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Abstract 

Over the past year, a significant amount of research has explored the logistic regression models for 
analyzing correlated categorical data. In these models, it is assumed that the data occur in clusters, 

where individuals within each cluster are correlated, but individuals from different clusters are 
assumed independent. A commonly used in modeling correlated categorical univariate data is to 

assume that individual counts are generated from a Binomial distribution, with probabilities vary 

between individuals according to a Beta distribution. The marginal distribution of the counts is then 
Beta-Binomial. In this paper, a generalization of the model is made allowing the number of 

respondent m, to be random. Thus both the number units m, and the underlying probability vector 
are allowed to vary. We proposed the model for correlated categorical data, which is generalized to 

account for extra variation by allowing the vectors of proportions to vary according to a Dirichlet 
distribution. The model is a mixture distribution of multinomial and Dirichlet distribution, and we 

call the model as the beta-binomial multivariate model. 

Keywords: Beta-Binomial distribution; Correlated outcomes; Dirichlet distribution; Dirichlet-Multinomial 
model; Multinomial distribution; Overdispersion. 

1. Introduction 

The independence assumption of standard logistic regression (LR) for binary data may not hold, 
and this non-independence will lead to a variance that is greater than binomial variability. The 
phenomenon would be indicative of overdispersion in binary data. The consequence of this 
overdispersion is that the confidence interval of the estimate is narrowing, so statistical 
hypothesis will always be rejected. The beta-binomial (BB) regression model is an alternative 
model to handle overdispersion in binary data analysis. The BB model is an extension of the 
traditional LR model by including the correlation parameter between binary responses. 
However, beta-binomial model is appropriate for overdispersion modeling from cluster of 
univariate binary responses. Fortunately, in multivariate case, where binary responses from 
each subunit within clusters can be classified into 1, 2, …, C categories, the beta-binomial 
model is not appropriate anymore. A significant amount of research has explored the use of 
regression models for analyzing correlated categorical data. In these models, it is assumed that 
the data occur in clusters, where elements within each cluster (or subunit) are correlated, but 
elements from different clusters are independent. 

Unlike for continuous multivariate data, where the multivariate normal plays a central 
role, no convenient multivariate distribution for correlated discrete data is readily available. 
Hence researchers have been pursuing ways to define regression models that build joint 
probability from either marginal and/or conditional probabilities (Gange, 1995). Much of this 
work has been developed specifically for clustered multivariate binary responses – see 
Pendergast, et al. (1993). Tallis (1962) proposed the use of the generalized-multinomial model 
for dependent multinomial. This model is generalized to account for extra variation by allowing 
the vectors of proportions to vary according to Dirichlet distribution. Wilson and Koehler (1988) 
used the generalized-Dirichlet multinomial model to account for extra variation. The model 
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allows for a second order of pairwise correlation among subunit, a type of assumption found 
reasonable in some biological data, Kuper and Haseman (1978). 

In this paper a generalization of the model is made allowing the number of respondents 
m, to be random. Thus both the number of units m, and the underlying probability vector are 
allowed to vary. The model presented here are an extension of beta-binomial model, where the 
binomial distribution from that model is replaced by multinomial distribution, and the beta 
distribution is replaced by Dirichlet distribution. This model is known as the Dirichlet-
multinomial model, and more specific, we call this model as the beta-binomial multivariate 
model. Section 2 outlines the beta-binomial model. Section 3 discusses the properties of the 
beta-binomial multivariate model. An application of the beta-binomial multivariate model will be 
discussed in Section 4. 

2. The Beta-Binomial Model 

The beta-binomial model, proposed originally by William (1975) and later applied by Crowder 
(1978) in a similar situation, assume that (1) individual level of interest reflects the outcome of a 
series of independent responses and can be characterized by the binomial distribution with 
parameter p, which we denote by P(X = x|n, p); and (2) the values of p are distributed across the 
population according to a beta distribution, denoted by g(p). 

The mixture distribution of the behavior of interest, denoted P(X = x|n), is obtained by 
weighting each P(X  = x|n, p) by the likelihood of that value of p occurring, g(p). This is formally 
denoted by 
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where B() is a beta function. The mean and variance of the beta binomial distribution are given 

by E(X) = n/( + ) and var(X) = n( +  + n)/( + )2( +  + 1), respectively. 

The widespread use of the beta-binomial model is ascribed to the ubiquitous nature of 
heterogeneous count data, its ability to account for binomial overdispersion, and its predictive 
ability. Although all attributions are true, the beta-binomial model has gained widespread use 
mainly because integration of the binomial frequency function with respect to the beta density 
yields a closed-form marginal distribution. 

3. Extension of the Beta-Binomial Model 

The beta-binomial multivariate model is an extension of the beta-binomial model. This model 
results when we assume that (1) the individual-level behavior of interest reflects of outcomes of 

a series of independents responses, and can be characterized by the multinomial distribution 
with parameter vector p, which we denote by P(X = x|n, p), and (2) the values of p are 
distributed across the population according to a Dirichlet distribution, denoted by g(p). 

