ANALISIS PEMANFAATAN SUMBERDAYA IKAN KEMBUNG (Rastrelliger spp) DI PERAIRAN KABUPATEN TANAH LAUT PROVINSI KALIMANTAN SELATAN

SITI AMINAH

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2009
PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASINYA


Bogor, Februari 2009

SITI AMINAH
C551050031
RINGKASAN


Kabupaten Tanah Laut adalah salah satu kabupaten di Provinsi Kalimantan Selatan yang mempunyai potensi sumberdaya ikan kembung (Rastrelliger spp) yang cukup potensial. Penelitian ini bertujuan untuk: (1) mengestimasi potensi dan tingkat pemanfaatan sumberdaya ikan kembung di Kabupaten Tanah Laut, (2) menentukan jenis teknologi penangkapan ikan tepat guna untuk sumberdaya ikan kembung di Kabupaten Tanah Laut, (3) merekomendasikan strategi pemanfaatan sumberdaya ikan kembung di Kabupaten Tanah Laut. Manfaat dari penelitian ini adalah sebagai bahan informasi bagi instansi terkait mengenai strategi pemanfaatan perikanan kembung yang dapat diaplikasikan untuk pengelolaan sumberdaya ikan kembung yang berkelanjutan, untuk pengembangan IPTEK dalam bidang sumberdaya ikan kembung dan sebagai bahan informasi / acuan untuk penelitian lanjutan yang terkait dengan pengelolaan sumberdaya ikan kembung di Kabupaten Tanah Laut. Metode penelitian yang digunakan adalah metode survei, yaitu dengan wawancara dan observasi langsung di lapangan. Analisis yang digunakan dalam penelitian ini adalah (1) analisis potensi sumberdaya ikan kembung, (2) analisis kelayakan usaha, (3) metode skoring dan (4) analisis SWOT. Dari hasil penelitian menunjukkan bahwa potensi maksimum lestari ikan kembung di Kabupaten Tanah Laut sebesar 3.297 ton per tahun dengan tingkat pemanfaatan sebesar 77%. Teknologi penangkapan ikan kembung yang tepat guna dan berwawasan lingkungan di perairan Kabupaten Tanah Laut berdasarkan aspek biologi, teknis, sosial dan finansial adalah purse seine. Strategi pengembangan perikanan kembung di Kabupaten Tanah Laut adalah (1) optimalisasi pemanfaatan sumberdaya perikanan kembung, (2) pengembangan usaha penangkapan ikan kembung yang efisien dan efektif, (3) peningkatan fasilitas sarana dan prasarana perikanan tangkap, (4) peningkatan peran pemerintah dan masyarakat dalam pengawasan penegakan aturan hukum yang berlaku.

Kata kunci : Pemanfaatan, ikan Kembung, Kabupaten Tanah Laut.
ABSTRACT

SITI AMINAH. Utilization Analysis of The Mackerel (Rastrelliger spp) Resources in Tanah Laut District South Kalimantan Province. Under Supervision of SUGENG HARI WISUDO and DOMU SIMBOLON

Tanah Laut is a district in South Kalimantan Province which has potential mackerel (Rastrelliger spp) resources. The objectives of the research were (1) to estimate level utilization of in the mackerels at Tanah Laut District, (2) to determine the appropriate fishing technology for catching mackerels around in Tanah Laut District, (3) to develop a strategy for mackerel fisheries in Tanah Laut District. Research activities which had been done included fishing gear analysis, stock analysis, financial analysis, scoring method and SWOT analysis. The utilization level of mackerel resources had achieved 77%. The purse seine fishery is more technologically appropriate and beneficial than the encircling gillnet fishery. The development strategies of the mackerel fisheries are (1) optimum utilization of the mackerel resources, (2) development of mackerel fisheries to be more efficient and effective, (3) improvement of fisheries infrastructures and facilities, (4) improvement of government role and public participation in monitoring, controlling and surveillance of the mackerel resources.

Keywords: utilization, mackerel, Tanah Laut District.
1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan atau menyebutkan sumbernya.
   a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah.
   b. Pengutipan tersebut tidak merugikan kepentingan yang wajar IPB.

2. Dilarang menggunakannya dan memperbanyak sebagian atau seluruh karya tulis dalam bentuk apapun tanpa izin IPB.

© Hak cipta milik Institut Pertanian Bogor, tahun 2009
Hak cipta dilindungi Undang-Undang
ANALISIS PEMANFAATAN SUMBERDAYA IKAN KEMBUNG (Rastrelliger spp) DI PERAIRAN KABUPATEN TANAH LAUT PROVINSI KALIMANTAN SELATAN

SITI AMINAH

Tesis
Sebagai salah satu syarat untuk memperoleh gelar Magister Sains pada Program Studi Teknologi Kelautan

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN
BOGOR
2009
LEMBAR PENGESAHAN

Judul Tesis : Analisis Pemanfaatan Sumberdaya Ikan Kembung (Rastrelliger spp) di Perairan Kabupaten Tanah Laut Provinsi Kalimantan Selatan

Nama : Siti Aminah
NIM : C551050031
Program Studi : Teknologi Kelautan

Disetujui

Komisi Pembimbing

[Signatures]

Dr. Ir. Sugeng Hari Wisudo, M.Si
Ketua

Dr. Ir. Domu Simbolon, M.Si
Anggota

Diketahui

Ketua Program Studi
Teknologi Kelautan

[Signature]

Prof. Dr. Ir. John Haluan, M.Sc

Prof. Dr. Ir. Khairil A. Notodiputro, MS

Tanggal Ujian : 2 Maret 2009
Tanggal Lulus : 05 JUN 2009
PRAKATA


Pada kesempatan ini penulis ucapkan terima kasih kepada keluargaku tercinta, orangtuaku Ayahanda H. Sya’ban Rifain (Almarhum) dan Mama Ngattinem (Almarhumah), ibunda Hj. Raudatussyadiah, saudara-saudaraku tersayang, suamiku tercinta Deddy Dharmaji, S.Pi serta anakku tersayang M. Aditya Firdaus. Terimakasih atas segala dukungan, pengorbanan, doa, kesabaran dan kasih sayang selama penulis menempuh pendidikan.

Terima kasih penulis ucapkan kepada Bapak Dr. Ir. Sugeng Hari Wisudo, M.Si selaku ketua komisi pembimbing dan Bapak Dr. Ir. Domu Simbolon, M.Si selaku anggota komisi pembimbing yang telah banyak memberikan saran, arahan dan bimbingan kepada penulis hingga selesai tesis ini. Terima kasih penulis ucapkan kepada Prof. Dr. Ir. Mulyono S Baskoro, M.Sc selaku penguji luar komisi atas koreksi, kritik dan sarannya.

Terima kasih juga penulis ucapkan kepada Bapak Prof. Dr. Ir. John Haluan, M.Sc selaku ketua Program Studi Teknologi Kelautan atas saran, bimbingan dan koreksi bagi penyempurnaan tesis ini, serta para dosen Sekolah Pascasarjana Teknologi Kelautan atas bantuan dan dukungan yang di berikan selama penulis menempuh pendidikan.

Kepada semua pihak yang tidak bisa penulis sebutkan satu per satu yang telah membantu langsung atau tidak langsung, semoga Allah SWT membalas kebajikan tersebut dengan rahmat dan pahala yang berlipat ganda. Akhir kata, semoga tesis ini bermanfaat dalam menambah khazanah ilmu pengetahuan.

Bogor, Februari 2009

Siti Aminah
RIWAYAT HIDUP


DAFTAR ISTILAH

Biodiversity
Keanekaragaman hayati yang ada di dalam suatu habitat yang menunjukkan produktivitas suatu perairan.

By-catch
Hasil tangkapan sampingan; merupakan bagian dari hasil tangkapan yang didapatkan pada saat operasi penangkapan sebagai tambahan dari tujuan utama penangkapan (target spesies).

Gross Tonnage (GT)
Ukuran besarnya kapal secara keseluruhan yang merupakan jumlah isi semua ruang-ruang tertutup (volume)

Nelayan
Orang yang secara aktif melakukan pekerjaan dalam operasi penangkapan ikan atau binatang air lainnya atau tanaman air.

Net Benefit Cost (Net B/C)
Perbandingan antara total penerimaan bersih dan total biaya produksi.

Net Present Value (NPV)
Selisih antara nilai sekarang dari penerimaan dengan nilai sekarang dari pengeluaran pada tingkat bunga tertentu.

Pengembangan
Usaha perubahan dari suatu nilai yang kurang kepada sesuatu yang lebih baik; proses yang menunju pada suatu kemajuan.

Perikanan
Semua kegiatan yang berhubungan dengan pengelolaan dan pemanfaatan SDI dan lingkungannya mulai dari praproduksi, produksi, pengolahan sampai dengan pemasaran, yang dilaksanakan dalam suatu sistem bisnis perikanan.

Perikanan Tangkap
Kegiatan untuk memperoleh ikan di perairan yang tidak dalam keadaan dibudidayakan dengan alat atau cara apa pun, termasuk kegiatan yang menggunakan kapal untuk memut, mengangkat, menyimpan, mendinginkan, menangani, mengolah, dan/atau mengawetkan.

Unit Penangkapan Ikan
Satu kesatuan teknis dalam suatu operasi penangkapan ikan yang terdiri dari kapal perikanan, alat tangkap, dan nelayan.
DAFTAR ISI

Halaman

DAFTAR ISI ................................................................. xii

DAFTAR TABEL ............................................................. xiv

DAFTAR GAMBAR .......................................................... xv

DAFTAR LAMPIRAN ......................................................... xvi

1 PENDAHULUAN
   1.1 Latar Belakang ......................................................... 1
   1.2 Perumusan Masalah .................................................. 3
   1.3 Tujuan Penelitian .................................................... 4
   1.4 Manfaat Penelitian .................................................. 4
   1.5 Hipotesis ............................................................. 4

2 TINJAUAN PUSTAKA
   2.1 Klasifikasi dan Morfologi Ikan Kembung ..................... 6
   2.2 Penyebaran dan Kelimpahan Ikan Kembung .................. 8
   2.3 Teknologi Penangkapan Ikan Kembung ......................... 8
      2.3.1 Pukat cincin (purse seine) ................................ 8
      2.3.2 Jaring insang lingkar (encircling gillnet) ............. 10
   2.4 Pendugaan Hasil Tangkapan Per satuan Upaya ............... 12
   2.5 Pengembangan Perikanan Tangkap .............................. 13
   2.6 Analisis Usaha ..................................................... 14
   2.7 Analisis SWOT ...................................................... 15
   2.8 Letak Geografis dan Kondisi Perairan Kabupaten Tanah Laut 16
   2.9 Kondisi Perikanan Tangkap di Kabupaten Tanah Laut ........ 16
      2.9.1 Produksi perikanan tangkap ............................... 16
      2.9.2 Alat tangkap ................................................. 17
      2.9.3 Armada perikanan tangkap ................................. 18
      2.9.4 Nelayan dan rumah tangga perikanan (RTP) .......... 18

3 METODELOGI
   3.1 Waktu dan Tempat Penelitian .................................... 19
   3.2 Metode Penelitian ................................................ 19
   3.3 Analisis Data ..................................................... 22
      3.3.1 Potensi sumberdaya ikan kembung .................... 22
      3.3.2 Standarisasi alat tangkap ................................ 23
      3.3.3 Pendugaan tingkat pemanfaatan ........................ 25
      3.3.4 Kelayakan usaha ............................................ 25
      3.3.5 Metode skoring ............................................. 27
      3.3.6 Analisis strategi pengembangan ....................... 28

4 HASIL PENELITIAN
   4.1 Sumberdaya Ikan Kembung ....................................... 30
   4.2 Keragaan Unit Penangkapan Ikan Kembung .................. 32
      4.2.1 Purse seine .................................................. 32
1. Halaman 1

2. Halaman 2

3. Halaman 3

4. Halaman 4

5. Halaman 5

6. Halaman 6

7. Halaman 7

8. Halaman 8

9. Halaman 9

10. Halaman 10

11. Halaman 11

12. Halaman 12

13. Halaman 13

14. Halaman 14

15. Halaman 15

16. Halaman 16

17. Halaman 17

18. Halaman 18

19. Halaman 19

20. Halaman 20

21. Halaman 21

22. Halaman 22

23. Halaman 23

24. Halaman 24

25. Halaman 25

26. Halaman 26

27. Halaman 27

28. Halaman 28

29. Halaman 29

30. Halaman 30

31. Halaman 31

32. Halaman 32

33. Halaman 33

34. Halaman 34

35. Halaman 35

36. Halaman 36

37. Halaman 37

38. Halaman 38

39. Halaman 39

40. Halaman 40

41. Halaman 41

42. Halaman 42

43. Halaman 43

44. Halaman 44

45. Halaman 45

46. Halaman 46

47. Halaman 47

48. Halaman 48

49. Halaman 49

50. Halaman 50

51. Halaman 51

52. Halaman 52

53. Halaman 53

54. Halaman 54

55. Halaman 55

56. Halaman 56

57. Halaman 57

58. Halaman 58

59. Halaman 59

60. Halaman 60
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Produksi perikanan tangkap di Kabupaten Tanah Laut tahun 2006 .......... 17</td>
</tr>
<tr>
<td>2. Jenis alat tangkap di Kabupaten Tanah Laut tahun 2006 ......................... 17</td>
</tr>
<tr>
<td>3. Jumlah kapal berdasarkan jenisnya yang terdapat di Kabupaten Tanah Laut tahun 2006 .......................................................... 18</td>
</tr>
<tr>
<td>4. Jumlah nelayan dan rumah tangga perikanan (RTP) di Kabupaten Tanah Laut tahun 2006 .......................................................... 18</td>
</tr>
<tr>
<td>5. Pengukuran parameter biologi terhadap sumberdaya ikan kembung .......... 20</td>
</tr>
<tr>
<td>6. Pengukuran parameter teknis pada perahu dan alat penangkap ikan kembung .......................................................... 20</td>
</tr>
<tr>
<td>7. Pengukuran parameter sosial pada nelayan yang menggunakan unit penangkap ikan kembung .......................................................... 21</td>
</tr>
<tr>
<td>8. Pengukuran parameter finansial terhadap unit penangkap ikan kembung 21</td>
</tr>
<tr>
<td>9. Matrik hasil analisis SWOT .......................................................... 29</td>
</tr>
<tr>
<td>10. Hasil analisis kelayakan usaha purse seine dan jaring insang lingkar di Kabupaten Tanah Laut .......................................................... 39</td>
</tr>
<tr>
<td>11. Skoring dan standarisasi fungsi nilai aspek biologi unit penangkap ikan kembung (purse seine dan jaring insang lingkar) di Kabupaten Tanah Laut .......................................................... 39</td>
</tr>
<tr>
<td>12. Skoring dan standarisasi fungsi nilai aspek teknis unit penangkap ikan kembung (purse seine dan jaring insang lingkar) di Kabupaten Tanah Laut .......................................................... 40</td>
</tr>
<tr>
<td>13. Skoring dan standarisasi fungsi nilai aspek sosial unit penangkap ikan kembung (purse seine dan jaring insang lingkar) di Kabupaten Tanah Laut .......................................................... 41</td>
</tr>
<tr>
<td>14. Skoring dan standarisasi fungsi nilai aspek finansial unit penangkap ikan kembung (purse seine dan jaring insang lingkar) di Kabupaten Tanah Laut .......................................................... 41</td>
</tr>
<tr>
<td>15. Total standarisasi aspek biologi, teknis, sosial, finansial unit penangkap ikan kembung (purse seine dan jaring insang lingkar) di Kabupaten Tanah Laut .......................................................... 42</td>
</tr>
<tr>
<td>16. Identifikasi, skoring dan arahan pengembangan perikanan kembung ...... 43</td>
</tr>
<tr>
<td>17. Analisis keterkaitan antar unsur SWOT .......................................................... 44</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
</tr>
</tbody>
</table>
1 PENDAHULUAN

1.1 Latar Belakang

Perikanan merupakan salah satu bidang yang diharapkan mampu menjadi penopang peningkatan kesejahteraan rakyat Indonesia. Sub sektor ini dapat berperan dalam pemulihan dan pertumbuhan perekonomian bangsa Indonesia, karena potensi sumberdaya ikan yang besar, baik dalam jumlah maupun keragamanannya. Selain itu sumberdaya ikan termasuk sumberdaya yang dapat diperbaharui (renewable resources) sehingga dengan pengelolaan yang bijaksana, masyarakat dapat terus dinikmati manfaatnya.

