SUMMARY

JUNI MUSTIKAWENI. Study of Rain Characteristic and Its Influence to the Overland Flow in Oil Palm Plantation Site with Conservation Technique Bund Terraces and Silt Pits. Supervised by DWI PUTRO TEJO BASKORO and ENNI DWI WAHJUNIE.

Oil palm is one of perennial trees that require a large amount of water to grow well. Accordingly rainfall should be considered as a limiting factor to oil palm growth. While excessive rainfall may cause high run off in rainy season water shortage is also common in area with distinct dry season. Bund terraces and silt pits in combination with recharge holes and vertical mulch are conservation techniques that can be applied to cope with the problem. Bund terraces and silt pits in combination with absorption hole and vertical mulch are conservation techniques that could be applied to cope with the problem. Bund terraces slows down the overland flow meanwhile the silt pits intercepts and retains the falling water which is then absorbed within the absorption hole. By using the vertical mulch, the absorption effectiveness is enhanced.

This study is aimed to analyze rain characteristic and rainfall data and its influence on overland flow through determination of overland flow coefficient and as to the conservation technique which is better applied in oil palm plantation. There are three study blocks with application of bund terraces, application of silt pits, and without any application. Study was carried out in oil palm plantation PT. Perkebunan Nusantara VII, Business Unit of Rejosari, Lampung Province, Indonesia, from February until August 2006.

Rainfall data in study area is used to calculate rainfall variability coefficient which is analyzed based on daily, 10 days, 20 days, and monthly data. It is shown that the highest rainfall variability coefficient is reached in daily rainfall data, followed by 10 days rainfall, 20 days rainfall, and finally monthly rainfall. The threshold of rainfall in which an overland flow begins in block with application of bund terraces, application of silt pits, and without any treatment were, 20.24 mm, 17.94 mm, and 14.88 mm, respectively whereas, the maximum rainfall intensity of rain that causing an overland flow, in each study block is are 16.22 mm/hour, 12.15 mm/hour, and 15.90 mm/hour.

The overland flow coefficient in study block with application of bund terraces, application of silt pits, and without any application, is respectively 0.0001 - 0.62, 0.001 - 0.02, and 0.001 - 0.62. Application of silt pits which is more effective concluded to be more effective because it depresses the overland flow as much as 42.86 % than the application of bund terraces which depresses the overland flow as much as 46.50%. Further, higher effectiveness of silt pits application as compared to the application of bund terraces is shown in field as there is no overland flow was found in block with silt pits. This is because the recharge area of silt pits is larger than bund terraces. This effectiveness is increased by making the silt pits in line with the contour.
RINGKASAN

JUNI MUSTIKAWENI. Karakteristik Hujan dan Pengaruhnya terhadap Koefisien Aliran Permukaan (Overland Flow) pada Perkebunan Kelapa Sawit di bawah bimbingan DWI PUTRO TEJO BASKORO dan ENNI DWI WAHJUNIE.

Kelapa sawit (Elaeis guineensis Jacq.) merupakan salah satu tanaman yang memerlukan air dalam jumlah banyak untuk tumbuh dengan baik. Oleh karena itu curah hujan dapat menjadi faktor penghambat pertumbuhan kelapa sawit karena di Indonesia terutama di daerah-daerah dengan periode musim kemarau yang jelas. Pada musim hujan terjadi peningkatan air hujan yang berakibat pada terjadinya aliran permukaan yang berlebihan, pada musim kemarau terjadi kerusakan air yang menyebabkan degradasi lahan. Salah satu tindakan pengelolaan air yang dapat dilakukan adalah pembuatan teras gulud dan roarak yang dilengkapi dengan lubang resapan dan mulsa vertikal. Teras gulud dapat menghambat aliran permukaan, roarak untuk menampung air aliran permukaan sedangkan saluran dan lubang resapan bertfungsi untuk menampung dan meresapkan aliran permukaan. Penggunaan mulsa yang ditempatkan ke dalam saluran-saluran dapat meningkatkan efektivitas peresapan air.

Data hujan dilakukan dalam penelitian ini akan penelitian ini adalah untuk mempelajari dan mengamati karakteristik hujan, menganalisis hubungan antara karakteristik hujan dengan aliran permukaan dengan mengetahui teknik konservasi yang efektif pada perkebunan kelapa sawit. Teknik konservasi yang diterapkan adalah teras gulud yang dilengkapi dengan lubang resapan dan mulsa vertikal, tanpa perlakuan (kontrol), dan roarak yang dilengkapi dengan lubang resapan dan mulsa vertikal. Penelitian dilakukan di perkebunan kelapa sawit milik PT. Perkebunan Nusantara VII Unit Usaha Rejosari, provinsi Lampung, dari bulan Februari hingga Agustus 2006.

Data curah hujan dikelompokkan secara periodik menjadi data curah hujan harian, 10 harian, 20 harian, dan bulanan. Keragaman curah hujan terbesar pada curah hujan harian kemudian dikritik curah hujan 10 harian, 20 harian, dan bulanan yang dapat diketahui dari nilai koefisien keragaman. Ambang curah hujan mulai terjadi pada overland flow pada teras gulud lebih besar dibandingkan dengan ambang curah hujan pada perlakuan roarak dan kontrol, yaitu masing-masing sebesar 20,24 mm, 17,94 mm, dan 14,88 mm. Overland flow mulai terjadi jika intensitas hujan maksimum sebesar 16,82 mm/jam pada teras gulud, pada blok kontrol sebesar 15,90 mm/jam dan pada roarak sebesar 12,15 mm/jam.

Kesimpulannya koefisien overland flow yang terjadi pada perlakuan teras gulud adalah berkisar 0,0001-0,33, pada perlakuan roarak adalah 0,001-0,02, dan pada kontrol adalah 0,001-0,62. Perlakuan teras gulud yang dilengkapi dengan lubang resapan dan mulsa vertikal dapat menekan overland flow sebesar 46,50%, sedangkan roarak sebesar 52,86%. Efektivitas perlakuan roarak lebih tinggi dibandingkan dengan teras gulud, karena pada blok roarak luas bidang resapannya relatif lebih besar dari perlakuan teras gulud. Hal ini menyebabkan jumlah air hujan yang terserap ke dalam tanah lebih besar daripada yang menjadi overland flow.