# PENGARUH JENIS MEDIA TANAM TERHADAP PERTUMBUHAN BIBIT PEPAYA GENOTIPE IPB 3, IPB 4, DAN IPB 9

The Influence of Growing Media Types Planting Seedlings Papaya IPB 3, IPB 4, and IPB 9 Genotypes

# Ketty Suketi<sup>1</sup> dan Nandya Imanda<sup>2</sup>

Staf Pengajar Departemen Agronomi dan Hortikultura, Fakultas Pertanian, IPB
Mahasiswa Departemen Agronomi dan Hortikultura, Fakultas Pertanian IPB
Email: adyamanda@yahoo.com

#### **ABSTRACT**

The research aims to study the influence of growing media types on seed germination and seedlings growth of papaya IPB 3, IPB 4 and IPB 9 genotypes and know growing medium suitable for growth of papaya seedlings is good and has a light weight to facilitate the transportation of seedlings. The research was conducted in March until September 2011 in the greenhouse FATETA IPB, Leuwikopo Bogor and The Experimental Garden of PKBT IPB, Tajur Bogor. The design used was Randomized Complete Design Group two factors. The first factor is the growing media with 5 kinds with the same ratio (2:1:1), namely M1 = soil: sand: manure, M2 = soil: sand: rice husk charcoal, M3 = soil: sand: cocopeat, M4 = soil: manure: cocopeat, and M5 = soil: manure: rice husk charcoal. The experiment consisted of 15 combinations with 3 replicates then there were 45 experimental units. The results showed that the growing media affect on plant height, leaf number, stem diameter, and weight of seedlings per polybag. Growing media and genotype interactions affect plant height, leaf number and stem diameter. Papaya seeds germinate is the highest of the growing media mix of soil, manure, and rice husk charcoal (M5) is 70% and IPB 3 genotype (G1) is 70.91%. The composition of media soil, manure, and rice husk charcoal (M5) with a ratio of 2:1:1 is the best medium for papaya seedlings at 6 MST and has a weight of seedlings per polybag is the lightest compared with other growing media to facilitate the transportation of seedlings.

Keywords: growing media, seedlings, papaya

### **PENDAHULUAN**

Pepaya (*Carica papaya* L.) merupakan salah satu komoditas buah tropika utama yang bernilai ekonomi tinggi dan memiliki potensi produksi yang tinggi baik buah segar, maupun olahan. Kesadaran masyarakat Indonesia akan pola hidup sehat semakin meningkat, salah satunya dengan mengkonsumsi buah-buahan terutama pepaya. Buah pepaya mengandung zat gizi yang dapat mencukupi kebutuhan gizi untuk kesehatan manusia. Pepaya mengandung 85-90% air, 10-13% gula, 0.6% protein, vitamin A, vitamin B1, vitamin B2, vitamin C dan kadar lemak yang rendah yaitu 0.1% (Sankat dan Maharaj, 1997). Pepaya genotipe IPB 4 memiliki kandungan vitamin C dan karoten yang tinggi. Genotipe IPB 4 memiliki kandungan vitamin C lebih besar dari IPB 2A dan IPB 3A. Kandungan karoten pada genotipe IPB 4 lebih besar dari IPB 1, IPB 3A, IPB 7, IPB 8, dan IPB 9 (Suketi *et al.*, 2010).

Pepaya hasil hibrida IPB merupakan pepaya unggul yang menghasilkan kualitas buah lebih baik dibandingkan pepaya lokal Indonesia. Pepaya genotipe IPB 3 dan IPB 4 memiliki bentuk buah yang lonjong dan ukuran buah yang kecil, sedangkan pepaya genotipe IPB 9 memiliki bentuk buah silindris dan ukuran buah sedang. Pepaya genotipe IPB 4 berbeda dengan genotipe lain yang memiliki kulit buah yang berwarna kuning (Sujiprihati dan Suketi, 2009).

Data Badan Pusat Statistik (2010) menunjukkan bahwa produksi pepaya di Indonesia masih berfluktuasi setiap tahunnya. Tahun 2004 sampai tahun 2009 produksi pepaya sebesar 732 611 ton, 548 657 ton, 643 451 ton, 621 524 ton, 717 899 ton, dan 772 844 ton. Fluktuasi produksi pepaya disebabkan oleh kondisi curah hujan yang tidak merata sepanjang tahun, adanya hama dan penyakit, serta media tanam yang kurang tepat dalam pembibitan pepaya.

Pembibitan pepaya diharapkan menggunakan media tanam yang cocok untuk membantu pertumbuhan dan perkembangan tanaman pepaya serta memiliki media tanam yang ringan untuk memudahkan dalam transportasi bibit. Menurut Soepardi (1983) media tanam sebagai media pertumbuhan yaitu untuk tempat tumbuh kembangnya sistem perakaran, sumber atau penyedia air dan hara bagi tanaman. Selama ini media tanam bibit pepaya yang sering digunakan oleh petani yaitu campuran tanah, pasir, dan pupuk kandang dengan perbandingan 2:1:1. Media tanam menggunakan campuran arang sekam maupun kokopit merupakan alternatif yang dapat digunakan untuk membantu pertumbuhan bibit pepaya. Menurut Cayanti (2006) media tanam yang baik untuk kualitas cabai hias dalampot yaitu campuran tanah, pupuk kandang, dan kokopit yang memberikan respon terbaik pada peubah tinggi tanaman dan mempunyai keragaan terbaik pada 10 MST. Dalam penelitian Agustina (2004) perlakuan terbaik yang mampu meningkatkan pertumbuhan bibit durian adalah perlakuan dengan komposisi media tanam arang sekam, tanah, dan pupuk kandang pada peubah tinggi tanaman.

Penelitian bertujuan untuk mempelajari pengaruh jenis media tanam terhadap perkecambahan benih pepaya genotipe IPB 3, IPB 4, dan IPB 9 sertauntuk mempelajari pengaruh jenis media tanam terhadap pertumbuhan bibit pepaya genotipe IPB 3, IPB 4, dan IPB 9. Selain itu, untuk mengetahui media tanam yang memiliki pertumbuhan yang baik dan memiliki bobot yang ringan sehingga memudahkan dalam transportasi bibit.

#### **BAHAN DAN METODE**

Penelitian dilaksanakan pada bulan Maret sampai September 2011 di *greenhouse* FATETA IPB, Leuwikopo dan Kebun Percobaan Pusat Kajian Buah Tropika (PKBT) IPB, Tajur Bogor. Bahan yang digunakan adalah benih pepaya IPB 3, IPB 4, dan IPB 9. Benih pepaya diperoleh dari hasil seleksi Pusat Kajian Buah Tropika (PKBT) IPB. Media tanam yang digunakan yaitu tanah, pasir, pupuk kandang, arang sekam, dan kokopit. Alat-alat yang digunakan antara lain *tray* semai, *polybag* ukuran 10 cm x 15 cm, meteran/penggaris, dan jangka sorong.