Tantangan untuk memelihara sumberdaya secara berkelanjutan merupakan permasalahan yang cukup kompleks dalam pembangunan perikanan. Sumberdaya perikanan dikategorikan sebagai sumberdaya yang dapat pulih, namun pertanyaan yang sering muncul adalah seberapa besar ikan yang dapat dimanfaatkan tanpa harus menimbulkan dampak negatif untuk masa yang akan datang. "Keberlanjutan" merupakan kata kunci dalam pembangunan perikanan yang diharapkan dapat memperbaiki kondisi sumberdaya dan kesejahteraan masyarakat perikanan itu sendiri (Fauzi dan Anna 2005).

Pemanfaatan sumberdaya perikanan, khususnya perikanan tangkap untuk perairan laut sampai saat ini masih didominasi oleh usaha perikanan rakyat yang umumnya memiliki karakteristik skala usaha kecil, affikasi teknologi yang sederhana, jangkaan penangkapan yang terbatas di sekitar pantai dan produktivitas yang relatif masih rendah. Menurut Barus et al. (1991), produktivitas nelayan yang rendah umumnya diakibatkan oleh rendahnya keterampilan dan pengetahuan serta penggunaan alat penangkapan maupun perahu yang masih sederhana sehingga efektivitas dan efisiensi alat tangkap dan penggunaan faktor-faktor produksi lainnya belum optimal. Keadaan ini sangat berpengaruh terhadap pendapatan yang diterima oleh nelayan dan pada akhirnya mempengaruhi pula tingkat kesejahteraannya.

Potensi lestari sumberdaya dari berbagai penelitian diperkirakan sebesar 6.4 juta ton pertahun. Potensi tersebut terdiri dari ikan pelagis besar 1.65 juta ton, ikan pelagis kecil sebesar 3.6 juta ton, ikan demersal sebesar 1.36 juta ton, ikan karang sebesar 145 ribu ton, udang penaid sebesar 94.8 ribu ton, lobster sebesar...
4.8 ribu ton dan cumi-cumi sebesar 28.25 ribu ton. Penangkapan yang diperbolehkan adalah 80% dari potensi lestari atau sekitar 5.12 juta ton per tahun (Dahuri 2002).


Produksi ikan kembung pada tahun 2006 sebesar 25.5 ton/tahun (Dinas Kelautan dan Perikanan Kabupaten Tanah Laut, 2007).

Potensi sumberdaya ikan pelagis terutama ikan kembung di Kabupaten Tanah Laut merupakan salah satu komoditas yang cukup besar memberikan kontribusi terhadap pendapatan asli daerah (PAD) Kabupaten Tanah Laut, oleh karenanya sumberdaya ikan kembung harus tetap dikelola secara baik dan arif yang didukung oleh sumberdaya manusia yang diandalkan untuk mengelola potensi tersebut secara profesional dan berkelanjutan. Upaya pengembangan keunggulan kompetitif sudah menjadi prioritas dalam pengembangan sektor perikanan dan kelautan, mengingat sumberdaya ikan kembung di daerah Kabupaten Tanah Laut mampu memberikan kontribusi yang cukup besar dalam pembangunan daerah.

Dalam mempertahankan keberlanjutan pemanfaatan sumberdaya ikan kembung yang ada di Kabupaten Tanah Laut, maka ketersediaan data dan informasi yang memadai, aktual dan akurat mutlak diperlukan. Ketersediaan data dan informasi tersebut akan membantu dalam menentukan rencana dan strategi pengelolaan secara optimal, terpadu dan berkelanjutan, maka diperlukan pendekatan mengenai strategi pengembangan sumberdaya ikan kembung di perairan Kabupaten Tanah Laut.
1.2 Perumusan Masalah

Salah satu potensi sumberdaya perikanan dan kelautan yang ada di Kabupaten Tanah Laut adalah ikan kembung, yang memiliki nilai ekonomi penting, namun belum dimanfaatkan secara optimal.

Besarnya potensi yang dimiliki seharusnya dapat dikelola dan dimanfaatkan oleh nelayan setempat, namun kenyataan yang ada di Kabupaten Tanah Laut belum dilakukan secara optimal. Belum optimalnya pemanfaatan tersebut disebabkan karena beberapa faktor antara lain minimnya informasi tentang sumberdaya ikan kembung, sarana dan prasarana usaha penangkapan yang ada masih terbatas, alat tangkap dan armada yang digunakan masih tergolong sederhana, minimnya pengetahuan dan keterampilan nelayan, keterbatasan modal usaha, rantai pemasaran yang belum tertata dengan baik dan kemampuan manajemen yang lemah.

Informasi dasar tentang potensi sumberdaya ikan kembung di perairan Kabupaten Tanah Laut masih sangat terbatas. Padahal informasi tersebut sangat penting untuk menentukan intensitas dan perencanaan alokasi upaya penangkapan yang optimal.

Pemanfaatan sumberdaya ikan kembung diharapkan dapat memenuhi kebutuhan konsumsi dan dapat memenuhi kontinuitas pasar saat ini dan yang akan datang, sehingga peningkatan kesejahteraan nelayan dapat optimal dan berkelanjutan. Peningkatan pendapatan dan kesejahteraan yang optimal dan berkelanjutan ditentukan oleh pilihan teknologi yang digunakan dalam penangkapan ikan kembung sesuai aspek biologi, teknis, sosial dan ekonomi. Hal ini penting karena pemanfaatan yang dilakukan haruslah dengan tetap menjaga ketersediaan sumberdaya ikan kembung yang berkelanjutan. Berkaitan dengan hal tersebut, maka sangat diperlukan kajian tentang strategi pengembangan sumberdaya ikan kembung sebagai sentra pertumbuhan ekonomi baru yang strategis dan berkelanjutan di Kabupaten Tanah Laut.

Berdasarkan pada kondisi tersebut diatas, garis besar permasalahan yang dapat ditemukan dalam pemanfaatan sumberdaya ikan kembung di Kabupaten Tanah Laut adalah: (1) Belum diketahuinya kondisi sumberdaya ikan kembung saat ini, (2) Belum diketahuinya teknologi penangkapan ikan tepat guna untuk
penangkapan ikan kembung, (3) Belum diketahuiinya strategi kebijakan yang tepat untuk pemanfaatan sumberdaya ikan kembung. Kerangka pikir penelitian dapat dilihat pada Gambar 1.

1.3 Tujuan Penelitian
Penelitian ini bertujuan untuk:

1. Mengestimasi potensi dan tingkat pemanfaatan sumberdaya ikan kembung di Kabupaten Tanah Laut.
2. Menentukan jenis teknologi penangkapan ikan tepat guna untuk sumberdaya ikan kembung di Kabupaten Tanah Laut.
3. Merekomendasikan strategi pemanfaatan sumberdaya ikan kembung

1.4 Manfaat Penelitian
Manfaat dari penelitian ini adalah:

1. Sebagai bahan informasi bagi instansi terkait mengenai strategi pemanfaatan perikanan kembung yang dapat diaplikasikan untuk pengelolaan sumberdaya ikan kembung yang berkelanjutan.
2. Sebagai bahan informasi untuk pengembangan IPTEK dalam bidang sumberdaya ikan kembung.
3. Bahan informasi dan acuan untuk penelitian lanjutan yang terkait dengan pengelolaan sumberdaya ikan kembung di Kabupaten Tanah Laut.

1.5 Hipotesis
Hipotesis dalam penelitian ini adalah:

1. Potensi dan tingkat pemanfaatan sumberdaya ikan kembung di Kabupaten Tanah Laut masih dapat dikembangkan.
Gambar 1 Kerangka pikir penelitian perikanan kembung di Kabupaten Tanah Laut Provinsi Kalimantan Selatan.
2 TINJAUAN PUSTAKA

2.1 Klasifikasi dan Morfologi Ikan Kembung

Klasifikasi ikan kembung menurut Fischer dan Whitehead (1974) adalah sebagai berikut:

Phylum : Chordata
Subphylum : Vertebrata
Kelas : Pisces
Subkelas : Teleostei
Ordo : Perciformes
Subordo : Scombroide
Family : Scombridae
Genus : Rastrelliger
Species : Rastrelliger kanagurta

Gambar 2  Ikan kembung lelaki (*Rastrelliger kanagurta*).

Gambar 3  Ikan kembung perempuan (*Rastrelliger brachysoma*).


Ikan kembung lelaki sulit dicari dan jarang muncul ke permukaan, biasanya ikan ini mempunyai kelompok yang padat dan dijumpai pada perairan yang lebih jernih dan agak jauh dari pantai karena menyukai kadar garam yang lebih dari 23% (Puslitbangkan 1994, diacu dalam Amri 2002).


2.2 Penyebaran dan Kelimpahan Ikan Kembung


2.3 Teknologi Penangkapan Ikan Kembung

Alat tangkap yang umum digunakan di perairan Kabupaten Tanah Laut untuk menangkap ikan kembung adalah pukat cincin (purse seine) dan jaring insang lingkar (encircling gillnet).

2.3.1 Pukat cincin (purse seine)

Pukat cincin adalah jaring yang umumnya berbentuk empat persegi panjang, dilengkapi dengan tali kerut yang dilewatkan melalui cincin yang diikatkan pada bagian bawah jaring (tali ris bawah), sehingga dengan menarik tali kerut bagian bawah jaring dapat dikuncupkan, jaring akan berbentuk seperti mangkok (Baskoro 2002). Disebut “pukat cincin” karena alat tangkap ini dilengkapi dengan cincin. Fungsi cincin dan tali kerut/tali kolor ini penting terutama pada waktu pengoperasian jaring. Dengan adanya tali kerut tersebut jaring yang semula tidak
berkantong akan terbentuk kantong pada tiap akhir penangkapan ikan (Subani dan Barus 1989).


Menurut Baskoro (2002) alat penangkap ikan (pukat cincin) ini dioperasikan dengan cara melingkari gerombolan ikan baik dengan menggunakan satu kapal ataupun dua unit kapal. Setelah gerombolan ikan terkurung, kemudian bagian bawah jaring dikerutkan hingga tertutup dengan menarik tali kerut yang dipasang sepanjang bagian bawah melalui cincin. Alat penangkap ini diujikan untuk menangkap gerombolan ikan permukaan (*pelagic fish*).

kantong \((bunt)\) yang terletak pada salah satu ujung jaring, sedangkan kantong \((bunt)\) pada \textit{purse seine} yang menggunakan dua unit kapal terletak pada bagian tengah jaring.

Gambar 4 Unit penangkapan \textit{purse seine} (Sumber : Brandt, 1984).

2.3.2 Jaring insang lingkar (\textit{encircling gillnet})

Pengertian jaring insang adalah salah satu dari jenis alat tangkap ikan dari bahan jaring \textit{monofilamen} atau \textit{multifilamen} yang dibentuk menjadi empat persegi panjang, pada bagian atasnya dilengkapi dengan beberapa pelampung (\textit{floats}) dan pada bagian bawahnya dilengkapi dengan beberapa pemberat (\textit{singkers}) sehingga dengan adanya dua gaya yang berlawanan memungkinkan jaring insang dapat dipasang di daerah penangkapan dalam keadaan tegak menghadang biota perairan. Jumlah mata jaring ke arah horisontal atau ke arah \textit{mesh length} (ML) jauh lebih banyak dibandingkan dengan jumlah mata jaring ke arah vertikal atau ke arah \textit{mesh depth} (MD) (Sulaeman 2005).

Penentuan lebar jaring, dalam hal ini berdasarkan jumlah \textit{mesh depth} didasarkan antara lain atas pertimbangan terhadap dalamnya \textit{swimming layer} dari jenis-jenis ikan yang menjadi tujuan penangkapan, kepadatan (\textit{density}) dari gerombolan ikan dan sebagainya, sedangkan panjang jaring, yakni jumlah \textit{piece

Penamaan jaring insang (gillnet) di Indonesia beraneka ragam dipengaruhi oleh kebiasaan-kebiasaan nelayan setempat, ada yang memberi nama berdasarkan jenis ikan yang tertangkap (jaring koro, jaring udang dan sebagainya), ada pula berdasarkan lokasi fishing ground dan sebagainya. Berdasarkan cara operasi ataupun kedudukan jaring dalam perairan maka gillnet dapat dibedakan menjadi surface gillnet, bottom gillnet, drift gillnet, encircling gillnet dan surrounding gillnet. Menurut kategorii statistik standar klasifikasi alat penangkap perairan laut, jaring insang dibedakan menjadi jaring insang hanyut (drift gillnet), jaring insang lingkar (encircling gillnet), jaring klitik (shrimp gillnet), jaring insang tetap (set gillnet), trammel net (Direktorat Jenderal Perikanan 1999).

Jaring insang lingkar (encircling gillnet) adalah jaring insang yang penerapannya dengan cara melingkar gerombolan ikan, setelah ikan terkapung dalam lingkaran jaring kemudian dikejuti sehingga ikan-ikan akan terjebak pada mata jaring (Ayodhyoa 1981).

