>
<td>Sulut</td>
<td>14.45</td>
<td>80.66</td>
<td>55.2</td>
<td>47.08</td>
<td>65.63</td>
<td>90.9186</td>
<td>28.75</td>
<td>21.14</td>
<td>75.88</td>
<td>43</td>
<td>66.12</td>
<td>53.1</td>
<td>2992</td>
<td>6.77562</td>
</tr>
<tr>
<td>Sulutang</td>
<td>8.12</td>
<td>84.01</td>
<td>31.1</td>
<td>37.76</td>
<td>57.32</td>
<td>98.7277</td>
<td>31.53</td>
<td>19.55</td>
<td>73.91</td>
<td>51</td>
<td>64.30</td>
<td>48.6</td>
<td>2529</td>
<td>0.92184</td>
</tr>
<tr>
<td>Sulsel</td>
<td>17.60</td>
<td>64.99</td>
<td>35.1</td>
<td>40.99</td>
<td>35.09</td>
<td>95.7443</td>
<td>34.66</td>
<td>14.90</td>
<td>71.51</td>
<td>71</td>
<td>59.85</td>
<td>62.5</td>
<td>3765</td>
<td>1.42605</td>
</tr>
<tr>
<td>Sulteng</td>
<td>13.96</td>
<td>61.69</td>
<td>57.7</td>
<td>34.52</td>
<td>46.58</td>
<td>88.0367</td>
<td>27.03</td>
<td>13.97</td>
<td>74.08</td>
<td>43</td>
<td>63.90</td>
<td>57.6</td>
<td>3083</td>
<td>2.04598</td>
</tr>
<tr>
<td>Sumsel</td>
<td>6.18</td>
<td>64.14</td>
<td>25.7</td>
<td>32.28</td>
<td>33.74</td>
<td>95.3337</td>
<td>29.27</td>
<td>15.23</td>
<td>83.01</td>
<td>39</td>
<td>62.56</td>
<td>73.4</td>
<td>3800</td>
<td>4.13335</td>
</tr>
<tr>
<td>Maluku</td>
<td>6.29</td>
<td>66.35</td>
<td>27.3</td>
<td>24.96</td>
<td>30.72</td>
<td>98.9274</td>
<td>32.90</td>
<td>14.36</td>
<td>81.28</td>
<td>55</td>
<td>63.40</td>
<td>67.4</td>
<td>3651</td>
<td>1.25849</td>
</tr>
<tr>
<td>Sultra</td>
<td>7.38</td>
<td>39.50</td>
<td>19.8</td>
<td>31.88</td>
<td>39.28</td>
<td>96.9111</td>
<td>21.98</td>
<td>13.13</td>
<td>69.20</td>
<td>68</td>
<td>60.50</td>
<td>67.5</td>
<td>3703</td>
<td>3.18868</td>
</tr>
</tbody>
</table>

Keterangan:

Y1 = Persentase penduduk dengan pendidikan tamat SD
Y2 = Persentase penduduk dengan pendidikan SL/AFT
Y3 = Persentase penduduk yang tidak mengenal sakit selama sebulan yang lalu
Y4 = Angka kematian bayi per 100 kelahiran
Y5 = Angka harapan hidup waktu lahir
Y6 = Bukan tanggungan anak
Y7 = Angka kelahiran total (TFR)
Y8 = Persentase migrasi masuk

Note: The text in the table is in Indonesian, and the table contains data related to various regions in Indonesia, including population, education, health, and other demographics.
Lampiran 3. Skor Dua Peubah baru Pertama dari Peubah SE untuk Setiap Propinsi dengan Metode PLS dan Metode AKK

