REPRINT

Jurnal ILMU DASAR
Volume 12 Nomor 1 Januari 2011

Pimpinan Editor
I Made Tirta

Sekretaris
Kartika Senjarini

Editor Pelaksana
Eva Tyas Utami
Dwi Indarti

Dewan Editor
Moh. Hasan
Edy Supriyanto
Wuryanti Handayani
Satiya Astinuri

Editor Teknik
Kusbudjono

Administrasi dan Keuangan
Jumari
Nur Syamsiyah Harpenti
Sri Lestari

Jurnal Ilmu Dasar diterbitkan oleh :
Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jember.
Terbit sejak Januari 2000 dengan frekuensi penerbitan dua kali setahun.
Terkreditasi berdasarkan SK Dirjen Dikti NOMOR: 658/DIKTI/Kep/2008
tanggal 15 Desember 2008

Alamat Editor/Penerbit:
Jl. Kalimantan 37 Kampus Tegaljoto, Jember 68121
Telp. (0331) 334293, Fax. (0331) 330225
E-mail : jjid@fmipa.unej.ac.id atau jurnalilmudasar@gmail.com
http://www.unej.ac.id/fakultas/mipa/ atau http://www.mipa.unej.ac.id
On The Existence of Non-Directal Digraphs of Order Two Less Than The Moore Bound by Slamian & Mirka Miller (1-5).

Daya Antimikroba Ekstrak Dan Fraksi Daun Sirih Merah (Piper betle Linn.) (Antimicrobial Activity of The Extract and Fraction of Red Betel Leaf (Piper betle Linn.)) oleh Julia Reveny (6-12).

Studi Ekstraksi Padat Cair Menggunakan Pelarut HF dan HNO₃ pada Penentuan Logam Cr dan Cu dalam Sampel Sedimen Sungai di Sekitar Calon PLTN Muria (A Study Of Solid-Liquid Extraction with HF And HNO₃ as are Solvent For Determination of Cr and Cu In The River Sediment Near The Munta Nuclear Power Plant) oleh Imelda Fajriati, Malawati Rizkiyah dan Muzakkry (13-22).

Isolasi dan Karakterisasi Gen Penyandang Protein Instrinsik Membran Tonoplas Dari Tanaman Halofit Salicornia herbacea (Isolation and Characterization Of Gene Encoded Tonoplast Intrinsic Proteins From Halophyte Plant Salicornia herbacea) oleh Netty Ermawati (23-29).

Optimasi Produksi dan Karakterisasi Sistem Selulase dari Bacillus circulans strain Lokal dengan Induser Avicel (Production Optimization and Cellose System Characterization of Bacillus circulans Local Strain Using Inducer Avicel) oleh Evi Susanti (40-49).

Regresi Kuanti Untuk Eksporasi Pola Curah Hujan Di Kabupaten Indramayu (Regression for Exploring Rainfall Pattern in Indramayu Regency) oleh Anik Djuraidah, dan Aji Hamid Wigena (50-56).

Pengaruh Kadar Oksigen, Laju Deposi dan Annealing Terhadap Struktur Mikro Lapisan Tips Indium Tin Oxide (The Effects of Oxygen Content, Deposition Rate and Annealing) oleh Muslimin (57-61).

Difraktogram Sinar-x dan Mikrostruktur Timah Dioksida dengan Penambahan Fe (X-Ray Diffraction and Microstructure of Tin Dioxide with Addition of Fe) oleh Posman Manurung (91-96).
Regresi Kuantil untuk Eksporasi Pola Curah Hujan
di Kabupaten Indramayu

Regression for Exploring Rainfall Pattern in Indramayu Regency

Anik Djuaridah & Aji Hamim Wiguna
Departemen Statistika, Fakultas MIPA, Institut Pertanian Bogor