Percobaan faktorial menggunakan Rancangan Kelompok Lengkap Teracak (RKLT) dua faktor. Faktor pertama adalah media tanam (M) dengan 5 macam menggunakan perbandingan sama (2:1:1) yaitu M1= tanah : pasir : pupuk kandang, M2 = tanah : pasir : arang sekam, M3 = tanah : pasir : kokopit, M4 = tanah : pupuk

kandang: kokopit, dan M5 = tanah: pupuk kandang: arang sekam. Faktor kedua adalah genotipe pepaya (G) dengan 3 macam yaitu genotipe IPB 3 (G1), genotipe IPB 4 (G2) dan genotipe IPB 9 (G3). Perbandingan media tanam berdasarkan volume (v/v/v). Percobaan terdiri dari 15 kombinasi dengan tiga ulangan maka terdapat 45 satuan percobaan. Setiap satuan percobaan terdiri dari 10 bibit pepaya, sehingga total tanaman yang digunakan adalah 450 bibit pepaya. Pengamatan dilakukan pada lima contoh bibit pepaya setiap perlakuan, sehingga total tanaman yang diamati adalah 225 bibit pepaya. Data yang diperoleh dianalisis dengan uji F dan uji lanjut DMRT (*Duncan Multiple Range Test*) pada taraf 5%.

**Persiapan media.** Media tanam yang digunakan dicampur sesuai dengan perlakuan dengan perbandingan sama yaitu 2:1:1. Perbandingan volume media tanam yaitu dengan menggunakan wadah atau mangkok. Media tanam yang sudah dicampur digunakan untuk bahan media tanam di *tray* semai dan *polybag*.

**Penanaman benih di** *tray* **semai.** Media tanam untuk persemaian sesuai dengan perlakuan percobaan. Media tanam dimasukkan ke dalam *tray* persemaian.Sebelum benih disemai, benih direndam dalam air hangat (suhu sekitar 40°C) selama 30 menit. Benih yang dikecambahkan sebanyak 110 benih setiap kombinasi perlakuan, sehingga total benih sebanyak 1 650 benih pepaya. Benih dikecambahkan di *tray* semai dengan dua benih per lubang selama 4 MSS (Minggu Setelah Semai) atau satu bulan untuk menyeragamkan bibit pepaya yang akan dipindahkan ke *polybag*.

**Pemindahan bibit ke dalam** *polybag.* Pemindahan bibit semaian dilakukan dengan mengangkut bibit beserta media tanamnya. Untuk kriteria bibit yang dipindahkan ke *polybag* yaitu memiliki tinggi yang seragam (3-4 cm dari permukaan media) dan memiliki jumlah daun sebanyak dua sampai tiga helai. Penanaman dilakukan pada *polybag* ukuran 10 cm x 15 cm selama 1.5 bulan.

**Persiapan lahan.** Menurut Kalie (1999) lahan penanaman dalam bentuk bedengan. Panjang bedengan tergantung keadaan lahan, sedangkan lebarnya sebesar 2 m dan tingginya sebesar 0.2 m. Jarak tanam yang digunakan yaitu 2.5 m x 2.5 m. Jarak antar bedengan sebesar 50 cm. Di atas bedengan dibuat lubang tanam yang berukuran 50 cm x 50 cm x 50 cm. Menurut Sujiprihati dan Suketi (2009) pemberian pupuk organik dilakukan dua minggu sebelum tanam dengan dosis 15-25 ton/ha. Lubang tanam dibiarkan terbuka dan terpapar sinar matahari selama dua minggu.

**Pemindahan bibit ke lapangan.** Pemindahan bibit dilakukan dengan mengangkut bibit beserta media tanamnya dengan kriteria bibit pepaya yang sehat dan baik yaitu memiliki tinggi tanaman sekitar 9-11cm, jumlah daun sebanyak 8-9 helai, dan diameter batang sebesar 2-3 mm. Bibit yang dapat dipindahkan ke lapangan yaitu pada media tanam M1, M4, dan M5 yang diambil dari tanaman contoh sehingga total yang ditanam sebanyak 144 bibit pepaya. Penanaman di lapangan dilakukan 1.5 bulan setelah tanam di *polybag*.

**Pemeliharaan.** Pemeliharaan yang dilakukan yaitu pengairan, pemupukan, sanitasi, serta pengendalian hama dan penyakit. Pengairan dilakukan pada pagi dan sore hari. Pemupukan dilakukan pada saat awal penanaman di lapangan dan setiap empat bulan menggunakan pupuk organik dengan dosis 20-30 kg/tanaman. Sanitasi

yang dilakukan berupa pembumbunan, penyiangan gulma, dan membuang bagian tanaman yang terserang penyakit.

## Pengamatan

Pengamatan perkecambahan benih pepaya yaitu waktu muncul kecambah (HSS) dan daya berkecambah (%). Pengamatan bibit pepaya di *polybag* yaitu tinggi tanaman, diukur dari atas permukaan tanah sampai titik tumbuh (cm); jumlah daun, semua daun yang telah membuka sempurna; diameter batang, diukur pada ketinggian 5 cm dari permukaan tanah (mm); bobot bibit per *polybag* (g); dan umur bibit siap salur. Pengamatan tanaman pepaya di lapangan yaitu tinggi tanaman, diukur dari atas permukaan tanah sampai titik tumbuh (cm); jumlah daun, semua daun yang telah membuka sempurna; dan diameter batang, diukur pada ketinggian 5 cm dari permukaan tanah (mm).

#### HASIL DAN PEMBAHASAN

### Perkecambahan Benih

Penanaman benih pepaya dilakukan pada *tray* semai dengan campuran media tanam yang berbeda sesuai dengan perlakuan. Kondisi kecambah pertama muncul tidak seragam, dikarenakan setiap genotipe memiliki respon tumbuh yang berbeda. Pada kelima perlakuan media tanam, genotipe IPB 3 (G1), IPB 4 (G2), dan IPB 9 (G3) memiliki waktu muncul kecambah yaitu pada 11 HSS, 17 HSS, dan 14 HSS. Genotipe IPB 3 (G1) memiliki pertumbuhan benih yang lebih cepat sedangkan genotipe IPB 4 (G2) pertumbuhan benihnya lebih lama dibandingkan genotipe lain. Hal ini diduga benih genotipe IPB 3 (G1) memiliki kemampuan benih untuk tumbuh (vigor) tinggi dibandingkan dengan genotipe lainnya. Menurut Widajati *et al.* (2008) tolok ukur vigor kekuatan tumbuh benih adalah kecepatan tumbuh benih dimana benih vigor tinggi memiliki pertumbuhan lebih cepat dibandingkan benih dengan vigor rendah.