<table>
<thead>
<tr>
<th>Propinsi</th>
<th>Metode PLS</th>
<th>Metode AKK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X_{arl1}</td>
<td>X_{arl2}</td>
</tr>
<tr>
<td>DI Aceh</td>
<td>-1.0100</td>
<td>0.0631</td>
</tr>
<tr>
<td>Sumut</td>
<td>-0.0051</td>
<td>-0.9458</td>
</tr>
<tr>
<td>Sumbar</td>
<td>0.3160</td>
<td>0.2136</td>
</tr>
<tr>
<td>Riau</td>
<td>0.8751</td>
<td>-0.8868</td>
</tr>
<tr>
<td>Jambi</td>
<td>-0.1606</td>
<td>-0.4170</td>
</tr>
<tr>
<td>Sumsel</td>
<td>-0.7614</td>
<td>-0.5121</td>
</tr>
<tr>
<td>Bengkulu</td>
<td>-0.2791</td>
<td>0.7222</td>
</tr>
<tr>
<td>Lampung</td>
<td>-2.2621</td>
<td>-0.6098</td>
</tr>
<tr>
<td>DKI Jakarta</td>
<td>6.6725</td>
<td>2.2269</td>
</tr>
<tr>
<td>Jabar</td>
<td>3.2769</td>
<td>-1.6194</td>
</tr>
<tr>
<td>Jateng</td>
<td>1.3296</td>
<td>-1.8026</td>
</tr>
<tr>
<td>DIY</td>
<td>1.7670</td>
<td>0.6198</td>
</tr>
<tr>
<td>Jatim</td>
<td>1.4740</td>
<td>-1.5823</td>
</tr>
<tr>
<td>Bali</td>
<td>1.1558</td>
<td>0.3930</td>
</tr>
<tr>
<td>NTB</td>
<td>-0.8222</td>
<td>-0.1785</td>
</tr>
<tr>
<td>NTT</td>
<td>-2.0066</td>
<td>0.5324</td>
</tr>
<tr>
<td>Timur</td>
<td>-1.1578</td>
<td>1.1300</td>
</tr>
<tr>
<td>Kalbar</td>
<td>-1.8333</td>
<td>-0.7512</td>
</tr>
<tr>
<td>Kalteng</td>
<td>0.5055</td>
<td>-0.1046</td>
</tr>
<tr>
<td>Kalsel</td>
<td>1.8196</td>
<td>-0.8403</td>
</tr>
<tr>
<td>Kalim</td>
<td>0.3183</td>
<td>0.5247</td>
</tr>
<tr>
<td>Sulut</td>
<td>-1.2422</td>
<td>0.7146</td>
</tr>
<tr>
<td>Sulteng</td>
<td>-0.4043</td>
<td>0.4590</td>
</tr>
<tr>
<td>Sulsel</td>
<td>-0.8883</td>
<td>0.2098</td>
</tr>
<tr>
<td>Sultra</td>
<td>-0.3407</td>
<td>0.6351</td>
</tr>
<tr>
<td>Maluku</td>
<td>-1.8874</td>
<td>0.2832</td>
</tr>
<tr>
<td>Irja</td>
<td>-2.4906</td>
<td>1.5330</td>
</tr>
</tbody>
</table>
Lampiran 4. Skor Dua Peubah baru Pertama dari Peubah KESRA untuk Setiap Propinsi dengan Metode PLS dan Metode AKK

