HASIL DAN PEMBAHASAN

Kondisi Umum Penelitian

Penelitian ini menggunakan eksplan steril berupa stek buku tunggal untuk penanaman. Penelitian diawali dengan perbanyakan eksplan dengan media MS0 selama kurang lebih satu bulan untuk menjamin ketersediaan eksplan. Penelitian utama mulai dilakukan pada minggu terakhir bulan Februari 2007 dengan penanaman stek buku tunggal ke dalam media pertunas (MS0 padat). Setiap klon kentang ditanam sebanyak 20 botol dengan tiap botol ditanam 2 eksplan sehingga total terdapat 260 botol satuan percobaan.

Selama penelitian suhu di ruang kultur berkisar antara 16-20 °C. Penyinapan sebesar 1000 lux selama 24 jam setiap hari dilakukan selama tahap pertunasan sedangkan perlakuan ruang gelap dilakukan saat tahap pengumbian mikro. Selama penelitian dilakukan fumigasi sebanyak satu kali dan pembersihan ruang kultur untuk mencegah terjadinya kontaminasi.

Analisis ragam menunjukkan bahwa semua parameter yang diamati menunjukkan nilai yang berbeda sangat nyata, kecuali parameter jumlah tunas pada M1MSP yang menunjukkan nilai berbeda nyata (Tabel 2). Hal ini mengindikasikan bahwa terdapat klon yang lebih baik dalam hal pertumbuhan serta produksi umbi mikro dibandingkan klon lain.
<table>
<thead>
<tr>
<th>Tahap</th>
<th>Parameter</th>
<th>Waktu</th>
<th>Uji F</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Pertumbuhan</td>
<td>Tinggi tanaman</td>
<td>1 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Jumlah buku</td>
<td>1 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Jumlah daun</td>
<td>1 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Jumlah tunas</td>
<td>1 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Jumlah akar</td>
<td>1 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 MST</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 MST</td>
<td>**</td>
</tr>
<tr>
<td>II. Pengumbian mikro</td>
<td>Jumlah umbi/tanaman</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Diameter umbi</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Jumlah mata tunas</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Bobot basah/umbi</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Bobot kering (%)</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Inisiasi</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Kerempakan</td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

Keterangan: * = berbeda nyata pada analisis ragam dengan taraf 5%; ** = berbeda sangat nyata pada analisis ragam dengan taraf 1%; MST = Minggu Setelah Tanam

Tahap Pertumbuhan Tunas

Pengujian pada tahap pertumbuhan tunas yang dilakukan melalui pengamatan tinggi tanaman, jumlah daun, jumlah buku, jumlah tunas dan jumlah akar menunjukkan hasil yang berbeda sangat nyata dari semua klon yang diuji. Semua parameter tersebut menunjukkan vigor tanaman. Beberapa faktor yang

Tinggi Tanaman

Tinggi tanaman mulai bertambah setelah 1 MST dan pertambahannya diamati setiap minggu sampai 5 MST. Tinggi tanaman diamati dari permukaan media sampai titik tumbuh paling tinggi dari eksplan. Analisis ragam menunjukkan hasil berbeda sangat nyata pada 1-5 MST (Tabel 2).

Tabel 2: Tinggi tanaman klon-klon kentang hasil persilangan kultivar Atlantik dan Granola pada pengujian in vitro selama 1-5 MST

<table>
<thead>
<tr>
<th>Klono</th>
<th>1 MST</th>
<th>2 MST</th>
<th>3 MST</th>
<th>4 MST</th>
<th>5 MST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantis</td>
<td>0.94 dc</td>
<td>3.46 bc</td>
<td>5.12 cd</td>
<td>7.94 bc</td>
<td>9.57 cb</td>
</tr>
<tr>
<td>Granola</td>
<td>1.27 bc</td>
<td>3.95 ab</td>
<td>5.26 bc</td>
<td>7.85 bc</td>
<td>9.94 cb</td>
</tr>
<tr>
<td>Atmola 1</td>
<td>0.69 def</td>
<td>3.47 bc</td>
<td>5.42 b</td>
<td>7.85 bc</td>
<td>9.75 cb</td>
</tr>
<tr>
<td>Atmola 2</td>
<td>0.41 f</td>
<td>1.87 e</td>
<td>3.74 cde</td>
<td>5.45 d</td>
<td>6.75 d</td>
</tr>
<tr>
<td>Atmola 3</td>
<td>1.37 abc</td>
<td>3.64 bc</td>
<td>5.26 bc</td>
<td>6.71 bcd</td>
<td>7.67 cb</td>
</tr>
<tr>
<td>Atmola 4</td>
<td>0.44 ef</td>
<td>2.66 cde</td>
<td>4.64 bcd</td>
<td>6.52 bcd</td>
<td>7.75 d</td>
</tr>
<tr>
<td>Atmola 5</td>
<td>0.91 cde</td>
<td>3.49 bc</td>
<td>5.64 b</td>
<td>7.92 bc</td>
<td>10.17 b</td>
</tr>
<tr>
<td>Atmola 6</td>
<td>0.73 def</td>
<td>3.87 abc</td>
<td>5.92 b</td>
<td>8.41 b</td>
<td>10.33 b</td>
</tr>
<tr>
<td>Atmola 7</td>
<td>0.61 def</td>
<td>2.28 de</td>
<td>3.61 de</td>
<td>5.12 d</td>
<td>6.08 d</td>
</tr>
<tr>
<td>Atmola 8</td>
<td>1.79 a</td>
<td>4.81 a</td>
<td>8.53 a</td>
<td>10.89 a</td>
<td>14.75 a</td>
</tr>
<tr>
<td>Atmola 9</td>
<td>1.47 ab</td>
<td>4.96 a</td>
<td>7.41 a</td>
<td>10.87 a</td>
<td>12.66 a</td>
</tr>
<tr>
<td>Atmola 10</td>
<td>1.03 bcd</td>
<td>3.37 bcd</td>
<td>4.91 bcd</td>
<td>6.42 cd</td>
<td>7.03 d</td>
</tr>
<tr>
<td>Atmola 11</td>
<td>0.64 def</td>
<td>2.25 de</td>
<td>3.43 e</td>
<td>5.06 d</td>
<td>6.02 d</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan nilai yang tidak berbeda nyata pada uji beda nilai tengah DMRT taraf 5%; MST = Minggu Setelah Tanam.