The mixture distribution of the behavior of interest, denoted by P(X = x|n), is obtained by 
weighting each P(X = x|n, p), by the likelihood of that value of the vector p occurring (i.e., g(p)). 
This is denoted by 

( | ) ( | , ) ( )P n P n g d  X x X x p p p       (2) 

More formally, we should note that since the elements of any p, of length k, sum to 1, the 
integration is actually performed with respect to the k – 1 variables p1, p2, …, pk-1, where the 

integration limits are [0, 1], [0, 1 – p1], …, [0, 
2
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 ], respectively. 

In order to derive the mixture distribution associated with a multinomial response 
process at the individual level and Dirichlet heterogeneity, we must solve the following integral: 



The Beta-Binomial Multivariate Model for Correlated Categorical Data  

Statistika, Vol. 8, No. 1, Mei 2008 

63 

   

 
   

12

1 11
1 1 1 1 1

110 0 0
1

1
1 11

1 2 111

1

( ) 1
, ...,

( )
1 ...

kk
jj jj j

k
j

n xp p k kx

j jjj

k

a
k ka

j j kk jj

jj

n
P p p

x x

S
p p dp dp dp

a





   




 





 
   

 


 



  




X x 

   (3) 

This is done in the following manner: 
(1) Combine terms and move all non-pj terms to the left of the integral sign. This gives us 
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(2) We therefore have to solve the definite integral 
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The trick is to transform the terms to the right of the integral sign into a known probability 
density function. 

(3) Looking closely at this, we see that its structure mirrors the density of the Dirichlet 
distribution with parameter aj + zj (j = 1, …, k); all that is missing is a 
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(4) As the integrand is a Dirichlet pdf, the definite integral, by definition, equals 1, and we 
therefore write the equation as 
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This is called the Dirichlet-multinomial model or we call this model as the beta-binomial 
multivariate (BBM) model. 

3.1. Mean and Variance of the Beta-Binomial Multivariate 

The mean of the BBM can easily be derived through conditional distribution. To do so, we 
evaluate 

 ( ) |E E E   p
X X p  

where  E
p

  denotes expectation with respect to the distribution of the vector p. Conditional on 

p, X is distributed multinomial, and the mean of the multinomial distribution is np; therefore 
E(X) = E(np). Since n is scalar constant, this is equivalent to E(X) = nE(p). As the latent vector p 
has a Dirichlet distribution, and we know that the mean of the Dirichlet distribution is E(X) = 
a/S, with E(Xj) = aj/S. It follows that the mean of the beta-binomial multivariate is 

 ( ) , w ith 
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The derivation of the variance-covariance of the beta-binomial multivariate is more 
complex and we therefore present the result without derivation: 

 
   

2
var

( 1)

j j

j

na S a S n
X

S S

 



 

 
`

` 2

( )
cov ,

( 1)

j j

j j

na a S n
X X

S S

 



    (8) 

This can be re-written as: 
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Let p  be the mean vector of the Dirichlet distribution with j-th element /
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p a S . We 

therefore have 
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and can therefore express the variance-covariance of the beta-binomial multivariate in matrix 
form as 
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3.2. Estimating Model Parameters 

In order to apply the BBM model, we must first develop estimates of its parameter vector a, from 
the given sample data. There are two methods that can be used to estimate the parameter of the 
model: maximum likelihood and method of moments. Let xi be the vector of response ith (i = 1, 

2, …, N) across the k groups, and ni the number of category responses (
1

k

i ijj
n x


  ); xij denotes 

the number of times outcome j occurs in ni independent trials. 

For maximum likelihood method, by definition likelihood function is the joint density of 
the observed data. Assuming the observations are independent, this is the product of the BBM 
probabilities for each xi. The log-likelihood function is therefore 

LL(a|data) =  
1

ln | ,

N

i i

i

P n



   X x a        (11) 

Using the standard numerical optimization software, we find the value of the parameter vector a 
that maximizes this log-likelihood function; this is the maximum likelihood estimate of a. 

For the case of ni = n  i, another approach to estimating the parameters of the BBM 

model is the method of moments (Johnson and Kotz, 1969). Let us denote the sample mean 

vector by x , the jth element of which is 
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Equating the sample mean vector with its population counterpart, we have  
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Given an estimate of S, it follows that 
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We therefore need an estimate of S. Let us denote the sample variance of Xj by 
2

j
s . 

Equating this with its population counterpart, we have 
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From (12) we have / /
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x n a S . Substituting this into (13), we have 
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Solving this for S, we get 
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Hardie and Fader (2001) showed the easier way to estimating the parameters of the BBM 
model through the variance-covariance of the BBM model (see (10)). Looking closely at that 

expression, we see that it is (S + n)/(S + 1)  the variance-covariance matrix of the multinomial 

distribution compute with p . This leads to the following procedure for developing an estimate of 

S. 