![Gambar 5 Unit penangkapan jaring insang lingkar (Sumber : Balai Penelitian Perikanan Laut, 1992).](image-url)
2.4 Pendugaan Hasil Tangkapan per Satuan Upaya


Gulland (1983) menyatakan bahwa data hasil penangkapan per satuan upaya penangkapan (CPUE = catch per unit effort) dapat digunakan untuk memprediksi perubahan kelimpahan stok. Pengukuran kelimpahan dan perubahannya adalah suatu yang penting dalam pendugaan stok, sehingga data hasil tangkapan per satuan upaya (CPUE) merupakan langkah dasar yang penting dalam pengukuran tersebut.

Tujuan utama pendugaan stok ikan adalah untuk mengetahui kelimpahan stok ikan suatu perairan, sehingga dapat digunakan sebagai petunjuk eksploitasi secara maksimum dari sumberdaya hayati perairan seperti ikan dan udang. Sumberdaya hayati tersebut tersedia dalam jumlah yang sangat terbatas tetapi diperbarui, namun penangkapan yang tidak dikehendaki dapat memicu kepunahan. Pendugaan stok ikan dapat digambarkan dari tingkat pengeksplotasian dalam waktu cukup lama (Sparre et al. 1989).

Penyebab fluktuasi stok ikan menurut Laevastu dan Favorite (1988), diacu dalam Setiawan (1999) adalah:

1. Perubahan lingkungan dapat mempengaruhi peremajaan dan eksploitasi stok serta tingkat pemanfaatan sumberdaya perikanan.
2. Variasi peremajaan stok karena proses internal ekosistem.
5. Tingkat pemanfaatan sumberdaya perikanan.
7. Perubahan permintaan dan pasar atau harga.
2.5 Pengembangan Perikanan Tangkap


Menurut Ditjen Perikanan (1999), diacu dalam Baruadi (2004), pengembangan sumberdaya perikanan di masa mendatang perlu persiapan lebih matang, untuk itu diperlukan langkah-langkah sebagai berikut: (1) perlu adanya
pengembangan prasarana perikanan, (2) pengembangan agroindustri, pemasaran dan permodalan, (3) adanya pengembangan kelembagaan dan penyelenggaraan penyuluhan perikanan, serta (4) pengembangan sistem informasi manajemen perikanan yang tepat. Naamin (1987), diacu dalam Monintja (1994) mengemukakan bahwa, dalam pengembangan perikanan sumberdaya dan daya dukung lain perlu diperhatikan kebutuhan dan pengendalian dalam menerapkan kegiatan perikanan dapat dijamin keberadaannya.

Keberhasilan pengembangan dan pembangunan di suatu daerah, perlu didukung oleh pengembangan perikanan yang matang berdasarkan kebutuhan masing-masing daerah, dengan mempertimbangkan kesesuaian kemampuan ilmu dan teknologi pada sumberdaya manuasiannya serta aspek-aspek yang berkaitan “Bio-Technico-Socio-Economic-Approach”

2.6 Analisis Usaha

Menurut Kadariah (1988), Analisis kelayakan usaha pada prinsipnya dapat dilakukan dengan dua pendekatan, tergantung dengan fihak yang berkepentingan langsung dalam proyek yaitu; (1) Analisis Finansial, dilakukan apabila yang berkepentingan langsung dalam proyek adalah individu atau kelompok individu yang bertindak sebagai investor dalam proyek. Kelayakan proyek dilihat dari besarnya manfaat bersih tambahan yang diterima investor tersebut; (2) Analisis Ekonomi, dilakukan apabila yang bekepentingan langsung dalam proyek adalah pemerintah atau masyarakat secara keseluruhan. Kelayakan proyek dilihat dari besarnya manfaat bersih tambahan yang diterima oleh masyarakat.

Analisis kelayakan usaha diperlukan untuk melihat kemungkinan/keuntungan (profitability) atau kerugian yang diperoleh dari suatu usaha perikanan yang ada. Demikian Kesteven (1973) mengemukakan bahwa analisis ekonomi yang diperhatikan adalah hasil total atau keuntungan yang diperoleh dari semua sumberdaya yang digunakan dalam usaha untuk masyarakat atau perekonomian secara keseluruhan. Dengan kata lain, analisis usaha untuk pengembangan suatu usaha perikanan harus ditinjau secara bio-technico-socioeconomic-approach.

Monintja (1987) mengungkapkan bahwa di dalam pengembangan usaha perikanan pada suatu wilayah perairan ditekankan pada perluasan tenaga kerja,
makanya hal yang perlu dikembangkan adalah unit penangkapan ikan yang relatif dapat menyerap tenaga kerja yang banyak, dengan pendapatan netraya yang memadai. Selain itu unit yang dipilih adalah unit penangkapan ikan yang mempunyai produktivitas penangkapan tinggi, bila dipandang dari aspek biologi dan ekonomisnya masih dapat dipertanggungjawabkan.

Menurut Husnan dan Suwarsono (1984), untuk mendapatkan suatu ukuran menjadi sebagai dasar pengukuran kelayakan proyek, para ahli telah mengembangkan indeks ukur "investment criteria" yang hakekatnya untuk mengukur hubungan antara manfaat dan biaya dari proyek. Setiap kriteria mempunyai kelebihan dan kekurangan, sehingga dalam menilai kelayakan proyek sering digunakan lebih dari satu kriteria. Dari beberapa kriteria yang ada, empat diantaranya adalah kriteria net present value (NPV), net benefit-cost ratio (Net B/C), break even point (BEP) dan rentabilitas.

2.7 Analisis SWOT

Analisis SWOT yang merupakan singkatan dari Strengths, Weaknesses, Opportunities, Threats yaitu kekuatan, kelemahan, peluang dan ancaman (Rangkuti, 2001). Analisis ini dapat dilihat dari dua sisi dapat mempengaruhi kesuksesan suatu program yaitu sisi internal yang meliputi Strengths dan Weaknesses serta faktor eksternal yang meliputi Opportunities dan Threats.

Penggunaan analisis SWOT disesuaikan dengan fungsinya sebagai alat menyusun strategi. Strategi yang dihasilkan merupakan hasil perbandingan secara logika atas faktor internal (kekuatan dan kelemahan) dan faktor eksternal (peluang dan ancaman) yang pada akhirnya dapat memaksimalkan kekuatan dan peluang serta meminimalkan kelemahan dan ancaman.

Dari analisis SWOT dihasil 4 strategi utama yaitu strategi SO, WO, ST dan WT. Keempat strategi merupakan perbandingan dari keempat komponen yang ada dalam analisis SWOT. Strategi SO disusun dengan menggunakan kekuatan secara maksimal untuk merebut peluang yang ada. Strategi WO digunakan untuk bisa meminimalkan kelemahan dalam menggunakan peluang sebesar-besarnya. Strategi ST dilakukan dengan menggunakan kekuatan yang ada untuk mengatasi ancaman dari luar. Sedangkan strategi WT dimaksudkan untuk kegiatan perbaikan atas kelemahan yang dimiliki dan ancaman yang datang.
2.8 Letak Geografis dan Kondisi Perairan Kabupaten Tanah Laut

Kabupaten Tanah Laut merupakan bagian dan salah satu wilayah Provinsi Kalimantan Selatan yang memiliki kawasan pesisir (berbatasan dengan laut) dan terletak pada 114° 30' 20" - 115° 23' 31" BT dan 3° 30'33" - 4° 11' 38" LS dengan batas-batas:

Sebelah Utara : Kabupaten Banjar
Sebelah Timur : Kabupaten Tanah Bumbu
Sebelah Selatan : Laut Jawa
Sebelah Barat : Laut Jawa

Luas wilayah Kabupaten Tanah Laut adalah 3.631,35 Km² (9,71% luas Provinsi Kalimantan Selatan) meliputi 9 kecamatan yang terdiri atas: Kecamatan Pangalatap, Lorong, Batu Ampar, Kintap, Pelihari, Takising, Bati-Bati, Tambang Ulang dan Kuru dan 133 desa (BPS Kabupaten Tanah Laut 2007).

Kondisi topografi Kabupaten Tanah Laut cukup beragam yang ditandai oleh wilayah datar, wilayah rawa-rawa, wilayah perbukitan dan wilayah pegunungan yang memanjang dari barat ke timur dengan ketinggian lebih dari 1000 m. Karakteristik berasal dari 0 – 2% sampai 40% dengan ketinggian 0 – 1.456 m di atas permukaan laut. Jenis tanah bertekstur alluvial, kasar sampai gambut. Rata-rata suhu udara di Kabupaten Tanah Laut 26,5°C dengan suhu minimum 22,7°C dan maksimum 33°C.

Jumlah curah hujan yang tercatat pada tahun 2006 adalah 2.880 milimeter. Curah hujan tertinggi pada bulan Desember yaitu 865 mm sedangkan curah hujan terendah pada bulan September yaitu 14 mm. Jumlah hari hujan terbanyak terjadi pada bulan November yaitu 50 hari. Kelembaban udara rata-rata 77%.

Kabupaten Tanah Laut merupakan daerah pasang surut pada bagian pantai dengan panjang pantainya ± 200 km. Tipe pantai umumnya berpasir dan kondisi perairan meliputi: tinggi gelombang berkisar antara 35 - 80 cm, suhu permukaan laut 28° - 32°C dengan salinitas 25% - 30%.

2.9 Kondisi Perikanan Tangkap di Kabupaten Tanah Laut

2.9.1 Produksi perikanan tangkap

Perkembangan produksi perikanan tangkap di Kabupaten Tanah Laut dari tahun ke tahun menunjukkan peningkatan yang cukup baik (Lampiran 2).
Produksi perikanan pada tahun 2006 disajikan pada Tabel 1, dimana perikanan kembung menunjukkan kuantitas yang cukup tinggi dengan proporsi 13,4 %.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Ikan</th>
<th>Volume (ton)</th>
<th>Proporsi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bambangan</td>
<td>648,6</td>
<td>3,4</td>
</tr>
<tr>
<td>2.</td>
<td>Kakap</td>
<td>724,2</td>
<td>3,8</td>
</tr>
<tr>
<td>3.</td>
<td>Gulamah</td>
<td>1.603,1</td>
<td>8,4</td>
</tr>
<tr>
<td>4.</td>
<td>Pari</td>
<td>898,9</td>
<td>4,7</td>
</tr>
<tr>
<td>5.</td>
<td>Bawal Hitam</td>
<td>735,8</td>
<td>3,8</td>
</tr>
<tr>
<td>6.</td>
<td>Bawal Putih</td>
<td>435,8</td>
<td>2,3</td>
</tr>
<tr>
<td>7.</td>
<td>Selar</td>
<td>370,5</td>
<td>1,9</td>
</tr>
<tr>
<td>8.</td>
<td>Belanak</td>
<td>853,1</td>
<td>4,5</td>
</tr>
<tr>
<td>9.</td>
<td>Kembung</td>
<td>2.552,8</td>
<td>13,4</td>
</tr>
<tr>
<td>10.</td>
<td>Kuro/Senangin</td>
<td>1.603,1</td>
<td>8,4</td>
</tr>
<tr>
<td>11.</td>
<td>Tembang</td>
<td>185,9</td>
<td>1,0</td>
</tr>
<tr>
<td>12.</td>
<td>Tenggiri Papan</td>
<td>2.738,8</td>
<td>14,3</td>
</tr>
<tr>
<td>13.</td>
<td>Tongkol</td>
<td>1.702,1</td>
<td>8,9</td>
</tr>
<tr>
<td>14.</td>
<td>Tenggiri</td>
<td>2.543,6</td>
<td>13,3</td>
</tr>
<tr>
<td>15.</td>
<td>Ikan Lainnya</td>
<td>1.517,1</td>
<td>7,9</td>
</tr>
</tbody>
</table>

Jumlah: 100,0


2.9.2 Alat tangkap

Alat penangkap ikan yang digunakan oleh nelayan di Kabupaten Tanah Laut banyak didominasi oleh alat tangkap yang terbuat dari jaring, khususnya alat tangkap untuk menangkap ikan kembung, yaitu purse seine (1,8%) dan jaring insang lingkar (6,8%) sebagaimana disajikan pada Tabel 2. Kedua alat tangkap tersebut sudah lama dikenal masyarakat nelayan sebagai alat tangkap yang baik untuk tujuan komersial maupun untuk memenuhi kebutuhan sehari-hari. Keahlian dalam pengoperasian alat tangkap diperoleh secara turun temurun.

<table>
<thead>
<tr>
<th>Jenis Alat Tangkap</th>
<th>Jumlah (Unit)</th>
<th>Proporsi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaring Insang Hanyut/Rengge</td>
<td>262</td>
<td>11,1</td>
</tr>
<tr>
<td>Jaring Insang Lingkar/Agungan</td>
<td>159</td>
<td>6,8</td>
</tr>
<tr>
<td>Trumel Net/Rempe Kantong</td>
<td>193</td>
<td>8,2</td>
</tr>
<tr>
<td>Lampara Dasar Mini/Radar</td>
<td>582</td>
<td>24,7</td>
</tr>
<tr>
<td>Pukat Panta/Rempa Tarik</td>
<td>300</td>
<td>12,7</td>
</tr>
<tr>
<td>Rawai</td>
<td>380</td>
<td>16,1</td>
</tr>
<tr>
<td>Jermal/Togo</td>
<td>45</td>
<td>1,9</td>
</tr>
<tr>
<td>Purse seine</td>
<td>43</td>
<td>1,8</td>
</tr>
<tr>
<td>Serok</td>
<td>390</td>
<td>16,6</td>
</tr>
</tbody>
</table>

Jumlah: 2354

2.9.3 Armada perikanan tangkap

Armada perikanan laut yang ada di Kabupaten Tanah Laut banyak didominasi jenis armada kapal motor sebanyak 82,1 % dibandingkan armada jenis Perahu motor tempel sebanyak 13,2 % dan perahu tanpa motor sebanyak 4,7 % (Tabel 3). Armada yang digunakan nelayan dalam kegiatan penangkapan kembang umumnya adalah kapal motor.

Tabel 3 Jumlah kapal berdasarkan jenisnya yang terdapat di Kabupaten Tanah Laut tahun 2006

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Kapal</th>
<th>Jumlah (Unit)</th>
<th>Proporsi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Perahu motor tempel</td>
<td>221</td>
<td>13,2</td>
</tr>
<tr>
<td>2.</td>
<td>Perahu tanpa motor</td>
<td>78</td>
<td>4,7</td>
</tr>
<tr>
<td>3.</td>
<td>Kapal motor</td>
<td>1.370</td>
<td>82,1</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>1.669</td>
<td>100</td>
</tr>
</tbody>
</table>


2.9.4 Nelayan dan rumah tangga perikanan (RTP)

Nelayan di Kabupaten Tanah Laut terutama nelayan lokal dikategorikan nelayan kecil yaitu nelayan yang mata pencahariannya hanya untuk memenuhi kebutuhan hidup sehari-hari.