Tabel 1. Persentase Daya Berkecambah Benih Pepaya pada Beberapa Media Tanam dan Genotipe

| dan Conolipo       |                                |       |       |                    |  |  |
|--------------------|--------------------------------|-------|-------|--------------------|--|--|
|                    | Daya Berkecambah (%)<br>30 HSS |       |       |                    |  |  |
| Perlakuan          | G1                             | G2    | G3    | Rata-rata<br>media |  |  |
| M1                 | 70.00                          | 28.18 | 76.36 | 58.18              |  |  |
| M2                 | 60.91                          | 40.91 | 39.09 | 46.97              |  |  |
| M3                 | 78.18                          | 47.27 | 57.27 | 60.91              |  |  |
| M4                 | 64.54                          | 59.09 | 76.36 | 66.66              |  |  |
| M5                 | 80.91                          | 46.36 | 82.73 | 70.00              |  |  |
| Rata-rata genotipe | 70.91                          | 44.36 | 66.36 |                    |  |  |

Keterangan: M1: tanah: pasir: pupuk kandang; M2: tanah: pasir: arang sekam; M3: tanah: pasir: kokopit; M4: tanah: pupuk kandang: kokopit; M5: tanah: pupuk kandang: arang sekam. G1: Genotipe IPB 3; G2: Genotipe IPB 4; G3: Genotipe IPB 9; HSS: Hari Setelah Semai.

Perkecambahan benih dapat dipengaruhi oleh faktor genetik dan faktor lingkungan perkecambahan. Faktor genetik berasal dari benih itu sendiri dan lingkungan perkecambahan berasal dari lingkungan sekitar media. Media

perkecambahan merupakan salah satu faktor yang mempengaruhi proses berkecambahnya benih (Widajati et al., 2008). Media tanam mempengaruhi persentase perkecambahan benih pada 30 HSS. Berdasarkan Tabel 1 daya berkecambah benih pepaya paling tinggi yaitu pada media tanam M5 sebesar 70 % dan pada genotipe IPB 3 (G1) sebesar 70.91 %. Hal ini diduga kelembaban media sesuai pada awal perkecambahan, penggunaan campuran media menggunakan arang sekam sebagai media tumbuh memiliki drainase dan aerasi yang baik. Menurut Nakasone dan Paull (1998) tanaman pepaya dapat tumbuh pada bermacam-macam tipe tanah dengan drainase yang baik.

Kandungan unsur hara seperti nitrogen (N), fosfor (P), dan kalium (K) dalam media tanam yang digunakan pada penelitian ini telah dianalisis di Laboratorium Tanah, Balai Penelitian Tanah, Departemen Pertanian, Bogor. Berdasarkan analisis yang telah dilakukan, media tanam M5 memiliki kandungan N tertinggi, media tanam M1 memiliki kandungan P tertinggi, dan media tanam M4 memiliki kandungan K tertinggi. Kisaran pH yang cocok untuk pembibitan pepaya yaitu media tanam M1, M4, dan M5.Nilai pH yang cukup rendah pada media tanam M2 dan M3 tidak dapat mendukung pertumbuhan bibit pepaya seperti disajikan pada Tabel 2.

Tabel 2. Nilai pH, kandungan nitrogen, fosfor, dan kalium pada Berbagai Jenis Media Tanam

|       | рН               | 1   | Kjeldahl | Olsen    | Morgan           |
|-------|------------------|-----|----------|----------|------------------|
| Media | ш О              | KCI | N        | $P_2O_5$ | K <sub>2</sub> O |
|       | H <sub>2</sub> O | KCI | (%)      | (ppm)    | (ppm)            |
| M1    | 6.5              | 6.1 | 0.33     | 221      | 249              |
| M2    | 5.7              | 4.9 | 0.05     | 27       | 437              |
| M3    | 5.4              | 4.6 | 0.17     | 38       | 914              |
| M4    | 6.1              | 5.6 | 0.31     | 213      | 1441             |
| M5    | 6.2              | 5.7 | 0.37     | 153      | 794              |

Keterangan: M1: tanah: pasir: pupuk kandang; M2: tanah: pasir: arang sekam; M3: tanah: pasir: kokopit; M4: tanah: pupuk kandang: kokopit; M5: tanah: pupuk kandang: arang sekam

### Pertumbuhan Bibit di Polybag

Pada penelitian ini awal pertumbuhan vegetatif yang diamati yaitu tinggi tanaman, jumlah daun, dan diameter batang. Pertumbuhan dan perkembangan pada fase vegetatif merupakan awal pembentukan tanaman untuk tumbuh dan berkembang menjadi tanaman yang produktif. Fase vegetatif terutama terjadi pada perkembangan akar, daun dan batang baru (Harjadi, 1996). Hama yang menyerang tanaman pepaya pada fase vegetatif adalah kutu putih (*Paracoccus marginatus*) ditandai dengan daun menjadi keriput. Pengendalian hama ini dengan membersihkan bagian kutu putih dari tanaman, terutama pada bagian bawah daun.

### **Tinggi Tanaman**

Pengamatan tinggi tanaman diukur dari atas permukaan media tanam di polybag sampai titik tumbuh mulai dari pemindahan di polybag sampai 1.5 bulan pengamatan yaitu pada 1-6 MST. Faktor media tanam mempengaruhi pertumbuhan tinggi tanaman. Perlakuan media tanam M4 dan M5 berbeda dengan media tanam

lainnya pada peubah tinggi tanaman. Media tanam campuran tanah, pupuk kandang, dan arang sekam (M5) menghasilkan tinggi tanaman paling tinggi yaitu sebesar 11.69 cm pada 6 MST (Tabel 3). Tinggi tanaman genotipe IPB 3 (G1) dan IPB 4 (G2) berbeda dengan IPB 9 (G3) pada 6 MST. Genotipe IPB 4 (G2) menghasilkan tinggi tanaman paling tinggi yaitu sebesar 8.85 cm. Dewi dan Suketi (2004) dalam penelitiannya menyatakan bahwa perlakuan terbaik pada media tanam campuran tanah, arang sekam, dan pupuk kandang dengan perbandingan 2:1:1 memberikan pertambahan tinggi tanaman, jumlah daun, diameter batang, panjang tunas, dan volume akar yang lebih besar pada bibit mangga.

Interaksi media tanam dan genotipe mempengaruhi tinggi tanaman pada 1-6 MST (Tabel 3). Pada perlakuan M5G3 mempunyai tinggi tanaman paling tinggi pada saat 1-2 MST yaitu sebesar 5.42 cm dan 6.32 cm. Perlakuan M4G2 mempunyai tinggi tanaman paling tinggi pada saat 3-6 MST yaitu sebesar 8.18 cm, 10.40 cm, 11.82 cm, dan 13.17 cm. Pada 6 MST perlakuan M4G2 merupakan perlakuan terbaik karena mampu meningkatkan pertambahan tinggi tanaman yaitu sebesar 13.17 cm yang berbeda dengan perlakuan lainnya seperti disajikan pada Tabel 3.