Gambar 2 menunjukkan pola pertambahan tinggi klon-klon yang diamati dengan pertambahan tinggi terbaik terdapat pada Atnola 12 dan Atnola 22. Sedangkan klon-klon yang memiliki pertumbuhan tinggi tanaman lebih baik dari setuanya adalah Atnola 5, Atnola 9, Atnola 12 dan Atnola 22 sehingga klon-klon tersebut berpotensi menjadi klon kentang unggul dalam karakter tinggi tanaman.

Gambar 2. Tinggi tanaman klon-klon kentang hasil persilangan kultivar Atlantik dan Granola pada pengujian in vitro selama 1-5 MST

Jumlah Daun

Pengamatan jumlah daun dilakukan pada 1-5 MST. Daun mulai terbentuk sejak 1 MST. Secara umum ukuran daun yang terbentuk pada masing-masing klon berbeda, beberapa klon berdaun kecil dan sedangkan klon lain berdaun lebar (Gambar 3).

Gambar 3. Perbedaan ukuran daun antara klon-klon kentang hasil persilangan kultivar Atlantik dan Granola dan tetuanya (A: Atnola 1; B: kultivar Atlantik; C: kultivar Granola; D: Atnola 12)

Analisis ragam jumlah daun menunjukkan perbedaan yang sangat nyata pada semua minggu pengamatan. Tabel 3 menunjukkan bahwa jumlah daun terbanyak pada 1 MST terdapat pada Atnola 9 yaitu 3.1 daun. Pada 2-4 MST, jumlah daun Atnola 9 dan Atnola 12 lebih banyak diantara semua klon yang
diamati dan jumlah daun pada kedua klon tersebut tidak berbeda nyata. Akan
tetapi pada 5 MST jumlah daun paling banyak terdapat pada Atnola 12 yaitu 17.5
daun. Rata-rata jumlah daun bertambah sebanyak 2.5 daun per minggu untuk
Atnola 9 dan 3.8 daun per minggu untuk Atnola 12.

Tabel 3. Jumlah daun klon-klon ketang hasil persilangan kultivar Atlantik dan
Granola pada pengujuan in vitro selama 1-5 MST

<table>
<thead>
<tr>
<th>Klon</th>
<th>1 MST</th>
<th>2 MST</th>
<th>3 MST</th>
<th>4 MST</th>
<th>5 MST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantik</td>
<td>1.9 bcd</td>
<td>4.0 bcd</td>
<td>5.7 ef</td>
<td>7.9 cd</td>
<td>10.4 cd</td>
</tr>
<tr>
<td>Granola</td>
<td>1.7 bcd</td>
<td>4.4 bc</td>
<td>6.9 cd</td>
<td>9.7 b</td>
<td>11.9 bc</td>
</tr>
<tr>
<td>Atnola 1</td>
<td>1.8 bcd</td>
<td>4.2 bcd</td>
<td>6.0 ef</td>
<td>8.9 bc</td>
<td>9.9 cde</td>
</tr>
<tr>
<td>Atnola 2</td>
<td>1.1 de</td>
<td>4.1 bcd</td>
<td>5.7 def</td>
<td>7.5 cd</td>
<td>9.9 cde</td>
</tr>
<tr>
<td>Atnola 3</td>
<td>2.1 bc</td>
<td>3.8 cd</td>
<td>6.1 def</td>
<td>8.8 bc</td>
<td>10.7 cd</td>
</tr>
<tr>
<td>Atnola 4</td>
<td>0.8 e</td>
<td>4.0 b</td>
<td>5.8 def</td>
<td>7.6 cd</td>
<td>9.7 def</td>
</tr>
<tr>
<td>Atnola 5</td>
<td>1.4 bcd</td>
<td>4.3 bc</td>
<td>6.1 def</td>
<td>7.5 cd</td>
<td>10.7 cd</td>
</tr>
<tr>
<td>Atnola 6</td>
<td>3.1 a</td>
<td>5.7 a</td>
<td>8.4 ab</td>
<td>12.1 a</td>
<td>13.1 b</td>
</tr>
<tr>
<td>Atnola 7</td>
<td>1.5 bcd</td>
<td>3.9 cd</td>
<td>7.4 bc</td>
<td>7.4 cd</td>
<td>8.3 ef</td>
</tr>
<tr>
<td>Atnola 8</td>
<td>2.3 b</td>
<td>5.5 a</td>
<td>9.3 a</td>
<td>11.9 a</td>
<td>17.5 a</td>
</tr>
<tr>
<td>Atnola 9</td>
<td>1.9 bcd</td>
<td>5.1 ab</td>
<td>5.5 ef</td>
<td>8.7 bc</td>
<td>11.1 bcd</td>
</tr>
<tr>
<td>Atnola 10</td>
<td>1.3 cde</td>
<td>3.2 d</td>
<td>4.9 f</td>
<td>6.6 d</td>
<td>7.8 f</td>
</tr>
<tr>
<td>Atnola 11</td>
<td>1.8 bcd</td>
<td>4.4 bc</td>
<td>6.6 cde</td>
<td>9.1 bc</td>
<td>11.2 bcd</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan nilai yang
tidak berbeda nyata pada uji beda nilai tengah DMRT tariff 5%; MST = Minggu Setelah Tanam.