Tabel 4 Jumlah nelayan dan rumah tangga perikanan (RTP) di Kabupaten Tanah Laut tahun 2006

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Kapal</th>
<th>Jumlah (Unit)</th>
<th>Proporsi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tanpa perahu</td>
<td>538</td>
<td>24,4</td>
</tr>
<tr>
<td>2.</td>
<td>Perahu tanpa motor</td>
<td>78</td>
<td>3,5</td>
</tr>
<tr>
<td>3.</td>
<td>Perahu motor tempel</td>
<td>221</td>
<td>10,0</td>
</tr>
<tr>
<td>4.</td>
<td>Kapal motor</td>
<td>1.370</td>
<td>62,1</td>
</tr>
<tr>
<td></td>
<td>Jumlah RTP</td>
<td>2.207</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Jumlah nelayan</td>
<td>8.826</td>
<td></td>
</tr>
</tbody>
</table>

3 METODOLOGI PENELITIAN

3.1 Waktu dan Tempat Penelitian


3.2 Metode Penelitian


Data yang dikumpulkan untuk analisis skoring untuk menentukan teknologi penangkapan tepat guna dilakukan berdasarkan masing-masing aspek kajian (aspek biologi, teknis, sosial dan finansial) adalah sebagai berikut:

1. Aspek biologi

Pengukuran parameter biologi dilakukan terhadap sumberdaya ikan kembung sebagai sampel penelitian. Beberapa parameter biologi yang dikumpulkan dalam penelitian ini disajikan pada Tabel 5.

2. Aspek teknis

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Uraian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Komposisi spesies yang menjadi sasaran (<em>target species</em>)</td>
<td>Komposisi hasil tangkapan utama yaitu ikan kembung.</td>
</tr>
<tr>
<td>2.</td>
<td>Ukuran Hasil Tangkapan</td>
<td>Rata-rata ukuran panjang ikan kembung hasil tangkapan.</td>
</tr>
<tr>
<td>3.</td>
<td>Musim penangkapan</td>
<td>Lama waktu nelayan melakukan operasi penangkapan ikan kembung.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Uraian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ukuran perahu</td>
<td>Pengukuran ini dilakukan untuk mengetahui panjang, lebar dan tinggi perahu yang digunakan oleh nelayan, tentunya berkaitan dengan GT, jangkauan daerah penangkapan serta kapasitas produksi.</td>
</tr>
<tr>
<td>2.</td>
<td>Jenis mesin</td>
<td>Jenis mesin yang digunakan oleh nelayan sebagai tenaga penggerak perahu, jenis mesin ini berkaitan dengan kemudahan pengadaan materialnya, harga, jenis mesin, fasilitas pelayanannya seperti bengkel serta daya tahan operasional penangkapan dilakukan.</td>
</tr>
<tr>
<td>3.</td>
<td>Jenis Bahan Bakar Minyak (BBM) yang digunakan</td>
<td>Jenis Bahan Bakar Minyak (BBM) yang digunakan sangat tergantung dari jenis mesin yang dipakai oleh nelayan, namun diharapkan BBM yang digunakan tersedia setiap waktu, harga, jenis mesin, dan membuat mesin menjadi tahan lama.</td>
</tr>
<tr>
<td>4.</td>
<td>Ukuran alat penangkapan ikan kembung</td>
<td>Pengukuran alat penangkapan ikan kembung seperti dimensi (panjang dan lebar) dan pengukuran mata jaring (<em>mesh size</em>).</td>
</tr>
<tr>
<td>5.</td>
<td>Material alat penangkapan ikan kembung</td>
<td>Jenis alat penangkapan ikan kembung terbuat dari bermacam-macam material, yang diharapkan dari bahan ini adalah tahan lama, harga, jenis terjangkau serta mudah didapatkan oleh nelayan.</td>
</tr>
<tr>
<td>6.</td>
<td>Produksi per tahun</td>
<td>Jumlah hasil tangkapan yang dihasilkan setiap unit penangkapan ikan kembung selama lima tahun terakhir.</td>
</tr>
<tr>
<td>7.</td>
<td>Produksi per trip</td>
<td>Jumlah hasil tangkapan yang dihasilkan setiap unit penangkapan ikan kembung per trip. Satu kali trip yaitu satu kali armada penangkapan ikan kembung terhitung sejak armada meninggalkan <em>fishing base</em> menuju daerah penangkapan untuk melakukan kegiatan penangkapan dan kembali ke <em>fishing base</em> semula atau <em>fishing base</em> lainnya.</td>
</tr>
</tbody>
</table>
3. Aspek sosial

Pengukuran parameter sosial dalam penelitian ini diarahkan kepada nelayan sebagai pelaku utama dalam kegiatan penangkapan ikan kembung. Pentingnya mengetahui parameter sosial masyarakat nelayan karena didorong oleh perubahan faktor produksi seperti alat penangkapan ikan kembung yang setiap kurun waktu tertentu mengalami perubahan dari unit penangkapan yang berteknologi tradisional ke unit penangkapan yang skala usahanya lebih besar. Terdapat kecenderungan bahwa alat tangkap dengan teknologi yang lebih baik yang dapat diterima oleh nelayan. Parameter sosial yang dikumpulkan disajikan pada Tabel 7.

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Uraian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jumlah nelayan yang terserap setiap unit penangkapan ikan kembung</td>
<td>Banyaknya nelayan yang bekerja atau digunakan oleh setiap unit penangkapan ikan kembung dalam setiap kegiatan operasi penangkapan ikan kembung dengan pendapatan yang sesuai.</td>
</tr>
<tr>
<td>2</td>
<td>Pendapatan nelayan per tahun</td>
<td>Pendapatan nelayan dari bagi hasil antara pemilik kapal dengan ABK tanpa memperhitungkan kelebihan satu sama lainnya.</td>
</tr>
<tr>
<td>3</td>
<td>Tingkat penguasaan teknologi</td>
<td>Bagaimana penggunaan nelayan terhadap teknologi alat tangkap (1) mudah; (2) sedang; (3) sukar.</td>
</tr>
</tbody>
</table>

4. Aspek finansial

Pengukuran parameter finansial dilakukan untuk mengetahui manfaat dari suatu usaha penangkapan ikan kembung. Parameter finansial yang dikumpulkan dalam penelitian ini disajikan pada Tabel 8.

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Uraian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biaya investasi</td>
<td>Biaya yang dikeluarkan untuk pengadaan kapal/perahu, alat penangkapan ikan kembung, mesin dan perlengkapan lainnya.</td>
</tr>
<tr>
<td>2</td>
<td>Biaya operasional</td>
<td>Biaya yang dikeluarkan saat kegiatan operasional penangkapan seperti Bahan Bakar Minyak (BBM), perbekalan dan es.</td>
</tr>
<tr>
<td>3</td>
<td>Biaya perawatan</td>
<td>Biaya yang dikeluarkan untuk pemeliharaan perahu, alat penangkapan ikan kembung, mesin dan perlengkapan lainnya.</td>
</tr>
<tr>
<td>4</td>
<td>Nilai produksi</td>
<td>Berat produksi dikalikan harga per satuan berat pada tingkat harga produsen, dinyatakan dalam rupiah.</td>
</tr>
</tbody>
</table>
3.3 Analisis Data

Berdasarkan tujuan yang ingin dicapai, maka metode analisis yang digunakan dalam penelitian ini adalah: (1) analisis potensi sumberdaya ikan kembung, (2) standarisasi alat tangkap, (3) metode skoring, (4) analisis kelayakan usaha, (5) analisis strategi pengembangan sumberdaya ikan kembung.

3.3.1 Potensi sumberdaya ikan kembung

Potensi sumberdaya ikan kembung dapat diketahui dari data dan informasi tentang hasil tangkapan dan upaya penangkapan ikan kembung selama 5 tahun terakhir dengan menggunakan analisis catch per unit effort (CPUE) atau hasil tangkapan per upaya penangkapan. Perhitungan CPUE yang pertama untuk mengetahui kelimpahan dan tingkat pemanfaatan yang didasari atas pembagian antara total hasil tangkapan (catch) dengan upaya penangkapan (effort). Menurut Spare and Venema (1989), rumus yang digunakan adalah:

\[
CPUE = \frac{\text{Catch}}{\text{Effort}}
\]

.................................(1)

Keterangan:

\(\text{Catch (C)}\) = Total hasil tangkapan (kg)
\(\text{Effort (F)}\) = Total upaya penangkapan (trip)

\(CPUE\) = Hasil tangkapan per upaya penangkapan (kg/trip)

Nilai \(CPUE\) dari total hasil tangkapan (C) dapat digunakan untuk pendugaan stok secara sederhana. Model yang digunakan untuk data yang cenderung \textit{linier} adalah model Schaefer, dengan tahapan sebagai berikut:

1. Hubungan antara upaya penangkapan (f) dengan hasil tangkapan per satuan upaya penangkapan (CPUE) adalah:

\[
CPUE = a - bf
\]

.................................(2)

Keterangan:

\(a\) = Intersep
\(b\) = Kemiringan (slop)
\(f\) = Hasil tangkapan
\(CPUE\) = Upaya penangkapan
2. Hubungan antara upaya penangkapan \( f \) dengan hasil tangkapan \( c \) adalah:

\[
C = af - bf^2
\]

..............................(3)

3. Upaya optimum diperoleh dengan cara menyamakan turunan pertama upaya penangkapan dengan nol \((C' = 0)\), sehingga diperoleh rumus:

\[
C = a - bf^2
\]

\[
C' = a - 2bf
\]

\[
F_{op} = \frac{a}{2b}
\]

..............................(4)

4. Produksi maksimum letari \((MSY)\) diperoleh dengan mensubstitusi nilai upaya optimum, sehingga diperoleh:

\[
C_{max} = MSY = \frac{a^2}{4b}
\]

\[
C_{max} = a(a/2b) - b(a^2/4b^2)
\]

\[
= \left( \frac{a^2}{2b} \right) - \left( \frac{a^2b}{4b} \right)
\]

\[
= \left( 2\frac{a^2}{2b} \right) - \left( \frac{a^2b}{4b^2} \right)
\]

\[
MSY = \frac{a^2}{4b}
\]

Berdasarkan parameter intersep \( a \) dan slope \( b \) secara matematika dapat dicari menggunakan persamaan regresi linier sederhana, yaitu persamaan \( Y = a + bx \). Rumus-rumus Surplus Production Model tersebut hanya berlaku bila parameter \( b \) bernilai negatif, artinya penambahan upaya penangkapan akan menyebabkan penurunan \( CPUE \). Sebaliknya jika dalam perhitungan diperoleh nilai koefisien \( b \) positif, maka perhitungan potensi dan upaya penangkapan optimum tidak perlu dilanjutkan, hal ini mengindikasikan bahwa penambahan upaya penangkapan masih memungkinkan untuk meningkatkan hasil tangkapan. (Sparre and Venema, 1989).

3.3.2. Standarisasi alat tangkap

Pada umumnya dalam suatu perairan untuk menangkap satu jenis spesies ikan tertentu dapat menggunakan berbagai alat tangkap yang berbeda. Tertentu dari sifat hasil tangkapan, hasil tangkapan utama atau sampingan dari suatu jenis alat tangkap tetap harus diperhatikan. Menurut Gulland (1983), setiap alat tangkap dapat menangkap bermacam-macam jenis ikan
yang terdapat di suatu daerah penangkapan. Masing-masing alat tangkap memiliki kemampuan yang berbeda dalam menangkap suatu jenis ikan, oleh karena itu perlu adanya standarisasi upaya penangkapan terlebih dahulu sebelum menentukan nilai potensi lestari dan upaya penangkapan optimum dalam suatu lingkungan perairan. Pemilihan alat tangkap standar dapat didasarkan pada dominan atau tidaknya alat tangkap tersebut di suatu daerah.

Tujuan akhir dari metode ini adalah untuk menyeragamkan upaya penangkapan karena setiap alat tangkap memiliki daya tangkap yang berbeda. Upaya penangkapan standar dinyatakan sebagai jumlah seluruh satuan perkalian antara kemampuan penangkapan yang disebut Fishing Power Index (FPI) dalam setiap tahunnya dengan satuan waktu penangkapan atau dengan jumlah satuan operasi penangkapan. Untuk menentukan jenis alat tangkap dapat dijadikan standar adalah dengan melihat nilai laju tangkapan rata-rata (CPUE) alat tangkap yang terbesar atau dengan kata lain jenis alat tangkap tersebut paling dominan di suatu perairan. Rumus yang digunakan adalah sebagai berikut:

\[
CPUE_s = \frac{C_s}{f_s} \quad FPI_s = \frac{CPUE_s}{CPUE_s} \quad StdEffort_s = FPI_s \times x_f
\]

\[
CPUE_i = \frac{C_i}{f_i} \quad FPI_i = \frac{CPUE_i}{CPUE_s} \quad StdEffort_i = FPI_i \times x_f
\]

\[
StdEffort_{total} = (\sum (FPI_i \times x_f_i)) + (FPI_s \times x_f_s)
\]

Keterangan:
- \(C_s\): Hasil tangkapan (catch) per tahun alat tangkap standar (kg);
- \(f_s\): Upaya penangkapan (effort) per tahun alat tangkap standar (trip);
- \(C_i\): Hasil tangkapan (catch) per tahun jenis alat tangkap lain (kg);
- \(f_i\): Upaya penangkapan (effort) per tahun jenis alat tangkap lain (trip);
- \(CPUE_s\): Hasil tangkapan per upaya penangkapan tahunan alat tangkap standar (kg/trip);
- \(CPUE_i\): Hasil tangkapan per upaya penangkapan tahunan jenis alat tangkap lain (kg/trip);
- \(FPI_s\): Indeks kuasa penangkapan (Fishing Power Index) alat tangkap standar;
- \(FPI_i\): Indeks kuasa penangkapan (Fishing Power Index) jenis alat tangkap lain;
- \(StdEffort_s\): Upaya penangkapan alat tangkap standar setelah di standarisasi;
- \(StdEffort_i\): Upaya penangkapan alat tangkap lain setelah di standarisasi;
- \(StdEffort_{total}\): Upaya penangkapan keseluruhan setelah distandardasi.
3.3.3 Pendugaan tingkat pemanfaatan

Tingkat pemanfaatan sumberdaya ikan kembung (Rastrelliger spp) dapat diketahui dengan cara menghitung proporsi jumlah hasil tangkapan pada tahun tertentu dari nilai produksi maksimum lestari (MSY).