Tabel 3. Pertumbuhan Tinggi Tanaman Beberapa Genotipe Pepaya pada Beberapa Media Tanam

| iviedia i ar    | iam                  |                     |                    |                    |                     |                     |
|-----------------|----------------------|---------------------|--------------------|--------------------|---------------------|---------------------|
| Perlakuan       | 1 MST                | 2 MST               | 3 MST              | 4 MST              | 5 MST               | 6 MST               |
| Media (M)       |                      |                     |                    |                    |                     |                     |
| M1              | 4.01 <sup>b</sup>    | 4.93 <sup>b</sup>   | 6.19 <sup>b</sup>  | 7.28 <sup>b</sup>  | 8.42 <sup>b</sup>   | 9.73 <sup>b</sup>   |
| M2              | 3.75 <sup>bc</sup>   | 4.32 <sup>c</sup>   | 4.95 <sup>c</sup>  | 5.23 <sup>c</sup>  | 5.48 <sup>c</sup>   | 5.70 <sup>c</sup>   |
| M3              | 3.58 <sup>c</sup>    | $3.92^d$            | 4.33 <sup>d</sup>  | 4.62 <sup>d</sup>  | 4.74 <sup>d</sup>   | 4.12 <sup>d</sup>   |
| M4              | 4.62 <sup>a</sup>    | 5.66 <sup>a</sup>   | 7.45 <sup>a</sup>  | 9.07 <sup>a</sup>  | 10.32 <sup>a</sup>  | 11.57 <sup>a</sup>  |
| M5              | 4.76 <sup>a</sup>    | 5.88 <sup>a</sup>   | 7.72 <sup>a</sup>  | 9.26 <sup>a</sup>  | 10.53 <sup>a</sup>  | 11.69 <sup>a</sup>  |
| Genotipe (G)    |                      |                     |                    |                    |                     |                     |
| G1              | 4.11 <sup>a</sup>    | 4.85 <sup>b</sup>   | 5.98 <sup>b</sup>  | 6.99 <sup>a</sup>  | 7.99 <sup>a</sup>   | 8.75 <sup>a</sup>   |
| G2              | 3.82 <sup>c</sup>    | 4.74 <sup>b</sup>   | 6.09 <sup>ab</sup> | 7.25 <sup>a</sup>  | 8.06 <sup>a</sup>   | 8.85 <sup>a</sup>   |
| G3              | 4.50 <sup>a</sup>    | 5.23 <sup>a</sup>   | 6.31 <sup>a</sup>  | 7.03 <sup>a</sup>  | 7.64 <sup>b</sup>   | 8.09 <sup>b</sup>   |
| Interaksi (M*G) |                      |                     |                    |                    |                     |                     |
| M1G1            | 4.15 <sup>cde</sup>  | 4.90 <sup>cd</sup>  | 6.12 <sup>e</sup>  | 7.34 <sup>fg</sup> | 8.82 <sup>d</sup>   | 10.68 <sup>de</sup> |
| M1G2            | 3.39 <sup>fg</sup>   | 4.45 <sup>def</sup> | 5.72 <sup>ef</sup> | 6.83 <sup>g</sup>  | 7.95 <sup>e</sup>   | 9.19 <sup>9</sup>   |
| M1G3            | 4.48 <sup>bc</sup>   | 5.44 <sup>b</sup> c | 6.74 <sup>d</sup>  | 7.66 <sup>ef</sup> | 8.50 <sup>de</sup>  | 9.31 <sup>fg</sup>  |
| M2G1            | 3.82 <sup>ef</sup>   | 4.37 <sup>def</sup> | 5.03 <sup>gh</sup> | 5.39 <sup>h</sup>  | 5.72 <sup>f</sup>   | 6.00 <sup>h</sup>   |
| M2G2            | 3.34 <sup>fg</sup>   | 3.89 <sup>fg</sup>  | 4.58 <sup>h</sup>  | 4.87 <sup>hi</sup> | 5.08 <sup>fg</sup>  | 5.28 <sup>hi</sup>  |
| M2G3            | 4.10 <sup>cde</sup>  | 4.70 <sup>de</sup>  | 5.24 <sup>fg</sup> | 5.43 <sup>h</sup>  | 5.63 <sup>f</sup>   | 5.82 <sup>h</sup>   |
| M3G1            | 3.16 <sup>g</sup>    | 3.52 <sup>g</sup>   | 3.86 <sup>i</sup>  | 4.18 <sup>j</sup>  | 4.40 <sup>h</sup>   | 3.26 <sup>k</sup>   |
| M3G2            | 3.74 <sup>efg</sup>  | 4.06 <sup>fg</sup>  | 4.52 <sup>h</sup>  | 4.90 <sup>hi</sup> | 4.92 <sup>gh</sup>  | 4.96 <sup>i</sup>   |
| M3G3            | 3.85 <sup>def</sup>  | 4.18 <sup>ef</sup>  | 4.61 <sup>h</sup>  | 4.78 <sup>i</sup>  | 4.91 <sup>gh</sup>  | 4.15 <sup>j</sup>   |
| M4G1            | 4.76 <sup>b</sup>    | 5.64 <sup>b</sup>   | 7.06 <sup>cd</sup> | 8.66 <sup>cd</sup> | 10.09 <sup>c</sup>  | 11.49 <sup>cd</sup> |
| M4G2            | 4.44 <sup>bcd</sup>  | 5.80 <sup>ab</sup>  | 8.18 <sup>a</sup>  | 10.40 <sup>a</sup> | 11.82 <sup>a</sup>  | 13.17 <sup>a</sup>  |
| M4G3            | 4.66 <sup>bc</sup>   | 5.54 <sup>b</sup>   | 7.11 <sup>cd</sup> | 8.14 <sup>de</sup> | 9.04 <sup>d</sup>   | 10.06 <sup>ef</sup> |
| M5G1            | 4.67 <sup>bc</sup>   | 5.84 <sup>ab</sup>  | 7.86 <sup>ab</sup> | 9.38 <sup>b</sup>  | 10.94 <sup>b</sup>  | 12.30 <sup>2b</sup> |
| M5G2            | 4.18 <sup>bcde</sup> | 5.48 <sup>b</sup>   | 7.46 <sup>bc</sup> | 9.24 <sup>bc</sup> | 10.56 <sup>bc</sup> | 11.65 <sup>bc</sup> |
| M5G3            | 5.42 <sup>a</sup>    | 6.32 <sup>a</sup>   | 7.84 <sup>ab</sup> | 9.17 <sup>bc</sup> | 10.10 <sup>c</sup>  | 11.10 <sup>cd</sup> |

Keterangan : Angka yang diikuti huruf yang sama pada kolom yang sama tidak berbeda nyata pada uji DMRT 5%.