Jumlah daun Atnola 9 dan Atnola 12 juga lebih banyak dibandingkan
kedua tetuanya, yaitu kultivar Atlantik dan kultivar Granola. Jumlah daun pada
Atnola 9 berbeda nyata dibandingkan tetuanyanya pada 1-5 MST. Sedangkan
jumlah daun pada Atnola 12 tidak berbeda nyata dibandingkan tetuanyanya pada 1
MST, tapi mulai 2 MST sampai 5 MST jumlah daun pada Atnola 12 berbeda
nyata dengan tetu. Hal ini menunjukkan bahwa Atnola 9 dan Atnola 12
mempunyai respon pertumbuhan lebih baik dari daripada tetu dalam karakter
jumlah daun sehingga berpotensi menjadi klon ketang unggul.

Gambar 4 menunjukkan pola pertambahan jumlah daun pada 1-5 MST
terhadap semua klon yang diuji. Atnola 9 dan Atnola 12 menunjukkan pola
pertambahan jumlah daun terbanyak dari semua klon yang diamati termasuk
tetuaya, yaitu kultivar Atlantik dan Granola. Sedangkan Atnola 25 memiliki
denah pertambahan jumlah daun paling sedikit dari semua klon yang diamati.
Gambar 4. Jumlah daun klon-klon kentang hasil persilangan kultivar Atlantik dan Granola pada pengujuan in vitro selama 1-5 MST

Jumlah daun akan mempengaruhi fotosintesis tanaman karena daun pada tumbuhan tingkat tinggi merupakan alat fotosintesis. Proses fotosintesis akan menghasilkan fotosintat yang digunakan sebagai cadangan makanan. Pada tanaman kentang, sebagian fotosintat digunakan untuk proses pertumbuhan dan sebagian disimpan dalam bentuk umbi sehingga diindikasikan pembentukan umbi akan semakin meningkat dengan meningkatnya jumlah daun.

Jumlah Buku

Jumlah buku diamati setiap minggu sampai 5 MST. Buku mulai terbentuk setelah 2 MST. Analisis ragam menunjukkan hasil berbeda sangat nyata pada pengujuan in vitro selama 1-5 MST.

Sabel 4 menunjukkan bahwa jumlah buku terbanyak pada 1 MST terdapat pada Atnola 9 yaitu 2.3 buku per ekspalan. Akan tetapi Atnola 12, Atnola 22, kultivar Atlantik dan kultivar Granola juga menunjukkan jumlah buku yang tidak berbeda nyata dengan Atnola 9 pada 1 MST. Pada 2-5 MST, Atnola 12 menunjukkan jumlah buku paling banyak diantara semua klon yang diuji. Pada 2-4 MST, Jumlah buku Atnola 9 dan Atnola 12 tidak berbeda nyata dan nilainya
menunjukkan jumlah buku terbanyak diantara semua klon yang diamati, termasuk

tetunya. Hal ini menunjukkan bahwa Atnola 12 dan Atnola 9 menunjukkan

tingkat pertumbuhan lebih baik dalam jumlah buku dibandingkan tetunya yaitu

kultivar Atlantik dan Granola. Ruas buku pada klon yang diamati bertambah

antara 2-4 buku setiap minggunya. Hal ini sesuai dengan pernyataan Wattimena

(2000) yang menyatakan bahwa stek mikro kentang akan bertambah rata-rata 4

buku per eksplan setiap minggunya.

Tabel 6. Jumlah buku klon-klon kentang hasil persilangan kultivar Atlantik dan

Granola pada pengujian in vitro selama 1-5 MST

<table>
<thead>
<tr>
<th>Klon</th>
<th>1 MST</th>
<th>2 MST</th>
<th>3 MST</th>
<th>4 MST</th>
<th>5 MST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantik</td>
<td>1.9 ab</td>
<td>4.0 bc</td>
<td>5.7 def</td>
<td>7.8 bc</td>
<td>10.4 bcd</td>
</tr>
<tr>
<td>Granola</td>
<td>1.7 abcd</td>
<td>4.4 b</td>
<td>6.9 bc</td>
<td>8.8 b</td>
<td>11.9 bc</td>
</tr>
<tr>
<td>Atnola 7</td>
<td>1.6 abcd</td>
<td>3.9 bc</td>
<td>6.0 def</td>
<td>8.7 b</td>
<td>9.9 cde</td>
</tr>
<tr>
<td>Atmola</td>
<td>1.1 cd</td>
<td>4.1 bc</td>
<td>5.7 cdef</td>
<td>6.5 c</td>
<td>10.3 bcd</td>
</tr>
<tr>
<td>Atnola 3</td>
<td>2.1 ab</td>
<td>3.8 bc</td>
<td>6.0 de</td>
<td>8.7 b</td>
<td>10.7 bcd</td>
</tr>
<tr>
<td>Atnola 2</td>
<td>0.9 d</td>
<td>3.9 bc</td>
<td>5.8 cdef</td>
<td>6.5 c</td>
<td>9.7 def</td>
</tr>
<tr>
<td>Attnola</td>
<td>1.5 bcd</td>
<td>4.3 b</td>
<td>6.1 cdef</td>
<td>7.3 bc</td>
<td>10.7 bcd</td>
</tr>
<tr>
<td>Attnola 9</td>
<td>2.3 a</td>
<td>4.7 ab</td>
<td>7.8 ab</td>
<td>11.5 a</td>
<td>12.3 b</td>
</tr>
<tr>
<td>Attnola 10</td>
<td>1.5 abcd</td>
<td>3.9 bc</td>
<td>5.5 ef</td>
<td>7.2 bc</td>
<td>8.3 ef</td>
</tr>
<tr>
<td>Attnola 12</td>
<td>2.1 abc</td>
<td>5.5 a</td>
<td>9.4 a</td>
<td>11.4 a</td>
<td>17.5 a</td>
</tr>
<tr>
<td>Attnola 22</td>
<td>1.9 ab</td>
<td>4.4 b</td>
<td>6.8 bc</td>
<td>8.0 bc</td>
<td>11.1 bcd</td>
</tr>
<tr>
<td>Attnola 25</td>
<td>1.4 bcd</td>
<td>3.2 c</td>
<td>4.9 f</td>
<td>6.6 c</td>
<td>7.8 f</td>
</tr>
<tr>
<td>Attnola 26</td>
<td>1.8 abc</td>
<td>4.4 b</td>
<td>6.6 bcd</td>
<td>8.5 b</td>
<td>11.2 bcd</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan nilai yang