4. Numerical Example 

To illustrate the use of BBM model, in this case we used the data in estimating behavior of 
succeeding of college students in Bandung Islamic University at 1998 (Hajarisman, et al., 1998, 
and Hajarisman (1998)). The sample was a cluster sample, where classes are clusters or 
subunit. The population of interest will be restricted to student from Department Statistics, 
Bandung Islamic University, and the responding number of cluster is 15. In this case, we just 
look at two of the clusters, where the first cluster is a student who takes a math class and the 
second cluster is a student who takes an English class. Table 1 shows the data of succeeding of 
college students, where one margin is sex, and the other margin is succeeding of the student 
when he/she take the math class and English class. 

For illustrative purpose, in our paper present is a 2  2 categorical table with one margin 
being sex of the student and the other margin response to a succeeding of the student who take 
some classes, success or fail. This response was a series of classes who it was taken by student. 
And it is of interest to know if these succeeding differ across categories of student, sex being 
one category. We have then four cross categories with cell numbers respectively 1, 2, 3, 4 
corresponding to pair (female, fail), (male, fail), (female, success), and (male, success). Thus the 
first cell corresponding to female who have been failed in math class (for the first panel data), 
cell 4 are male who have been succeed in math class, etc. 

Table 1. Data of succeeding of college students 

               Cluster 

Sex 

Math Class English Class 

Fail Success Total Fail Success Total 

Female 27 211 238 60 178 238 

Male 25 145 170 37 133 170 

 52 356 408 97 311 408 

 

For the data in first cluster (math class), the probability is 
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and for in second cluster (English class), the probability is  

 
 

       

 

4

1

1 2 3 4

408 ( )
( )

60 37 178 133

60 37 178 133

408

jj

S
P

a

a a a a

S



  
   

 

       


 


X x

 

The model of interest is the independence model, where sex and succeeding of college 
students are independent. To find the estimator of the parameter, we used the maximum 
likelihood methods so we need the score function and higher-order derivatives of the log-
likelihood function with respect to S. For this model the maximum likelihood estimator for S is 
78.9, with estimator for the cell probabilities of success and the expectation of Xj (E(Xj)), 
respectively, can be seen on Table 2. 

Table 2. Estimator for the cell probabilities of success and the expectation of Xj (E(Xj)) 

               Cluster 

Sex 

Math Class English Class 

Fail Success Fail Success 

Female 0.082 (33.456) 0.472 (192.576) 0.127 (51.816) 0.512 (208.576) 

Male 0.069 (28.152) 0.377 (153.816) 0.075 (30.600) 0.286 (116.688) 

 Note: the expectation value for Xj is in the bracket. 

 

From the estimator for cell probabilities of success we can see that the ratio of 1.18 of 
female versus male, and a ratio of 5.76 of female that have been succeed in math class, and a 
ratio of 5.46 of male who have been succeed in math class. For English class we can see that 
the ratio of 1.69 of female versus male, and a ratio of 4.03 of female that have been succeed in 
math class, and a ratio of 5.46 of male who have been succeed in math class 3.81. Based on 
these results we can see that the chance of male student succeeding in math class is almost the 
same as female student. However, the chance of male student in English class is smaller than 
female student. 

The variance-covariance matrix of the beta-binomial multivariate model for first cluster 
(math class) and second cluster (English class) is given by 
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 ( 2 )

  275.658   -23.682  -163.248   -90.307 

  -23.682   172.487   -96.406   -53.331 
var
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  -90.307   -53.331  -367.629   507.712 
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5. Discussion and Extension 

The Dirichlet distribution provides a convenient model for describing variation among vectors of 
proportions since it has relatively simple mathematical properties. The Dirichlet-Multinomial 
model has been studied by Mosimann (1962). Brier (1980) used the model to analyze sample 
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proportions obtained from a single two-stage cluster sample. Koehler and Wilson (1986) 

extended some of Brier’s results to analyze vectors of proportions obtained from several two-
stage cluster samples. In arguing for this methodology there is a question to be discussed: with 
this model why used maximum likelihood as an estimation procedure? 

Brier (1980) in the original paper used method of moments. However Brier does not cover 
either differing cluster sizes or non-response. Method of moments is very messy when one tries 
to generalize to these situations. However with maximum likelihood estimation procedure in the 
most general situation is fairly straightforward, and assuming we have no sparse cells or 
disproportionately large clusters the asymptotic of the direct maximum likelihood estimators 
can be established. 

Then, we know that any probability modeling effort is the assumption that the observed 

individual-level behavior is the realization of a random process with density f(x|), which has 

unknown parameter(s) . By assuming a particular distribution for , we are able to derive an 
aggregate-level model without specific knowledge of any given individual’s latent parameter(s). 

In many cases, however, we are interested in estimating a given individual’s latent, . This 
may be because we wish to rank the individuals on the basis of their true underlying behavioral 
tendency or because we wish to forecast their behavior in a future period. In either case, the 

challenge is to make inferences regarding , given the individual’s observed behavior x. In order 
to address this problem, Hardie and Fader (2001) make used of Bayes theorem. 
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