M1: tanah: pasir: pupuk kandang; M2: tanah: pasir: arang sekam; M3: tanah: pasir: kokopit; M4: tanah: pupuk kandang: kokopit; M5: tanah: pupuk kandang: arang

sekam. G1: Genotipe IPB 3; G2: Genotipe IPB 4; G3: Genotipe IPB 9; HSS: Hari Setelah Semai

#### Jumlah Daun

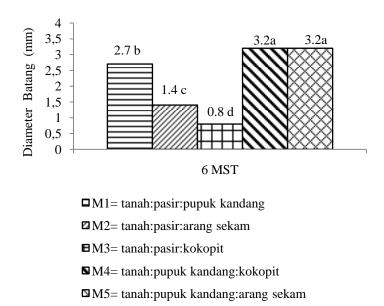
Media tanam M5 tidak berbeda dengan media tanam M1 dan M4, tetapi berbeda dengan media tanam M2 dan M3. Media tanam campuran tanah, pupuk kandang, dan arang sekam (M5) menghasilkan jumlah daun paling banyak yaitu sebesar 8.77 helai pada 6 MST seperti disajikan pada Tabel 4. Hasil penelitian Riyanti (2009) menunjukkan bahwa campuran serabut kelapa, arang sekam, pakis, dan humus daun bambu (1:1:1) memberikan hasil perkembangan tanaman yang lebih baik daripada perlakuan media lainnya dalam peubah jumlah daun, jumlah ruas, jumlah buku, jumlah akar terbanyak dan tinggi tanaman pada bibit sirih merah. Pada 6 MST jumlah daun pada genotipe IPB 3 (G1) dan IPB 9 (G3) berbeda dengan genotipe IPB 4 (G2).Genotipe IPB 4 (G2) menghasilkan jumlah daun paling banyak yaitu sebesar 7.34 helai. Hal ini diduga adanya pengaruh dari genotipe tanaman itu sendiri dan faktor lingkungan. Gardner *et al.* (1991) menjelaskan bahwa jumlah bakal daun yang terdapat pada embrio biji yang masak merupakan karakteristik spesies. Jumlah daun dipengaruhi oleh genotipe dan lingkungan.

Tabel 4. Pertumbuhan Jumlah Daun Bibit Pepaya di Polybag pada Beberapa Media Tanam dan Genotipe

| MST             |
|-----------------|
|                 |
| 73 <sup>a</sup> |
| 86 <sup>b</sup> |
| 28 <sup>c</sup> |
| 20 <sup>a</sup> |
| 77 <sup>a</sup> |
|                 |
| 41 <sup>b</sup> |
| 34 <sup>a</sup> |
| 56 <sup>b</sup> |
|                 |

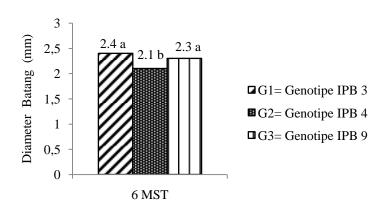
Keterangan: Sama dengan Keterangan Tabel 4

Interaksi media tanam dan genotipe pada jumlah daun menunjukkan bahwa perlakuan M5G1 memberikan jumlah daun paling banyak pada 2 MST dan 4 MST yaitu sebesar 5.60 helai dan 8.73 helai. Perlakuan M1G2 memberikan jumlah daun paling banyak pada 6 MST yaitu sebesar 10.06 helai yang berbeda dengan perlakuan lainnya seperti disajikan pada Tabel 5.


Tabel 5. Interaksi Media Tanam dan Genotipe pada Pertumbuhan Jumlah Daun Bibit Pepaya di Polybag

| r <del>c</del> paya ui r diybag |                    |                     |                      |
|---------------------------------|--------------------|---------------------|----------------------|
| Perlakuan                       | 2 MST              | 4 MST               | 6 MST                |
| Interaksi (M*G)                 |                    |                     | _                    |
| M1G1                            | 5.06 <sup>b</sup>  | 8.26 <sup>abc</sup> | 7.40 <sup>d</sup>    |
| M1G2                            | 4.26 <sup>cd</sup> | 7.06 <sup>e</sup>   | 10.06a               |
| M1G3                            | 4.66 <sup>bc</sup> | 7.86 <sup>bcd</sup> | 8.73 <sup>abcd</sup> |
| M2G1                            | 4.26 <sup>cd</sup> | 5.60 <sup>f</sup>   | 5.93 <sup>e</sup>    |
| M2G2                            | 4.06 <sup>d</sup>  | 5.26 <sup>f</sup>   | 5.86 <sup>e</sup>    |
| M2G3                            | 4.00 <sup>d</sup>  | 5.40 <sup>f</sup>   | 5.80 <sup>e</sup>    |
| M3G1                            | 2.06 <sup>e</sup>  | 3.46 <sup>g</sup>   | 2.33 <sup>f</sup>    |
| M3G2                            | 2.20 <sup>e</sup>  | 3.33 <sup>g</sup>   | 2.46 <sup>f</sup>    |
| M3G3                            | 2.20 <sup>e</sup>  | 3.00 <sup>g</sup>   | 2.06 <sup>f</sup>    |
| M4G1                            | 5.13 <sup>ab</sup> | 7.60 <sup>cde</sup> | 7.53 <sup>cd</sup>   |
| M4G2                            | 4.86 <sup>b</sup>  | 8.53 <sup>ab</sup>  | 9.46 <sup>ab</sup>   |
| M4G3                            | 4.26 <sup>cd</sup> | 7.00 <sup>e</sup>   | 7.60 <sup>cd</sup>   |
| M5G1                            | 5.60 <sup>a</sup>  | 8.73 <sup>a</sup>   | 8.86 <sup>abc</sup>  |
| M5G2                            | 4.73 <sup>bc</sup> | 8.40 <sup>ab</sup>  | 8.86 <sup>abc</sup>  |
| M5G3                            | 4.80 <sup>bc</sup> | 7.46 <sup>de</sup>  | 8.60 <sup>bcd</sup>  |

Keterangan: Sama dengan Keterangan Tabel 4


## **Diameter Batang**

Media tanam, genotipe, dan interaksi media tanam terhadap genotipe mempengaruhi pertumbuhan diameter batang. Gambar 1 menunjukkan bahwa diameter batang paling besar yaitu pada media tanam M4 dan M5 sebesar 3.2 mm. Media tanam M1 tidak berbeda dengan media tanam M4 dan M5 tetapi berbeda dengan media tanam M2 dan M3 terhadap diameter batang bibit pepaya. Media tanam merupakan salah satu faktor dari lingkungan yang mempengaruhi diameter batang bibit pepaya. Media tanam M5 (tanah, pupuk kandang, dan arang sekam) memiliki kandungan unsur nitrogen paling banyak dibandingkan media tanam lain yaitu sebesar 0.37%. Media tanam M4 (tanah, pupuk kandang, dan kokopit) memiliki kandungan unsur fosfor yaitu sebesar 213 ppm dan media tanam M1 (tanah, pasir, dan pupuk kandang) memiliki kandungan unsur fosfor paling banyak yaitu sebesar 221 ppm. Hal ini dijelaskan oleh Nakasone dan Paull (1999) bahwa kecepatan pertumbuhan diameter batang pepaya dipengaruhi oleh ketersediaan unsur hara N, P, pengairan, dan temperatur.