idak berbeda nyata pada uji beda nilai tengah DMRT taraf 5%; MST = Minggu Setelah Tanam.

Gambar 5 menunjukkan pola pertumbuhan jumlah buku dari semua klon

corangs yang diuji. Pola pertumbuhan buku terbanyak terdapat pada Attnola 9 dan

Attnola 12. Attnola 9 dan Attnola 12 menunjukkan pola pertambahan jumlah daun

terbanyak dari semua klon yang diamati termasuk tetunya, yaitu kultivar Atlantik

dan Granola. Sedangkan Attnola 25 memiliki pertambahan jumlah daun paling

sedikit dari semua klon yang diamati.
Gambar 5. Jumlah buku klon-klon kentang hasil persilangan kultivar Atlantik dan Granola pada pengujian in vitro selama 1-5 MST

Jumlah Tunas

Pengamatan jumlah tunas dilakukan setiap minggu sampai 5 MST. Tunas yang diamati merupakan tunas yang tumbuh dari ketiak daun. Pada 1 MST, belum semua klon membentuk tunas meskipun terdapat beberapa klon yang mampu membentuk tunas mulai 1 MST yaitu Atnola 3, Atnola 9, Atnola 22 dan Atnola 25. Analisis ragam menunjukkan hasil berbeda sangat nyata pada semua minggu pengamatan kecuali pada 2 MST yang menunjukkan hasil berbeda nyata (Tabel 5).
Tabel 5. Jumlah tunas klon-klon kentang hasil persilangan kultivar Atlantik dan Granola pada pengujian in vitro selama 1-5 MST

<table>
<thead>
<tr>
<th>Klon</th>
<th>1 MST</th>
<th>2 MST</th>
<th>3 MST</th>
<th>4 MST</th>
<th>5 MST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantik</td>
<td>0.9 a</td>
<td>1.0 b</td>
<td>1.2 b</td>
<td>1.3 bcd</td>
<td>1.7 cde</td>
</tr>
<tr>
<td>Granola</td>
<td>1.0 a</td>
<td>1.1 ab</td>
<td>1.9 a</td>
<td>2.2 a</td>
<td>2.8 b</td>
</tr>
<tr>
<td>Atnola 1</td>
<td>0.8 a</td>
<td>0.9 b</td>
<td>1.4 b</td>
<td>1.8 ab</td>
<td>2.8 b</td>
</tr>
<tr>
<td>Atnola 2</td>
<td>0.8 ab</td>
<td>1.2 ab</td>
<td>1.2 b</td>
<td>1.6 bcd</td>
<td>2.1 bcd</td>
</tr>
<tr>
<td>Atnola 3</td>
<td>1.0 a</td>
<td>1.0 b</td>
<td>1.4 b</td>
<td>1.9 ab</td>
<td>2.5 bc</td>
</tr>
<tr>
<td>Atnola 4</td>
<td>0.6 b</td>
<td>1.0 b</td>
<td>1.2 b</td>
<td>1.8 ab</td>
<td>2.2 bc</td>
</tr>
<tr>
<td>Atnola 5</td>
<td>0.9 a</td>
<td>1.0 b</td>
<td>1.0 b</td>
<td>1.1 d</td>
<td>1.2 e</td>
</tr>
<tr>
<td>Atnola 6</td>
<td>1.0 a</td>
<td>1.0 b</td>
<td>1.1 b</td>
<td>1.3 bcd</td>
<td>1.4 de</td>
</tr>
<tr>
<td>Atnola 7</td>
<td>0.9 a</td>
<td>1.0 b</td>
<td>1.1 b</td>
<td>1.2 cd</td>
<td>1.3 e</td>
</tr>
<tr>
<td>Atnola 8</td>
<td>0.9 a</td>
<td>1.3 a</td>
<td>1.8 a</td>
<td>1.9 ab</td>
<td>3.9 a</td>
</tr>
<tr>
<td>Atnola 9</td>
<td>1.0 a</td>
<td>0.9 b</td>
<td>1.2 b</td>
<td>1.5 bcd</td>
<td>2.2 bc</td>
</tr>
<tr>
<td>Atnola 10</td>
<td>1.0 a</td>
<td>1.0 b</td>
<td>1.1 b</td>
<td>1.7 abc</td>
<td>2.3 bc</td>
</tr>
<tr>
<td>Atnola 11</td>
<td>0.8 a</td>
<td>1.1 b</td>
<td>1.4 b</td>
<td>1.8 ab</td>
<td>2.4 bc</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan nilai yang tidak berbeda nyata pada uji beda nilai tengah DMRT taraf 5%; MST = Minggu Setelah Tanam.

