PENDAHULUAN

Latar Belakang

berkembang (Thomas et al. 2000). Dengan demikian, miostatin berfungsi sebagai pengatur negatif pertumbuhan massa otot.

Mutasii pada gen miostatin akan berperan mengubah aktifitas protein miostatin yang diekspresikan ataupun bisa mengubah proses ekspresi gen. Kejadian pertumbuhan otot yang tidak terkontrol yang disebabkan oleh mutasi alami pada daerah ekson gen miostatin dilaporkan terjadi pada sapi Belgian Blue dan Piedmontese yang memunculkan fenomena double muscling (McPherron dan Lee 1997). Gen miostatin pada beberapa jenis ternak cenderung memiliki tingkat kesuksesan yang tinggi pada daerah ekson (coding region), dan bersifat sangat stabil (conserved) (McPherron dan Lee 1997), namun memiliki perbedaan yang tinggi pada daerah promotor (non-coding) (Du et al. 2007). Beberapa laporan menunjukkan bahwa beberapa mutasi alami yang ditemukan pada manusia (Schuelke et al. 2004), babi (Jiang et al. 2002) dan domba Texel (Cockett et al. 2004; Clop et al. 2006; Kijas et al. 2007) bukan terjadi di bagian ekson dari gen miostatin melainkan di bagian promotor, intron maupun bagian ujung 3’UTR.

Salah satu upaya memanfaatkan potensi gen miostatin dalam meningkatkan produktivitas ternak adalah dengan melakukan identifikasi keragaman nukleotida gen miostatin. Keragaman yang diperoleh diharapkan bisa dijadikan informasi sebagai input dalam mendesain penanda molekular untuk gen miostatin yang berkorelasi dengan pertumbuhan. Dalam jangka panjang, informasi ini diharapkan bisa dijadikan landasan untuk memperbaiki kualitas genetik ternak domba di Indonesia.

Tujuan Penelitian

Penelitian ini bertujuan melakukan identifikasi keragaman nukleotida gen miostatin pada bagian ruas promotor dan intron 2 pada domba lokal Indonesia.