Gambar 1. Diameter Batang Bibit Pepaya di Polybag pada Beberapa Jenis Media Tanam

Diameter batang bibit memiliki arti yang cukup penting bagi kelanjutan pertumbuhan bibit. Bibit dengan diameter batang yang lebih besar akan memiliki kekuatan yang lebih baik sehingga mampu menghadapi keadaan lapangan yang tidak menguntungkan (Sumartuti, 2004). Gambar 2 menunjukkan bahwa genotipe IPB 3 (G1) mempunyai diameter batang paling besar dibandingkan dengan genotipe lainnya yaitu sebesar 2.4 mm. Seperti pada jumlah daun, pertambahan diameter batang juga dipengaruhi oleh genotipe tanaman itu sendiri maupun lingkungan.



Gambar 2. Diameter Batang Bibit Pepaya di Polybag pada Beberapa Genotipe

Interaksi media tanam dan genotipe M5G1 memberikan diameter batang paling besar pada 6 MST yaitu sebesar 3.5 mm yang tidak berbeda dengan perlakuan M5G3, M4G1, dan M4G2 seperti disajikan pada Tabel 6. Hasil penelitian Agustina (2004) menunjukkan bahwa perlakuan terbaik yang mampu meningkatkan pertumbuhan bibit durian adalah perlakuan dengan komposisi media tanam arang

sekam, tanah, dan pupuk kandang dengan perbandingan 3:2:1 terhadap pertambahan tinggi tanaman, diameter batang, jumlah cabang dan jumlah tunas daun.

Tabel 6. Interaksi Media Tanam dan Genotipe pada Pertumbuhan Diameter Batang Bibit Pepaya di Polybag

| Batang Bibit i opaya an i olyba | 9                    |
|---------------------------------|----------------------|
| Perlakuan                       | Diameter Batang (mm) |
|                                 | 6 MST                |
| Interaksi (M*G)                 |                      |
| M1G1                            | 2.7 <sup>cd</sup>    |
| M1G2                            | 2.5 <sup>d</sup>     |
| M1G3                            | 3.1 <sup>bc</sup>    |
| M2G1                            | 1.5 <sup>e</sup>     |
| M2G2                            | 1.1 <sup>†</sup>     |
| M2G3                            | 1.5 <sup>e</sup>     |
| M3G1                            | 0.8 <sup>f</sup>     |
| M3G2                            | 0.8 <sup>f</sup>     |
| M3G3                            | 0.8 <sup>f</sup>     |
| M4G1                            | 3.3 <sup>ab</sup>    |
| M4G2                            | 3.2 <sup>ab</sup>    |
| M4G3                            | 3.1 <sup>bc</sup>    |
| M5G1                            | 3.5 <sup>a</sup>     |
| M5G2                            | 2.8 <sup>cd</sup>    |
| M5G3                            | 3.3 <sup>ab</sup>    |

Keterangan: Sama dengan Keterangan Tabel 4

## Bobot Bibit per Polybag

Bobot bibit per *polybag* diamati pada akhir pengamatan di *polybag* yaitu pada 6 MST. Pengamatan ini dilakukan dengan menimbang media tanam dan bibit pepaya per *polybag*. Media tanam dan bibit pepaya di *polybag* memiliki bobot jenis yang berbeda. Bobot bibit per *polybag* paling berat yaitu media tanam M2 (tanah, pasir, dan arang sekam) sebesar 251.55 g dan bobot bibit per *polybag* paling ringan yaitu media tanam M5 (tanah, pupuk kandang, dan arang sekam) sebesar 188.66 g seperti disajikan pada Tabel 7. Media tanam yang diharapkan pada penelitian ini yaitu memiliki pertumbuhan bibit yang baik dan media tanam yang ringan agar memudahkan dalam transportasi bibit.

Tabel 7. Bobot Bibit Pepaya per Polybag pada Berbagai Media Tanam dan Genotipe

| ·            |                                          |
|--------------|------------------------------------------|
| Perlakuan    | Bobot Bibit per <i>Polybag</i> (g) 6 MST |
| Media (M)    |                                          |
| M1 Č         | 244.00 <sup>a</sup>                      |
| M2           | 251.55 <sup>a</sup>                      |
| M3           | 245.33 <sup>a</sup>                      |
| M4           | 199.55⁵                                  |
| M5           | 188.66 <sup>b</sup>                      |
| Genotipe (G) |                                          |
| G1 `´        | 226.13 <sup>a</sup>                      |
| G2           | 227.73 <sup>a</sup>                      |
| G3           | 223.60°                                  |
|              |                                          |

Keterangan: Sama dengan Keterangan Tabel 4

### **Bibit Siap Salur**

Bibit pepaya siap salur adalah bibit pepaya yang sudah siap ditanam di lapangan dengan kriteria tanaman pepaya yang termasuk dalam tanaman representatif. Tanaman representatif untuk bibit pepaya yaitu memiliki tinggi tanaman sekitar 9-11 cm , jumlah daun sebanyak 8-9 helai, dan diameter batang sebesar 2-3 mm. Pada media tanam M1, M4, dan M5 umur bibit siap salur yaitu pada 6 MST, sedangkan pada media tanam M2 dan M3 bibit tidak dapat dipindah tanam ke lapangan karena bibit tersebut tidak representatif untuk kriteria bibit pepaya. Selain itu, kandungan unsur hara dan nilai pH pada media tanam M2 dan M3 tidak mendukung untuk pertumbuhan bibit pepaya. Unsur nitrogen yang terkandung pada media tanam M2 dan M3 tergolong rendah yaitu sebesar 0.05 % dan 0.17 %. Menurut Hardjowigeno (2003) unsur nitrogen sangat dibutuhkan tanaman pada awal pertumbuhan atau fase vegetatif.

Menurut Sujiprihati dan Suketi (2009) tujuan dari pembibitan adalah untuk mendapatkan bibit pepaya yang sehat, tumbuh secara optimal, dan mempunyai daya adaptasi yang baik saat dipindahkan ke lapangan. Menurut Zulkarnain (2009) kriteria bibit yang berkualitas baik yaitu bibit sehat dan bebas dari investasi patogen, benih yang digunakan berasal dari tanaman induk yang berpotensi hasil tinggi.

## Pertumbuhan Bibit di Lapangan

Bibit tanaman pepaya setelah 6 MST dipindahkan ke lapangan hingga pengamatan 11 MST untuk mengetahui pertumbuhan bibit setelah dipindahkan ke lapangan. Pada 11 MST media tanam yang memiliki tinggi tanaman paling tinggi yaitu pada media tanam M5 (tanah, pupuk kandang, dan arang sekam) sebesar 22.73 cm yang berbeda dengan media tanam M1 dan M4. Genotipe IPB 3 (G1) memiliki tinggi tanaman paling tinggi yaitu sebesar 23.04 cm yang berbeda dengan genotipe IPB 4 (G2) dan IPB 9 (G3) seperti disajikan pada Tabel 8.