Tabel 5 menunjukkan hasil bahwa jumlah tunas pada 1 MST tidak berbeda nyata untuk semua klon yang diuji. Jumlah tunas terbanyak pada 2 dan 5 MST terdapat pada Atnola 12 yaitu 1.25 tunas per eksplan (2 MST) dan 3.85 tunas per eksplan (5 MST). Pada 4 MST jumlah tunas terbanyak terdapat pada kultivar Granola yaitu 2.15 tunas per eksplan. Pada 3 MST, jumlah tunas pada Atnola 12 dan kultivar Granola tercatat paling banyak diantara semua klon yang diamati yaitu 1.95 tunas per eksplan (kultivar Granola) dan 1.8 tunas per eksplan (Atnola 12). Nilai ini tidak berbeda nyata. Secara umum, jumlah tunas pada semua klon yang diamati tidak berbeda jauh, yaitu antara 1-3 tunas per eksplan. Akan tetapi, Atnola 12 menunjukkan respon pertambahan jumlah tunas paling cepat diantara semua klon yang diuji. Meskipun nilainya tidak berbeda nyata dengan kultivar Granola, rata-rata pertambahan tunas untuk Atnola 12 lebih tinggi dibandingkan kultivar Granola yaitu 0.75 tunas (Atnola 12) dan 0.44 tunas (kultivar Granola).

Hal ini menunjukkan tingkat pertumbuhan Atnola 12 yang lebih baik dibandingkan tetuanya dalam parameter jumlah tunas.

Gambar 6 menunjukkan pola pertumbuhan jumlah tunas pada 1-5 MST klon-klon kentang hasil persilangan kultivar Atlantik dan Granola. Pola pertumbuhan tunas tertinggi terdapat pada Atnola 12. Atnola 1 dan Atnola 3 juga
menunjukkan pola pertumbuhan tunas yang lebih baik daripada tetuanya yaitu kultivar Atlantik. Hal ini menunjukkan bahwa Atnola 1, Atnola 3 dan Atnola 12 mempunyai potensi sebagai klon kentang unggul dalam karakter jumlah tunas dibandingkan tetuanya.

Gambar 6. Jumlah tunas klon-klon kentang hasil persilangan kultivar Atlantik dan Granola pada pengujian in vitro selama 1-5 MST

Jumlah Akar

Jumlah akar diamati setiap minggu sampai 5 MST. Akar mulai terbentuk pada 1 MST. Perakaran kentang berupa akar tunggang dengan banyak akar lateral sehingga akar yang diamati adalah akar primer (akar tunggang yang melekat langsung pada batang tanaman), hal ini dimaksudkan untuk mempermudah
penghitungan. Analisis ragam menunjukkan hasil yang berbeda sangat nyata pada 1-5 MST (Tabel 6).

<table>
<thead>
<tr>
<th>KlON</th>
<th>1 MST</th>
<th>2 MST</th>
<th>3 MST</th>
<th>4 MST</th>
<th>5 MST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantik</td>
<td>0.8 cd</td>
<td>2.1 cd</td>
<td>2.4 d</td>
<td>2.4 de</td>
<td>2.4 de</td>
</tr>
<tr>
<td>Granola</td>
<td>0.9 cd</td>
<td>3.6 b</td>
<td>4.4 b</td>
<td>4.4 b</td>
<td>4.4 bc</td>
</tr>
<tr>
<td>Atnola 1</td>
<td>0.7 cd</td>
<td>1.9 cd</td>
<td>2.4 d</td>
<td>2.4 de</td>
<td>2.7 de</td>
</tr>
<tr>
<td>Atnola 2</td>
<td>0.5 cd</td>
<td>2.2 c</td>
<td>2.4 d</td>
<td>2.5 de</td>
<td>2.6 de</td>
</tr>
<tr>
<td>Atnola 3</td>
<td>1.4 c</td>
<td>1.9 cd</td>
<td>3.1 cd</td>
<td>3.5 bcd</td>
<td>3.7 bcd</td>
</tr>
<tr>
<td>Atnola 4</td>
<td>0.4 d</td>
<td>1.6 cd</td>
<td>2.6 d</td>
<td>2.8 de</td>
<td>3.2 cde</td>
</tr>
<tr>
<td>Atnola 5</td>
<td>1.0 cd</td>
<td>2.6 c</td>
<td>3.3 cd</td>
<td>3.4 bcd</td>
<td>3.4 bcd</td>
</tr>
<tr>
<td>Atnola 6</td>
<td>0.8 cd</td>
<td>1.9 cd</td>
<td>3.4 bcd</td>
<td>4.5 b</td>
<td>4.6 b</td>
</tr>
<tr>
<td>Atnola 7</td>
<td>1.2 cd</td>
<td>1.9 cd</td>
<td>2.2 d</td>
<td>2.2 e</td>
<td>2.2 e</td>
</tr>
<tr>
<td>Atnola 8</td>
<td>4.6 a</td>
<td>5.6 a</td>
<td>6.3 a</td>
<td>6.5 a</td>
<td>6.9 a</td>
</tr>
<tr>
<td>Atnola 9</td>
<td>1.2 cd</td>
<td>2.4 c</td>
<td>3.2 cd</td>
<td>3.4 bcd</td>
<td>4.5 b</td>
</tr>
<tr>
<td>Atnola 10</td>
<td>2.4 b</td>
<td>3.7 b</td>
<td>3.9 bc</td>
<td>4.0 bc</td>
<td>4.4 bc</td>
</tr>
<tr>
<td>Atnola 11</td>
<td>0.5 d</td>
<td>1.1 d</td>
<td>2.7 d</td>
<td>3.0 cde</td>
<td>3.3 bode</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti huruf sama pada kolom yang sama menunjukkan nilai yang tidak berbeda nyata pada uji beda nilai tengah DMRT taraf 5%; MST = Minggu Setelah Tanam.