<table>
<thead>
<tr>
<th>Propinsi</th>
<th>Metode PLS</th>
<th></th>
<th>Metode AKK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y_{set1}</td>
<td>Y_{set2}</td>
<td>Y_{set1}</td>
<td>Y_{set2}</td>
</tr>
<tr>
<td>DI Aceh</td>
<td>-0.1491</td>
<td>-0.1966</td>
<td>-0.3722</td>
<td>0.3833</td>
</tr>
<tr>
<td>Sumut</td>
<td>0.2663</td>
<td>-0.6067</td>
<td>0.0195</td>
<td>-0.4109</td>
</tr>
<tr>
<td>Sumbar</td>
<td>-0.7605</td>
<td>-1.0204</td>
<td>0.4287</td>
<td>-0.1180</td>
</tr>
<tr>
<td>Riau</td>
<td>1.2134</td>
<td>0.0694</td>
<td>-0.0276</td>
<td>-0.5771</td>
</tr>
<tr>
<td>Jambi</td>
<td>-0.0648</td>
<td>-0.6561</td>
<td>-0.3398</td>
<td>0.1613</td>
</tr>
<tr>
<td>Sumsel</td>
<td>-0.7980</td>
<td>-0.8438</td>
<td>-0.4886</td>
<td>-0.0615</td>
</tr>
<tr>
<td>Bengkulu</td>
<td>0.0322</td>
<td>1.3785</td>
<td>-0.1371</td>
<td>-0.6861</td>
</tr>
<tr>
<td>Lampung</td>
<td>-0.8295</td>
<td>0.0946</td>
<td>-1.2405</td>
<td>0.4918</td>
</tr>
<tr>
<td>DKI Jakarta</td>
<td>8.0977</td>
<td>2.6275</td>
<td>3.6567</td>
<td>-1.0216</td>
</tr>
<tr>
<td>Jabar</td>
<td>0.6447</td>
<td>-2.6993</td>
<td>0.2247</td>
<td>6.9433</td>
</tr>
<tr>
<td>Jateng</td>
<td>0.4115</td>
<td>-1.9912</td>
<td>-3.3456</td>
<td>1.3114</td>
</tr>
<tr>
<td>DIY</td>
<td>4.6685</td>
<td>2.4938</td>
<td>1.6150</td>
<td>0.5728</td>
</tr>
<tr>
<td>Jatim</td>
<td>0.8390</td>
<td>-1.5328</td>
<td>-0.1240</td>
<td>1.6362</td>
</tr>
<tr>
<td>Bali</td>
<td>3.6576</td>
<td>0.5464</td>
<td>1.2222</td>
<td>1.0076</td>
</tr>
<tr>
<td>NTT</td>
<td>-3.7990</td>
<td>-1.5129</td>
<td>-0.2212</td>
<td>0.9440</td>
</tr>
<tr>
<td>NTB</td>
<td>-3.2342</td>
<td>0.5725</td>
<td>-1.7636</td>
<td>-0.1108</td>
</tr>
<tr>
<td>Timtim</td>
<td>-4.2435</td>
<td>1.9165</td>
<td>-0.7823</td>
<td>-2.7277</td>
</tr>
<tr>
<td>Kalbar</td>
<td>-1.7828</td>
<td>-0.1090</td>
<td>-0.5138</td>
<td>-0.1506</td>
</tr>
<tr>
<td>Kalteng</td>
<td>-0.7184</td>
<td>0.6008</td>
<td>-0.3724</td>
<td>-0.6402</td>
</tr>
<tr>
<td>Kalsel</td>
<td>-0.2196</td>
<td>-1.2914</td>
<td>-0.0340</td>
<td>1.1824</td>
</tr>
<tr>
<td>Kaltim</td>
<td>2.7370</td>
<td>1.4697</td>
<td>0.9912</td>
<td>-0.7086</td>
</tr>
<tr>
<td>Sulut</td>
<td>0.8533</td>
<td>-1.0447</td>
<td>-0.1774</td>
<td>-1.3491</td>
</tr>
<tr>
<td>Sulteng</td>
<td>-0.6689</td>
<td>0.1907</td>
<td>-0.0848</td>
<td>0.3187</td>
</tr>
<tr>
<td>Sulsel</td>
<td>0.2882</td>
<td>0.9321</td>
<td>0.3802</td>
<td>-0.3369</td>
</tr>
<tr>
<td>Sultra</td>
<td>-1.8499</td>
<td>0.7204</td>
<td>-0.4900</td>
<td>-1.8050</td>
</tr>
<tr>
<td>Mahakam</td>
<td>-1.8522</td>
<td>-1.1631</td>
<td>-0.5429</td>
<td>-0.4615</td>
</tr>
<tr>
<td>Irja</td>
<td>-2.7315</td>
<td>1.0532</td>
<td>-0.4803</td>
<td>-0.7215</td>
</tr>
</tbody>
</table>