Tabel 8. Pertumbuhan Tinggi Tanaman Pepaya di Lapangan pada Beberapa Media Tanam dan Genotipe

|           |                    | •                  |                    |                     |                    |
|-----------|--------------------|--------------------|--------------------|---------------------|--------------------|
| Perlakuan | 7 MST              | 8 MST              | 9 MST              | 10 MST              | 11 MST             |
| Media     |                    |                    |                    |                     |                    |
| M1        | 12.01 <sup>a</sup> | 13.07 <sup>a</sup> | 16.37 <sup>b</sup> | 18.23 <sup>b</sup>  | 18.68 <sup>b</sup> |
| M4        | 12.66 <sup>a</sup> | 13.86 <sup>a</sup> | 16.72 <sup>b</sup> | 18.92 <sup>ab</sup> | 19.53⁵             |
| M5        | 12.33 <sup>a</sup> | 14.35 <sup>a</sup> | 18.90 <sup>a</sup> | 21.08 <sup>a</sup>  | 22.73 <sup>a</sup> |
| Genotipe  |                    |                    |                    |                     |                    |
| G1        | 13.34 <sup>a</sup> | 14.88 <sup>a</sup> | 19.55 <sup>a</sup> | 21.27 <sup>a</sup>  | 23.04 <sup>a</sup> |
| G2        | 22.70 <sup>a</sup> | 14.20 <sup>a</sup> | 17.83 <sup>a</sup> | 20.54 <sup>a</sup>  | 20.75 <sup>b</sup> |
| G3        | 10.97 <sup>b</sup> | 12.21 <sup>b</sup> | 14.61 <sup>b</sup> | 16.42 <sup>b</sup>  | 17.15 <sup>c</sup> |
|           |                    |                    |                    |                     |                    |

Keterangan: Sama dengan Keterangan Tabel 4

Media tanam M5 (tanah, pupuk kandang, dan arang sekam) memiliki jumlah daun paling banyak yaitu sebesar 13.31 helai pada 11 MST yang tidak berbeda dengan media tanam M4 tetapi berbeda dengan media tanam M1. Genotipe IPB 4 (G2) memiliki jumlah daun paling banyak yaitu sebesar 12.95 helai yang berbeda dengan genotipe IPB 3 (G1) dan IPB 9 (G3) seperti disajikan pada Tabel 9.

Tabel 9. Pertumbuhan Jumlah Daun Tanaman Pepaya di Lapangan pada Beberapa Media Tanam dan Genotipe

| Perlakuan | 7 MST             | 8 MST             | 9 MST              | 10 MST              | 11 MST              |
|-----------|-------------------|-------------------|--------------------|---------------------|---------------------|
| Media     |                   |                   |                    |                     | _                   |
| M1        | 6.71 <sup>a</sup> | 7.64 <sup>a</sup> | 9.24 <sup>b</sup>  | 10.11 <sup>b</sup>  | 11.24 <sup>b</sup>  |
| M4        | 5.60 <sup>b</sup> | 6.73 <sup>b</sup> | 8.86 <sup>b</sup>  | 10.82 <sup>b</sup>  | 12.71 <sup>a</sup>  |
| M5        | 6.71 <sup>a</sup> | 8.17 <sup>a</sup> | 10.33 <sup>a</sup> | 12.75 <sup>a</sup>  | 13.31 <sup>a</sup>  |
| Genotipe  |                   |                   |                    |                     |                     |
| G1        | 6.26 <sup>a</sup> | 7.17 <sup>a</sup> | 9.02 <sup>b</sup>  | 10.62 <sup>b</sup>  | 11.71 <sup>b</sup>  |
| G2        | 6.55 <sup>a</sup> | 7.88 <sup>a</sup> | 9.88 <sup>a</sup>  | 11.66 <sup>a</sup>  | 12.95 <sup>a</sup>  |
| G3        | 6.20 <sup>a</sup> | 7.48 <sup>a</sup> | 9.53 <sup>ab</sup> | 11.40 <sup>ab</sup> | 12.60 <sup>ab</sup> |
|           |                   |                   |                    |                     |                     |

Keterangan: Sama dengan Keterangan Tabel 4

Tabel 10. Diameter Batang Tanaman Pepaya di Lapangan pada Beberapa Media Tanam dan Genotipe

| Diameter Batang (mm) |
|----------------------|
| 11 MST               |
|                      |
| 6.9 <sup>b</sup>     |
| 7.3 <sup>b</sup>     |
| 8.2 <sup>a</sup>     |
|                      |
| 7.5 <sup>a</sup>     |
| 6.7 <sup>b</sup>     |
| 8.1 <sup>a</sup>     |
|                      |
| 5.6 <sup>e</sup>     |
| 7.0 <sup>cd</sup>    |
| 8.0 <sup>abc</sup>   |
| 8.5 <sup>ab</sup>    |
| 5.9 <sup>de</sup>    |
| 7.5 <sup>bc</sup>    |
| 8.5 <sup>ab</sup>    |
| 7.3 <sup>bc</sup>    |
| 9.0 <sup>a</sup>     |
|                      |

Keterangan: Sama dengan Keterangan Tabel 4

Diameter batang paling besar terdapat pada media tanam M5 (tanah, pupuk kandang, dan arang sekam)sebesar 8.2 mm pada 11 MST. Media tanam M5 memiliki diameter batang yang berbeda dengan media tanam M1 dan M4. Genotipe IPB 9 (G3) memiliki diameter batang paling besar yaitu sebesar 8.1 mm. Genotipe IPB 9 (G3) memiliki diameter batang yang tidak berbeda dengan genotipe IPB 3 (G1) tetapi berbeda dengan genotipe IPB 4 (G2). Interaksi media tanam dan genotipe mempengaruhi pertumbuhan diameter batang pada 11 MST. Perlakuan M5G3 memiliki

diameter batang paling besar yaitu sebesar 9.0 mm pada 11 MST seperti disajikan pada Tabel 10.