Rumus dari tingkat pemanfaatan adalah:

\[
\text{Tingkat pemanfaatan} = \frac{C_i}{MSY} \times 100\%
\]

Keterangan:
- \( C_i \): Jumlah hasil tangkapan ikan kembung pada tahun ke-\( i \); dan
- \( MSY \): Maximum sustainable yield (produksi maksimum lestari)

3.3.4 Kelayakan usaha

Dalam penelitian ini dilakukan perhitungan terhadap kelayakan finansial dari pengembangan unit perikanan tangkap yang ada yaitu dengan menganalisis pendapatan dan biaya dari usaha masing-masing alat tangkap. Menurut (Kadariah 1989), kelayakan finansial dapat dihitung berdasarkan kriteria net present value (NPV), net benefit-cost ratio (Net B/C), break even point (BEP) dan rentabilitas. Adapun rumus yang digunakan untuk analisis aspek ini adalah sebagai berikut:

1) Net present value (NPV)

Net present value digunakan untuk menilai manfaat investasi, yaitu berapa nilai kini (present value) dari manfaat bersih proyek yang dinyatakan dalam rupiah. Proyek dinyatakan layak untuk dilanjutkan apabila NPV > 0, sedangkan apabila NPV < 0, maka investasi dinyatakan tidak menguntungkan yang berarti proyek tersebut tidak layak untuk dilaksanakan. Pada keadaan ini nilai NPV = 0 maka berarti pada proyek tersebut hanya kembali modal atau tidak untung dan juga tidak rugi. Rumus yang digunakan untuk menghitung NPV adalah:

\[
NPV = \sum_{i=1}^{n} \frac{B_i - C_i}{(1+i)^t}
\]

Keterangan:
- \( B_i \): Benefit; \( C_i \): Cost; \( i \): Discount Rate; dan \( t \): Periode

2) Net benefit-cost ratio (Net B/C)

Net benefit-cost ratio merupakan perbandingan dimana sebagai pembilang terdiri atas present value total yang bernilai positif, sedangkan sebagai penyebut
terdiri atas *present value* total yang bernilai negatif, yaitu biaya kotor lebih besar daripada manfaat (*benefit*) kotor. Persamaan tersebut dapat dirumuskan sebagai berikut:

\[
Net\ B/C\ ratio = \frac{\sum_{t=1}^{n} \frac{Bt - Ct}{(1 + i)^t}}{\sum_{t=1}^{n} \frac{Bt - Ct}{(1 + i)^t}}
\]

Keterangan:

\(B = Benefit;\ C = Cost;\ i = Discount\ Rate;\ t = Periode\)

Berdasarkan persamaan tersebut yaitu: jika Net B/C \(\geq 1\) maka suatu investasi layak karena memberikan keuntungan. Jika Net B/C = 1, maka usaha tidak memberikan keuntungan tetapi juga tidak rugi. Jika Net B/C < 1, maka investasi tidak layak karena mengalami kerugian.

3) **Break even point (BEP)**


Analisis *break even point* atas dasar produksi (banyaknya hasil tangkapan) dapat dilakukan dengan rumus:

\[
BEP\ (kg) = \frac{Biaya\ tetap \times\ produksi}{Hasil\ penjualan - Biaya\ variabel}
\]

Analisis *break even point* atas dasar harga jual dapat dilakukan dengan menggunakan rumus sebagai berikut:

\[
BEP\ (Rp) = \frac{Biaya\ tetap}{1 - \frac{Biaya\ variabel}{Hasil\ penjualan}}
\]

4) **Return on investment (ROI)**

*Return on investment* adalah kemampuan suatu usaha untuk menghasilkan keuntungan. Perhitungan terhadap *ROI* dilakukan untuk mengetahui besarnya keuntungan yang diperoleh dibandingkan dengan besar investasi yang ditanamkan (Rangkuti 2001).

Rumus yang digunakan adalah:
ROI = \frac{Keuntungan}{Investasi} \times 100\%

Nilai rasio yang diperoleh akan tergolong "Baik" jika bernilai > 25\%, "Cukup Baik" jika bernilai 15 \textendash{} 25\%, "Cukup Buruk" jika bernilai 5 \textendash{} 15\% dan "Buruk" jika bernilai < 5\%.

3.3.5 Metode skoring
Dalam menentukan jenis teknologi penangkapan ikan kembung tepat guna berdasarkan analisis kelayakan aspek biologi, teknis, sosial dan finansial dilakukan dengan metode skoring (Mangkusubroto dan Trisnadi 1985). Metode ini dapat digunakan dalam penilaian kriteria yang mempunyai satuan berbeda dengan memberi nilai dari yang terendah sampai nilai yang tertinggi. Untuk nilai tertinggi diberikan urutan prioritas 1 begitupun seterusnya. Dalam menilai semua kriteria atau aspek digunakan nilai tukar, sehingga semua nilai mempunyai standar yang sama. Jenis alat tangkap yang memperoleh nilai tertinggi berarti lebih baik daripada yang lainnya, demikian juga sebaliknya. Standarisasi dengan fungsi nilai dapat dilakukan dengan menggunakan rumus sebagai berikut:

\[ V(X) = \frac{X - X_0}{X_a - X_0} \]

\[ V(A) = \sum_{i=a}^{n} V_i(X_i) \]

\[ i = a, b, c, d \ldots \ldots n \]

Keterangan :

\( V(X) \) = Fungsi nilai dari variabel \( X \)
\( X \) = Nilai variabel \( X \)
\( X_i \) = Nilai tertinggi pada kriteria \( X \)
\( X_0 \) = Nilai terendah pada kriteria \( X \)
\( V(A) \) = Fungsi nilai dari alternatif \( A \)
\( V_i(X_i) \) = Fungsi nilai dari alternatif pada kriteria ke-\( i \)

Penentuan unit penangkapan ikan kembung menggunakan metode skoring, sebagai berikut:
Analisis aspek biologi: komposisi target spesies \((X_1)\), ukuran panjang tubuh ikan hasil tangkapan \((X_2)\), musim penangkapan ikan kembung \((X_3)\) yang diperoleh dari hasil wawancara dengan nelayan.

Analisis aspek teknis (perahu, alat penangkapan ikan kembung dan hasil tangkapan). Penilaian kriteria teknis dari unit penangkapan kembung yaitu mencakup produksi per tahun \((X_1)\), produksi per trip \((X_2)\), produksi per tenaga kerja \((X_3)\).

Analisis aspek sosial yakni berkaitan dengan tenaga kerja yang diserap setiap unit penangkapan kembung antara lain, jumlah tenaga kerja per unit penangkapan ikan kembung \((X_1)\), pendapatan nelayan pertahun \((X_2)\), dan tingkat penguasaan teknologi \((X_3)\).

Analisis aspek finansial dapat dibahas menjadi kriteria efisiensi usaha meliputi: penerimaan kotor per tahun \((X_1)\), penerimaan kotor per trip \((X_2)\), penerimaan kotor per tenaga kerja \((X_3)\).

3.3.6 Analisis strategi pengembangan

Sebelum melakukan proses pengambilan keputusan yang layak untuk suatu kasus, terlebih dahulu dilakukan analisis terhadap faktor-faktor internal dan eksternal yang mempengaruhinya dalam kondisi yang ada saat ini. Dalam hal ini, analisis situasi yang popular digunakan saat ini adalah analisis SWOT. Analisis SWOT adalah identifikasi berbagai faktor secara sistematis untuk merumuskan strategi (Rangkuti, 2001). Analisis ini mendefinisikan aspek terkait menjadi faktor internal yang terdiri atas komponen kekuatan \((strength)\) dan kelemahan \((weakness)\) serta faktor eksternal yang terdiri atas peluang \((opportunities)\) dan ancaman \((threats)\) sehingga analisis ini di sebut juga analisis situasi. Analisis SWOT didasarkan pada asumsi bahwa strategi yang efektif adalah dengan memaksimalkan kekuatan \((strength)\) dan peluang \((opportunities)\), serta meminimalkan kelemahan \((weakness)\) dan ancaman \((threats)\).

Langkah yang diambil seperti di dalam faktor eksternal yaitu membuat daftar peluang dan ancaman. Kemudian langkah yang telah ada dievaluasi untuk mengetahui seberapa baik strategi saat ini merespon peluang dan ancaman yang ada.
Langkah yang diambil dalam faktor internal tidak berbeda dengan faktor eksternal, langkah yang dilakukan dalam faktor internal adalah membuat daftar kekuatan dan kelemahan dari analisis fungsional. Kemudian dievaluasi untuk mengetahui seberapa baik potensi internal.

Tabel 9 Matriks hasil analisis SWOT

<table>
<thead>
<tr>
<th>Kekuatan</th>
<th>Peluang</th>
<th>Ancaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO1</td>
<td>ST1</td>
<td></td>
</tr>
<tr>
<td>SO2</td>
<td>ST2</td>
<td></td>
</tr>
<tr>
<td>SO3</td>
<td>ST3</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>SO_n</td>
<td>ST_n</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kelemahan</th>
<th>Peluang</th>
<th>Ancaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO1</td>
<td>WT1</td>
<td></td>
</tr>
<tr>
<td>WO2</td>
<td>WT2</td>
<td></td>
</tr>
<tr>
<td>WO3</td>
<td>WT3</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>WO_n</td>
<td>WT_n</td>
<td></td>
</tr>
</tbody>
</table>

Alternatif strategi pada matriks hasil analisis SWOT (Tabel 9) dihasilkan dari penggunaan unsur-unsur kekuatan untuk mendapatkan peluang yang ada (SO), penggunaan kekuatan yang ada untuk menghadapi ancaman yang akan datang (ST), reduksi kelemahan yang ada dengan memanfaatkan peluang yang tersedia (WO) dan pengurangan kelemahan yang ada untuk menghadapi ancaman yang akan datang (WT).

Strategi yang dihasilkan terdiri atas beberapa alternatif strategi. Penentukan prioritas strategi dilakukan dengan analisis keterkaitan masing-masing unsur. Sehingga menghasilkan prioritas alternatif strategi pengembangan usaha perikanan ikan kembung dengan alat tangkap yang terpilih.
4 HASIL PENELITIAN

4.1 Sumberdaya Ikan Kembung

Perkembangan produksi hasil tangkapan ikan kembung di Kabupaten Tanah Laut selama lima tahun mengalami peningkatan setiap tahunnya. Pada tahun 2002 total hasil tangkapan 1,423,100 kg selanjutnya setiap tahun mengalami peningkatan hingga tahun 2006 total hasil tangkapan 2,552,800 kg (Gambar 6). Produksi hasil tangkapan ikan kembung ini dihasilkan dari alat tangkap purse seine dan jaring insang lingkar.


Upaya penangkapan (effort) yang dilakukan diikuti dengan peningkatan produksi hasil tangkapan, namun tidak diikuti peningkatan produktivitas dari kedua alat tangkap yang diukur dengan satuan catch per unit effort (CPUE). Nilai CPUE alat tangkap yang sudah distandarisasi (jaring insang lingkar dan purse seine) untuk menangkap kembung menunjukkan cenderung berfluktuasi selama lima tahun. Alat tangkap yang dijadikan standar adalah purse seine, karena produktivitasnya lebih tinggi dibandingkan jaring insang lingkar (Lampiran 2).


Korelasi antara CPUE dengan effort menunjukkan hubungan yang negatif, yaitu semakin tinggi effort semakin rendah nilai CPUE. Korelasi negatif antara CPUE dengan effort mengindikasikan bahwa produktivitas alat tangkap jaring insang lingkar dan purse seine akan menurun apabila effort mengalami peningkatan. Korelasi antara nilai CPUE dan Effort dapat dilihat pada Gambar 8.

![Gambar 8 Hubungan CPUE dengan effort ikan kembung di Kabupaten Tanah Laut](image-url)
Nilai potensi maksimum lestari (MSY) perikanan kembung diperoleh sebesar 3.297 ton/tahun dengan effort pada tingkat potensi maksimum lestari ($F_{MSY}$) sebesar 128.396 trip per tahun dan tingkat pemanfaatannya sebesar 77%. Hubungan kuadratik antara upaya penangkapan dan hasil tangkapan ikan kembung di Kabupaten Tanah Laut dapat dilihat pada Gambar 9 (Lampiran 3).

Gambar 9 Hubungan produksi dengan effort ikan kembung di Kabupaten Tanah Laut.

Berdasarkan gambar di atas, terlihat hubungan antara produksi dan effort ikan kembung di perairan Kabupaten Tanah Laut berbentuk parabola, artinya setiap penambahan effort maka akan meningkatkan produksi sampai mencapai titik maksimum, kemudian akan terjadi penurunan produksi untuk tiap peningkatan intensitas pengusahaan sumberdaya.

4.2 Keragakan Unit Penangkapan Ikan Kembung

4.2.1 Purse seine

Kapal yang dipergunakan oleh nelayan purse seine di Kabupaten Tanah Laut adalah kapal yang terbuat dari kayu meranti dengan panjang (LOA) = 15 meter, lebar (Breadth) = 3 meter, dalam (Depth) = 1,75 meter dengan kapasitas muatan 5 – 10 GT. Kontruksi kapal purse seine disajikan pada Gambar 10.
Gambar 10 Kapal *purse seine* yang dioperasikan di Kabupaten Tanah Laut.

Alat tangkap *purse seine* yang digunakan nelayan di Kabupaten Tanah Laut dikenal dengan nama *Gae*, memiliki ukuran panjang 450 meter dan lebar 36 meter. Secara garis besar *gae* terbagi menjadi tiga bagian yaitu badan, sayap, kantong. Alat ini juga dilengkapi dengan beberapa bagian lain misalnya tali ris atas bawah, pelampung, pemberat, cincin dan tali kolor.

Bagian-bagian *purse seine* terdiri dari:


4. **Tali ris atas;** adalah tempat pengikatan jaring dan pelampung. Tali terbuat dari polyethylene atau kuralon dengan diameter 4 – 5 mm. Panjang yang terikat dengan bahan jaring merupakan panjang jaring keseluruhan.
(5) Tali ris bawah; mempunyai fungsi dan ukuran yang sama dengan tali ris atas. Pada bagian ini juga diikatkan cincin dan pemberat.


(9) Tali kolor; berfungsi menutup jaring bagian bawah agar ikan terkurung tidak melarikan diri ke lapisan yang lebih dalam. Panjangnya lebih panjang dari tali ris bawah. Bahan terbuat dari tali yang kuat seperti kuralon, polyethylene dengan diameter 18 – 24 mm. Bagian tengah diberi tanda untuk memudahkan penyusunan alat.