Tabel 6 menunjukkan bahwa semua klon mampu membentuk akar. Pada umumnya pertambahan akar primer rata-rata tiap minggu adalah 0.58 akar per eksplan. Atnola 12 memiliki jumlah akar terbanyak pada 1-5 MST dibandingkan semua klon yang diuji, termasuk kedua tetu. Pada 1 MST, Atnola 12 dan Atnola 25 memiliki jumlah akar lebih banyak dari kedua tetu, sedangkan klon-klon lain memiliki jumlah akar yang tidak berbeda nyata dengan tetu (kultivar Atlantik dan Granola). Pada 2-5 MST, Atnola 25 memiliki jumlah akar tidak berbeda nyata dibandingkan kultivar Granola tetapi jumlah akar Atnola 25 lebih banyak dari kultivar Atlantik. Pada 3-5 MST, Atnola 5 dan Atnola 9 memiliki jumlah akar tidak berbeda nyata dengan kultivar Granola tetapi kedua klon tersebut memiliki jumlah akar lebih banyak dari kultivar Atlantik. Hal ini berarti tingkat pertumbuhan Atnola 5, Atnola 9, Atnola 12, Atnola 22 dan Atnola 25 lebih baik dibandingkan tetu dalam jumlah akar.

Gambar 7 menunjukkan pola pertumbuhan jumlah akar semua klon yang diuji pada 1-5 MST. Pertumbuhan jumlah akar tertinggi terdapat pada Atnola 12.
Atnola 5, Atnola 9 dan Atnola 25 menunjukkan pola pertumbuhan jumlah akar lebih baik dari tetuanya yaitu kultivar Atlantik.

Gambar 7. Jumlah akar klon-klon kentang hasil persilangan kultivar Atlantik dan Granola pada pengujian in vitro selama 1-5 MST

Tahap Pengumbian

Waktu Inisiasi dan Keserempakan Umbi

Inisiasi umbi adalah proses diferensiasi tunas pada stolon menjadi primordia umbi (Rubatzky dan Yamaguchi, 1998), pada tahap selanjutnya umbi terbentuk akibat deposisi pati atau karbohidrat yang disebabkan pembelahan sel (Arteca, 1996). Keserempakan tumbuh umbi yang cepat mengacu pada mekanisme deposisi (pengisian) karbohidrat yang seragam dalam pertakukan yang sama dan merupakan salah satu cara untuk menduga umur suatu kultivar kentang.

Pada penelitian ini, semua klon yang diuji mampu membentuk umbi dan hal ini menunjukkan bahwa media yang digunakan mampu merangsang pembentukan umbi dengan baik. Waktu inisiasi umbi dicatat saat pertama kali umbi terbentuk setelah penyiraman media pengumbian. Sedangkan keserempakan umbi ditentukan dari selisih waktu saat pembentukan umbi mencapai 100% dengan inisiasi umbi. Analisis ragam menunjukkan hasil yang berbeda sangat nyata untuk waktu inisiasi dan keserempakan umbi (Tabel 7).

Tabel 7. Waktu inisiasi dan keserempakan umbi klon-klon kentang hasil persilangan kultivar Atlantik dan Granola pada pengujian in vitro

<table>
<thead>
<tr>
<th>Klono</th>
<th>Inisiasi (hari)</th>
<th>Keserempakan (hari)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantik</td>
<td>46.5 b</td>
<td>7.7 cde</td>
</tr>
<tr>
<td>Granola</td>
<td>41.1 cd</td>
<td>6.6 de</td>
</tr>
<tr>
<td>Atmol 1</td>
<td>36.3 d</td>
<td>10.6 bc</td>
</tr>
<tr>
<td>Atmol 2</td>
<td>38.0 cd</td>
<td>0.0 f</td>
</tr>
<tr>
<td>Atmol 3</td>
<td>48.7 b</td>
<td>6.7 de</td>
</tr>
<tr>
<td>Atmol 4</td>
<td>26.0 e</td>
<td>12.2 b</td>
</tr>
<tr>
<td>Atmol 5</td>
<td>40.7 cd</td>
<td>4.2 e</td>
</tr>
<tr>
<td>Atmol 9</td>
<td>38.4 cd</td>
<td>11.9 b</td>
</tr>
<tr>
<td>Atmol 10</td>
<td>54.3 a</td>
<td>0.0 f</td>
</tr>
<tr>
<td>Atmol 12</td>
<td>25.5 e</td>
<td>16.0 a</td>
</tr>
<tr>
<td>Atmol 22</td>
<td>23.2 e</td>
<td>18.1 a</td>
</tr>
<tr>
<td>Atmol 25</td>
<td>41.6 c</td>
<td>8.8 bcd</td>
</tr>
<tr>
<td>Atmol 26</td>
<td>48.5 b</td>
<td>6.5 de</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan nilai yang tidak berbeda nyata pada uji beda nilai tengah DMRT taraf 5%.
Umbi mulai terbentuk setelah 3 MSP dan pengamatan umbi dilakukan pada 1-10 MSP. Tabel 8 menunjukkan bahwa waktu inisiasi umbi yang dibutuhkan berkisar antara 23.2 hari sampai 54.3 hari tergantung klono. Waktu inisiasi umbi tercepat terjadi pada Atnola 22 yaitu 23.2 hari sedangkan inisiasi terlama terjadi pada Atnola 10 yaitu 54.3 hari. Inisiasi umbi pada Atnola 12 (25.5 hari) dan Atnola 4 (26.0 hari) menunjukkan nilai yang tidak berbeda nyata dari Atnola 22. Waktu inisiasi tersebut lebih cepat dari waktu inisiasi tetuanya yaitu kultivar Atlantik (46.5 hari) dan kultivar Granola (41.1 hari). Hal ini menunjukkan bahwa Atnola 4, Atnola 12 dan Atnola 22 berpotensi untuk memiliki umur panen yang lebih pendek (genjah) dibandingkan tetuanya.