Tabel 11. Interaksi Media Tanam dan Genotipe pada Pertumbuhan Tinggi Tanaman dan Jumlah Daun diLapangan

| Perlakuan       | Tinggi<br>Tanaman    |                      | Jumlah Dau           | n                  |
|-----------------|----------------------|----------------------|----------------------|--------------------|
| Interaksi (M*G) | 7 MST                | 9 MST                | 10 MST               | 11 MST             |
| M1G1            | 13.77 <sup>a</sup>   | 8.00 <sup>e</sup>    | 8.40 <sup>e</sup>    | 9.00 <sup>b</sup>  |
| M1G2            | 12.44 <sup>abc</sup> | 10.46 <sup>abc</sup> | 11.53 <sup>bcd</sup> | 12.73 <sup>a</sup> |
| M1G3            | 9.83 <sup>d</sup>    | 9.26 <sup>cde</sup>  | 10.40 <sup>d</sup>   | 12.00 <sup>a</sup> |
| M4G1            | 12.88 <sup>abc</sup> | 9.40 <sup>bcd</sup>  | 11.46 <sup>cd</sup>  | 13.13 <sup>a</sup> |
| M4G2            | 13.77 <sup>a</sup>   | 8.46 <sup>de</sup>   | 10.53 <sup>d</sup>   | 12.66 <sup>a</sup> |
| M4G3            | 11.33 <sup>cd</sup>  | 8.73 <sup>de</sup>   | 10.46 <sup>d</sup>   | 12.33 <sup>a</sup> |
| M5G1            | 13.36 <sup>ab</sup>  | 9.66 <sup>abcd</sup> | 12.00 <sup>abc</sup> | 13.00 <sup>a</sup> |
| M5G2            | 11.89 <sup>bc</sup>  | 10.73 <sup>a</sup>   | 12.93 <sup>ab</sup>  | 13.46 <sup>a</sup> |
| M5G3            | 11.75 <sup>bc</sup>  | 10.60 <sup>ab</sup>  | 13.33 <sup>a</sup>   | 13.46 <sup>a</sup> |

Keterangan: Sama dengan Keterangan Tabel 4

Interaksi media tanam dan genotipe mempengaruhi pertumbuhan tinggi tanaman pada 7 MST, jumlah daun pada 9-11 MST.Pada perlakuan M1G1 dan M4G2 mempunyai tinggi tanaman paling tinggi yaitu sebesar 13.77 cm pada 7 MST. Pada 9 MST perlakuan M5G2 memiliki jumlah daun paling banyak yaitu sebesar 10.73 helai. Pada 10 MST perlakuan M5G3 memiliki jumlah daun paling banyak yaitu sebesar 13.33 helai. Pada 11 MST perlakuan M5G2 dan M5G3 memiliki jumlah daun paling banyak yaitu sebesar 13.46 helai seperti disajikan pada Tabel 11.

### **KESIMPULAN**

Media tanam mempengaruhi tinggi tanaman, jumlah daun, diameter batang, dan bobot bibit per *polybag*. Interaksi media tanam dan genotipe mempengaruhi tinggi tanaman, jumlah daun, dan diameter batang. Daya berkecambah benih pepaya paling tinggi yaitu pada media tanam campuran tanah, pupuk kandang, dan arang sekam (M5) sebesar 70 % serta pada genotipe IPB 3 (G1) sebesar 70.91 %. Komposisi campuran media tanam tanah, pupuk kandang, dan arang sekam (M5) dengan perbandingan 2:1:1 merupakan media paling baik untuk bibit pepaya pada 6 MST serta memiliki bobot bibit per *polybag* yang paling ringan dibandingkan dengan media tanam lain sehingga memudahkan dalam transportasi bibit.

# **UCAPAN TERIMA KASIH**

Pusat Kajian Buah Tropika (PKBT) IPB

## **DAFTAR PUSTAKA**

Agustina, A.F. 2004. Pengaruh Komposisi Media dan Jenis Pupuk Terhadap Pertumbuhan Bibit Durian (*Durio zibethinus* Murr.) Varietas Monthong. Skripsi. Departemen Budidaya Pertanian. Fakultas Pertanian, IPB. Bogor. 39 hal.

- Badan Pusat Statistik (BPS). 2010. Produksi buah-buahan di Indonesia. <a href="http://www.bps.go.id">http://www.bps.go.id</a>. [20 Desember 2010].
- Cayanti, R. E. O. 2006. Pengaruh Media Tanam Terhadap Kualitas Cabai Hias (*Capsicum* sp.) Dalam Pot. Skripsi. Departemen Agronomi dan Hortikultura, Fakultas Pertanian, IPB. Bogor. 42 hal.
- Dewi, K. 2004. Respon Pertumbuhan Bibit Stum Mangga (*Mangifera indica* L.) Varietas Kelapa dan Arum Manis pada Komposisi Media dan Ukuran Wadah yang Berbeda. Skripsi. Departemen Budidaya Pertanian. Fakultas Pertanian, IPB. Bogor. 58 hal.
- Gardner, F.P., R.B. Pearce, dan R.L. Mitchell. 1991. Fisiologi Tanaman Budidaya. Universitas Indonesia Press. Jakarta.
- Hardjowigeno, S. 2003. Ilmu Tanah. Akademika Pressindo. Jakarta. 286 hal.
- Harjadi, S.S.1996. Pengantar Agronomi. PT Gramedia Pustaka Utama. Jakarta. 197 hal.
- Kalie, M. B. 1999. Bertanam Pepaya. Penebar Swadaya. Jakarta. 120 hal.
- Nakasone, H.Y. and R.E. Paull. 1998. Tropical Fruits. CAB International. Wallingford. 445p.
- Nakasone, H.Y. and R.E. Paull. 1999. Crop Production Science in Horticulture. CAB International.Wallingford.
- Riyanti, Y. 2009. Pengaruh Jenis Media Tanam terhadap Pertumbuhan Bibit Sirih Merah (*Piper crocatum* Ruiz and Pav.). Skripsi. ProgramStudi Hortikultura. Fakultas Pertanian, IPB. Bogor. 42 hal.
- Sankat, C.K. and R. Maharaj. 1997. Papaya, p.167-189. In S. Mitra (Ed.). Postharvest Physiology and Storage of Tropical and Subtropical Fruits. CAB International. New York.
- Soepardi, G. 1983. Sifat dan Ciri Tanah. Jurusan Tanah, Fakultas Pertanian. Institut Pertanian Bogor. Bogor.
- Sujiprihati, S. dan K. Suketi. 2009. Budidaya Pepaya Unggul. Penebar Swadaya. Jakarta. 92 hal.
- Suketi, K., R. Poerwanto, S. Sujiprihati, Sobir, dan W.D. Widodo. 2010. Studi karakter mutu buah pepaya IPB. Jurnal Hortikultura Indonesia vol. 1(1) April 2010: 17-26.
- Sumartuti, H. 2004. Pengaruh Cara Ekstraksi dan Pengeringan Benih terhadap Viabilitas Benih dan Vigor Bibit Pepaya (*Carica papaya* L.). Skripsi. Departemen Budidaya Pertanian. Fakultas Pertanian, IPB. Bogor. 42 hal.
- Widajati, E., E.R. Palupi, E. Murniati, T.K. Suharsi, A. Qadir, dan M.R. Suhartanto. 2008. Diktat Kuliah dan Penuntun Praktikum Dasar Ilmu dan Teknologi Benih. Departemen Agronomi dan Hortikultura, Fakultas Pertanian, IPB. Bogor. 131 hal.
- Zulkarnain. 2009. Dasar-Dasar Hortikultura. PT Bumi Aksara. Jakarta. 281 hal.