Desain alat tangkap purse seine yang dioperasikan di perairan Kabupaten Tanah Laut disajikan pada Gambar 11.

Keterangan:
1. Pelampung tanda (light bouy)
2. Tali pelampung
3. Tali ris atas
4. Pelampung utama
5. Tali ris bawah
6. Tali kolor
7. Tali pemberat
8. Pemberat
9. Tali selambar

Gambar 11 Desain purse seine yang dioperasikan di Perairan Kabupaten Tanah Laut (Sumber: Ghaffar, 2006).
Adapun teknik pengoperasi *purse seine* dibagi dalam beberapa tahap yaitu meliputi:

1. **Tahap Persiapan**
   Tahap persiapan merupakan tahap yang harus dilakukan setiap sebelum penangkapan ikan. Tahap ini meliputi kegiatan pemeriksaan mesin dan semua alat yang diperlukan harus diperiksa apakah dalam keadaan baik atau perlu diperbaiki terlebih dahulu. Penyiapan bahan bakar, es serta konsumsi.
   Hal ini dilakukan untuk memperlancar kegiatan penangkapan.

2. **Kapal *purse seine*** berangkat menuju daerah penangkapan (*fishing ground*).
   Pada umumnya membutuhkan waktu 1 - 2 jam. Penentuan daerah penangkapan yang tepat akan menjadi tujuan daerah penangkapan berdasarkan hasil pemantauan oleh nelayan pemantau.

3. **Pengoperasian (*Setting*)**
   Pengoperasian *purse seine* dilakukan mulai dari pagi hari sekitar pukul 04.00 hingga 06.00. Alat tangkap *purse seine* untuk satu kali pengoperasian dilakukan selama 4 jam. Tiba di daerah penangkapan kapal penangkap mulai menurunkan alat. Mula-mula ujung tali kolor di beri pelampung dan umbul sebagai tanda dan disatukan dengan tali ris atas dan tali ris bawah ke posisi yang telah ditentukan. Selanjutnya kapal penangkap segera melingkari gerombolan ikan sambil menurunkan jaring dan peralatan (pemberat dan pelampung) menuju tali kolor yang telah dilemparkan pada permulaan operasi. Setelah jaring membentuk satu lingkaran penuh maka pelamping dan umbul yang pertama dilemparkan diangkat ke atas kapal dan berikutnya tali kolor segera ditarik dan sampai menaikkan sebagian alat (sayap jaring). Dengan demikian ikan-ikan yang terkurung tidak dapat meloloskan diri.

4. **Penarikan Alat (*Hauling*)**
   Setelah tali kolor tertarik semua, maka sedikit demi sedikit bagian bagian jaring ditarik. Penarikan pukat cincin selesai hingga tersisa bagian kantong dan ikan yang terkurung diambil dengan menggunakan sampe (*serok*). Kemudian jaring dinaikkan seluruhnya ke atas kapal sambil disusun pada tempat semula, dirapikan kembali sebagai persiapan agar memudahkan untuk pengoperasian kembali.
4.2.2 Jaring Insang Lingkar

Kapal penangkapan jaring insang yang ada di Kabupaten Tanah Laut umumnya terbuat dari bahan kayu dengan ukuran panjang 12 meter, lebar 2 meter dan tinggi 1,5 meter. Adapun kapal jaring insang lingkar yang digunakan nelayan Kabupaten Tanah Laut dapat dilihat pada Gambar 12.

Gambar 12 Kapal jaring insang lingkar yang dioperasikankan di Kabupaten Tanah Laut.

Alat tangkap lain yang digunakan dalam menangkap ikan kembung adalah jenis jaring insang lingkar, oleh nelayan setempat disebut "Agungan". Disebut jaring insang lingkar karena dalam pengoperasiannya jaring ditebar dan dilingkarkan pada sasaran tertentu yang dianggap adanya gerombolan ikan. Alat tangkap ini memiliki bagian-bagian sebagai berikut:

1. Selembaran jaring yang merupakan bahan utama dari alat tangkap ini, dengan ukuran mata jaring 2 inci panjang 250 m dan tinggi 30 m terbuat dari bahan PE (polyethelene).

2. Tali ris terdiri atas tali ris atas dan tali ris bawah yang masing-masing rangkap dua, yang satunya berfungsi sebagai tempat dikaitkannya pelampung dan pemegang dan pasanganannya sebagai tempat dikaitkan jaring. Terbuat dari bahan polyethelene dengan ukuran tali ris atas lebih besar dari tali ris bawah, dengan maksud agar daya apung tali ris atas lebih besar daripada tali ris bawah dan sejakmu hauling jaring lebih mudah ditarik.

3. Pelampung (float) yang digunakan adalah pelampung yang terbuat dari (fibber) plastik yang berjumlah 500 buah per pieces yang berarti jumlah totalnya sebanyak 7.500 buah.


<table>
<thead>
<tr>
<th>Keterangan:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pelampung tanda</td>
</tr>
<tr>
<td>2. Tali pelampung</td>
</tr>
<tr>
<td>3. Pelampung utama</td>
</tr>
<tr>
<td>4. Tali ris atas</td>
</tr>
<tr>
<td>5. Pemberat</td>
</tr>
<tr>
<td>6. Tali Pemberat</td>
</tr>
<tr>
<td>7. Tali ris bawah</td>
</tr>
<tr>
<td>8. Tali selembar</td>
</tr>
</tbody>
</table>

Gambar 13 Desain jaring insang lingkar yang dioperasikan di perairan Kabupaten Tanah Laut (Sumber: Ariffin F, 2008).

Adapun teknik pengoperasi jaring insang lingkar dibagi dalam beberapa tahap yaitu meliputi:

1. Tahap Persiapan

Tahap persiapan merupakan tahap yang harus dilakukan setiap sebelum penangkapan ikan. Tahap ini meliputi kegiatan pemeriksaan mesin dan semua alat yang diperlukan harus diperiksa apakah dalam keadaan baik atau perlu diperbaiki terlebih dahulu. Bahan bakar, es dan konsumsi dipersiapkan, hal ini dilakukan untuk memperlancar kegiatan penangkapan.
2. **Setting**


3. **Hauling**

Pelampung tanda yang sudah bergabung dengan ujung jaringnya maka diambil dan diikatkan pada lambung kapal pada sisi yang berbeda dari jaring. Dalam lingkaran jaring dibuat kegaduhan dengan memukul air dengan galah secara berkali-kali selama 15 menit dimana berfungsi untuk membuat gerombolan ikan-ikan takut dan pergi ke arah jaring sehingga meyangkut pada bagian insangnya. Sesudah 30 menit baru jaring diangkat ke permukaan laut terus ke atas kapal sementara ujung jaring pertama (pelampung tanda) tetap terikat pada sisi lambung.

4. **Handling**

Hasil tangkapan yang telah tertangkap di lepas ke atas kapal sambil menyesun jaring pada sisi lambung kapal yang lain selama 60 menit. Setelah jaring tersusun rapi dan tertata baik maka hasil tangkapan yang telah ada dimasukkan kedalam basket atau keranjang. Total waktu penangkapan dalam beroperasi adalah selama 2 jam.

4.3 **Kelayakan Usaha Penangkapan Ikan Kembung**

Analisis aspek kelayakan usaha dimaksudkan untuk mengetahui bagaimana tingkat kelayakan pengembangan perikanan kembung di kabupaten Tanah Laut terhadap dua jenis alat tangkap yaitu *purse seine* dan jaring insang lingkar. Parameter penilaian kelayakan usaha didasarkan pada 4 (empat) kriteria yaitu : NPV, Net B/C ratio, BEP dan ROI. Berdasarkan hasil analisis kelayakan usaha dari alat tangkap *purse seine* dan jaring insang lingkar diperoleh bahwa dalam rangka pengembangan perikanan kembung di Kabupaten Tanah Laut kedua alat tersebut layak untuk dikembangkan. Hasil
analisis kelayakan usaha berdasarkan kriteria-kriteria tersebut di atas dapat di lihat di Tabel 10 (Lampiran 4 dan 5).

Tabel 10 Hasil analisis kelayakan usaha *purse seine* dan jaring insang lingkar di Kabupaten Tanah Laut

<table>
<thead>
<tr>
<th>Alat tangkap</th>
<th>Kriteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Net B/C</td>
</tr>
<tr>
<td></td>
<td>Nilai</td>
</tr>
<tr>
<td><em>purse seine</em></td>
<td>2,01</td>
</tr>
<tr>
<td>Jaring insang lingkar</td>
<td>2,08</td>
</tr>
</tbody>
</table>

4.4 Teknologi Tepat Guna dalam Pemanfaatan Sumberdaya Perikanan Kembang di Kabupaten Tanah Laut

Sesuai tujuan penelitian ini yaitu pemilihan teknologi tepat guna penangkapan ikan kembung, maka analisis dilakukan terhadap kedua alat tangkap (*purse seine* dan jaring insang lingkar). Kedua alat tangkap tersebut dianalisis berdasarkan aspek biologi, teknis, sosial dan finansial untuk menentukan urutan prioritas alat tangkap terbaik untuk dikembangkan dalam usaha perikanan kembang di Kabupaten Tanah Laut.

4.4.1 Analisis aspek biologi

Berdasarkan hasil skoring dari penelitian dilihat dari aspek biologi menunjukkan bahwa alat tangkap *purse seine* berada pada urutan prioritas pertama dari segi komposisi *target species* ikan kembung, rata-rata ukuran dari hasil tangkapan dan lama waktu musim penangkapan. Setelah dilakukan standarisasi berdasarkan keseluruhan fungsi nilai yang telah diperoleh menunjukkan *purse seine* berada pada urutan prioritas pertama (Tabel 11).

Tabel 11 Skoring dan standarisasi fungsi nilai aspek biologi unit penangkapan ikan kembung (*purse seine* dan jaring insang lingkar) di Kabupaten Tanah Laut

<table>
<thead>
<tr>
<th>Unit Penangkapan Ikan kembung</th>
<th>Kriteria Penilaian</th>
<th>V(A)</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>purse seine</em></td>
<td>X₁ V₁(X₁) X₂ V₂(X₂) X₃ V₃(X₃)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Jaring insang lingkar</td>
<td>60 1 20 0 9 1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50 0 22 1 8 0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Keterangan:
\( X_1 \) = Komposisi target spesies (%)  
\( X_2 \) = Rata-rata ukuran hasil tangkapan utama (cm)  
\( X_3 \) = Lama waktu musim penangkapan ikan kembung (bulan)  
\( V(A) \) = Fungsi nilai dari alternatif A, yaitu jumlah dari \( V_i(X_i) \)  
\( UP \) = Urutan prioritas

4.4.2 Analisis aspek teknis


<table>
<thead>
<tr>
<th>Unit Penangkapan</th>
<th>Kriteria Penilaian</th>
<th>( V(A) )</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ikan kembung</td>
<td>( X_1 ), ( V_1(X_1) ), ( X_2 ), ( V_2(X_2) ), ( X_3 ), ( V_3(X_3) )</td>
<td>3, 1</td>
<td>1</td>
</tr>
<tr>
<td>Purse seine</td>
<td>48600, 1, 300, 1, 30, 1</td>
<td>3, 1</td>
<td>1</td>
</tr>
<tr>
<td>Jaring insang lingkar</td>
<td>18000, 0, 150, 0, 25, 0</td>
<td>0, 2</td>
<td>2</td>
</tr>
</tbody>
</table>

Keterangan:
\( X_1 \) = Produksi per tahun (kg)  
\( X_2 \) = Produksi per trip (kg)  
\( X_3 \) = Produksi per tenaga kerja (kg)  
\( V(A) \) = Fungsi nilai dari alternatif A, yaitu jumlah dari \( V_i(X_i) \)  
\( UP \) = Urutan prioritas

4.4.3 Analisis aspek sosial

Berdasarkan hasil skoring dan standarisasi untuk aspek sosial maka alat tangkap *purse seine* menempati urutan pertama dalam hal jumlah tenaga kerja dan pendapatan nelayan pertahun tetapi dalam hal penguasaan teknologi maka jaring insang lingkar menempati urutan pertama kerena lebih mudah dalam...
pengoperasiannya. Hasil skoring dan standarisasi untuk aspek sosial dapat dilihat pada Tabel 13.

<table>
<thead>
<tr>
<th>Unit Penangkap Ikan kembung</th>
<th>Kriteria Penilaian</th>
<th>V(A)_3</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X_1</td>
<td>V_1(X_1)</td>
<td>X_2</td>
</tr>
<tr>
<td>Purse seine</td>
<td>10</td>
<td>1</td>
<td>371.282.000</td>
</tr>
<tr>
<td>Jaring insang lingkar</td>
<td>6</td>
<td>0</td>
<td>129.560.000</td>
</tr>
</tbody>
</table>

Keterangan:
- X_1 = Jumlah tenaga kerja
- X_2 = Pendapatan nelayan per tahun (Rp)
- X_3 = Tingkat penguasaan teknologi (1) mudah; (2) sedang; (3) sukar
- V(A)_3 = Fungsi nilai dari alternatif A, yaitu jumlah dari V_i(X_i)
- UP = Urutan prioritas

4.4.4 Analisis aspek finansial

Berdasarkan hasil skoring untuk aspek finansial (Tabel 14), alat tangkap purse seine menempati urutan prioritas pertama karena dari hasil penerimaan kotor per tahun, penerimaan kotor per trip dan penerimaan kotor per tenaga kerja alat tangkap purse seine memperoleh penerimaan lebih banyak dari jaring insang lingkar.

<table>
<thead>
<tr>
<th>Unit Penangkap Ikan kembung</th>
<th>Kriteria Penilaian</th>
<th>V(A)_4</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X_1</td>
<td>V_1(X_1)</td>
<td>X_2</td>
</tr>
<tr>
<td>Purse seine</td>
<td>4860000000</td>
<td>1</td>
<td>3000000</td>
</tr>
<tr>
<td>Jaring insang lingkar</td>
<td>1800000000</td>
<td>0</td>
<td>15000000</td>
</tr>
</tbody>
</table>

Keterangan:
- X_1 = Penerimaan kotor per tahun (Rp)
- X_2 = Penerimaan kotor per trip (Rp)
- X_3 = Penerimaan kotor per tenaga kerja (Rp)
- V(A)_4 = Fungsi nilai dari alternatif A, yaitu jumlah dari V_i(X_i)
- UP = Urutan prioritas
4.4.5 Analisis aspek biologi, teknis, sosial dan finansial

Pemilihan unit penangkapan ikan kembung adalah untuk mendapatkan jenis alat tangkap yang mempunyai nilai yang baik ditinjau dari aspek biologi, teknis, sosial dan finansial sehingga alat tangkap yang terpilih merupakan alat tangkap yang pantas dikembangkan. Hasil skoring dilakukan pada kedua jenis alat tangkap yang digunakan dalam perikanan tangkap ikan kembung di Kabupaten Tanah Laut dapat dilihat pada Tabel 15.