Selisih waktu antara pembentukan umbi 100% dengan inisiasi umbi menunjukkan tingkat keserempakan umbi, dimana semakin kecil nilai selisih tersebut maka semakin tinggi pula tingkat keserempakan klono tersebut. Nilai keserempakan berkisar antar 0 hari sampai 18.1 hari. Selisih paling pendek dari semua klono yang diuji terdapat pada Atnola 2 dan Atnola 10 yaitu 0 hari sedangkan selisih paling panjang adalah Atnola 22 yaitu 18.11 hari (Tabel 7). Waktu keserempakan 0 hari pada Atnola 2 dan Atnola 10 menunjukkan bahwa jumlah umbi 100% tercapai saat inisiasi umbi terjadi. Setelah itu, umbi tidak akan terbentuk kembali. Jika dibandingkan dengan tetuanya, kultivar Atlantik (nilai selisih 5.67 hari) dan kultivar Granola (nilai selisih 6.58 hari), Atnola 2 dan
Atnola 10 terlihat lebih serempak dalam pembentukan umbi sehingga diharapkan Atnola 2 dan Atnola 10 mampu menjadi klon kentang unggul dengan tingkat keserempakkan tinggi dibandingkan tetuanya.

Jumlah Umbi

Jumlah umbi yang dihitung adalah jumlah umbi per tanaman. Analisis rata-rata jumlah umbi per tanaman yang dihasilkan bervariasi antara 0.7 sampai 2.4 umbi. Jumlah umbi terbanyak terdapat pada Atnola 12 dengan 2.4 umbi per tanaman sedangkan jumlah umbi paling sedikit adalah Atnola 2 dengan 0.7 umbi per tanaman (Tabel 8).

Tabel 8. Jumlah umbi per tanaman, diameter umbi, jumlah mata tunas per umbi, bobot basah dan bobot kering umbi mikro klon-klon kentang hasil persilangan kultivar Atlantik dan Granola pada pengujian in vitro

<table>
<thead>
<tr>
<th>Klon</th>
<th>Jumlah umbi/tanaman</th>
<th>Diameter umbi (mm)</th>
<th>Jumlah mata tunas/umbi</th>
<th>BB (gram)</th>
<th>BK (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantik</td>
<td>2.0 b</td>
<td>4.43 defg</td>
<td>4.6 g</td>
<td>0.11 de</td>
<td>18.20 de</td>
</tr>
<tr>
<td>Granola</td>
<td>1.3 de</td>
<td>4.06 efg</td>
<td>5.9 d</td>
<td>0.06 f</td>
<td>16.21 e</td>
</tr>
<tr>
<td>Atnola 1</td>
<td>1.4 cd</td>
<td>5.55 b</td>
<td>5.2 ef</td>
<td>0.17 c</td>
<td>20.54 cd</td>
</tr>
<tr>
<td>Atnola 2</td>
<td>0.7 g</td>
<td>5.41 b</td>
<td>6.7 b</td>
<td>0.19 b</td>
<td>25.74 a</td>
</tr>
<tr>
<td>Atnola 3</td>
<td>0.9 fg</td>
<td>4.69 cde</td>
<td>6.2 bcd</td>
<td>0.07 ef</td>
<td>21.05 cd</td>
</tr>
<tr>
<td>Atnola 4</td>
<td>1.5 cd</td>
<td>4.54 cdef</td>
<td>5.9 d</td>
<td>0.14 cd</td>
<td>18.27 de</td>
</tr>
<tr>
<td>Atnola 5</td>
<td>1.7 c</td>
<td>3.94 fg</td>
<td>5.2 e</td>
<td>0.07 ef</td>
<td>20.78 cd</td>
</tr>
<tr>
<td>Atnola 6</td>
<td>1.4 cd</td>
<td>6.89 a</td>
<td>5.2 ef</td>
<td>0.16 c</td>
<td>22.22 bc</td>
</tr>
<tr>
<td>Atnola 10</td>
<td>0.8 fg</td>
<td>5.13 bc</td>
<td>4.8 fg</td>
<td>0.06 f</td>
<td>22.55 bc</td>
</tr>
<tr>
<td>Atnola 12</td>
<td>2.4 a</td>
<td>6.84 a</td>
<td>6.5 bc</td>
<td>0.24 a</td>
<td>20.49 cd</td>
</tr>
<tr>
<td>Atnola 22</td>
<td>1.6 cd</td>
<td>6.93 a</td>
<td>9.7 a</td>
<td>0.13 bcd</td>
<td>18.29 de</td>
</tr>
<tr>
<td>Atnola 25</td>
<td>1.1 ef</td>
<td>3.78 g</td>
<td>5.9 d</td>
<td>0.04 f</td>
<td>24.64 ab</td>
</tr>
<tr>
<td>Atnola 26</td>
<td>0.9 fg</td>
<td>4.75 cd</td>
<td>4.9 cef</td>
<td>0.11 de</td>
<td>21.03 cd</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan nilai yang tidak berbeda nyata pada uji beda nilai tengah DMRT taraf 5%; BB = Bobot Basah; BK = Bobot Kering.

Diameter Umbi

Diameter umbi dari semua klon yang diuji bervariasi dari 3.78 mm sampai 6.93 mm. Rata-rata diameter umbi terbesar terdapat pada Atnola 22 yaitu 6.93 mm sedangkan rata-rata diameter terkecil terdapat pada Atnola 25 yaitu 3.78 mm.