<table>
<thead>
<tr>
<th>Unit Penangkapan Ikan Kembung</th>
<th>Kriteria Penilaian</th>
<th>V(A) Total</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purse seine</td>
<td>V(A)₁ V(A)₂ V(A)₃ V(A)₄</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Jaring insang lingkar</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Keterangan :

\[ V(A)₁ = \text{Aspek biologi} \]
\[ V(A)₂ = \text{Aspek teknis} \]
\[ V(A)₃ = \text{Aspek sosial} \]
\[ V(A)₄ = \text{Aspek finansial} \]
\[ V(\text{total}) = \text{Fungsi nilai dari alternatif A, yaitu jumlah dari } V_i(X_j) \]
\[ \text{UP} = \text{Urutan Prioritas} \]

Berdasarkan dari hasil total standarisasi aspek biologi, teknik, sosial dan finansial, unit penangkapan ikan kembung di Kabupaten Tanah Laut yang menjadi prioritas utama pengembangan adalah alat tangkap *purse seine*.

4.5 Strategi Pengembangan Sumberdaya Perikanan Kembung

Berdasarkan identifikasi faktor-faktor internal dan eksternal yang dilakukan terhadap pengembangan usaha perikanan perikanan di Kabupaten Tanah Laut maka dilakukan pengujian dengan menggunakan metode SWOT (Tabel 16).
### Tabel 16 Identifikasi, skoring dan arahan pengembangan perikanan kembung

<table>
<thead>
<tr>
<th>Kode</th>
<th>Identifikasi SWOT</th>
<th>Kemungkinan Pengembangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kekuatan (Strength)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>Sumberdaya ikan masih dapat dikembangkan</td>
<td>Pemanfaatan sumberdaya ikan kembung secara rasional</td>
</tr>
<tr>
<td>S2</td>
<td>Sumberdaya nelayan lokal tersedia</td>
<td>Peningkatan kualitas sumberdaya nelayan</td>
</tr>
<tr>
<td>S3</td>
<td>Adanya dukungan pemerintah daerah dalam sub sektor perikanan tangkap</td>
<td>Inventarisasi kapal perikanan dan proyek pengelolaan sumberdaya kelautan dan perikanan</td>
</tr>
<tr>
<td>Kelemahan (Weakness)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W1</td>
<td>Masih beroperasi di perairan pantai</td>
<td>Peningkatan pemanfaatan armada penangkapan dijarak 2 (6 – 12 mil laut)</td>
</tr>
<tr>
<td>W2</td>
<td>Terbatasnya modal usaha perikanan tangkap</td>
<td>Penyediaan modal usaha dengan bunga rendah</td>
</tr>
<tr>
<td>W3</td>
<td>Kurangnya sarana dan prasarana</td>
<td>Peningkatan fasilitas sarana dan prasarana perikanan tangkap</td>
</tr>
<tr>
<td>Peluang (Opportunity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>Letak geografis Kabupaten Tanah Laut yang strategis</td>
<td>Peningkatan produksi perikanan</td>
</tr>
<tr>
<td>O2</td>
<td>Harga ikan kembung cenderung meningkat</td>
<td>Peningkatan produksi ikan kembung</td>
</tr>
<tr>
<td>O3</td>
<td>Permintaan pasar yang meningkat sejalan dengan pertumbuhan</td>
<td>Identifikasi permintaan pasar</td>
</tr>
<tr>
<td>Ancaman (Threats)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>Adanya nelayan yang datang dari luar daerah Kabupaten Tanah Laut</td>
<td>Peningkatan peran pemerintah dan masyarakat dalam pengawasan usaha perikanan tangkap di perairan Kabupaten Tanah Laut</td>
</tr>
<tr>
<td>T2</td>
<td>Penggunaan Bahan Bakar Minyak (BBM) sebagai bahan operasi cukup besar karena ketidakpastian informasi Daerah Penangkapan Ikan (DPI)</td>
<td>Penggunaan bahan bakar sehatam mungkin</td>
</tr>
</tbody>
</table>

Strategi pengembangan perikanan kembung yang didasarkan pada potensi yang dimiliki Kabupaten Tanah Laut (Strategi SO) diarahkan pada optimalisasi pemanfaatan sumberdaya perikanan kembung dengan *purse seine*.

<table>
<thead>
<tr>
<th>No</th>
<th>Unsur SWOT</th>
<th>Keterkaitan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategi SO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1  | SO1        | Optimalisasi pemanfaatan sumberdaya perikanan kembung  
                 S1, S2, S3, O1, O2, O3  |
| Strategi ST |            |             |
| 2  | ST1        | Pengembangan usaha penangkapan ikan kembung yang efisien dan efektif  
                 S1, S2, S3, T1, T2  |
| Strategi WO |            |             |
| 3  | WO1        | Peningkatan fasilitas sarana dan prasarana perikanan tangkap  
                 W3, O1, O2, O3  |
| Strategi WT |            |             |
| 4  | WT1        | Peningkatan peran pemerintah dan masyarakat dalam pengawasan penegakan aturan hukum yang berlaku  
                 W3, T1  |
5 PEMBAHASAN

5.1 Potensi dan Peluang Sumberdaya Ikan Kembung

Informasi tentang potensi sumberdaya yang tersedia perlu diketahui untuk pengelolaan sumberdaya secara optimal tanpa mengganggu kelestarian sumberdaya yang ada. Nikijuluw (2002) menyatakan bahwa pemanfaatan sumberdaya ikan perlu kehati-hatian agar tidak sampai pada kondisi kelebihan penangkapan (over fishing).

Hasil analisis produksi ikan kembung dengan menggunakan model surplus produksi "Schaefer" menunjukkan nilai Maximum Sustainable Yield (MSY) sebesar 3.297 ton per tahun dengan upaya penangkapan optimum sebesar 128.396 trip per tahun. Hasil tangkapan pada tahun 2006 sebesar 2.553 ton dan upaya penangkapan sebesar 64.650 trip. Hal ini berarti tingkat pemanfaatan sumberdaya ikan kembung di Kabupaten Tanah Laut pada tahun 2006 mencapai 77%.


Upaya penangkapan optimum (fopt) dari unit penangkapan ikan kembung setelah dianalisis diperoleh nilai 128.396 trip/tahun, sementara upaya penangkapan pada tahun 2006 sebesar 64.650 trip, hal ini berarti belum melampaui upaya optimum atau tingkat pengupayaan pada tahun 2006 sebesar 50%.

Peluang pemanfaatan potensi sumberdaya ikan kembung yang tersisa
sebesar 23% dari total potensi lestari atau sebesar 744 ton/tahun dengan meningkatkan upaya penangkapan yang tersisa sebesar 50% dari total upaya penangkapan atau sebesar 63.746 trip/tahun dibutuhkan strategi yang tepat.

Cara yang dapat dilakukan dengan kondisi peluang peningkatkan eksploitasi yang ada dan tingkat pengupayaa yang masih cukup tinggi adalah dengan menambah unit penangkapan ikan yang produktif seperti purse seine dan membatasi pemberian izin unit penangkapan ikan yang kurang produktif seperti jaring insang lingkar.

Pengembangan perikanan tangkap dalam rangka pemanfaatan sumberdaya ikan kembung secara optimal di Kabupaten Tanah Laut dapat dilakukan dengan penambahan unit penangkapan purse seine dengan alasan memenuhi prioritas pertama pengembangan setelah dilakukan analisis metode skoping. Hal ini dilakukan agar hasil tangkapan meningkat dan upaya penangkapan dapat ditambah sehingga mendekati upaya penangkapan optimum.

Pengalihan nelayan ke unit penangkapan yang baru (alih teknologi) tentunya diikuti dengan pelatihan terlebih dahulu. Menurut Yuliansyah (2002) untuk memperkenalkan pada nelayan pada teknologi yang baru tidak cukup dengan mengikuti pelatihan, namun butuh waktu antara 3 - 4 tahun mengikuti operasi penangkapan untuk menguasai teknik dan metode pengoperasianya.

5.2 Kelayakan Usaha Penangkapan Ikan Kembung

Nilai Net B/C untuk purse seine diperoleh sebesar 2,01. Hal ini mempunyai arti bahwa pendapatan yang di peroleh sebesar 2,01 kali dari besarnya biaya yang dikeluarkan sehingga usaha tersebut layak untuk dikembangkan, sedangkan untuk nilai Net Present Value (NPV) purse seine sebesar 344.066.734 dimana keuntungan yang diperoleh selama umur ekonomis usaha nilai NPV > 0 menunjukkan nilai rata-rata keuntungan bersih yang diperoleh usaha purse seine selama 10 tahun ke depan. Nilai ROI sebesar 35,43% untuk purse seine menunjukkan bahwa investasi usaha perikanan purse seine di Kabupaten Tanah Laut dalam artian setiap satu rupiah yang akan diinvestasikan akan memberi keuntungan sebesar Rp. 35.43. Hasil penjualan
minimum atau hasil tangkap minimal (BEP) dari suatu unit penangkapan purse seine selama 1 tahun usaha. BEP merupakan jumlah dari nilai minimal yang harus diperoleh agar dapat menutupi total biaya produksi per tahun sehingga usaha ini akan memberikan keuntungan apabila berada pada titik sama atau lebih besar dari Rp. 255.220.418,- dengan volume produksi per tahun sebesar 2.552.21 kg.


5.3 Purse seine Sebagai Teknologi Tepat Guna Dalam Pemanfaatan Ikan Kembung di Kabupaten Tanah Laut

Teknologi penangkapan ikan kembung yang digunakan oleh nelayan Kabupaten Tanah Laut adalah purse seine dan jaring insang lingkar. Kedua alat tangkap ini dianalisis berdasarkan aspek biologi, teknis, sosial dan fi双赢ial. Sehingga didapat alat tangkap pilihan yang terbaik untuk perikanan kembung.

Berdasarkan analisis aspek biologi (Tabel 12) dengan kriteria penilaian komposisi target spesies (%), ukuran hasil tangkap utama (cm) dan lama waktu musim penangkapan ikan kembung (bulan), alat tangkap purse seine berada pada urutan prioritas pertama dan jaring insang lingkar pada urutan kedua.

Komposisi hasil tangkap 60% ikan kembung pada alat tangkap purse

Berdasarkan analisis aspek teknis (Tabel 13) *purse seine* lebih baik dari jaring insang lingkar. Setelah dilakukan standarisasi kepada kedua alat tangkap ini, *purse seine* menempati prioritas pertama untuk kategori produksi per tahun, produksi per trip dan produksi per tenaga kerja.

Berdasarkan prinsip pengoperasian, alat tangkap *purse seine* bersifat aktif dengan cara melingkari ikan yang menjadi tujuan penangkapan. Memberi cutanya bagian bawah jaring yang membentuk kantong, menyebabkan ikan-ikan kembung yang telah berada pada *catchable area* akan sulit untuk meloloskan diri, *purse seine* juga memiliki panjang dan tinggi jaring yang lebih panjang dari jaring insang lingkar. Hal ini berbeda dengan jaring insang lingkar, walaupun dalam pengoperasian sama bersifat aktif dengan cara melingkari tujuan penangkapan namun pada bagian bawah jaring tidak mempunyai kantong, sehingga ikan-ikan mudah untuk meloloskan diri. Begitu juga dengan panjang dan tinggi jaring insang lingkar lebih pendek dibanding *purse seine* mengakibatkan *catchable area* lebih sempit sehingga kemungkinan ikan-ikan ditangkap lebih sedikit.

Berdasarkan analisis aspek sosial (Tabel 14) alat tangkap *purse seine* menempati urutan prioritas pertama dari jaring insang lingkar, hal ini disebabkan *purse seine* mampu memberikan nelayan pendapatan lebih tinggi daripada pendapatan nelayan yang menggunakan jaring insang lingkar. Sedangkan dari segi jumlah tenaga kerja *purse seine* mampu menyerap tenaga
kerja lebih banyak dibandingkan alat tangkap jaring insang lingkar. Monintja (1987) mengungkapkan bahwa untuk pengembangan usaha perikanan pada suatu wilayah perairan, ditekankan pada perluasan tenaga kerja, maka hal yang perlu dikembangkan adalah unit penangkapan ikan yang relatif dapat menyerap tenaga kerja yang banyak, dengan pendapatan yang memadai. Selain itu, unit yang dipilih adalah unit penangkapan ikan yang mempunyai produktivitas penangkapan yang tinggi, bila dipandang dari aspek biologi dan ekonomisnya.

Penguasaan teknologi kedua alat tangkap tersebut (purse seine dan jaring insang lingkar) tidak mengalami kesulitan, disebabkan karena nelayan sudah terbiasa menggunakan alat tangkap tersebut. Berdasarkan hasil wawancara dengan nelayan diketahui bahwa dalam pengoperasian kedua alat tangkap ini tidak menimbulkan konflik antar nelayan walaupun dalam suatu usaha perikanan sering terjadi untuk mempersatukan sumberdaya yang jumlahnya terbatas, dimana perebutan ini muncul karena karakteristik sumberdaya perikanan yang bersifat open access.

Kedua alat tangkap ini (purse seine dan jaring insang lingkar) memiliki sistem bagi hasil yang sama, yaitu untuk nelayan pemilik kapal 50 % dan untuk nelayan ABK 50 % dari total pendapatan setelah dikurangi dengan total biaya produksi.

Berdasarkan analisis aspek finansial (Tabel 15), maka pengembangan purse seine menempati urutan pertama dibanding jaring insang lingkar. Hal ini dapat dilihat dari pendapatan kotor per tahun, penerimaan kotor per trip dan penerimaan kotor per tenaga kerja. Keunggulan alat tangkap purse seine antara lain karena produktifitasnya tinggi sehingga pendapatan kotor per tahun, penerimaan kotor per trip dan penerimaan kotor per tenaga kerja yang diperoleh cukup besar dibandingkan bila menggunakan alat tangkap jaring insang lingkar.