Terdapat beberapa klon yang memiliki diameter tidak berbeda nyata dari Atnola 22 yaitu Atnola 9 (6.89 mm) dan Atnola 12 (6.84 mm). Sebagian besar klon yang diuji memiliki diameter lebih besar daripada tetua yaitu Atnola 1, Atnola 2, Atnola 3, Atnola 4, Atnola 9, Atnola 10, Atnola 22, Atnola 25 dan Atnola 26 (Tabel 8). Menurut Mustika (2005), diameter umbi berkorelasi positif dengan bobot basah umbi sehingga klon-klon yang berdiameter besar diharapkan akan menjadi klon kentang unggul berproduksi lebih tinggi dari tetuanya. Gambar 8 menunjukkan perbedaan diameter umbi mikro klon-klon kentang hasil persilangan kultivar Atlantik dan Granola.
Umbi micro klonan kecambah bersih peningkatan kultur

Ganterm Wannema (1992), diameter umbi micro berhubung baik adalah

Gambar 8. Umbi micro klonan kecambah bersih peningkatan kultur

Alamak dan Groenland
berbentuk panjang dan lonjong cocok digunakan untuk bahan baku industri pengolahan kentang seperti potato chip dan french fries.

Gambar 9. Keragaman bentuk umbi pada Atnola 22 (A = umbi yang tumbuh di atas umbi; B = bentuk umbi lonjong)

Ukuran umbi juga dipengaruhi jarak umbi dengan media (Kusumaningrum, 2004). Pada umumnya umbi yang dekat dengan media atau bahkan terendam dalam media mempunyai ukuran lebih besar dari umbi yang terbentuk jauh di atas media. Hal ini dikarenakan umbi yang mengalami kontak dengan media akan lebih mudah menyerap hara sehingga ukuran umbi semakin membesar. Penelitian yang dilakukan kali ini juga menunjukkan fenomena yang sama. Umbi yang terbentuk dalam media (kontak dengan media), berukuran lebih besar dibandingkan umbi yang terbentuk jauh di atas permukaan media (Gambar 10).

Gambar 10. Perbedaan umbi mikro kentang yang terbentuk dalam media dan jauh dengan media (A = umbi yang terbentuk jauh dari media terlihat lebih kecil; B = umbi yang terbentuk di dalam media terlihat lebih besar dan dipenuhi kalus)
Jumlah Mata Tunas

Analisis sidik ragam jumlah mata tunas menunjukkan hasil berbeda sangat nyata dari semua klon yang diuji. Jumlah mata tunas bervariasi berkisar antara 4.6 sampai 9.7 mata tunas per umbi. Jumlah mata tunas paling banyak terdapat pada Atnola 22 yaitu sebanyak 9.7 mata tunas per umbi sedangkan jumlah mata tunas paling sedikit terdapat pada kultivar Atlantik yaitu 4.6 mata tunas per umbi.

Atnola 2, Atnola 3, Atnola 12 dan Atnola 22 memiliki jumlah mata tunas lebih banyak dari kedua tetuanya sehingga klon-klon tersebut berpotensi menjadi klon kentang unggul dengan produksi tinggi (Tabel 9).

Bobot Basah Umbi

Bobot basah umbi rata-rata berkisar antara 0.04 gram sampai 0.24 gram. Bobot basah rata-rata terbesar terdapat pada Atnola 12 dengan bobot 0.24 gram sedangkan bobot basah rata-rata terkecil terdapat pada Atnola 25 dengan bobot 0.04 gram. Dari pengujian didapatkan bobot basah rata-rata umbi kultivar Atlantik sebesar 0.11 gram, lebih besar dibandingkan bobot basah kultivar Granola yaitu sebesar 0.06 gram. Atnola 1, Atnola 2, Atnola 4, Atnola 9, Atnola 12, Atnola 22 dan Atnola 26 memiliki bobot basah lebih tinggi dibandingkan kultivar Atlantik. Hampir semua klon mempunyai bobot basah lebih besar dari kultivar Granola (Tabel 10). Klon yang memiliki bobot basah lebih besar daripada tetuanya berpotensi menjadi klon kentang unggul dengan produksi tinggi.

Dengan demikian, jumlah umbi banyak belum tentu lebih menguntungkan karena propagul bibit mikro kentang harus memenuhi standar kualitas tertentu yaitu berdiameter > 5mm, bobot basah > 100 mg, dan bahan kering > 14% (Wattimena, 1992). Berdasarkan hal tersebut, maka Atnola 1, Atnola 2, Atnola 9, Atnola 12 dan Atnola 22 memenuhi standar untuk menjadi bibit mikro berkualitas baik. Menurut Gopal dan Minocha (1998), bobot umbi mikro berkorelasi sangat nyata dengan bobot umbi di lapangan sehingga klun-klon yang mempunyai umbi mikro dengan bobot basah lebih tinggi dari tetua berpotensi menjadi klun unggul yang berproduksi lebih baik dari tetuaanya saat diuji di lapang. Atnola 1, Atnola 2, Atnola 4, Atnola 12, Atnola 22 dan Atnola 26 berpotensi dikembangkan menjadi kultivar kentang untuk konsumsi segar karena bobot basah klun-klon tersebut relatif tinggi yaitu di atas 100 mg per umbi.

Bobot Kering Umbi

Bobot kering umbi menggambarkan banyaknya hasil-hasil metabolisme, terutama karbohidrat (pati) yang diakumulasikan ke dalam umbi (Kusumaningrum, 2004). Pengukuran bobot kering dilakukan dengan pengovenan umbi pada suhu 70°C sampai bobot umbi konstan. Proses pengovenan pada penelitian ini dilakukan selama 3 hari. Analisis sidik ragam bobot kering per umbi menunjukkan perbedaan sangat nyata untuk semua klun yang diuji.

Berdasarkan hasil pengujian bobot kering, bobot kering umbi rata-rata berkisar antara 16.21% sampai 25.74%. Bobot kering rata-rata terbesar terdapat pada Atnola 2 dengan bobot 25.74% sedangkan bobot kering rata-rata terkecil terdapat pada kultivar Granola dengan bobot 16.21%. Hasil rata-rata bobot kering