Analisis gabungan dari masing-masing aspek yaitu aspek biologi, teknik, sosial dan finansial, dimaksudkan untuk menilai penampilan kedua alat tangkap ini secara menyeluruh. Hasil analisis ini merupakan indikator menyeluruh bagaimana keberlanjutan dari suatu usaha penangkapan ikan kembung yang ada di Kabupaten Tanah Laut. Berdasarkan hasil dari semua

5.4 Strategi Pengembangan Perikanan Tangkap

Hasil analisis SWOT (Tabel 19) dapat dipergunakan sebagai arahan dan kebijakan dari program pengembangan purse seine sebagai teknologi tepat guna dalam usaha perikanan kembung. Urutan kebijakan berdasarkan hasil SWOT sebagai berikut:

1. **Optimalisasi pemanfaatan sumberdaya perikanan kembung**

Pemanfaatan sumberdaya perikanan kembung secara rasional dan optimum diharapkan dapat memberikan manfaat yang lebih luas, baik untuk peningkatan kesejahteraan nelayan, sumber penerimaan negara/daerah dan peningkatan konsumsi ikan. Oleh karena itu potensi sumberdaya kembung di Kabupaten Tanah Laut sudah seharusnya dimanfaatkan sebesar-besarnya dengan tetap menjaga kelestarian sumberdaya. Kelestarian sumberdaya kembung dapat terjaga bilamana regulasi dalam pengelolaannya dapat dijalankan dengan baik oleh pelaku-pelaku perikanan yaitu nelayan, pedagang ikan, pengusaha perikanan dan pemerintah.


Pengoptimalan perikanan yang dimaksud adalah peningkatan produksi secara rasional dengan memperhatikan sumberdaya kembung yang ada.
Pemanfaatan sumberdaya ikan yang belum optimal di Kabupaten Tanah Laut salah satunya disebabkan karena skala usaha yang dikembangkan masih terbatas untuk memenuhi kebutuhan lokal. Pemikiran untuk mengembangkan skala usaha dan melakukan bisnis dalam arti luas, belum banyak dipikirkan nelayan. Oleh karena itu diperlukan adanya pendampingan oleh pemerintah, LSM, swasta dan perguruan tinggi, baik dalam bentuk bantuan ataupun dalam bentuk kemitraan yang saling menguntungkan.

Prinsip dari pengoptimalan dengan memperhatikan sumberdaya adalah tetap memperhatikan pengelolaan sumberdaya perikanan karena keterpaduan dalam pengelolaan bukan hanya dapat melindungi keberadaan sumberdayanya saja, tetapi juga dapat menjamin kelangsungan usaha masyarakat nelayan, yang akhirnya menjaring kesejahteraan masyarakat nelayan.

Murdianto (2004) menyebutkan bahwa dalam perikanan tangkap, adakan pengelolaan (action) sebagai mekanisme untuk mengatur, mengendalikan dan mempertahankan kondisi sumberdaya ikan berupa biomass dan produktivitas agat tetap pada tingkat yang diinginkan adalah dengan mengatur berapa banyak ikan yang harus ditangkap, ukuran berapa atau umur berapa sebaiknya ikan ditangkap dan kapan harus melakukan penangkapan.

2. Pengembangan usaha penangkapan ikan kembang yang efisien dan efektif.

Pengembangan usaha perikanan tangkap dalam rangka pemanfaatan sumberdaya ikan kembung secara efisien dan efektif di Kabupaten Tanah Laut yaitu dengan pengembangan usaha penangkapan di jalur 2 (6 - 12 mil) karena keadaan di jalur 1 (1 - 3 mil) sudah mengalami padat tangkap, sehingga diperlukan penambahan unit penangkapan ikan yang produktif seperti purse seine dan membatasi pemberian izin terhadap unit penangkapan ikan terutama jaring insang lingkar yang beroperasi di jalur 1. Penambahan yang dilakukan akan berpengaruh terhadap kenaikan jumlah unit penangkapan ikan. Strategi ini tentunya akan menimbulkan reaksi pro dan kontra antar nelayan jika tidak dilakukan secara hati-hati dan
bertanggung jawab.

Dari hasil analisis skoring terhadap unit penangkapan ikan kembung menunjukkan bahwa *purse seine* yang paling produktif. *Purse seine* menjadi prioritas pengembangan karena lebih unggul dari alat tangkap jaring insang lingkar dari aspek biologi, teknik, sosial maupun finansial.

Adanya bantuan dari pemerintah maupun instansi terkait sangat diharapkan untuk pengembangan usaha penangkapan *purse seine*. Pemberian pinjaman modal dengan bunga yang rendah sehingga dapat dimanfaatkan nelayan untuk membeli alat tangkap *purse seine*. Apabila hal ini bisa dilakukan, maka upaya penangkapan yang dilakukan dapat lebih optimal, dengan waktu penangkapan yang lebih singkat, produksi lebih banyak dan penyerapan tenaga kerja juga lebih banyak, dan pada akhirnya dapat meningkatkan pendapatan dan kesejahteraan nelayan.

3. Peningkatan fasilitas sarana dan prasarana perikanan tangkap

Fasilitas jangka panjang meliputi balai pertemuan nelayan, rumah mesin, jaringan telekomunikasi. Sampai saat ini fasilitas jangka pendek baru sebagian kecil terrealisasi dan fasilitas jangka panjang belum terrealisasi pengadaannya. Guna menunjang pengembangan usaha perikanan kembung, fasilitas yang paling penting untuk segera direalisasi adalah kios BBM dan dermaga sehingga proses bongkar muat menjadi lancar.

4. Peningkatan peranan pemerintah dan masyarakat dalam pengawasan hukum yang berlaku.

Kegiatan perikanan laut/pantai di Kabupaten Tanah Laut umumnya didominasi usaha perikanan rakyat (nelayan pesisir). Kebanyakan nelayan rakyat hanya memiliki kemampuan sarana/alat yang terbatas (tradisional), sehingga rata-rata hanya mampu jarak aktivitas penangkapan ikan sejauh 5 mil dari pantai.

Dalam pencarian nelayan skala kecil tersebut sebenarnya telah dilindungi dengan larangan bagi kapal-kapal di atas 5 GT untuk beroperasi dalam jarak 3 mil laut dari pesisir dan kapal yang lebih besar dari 25 GT juga dilarang beroperasi dalam jarak 7 mil dari pesisir. Namun kenyataannya masih ditemukan pelanggaran-pelanggaran terhadap ketentuan peraturan tersebut, masih adanya nelayan-nelayan yang datang dari luar Kabupaten Tanah Laut bahkan dari luar provinsi. Nelayan-nelayan tersebut memiliki unit penangkapan yang lebih modern dari nelayan setempat sehingga menimbulkan kerugian bagi nelayan Kabupaten Tanah Laut. Akibatnya sumberdaya perikanan laut di kawasan pesisir mengalami ancaman kelestarian, yang ditunjukkan dengan menurunnya hasil tangkapan di kawasan ini. Hal ini semua terjadi akibat lemahnya sistem pengawasan aktifitas penangkapan ikan di laut yang telah menyebabkan banyaknya pelanggaran terhadap ketentuan yang mengatur aktivitas usaha penangkapan di laut, oleh karena itu pemahaman terhadap ketentuan yang mengatur kegiatan penangkapan ikan di laut harus dipahami oleh masyarakat. Diharapkan dengan pemahaman ini masyarakat memiliki kesadaran untuk melestarikan sumberdaya perikanan laut dan lingkungannya, yang pada dasarnya adalah untuk menjamin kesejahteraan...
nelayani itu sendiri. Pemahaman akan rasa memiliki juga akan timbul, sehingga diharapkan masyarakat juga tergerak untuk membantu mengamankan lingkungan perairan laut yang menjadi lahan untuk mencari penghidupan dari ancaman aktivitas penangkapan ikan yang tidak bertanggung jawab.

Bantuan pemerintah dan instansi terkait sangat diharapkan dalam upaya pengawasan dan penegakkan peraturan, dengan menindak tegas semua pelanggar peraturan yang ada, dan didukung dengan penerapan Undang-Undang Nomor 22 dan Undang-Undang Nomor 25 Tahun 1999 yang memberikan otonomi daerah dalam pengelolaan sumberdaya kelautan.
6 KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan hasil penelitian analisis pemanfaatan sumberdaya ikan kembung di Kabupaten Tanah Laut dapat disimpulkan bahwa:

1. Potensi maksimum lestari ikan kembung di Kabupaten Tanah Laut sebesar 3,297 ton per tahun dan tingkat pemanfaatannya sebesar 77%.

2. Teknologi penangkapan ikan kembung yang tepat guna dan berwawasan lingkungan di perairan Kabupaten Tanah Laut berdasarkan aspek biologi, teknis, sosial dan finansial adalah "purse seine".

3. Strategi pengembangan perikanan kembung di Kabupaten Tanah Laut adalah:
   (1) optimalisasi pemanfaatan sumberdaya perikanan kembung,
   (2) pengembangan usaha penangkapan ikan kembung yang efisien dan efektif,
   (3) peningkatan fasilitas sarana dan prasarana perikanan tangkap,
   (4) Peningkatan peran pemerintah dan masyarakat dalam pengawasan penegakan aturan hukum yang berlaku.

6.2 Saran

1. Perlu peran pemerintah daerah dalam pengelolaan dan pemanfaatan sumberdaya ikan kembung yang berkelanjutan, dengan mengatur upaya penangkapan optimum agar tidak melebihi batas potensi maksimum lestari.

2. Dalam evaluasi aspek biologi, diperlukan pengkajian lebih lanjut dengan data yang lebih lengkap, seperti selektifitas alat tangkap.

3. Perlu penelitian lanjutan tentang bagaimana pengaruh faktor-faktor teknis produksi yang berpengaruh terhadap peningkatan produksi.
DAFTAR PUSTAKA


Lampiran 2 Data produksi (kg) dan upaya penangkapan (trip)

### A. Data produksi dan upaya penangkapan sebelum standarisasi

<table>
<thead>
<tr>
<th>Tahun</th>
<th>produksi Purse Seine (kg)</th>
<th>Trip</th>
<th>produksi Jaring Insang lingkar (kg)</th>
<th>Trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>1046300</td>
<td>23.523</td>
<td>376800</td>
<td>12.799</td>
</tr>
<tr>
<td>2003</td>
<td>1257600</td>
<td>26.730</td>
<td>397700</td>
<td>13.349</td>
</tr>
<tr>
<td>2004</td>
<td>1534350</td>
<td>32.673</td>
<td>457325</td>
<td>15.877</td>
</tr>
<tr>
<td>2005</td>
<td>1721300</td>
<td>42.332</td>
<td>503700</td>
<td>18.755</td>
</tr>
<tr>
<td>2006</td>
<td>1835500</td>
<td>50.011</td>
<td>717300</td>
<td>20.457</td>
</tr>
</tbody>
</table>

### B. Produktivitas dan FPI (Fishing Power Index)

<table>
<thead>
<tr>
<th>Alat</th>
<th>Produktivitas</th>
<th>FPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purse Seine</td>
<td>42.19257256</td>
<td>1</td>
</tr>
<tr>
<td>Jaring insang lingkar</td>
<td>30.19344634</td>
<td>0.715610462</td>
</tr>
</tbody>
</table>

### C. Total hasil tangkapan dan upaya penangkapan baku setelah standarisasi

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Total Hasil Tangkapan (kg)</th>
<th>Upaya Penangkapan Baku (trip)</th>
<th>Total Effort (trip)</th>
<th>CPUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Purse Seine</td>
<td>Jaring Insang Lingkar</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>1423100</td>
<td>23.523</td>
<td>9.159</td>
<td>32.682</td>
</tr>
<tr>
<td>2003</td>
<td>1655300</td>
<td>26.730</td>
<td>9.553</td>
<td>36.283</td>
</tr>
<tr>
<td>2004</td>
<td>1991675</td>
<td>32.673</td>
<td>11.362</td>
<td>44.035</td>
</tr>
<tr>
<td>2005</td>
<td>2225000</td>
<td>42.332</td>
<td>13.421</td>
<td>55.753</td>
</tr>
<tr>
<td>2006</td>
<td>2552800</td>
<td>50.011</td>
<td>14.639</td>
<td>64.650</td>
</tr>
</tbody>
</table>
Lampiran 3 Hasil analisis perhitungan MSY (Model Schaefer) ikan kembung di Kabupaten Tanah Laut dengan menggunakan Microsoft Excel

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Total Hasil Tangkapan (kg)</th>
<th>Total <em>Effort</em> (Trip)</th>
<th>Schaefer CPUE (kg/trip)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>1423100</td>
<td>32.682</td>
<td>43.544</td>
</tr>
<tr>
<td>2003</td>
<td>1655300</td>
<td>36.283</td>
<td>45.622</td>
</tr>
<tr>
<td>2004</td>
<td>1991675</td>
<td>44.035</td>
<td>45.230</td>
</tr>
<tr>
<td>2005</td>
<td>2225000</td>
<td>55.753</td>
<td>39.908</td>
</tr>
<tr>
<td>2006</td>
<td>2552800</td>
<td>64.650</td>
<td>39.486</td>
</tr>
</tbody>
</table>

Nilai rata-rata (x) 46.680.6094
Standar deviasi (s) 11969.0997
Intercept (a) 51.3584
Slope (b) -0.0002
MSY 3297107
fmsy 128396
JTB 2637686
Tingkat Pemanfaatan 77%
<table>
<thead>
<tr>
<th>BNP (Rg)</th>
<th>RO %</th>
<th>ME BC</th>
<th>NPv</th>
<th>BE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.2</td>
<td>4800</td>
<td>33.7</td>
<td>9680.9</td>
</tr>
</tbody>
</table>

**Notes:**
- BNP (Rg) refers to the basic net profit in rupiah.
- RO % stands for Return on Investment percentage.
- ME BC indicates the market capitalization.
- NPv represents the net present value.
- BE (%) denotes the benefit-to-expense ratio.

**Legend:**
- **A**: Penemuan klas (class discovery)
- **B**: Penelitian tanaman (plant research)
- **C**: Penelitian pemanfaatan sumber daya alam (natural resource utilization research)
- **D**: Penelitian hubungan antarorganisasi (organizational interrelationship study)

**Table:**

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>123</td>
<td>456</td>
<td>789</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

**Legend for the table:**
- **1**: Penelitian klas (class research)
- **2**: Penelitian tanaman (plant research)
- **3**: Penelitian pemanfaatan sumber daya alam (natural resource utilization research)
- **4**: Penelitian hubungan antarorganisasi (organizational interrelationship study)

**Diagram:**

- Diagram A: Analysis of financial data and expansion plans.
<table>
<thead>
<tr>
<th>Field</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP (mg/L)</td>
<td></td>
</tr>
<tr>
<td>RO1</td>
<td></td>
</tr>
<tr>
<td>RO1 pH</td>
<td></td>
</tr>
<tr>
<td>Nitrates</td>
<td></td>
</tr>
<tr>
<td>Nitrates</td>
<td></td>
</tr>
</tbody>
</table>

**Legend**

1. **Penetraman KAS**
2. **Total Bacteria**
3. **Biofilm Tack Tread**
4. **Uranium**

Lambrius 5 Analysis: Mineral Alkali Flasks: Janus Invasive Etcher