ABSTRACT

Quantile regression is an important tool for conditional quantities estimation of a response Y for a given vector of covariates \(X \). It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. Regression coefficients for each quantile can be estimated through an objective function which is weighted average absolute errors. Each quantile regression characterizes a particular aspect of the conditional distribution. Thus we can combine different quantile regressions to describe more completely the underlying conditional distribution. The analysis model of quantile regression would be specifically useful when the conditional distribution is not a normal shape, such as an asymmetric distribution or truncated distribution. In general, rainfall in Indramayu regency during 1972-2001 at 23 stations is highly variable in amount across time (month) and space. So, the first objective of the research is reducing the variability in space using classification of the rainfall stations. The second objective is modelling the variability in time using quantile regression for every cluster of rainfall stations. The result shows that there are two clusters of rainfall stations. The first cluster has higher amount of rainfall than the second cluster. The coefficient of quantile regression for quantile 50 and 75 percent are similar, but for quantile 5 and 90 percent are very different. Exploring pattern of rainfall using quantile regression can detect normal or extreme rainfall that very useful in agricultural.

Keywords: Quantile, quantile regression, cluster, rainfall

PENDAHULUAN

Pendekatan standar penentuan model regresi linear dan pendugaan parameteranya adalah metode kuadrat terkecil (Ordinary Least Square, disingkat OLS) atau simpangan mutlak terkecil (Least Absolute Deviation, disingkat LAD). Pendugaan parameter pada metode OLS diperoleh dengan minimisasi jumlah kuadrat galat, dan pada metode LAD dengan minimisasi jumlah absolut galat. Penduga dari metode OLS adalah rataan fungsi sebaran bersyarat peubah respon, sedangkan dari metode LAD adalah median fungsi bersyarat peubah respon. Meskipun rataan dan median adalah dua ukuran pemusatan yang penting dari suatu sebaran, kedua statistik ini tidak dapat menjelaskan tentang perilaku sebaran bersyarat pada ekor suatu sebaran.

Keuntungan utama dari regresi kuantil dibandingkan regresi OLS adalah fleksibilitas dalam pemodelan data dengan sebaran bersyarat yang heterogen. Metode ini dapat digunakan mengukur efek peubah penjelas tidak hanya di pusat sebaran data, tetapi juga pada bagian atas atau bawah ekor sebaran. Hal ini sangat berguna dalam penerapan, khususnya bila nilai ekstrim merupakan permasalahan penting, seperti penelitian tentang curah hujan di Hwange National Park Zimbabwe (Charnaille-Jamases et al. 2007), kecepatan angin pada siklon tropis di USA (Jagger & Elsner 2008) dan pencemar udara PM10 di Surabaya (Djuaridah & Rahman 2009).

Curah hujan merupakan salah satu unsur iklim yang sangat berpengaruh terhadap sektor pertanian. Keteraturan pola dan distribusi hujan sangat menentukan jaminan berlangsungnya
aktivitas pertanian. Namun kondisi ini akan mengalami gangguan jika terjadi fenomena iklim ekstrim seperti ekstrim kering (El Nino) dan ekstrim basah (La Nina). Fenomena iklim ekstrim ini dapat menyebabkan pola curah hujan menyimpang dari kondisi normal.

Informasi pola curah hujan sangat berguna bagi petani dalam mengantisipasi kemungkinan kejadian-kejadian ekstrim yang sering menimbulkan kegagalan produksi pertanian. Penelitian ini bertujuan mengelompokkan wilayah di kabupaten Indramayu berdasarkan besarnya curah hujan bulanan tahun 1972-2001 dan mengeksplorasi pola curah hujan kabupaten Indramayu menggunakan regresi kuantil.

METODE

Sumber data

Metode
Langkah-langkah yang dilakukan dalam penelitian ini adalah:
1. Mengelompokkan stasiun-stasiun penakar curah di Kabupaten Indramayu.
2. Memodelkan curah hujan bulanan Kabupaten Indramayu menggunakan regresi kuantil. Pendeklarasi curah hujan dilakukan untuk masing-masing kelompok hasil tahap ke-1. Analisis ini dilakukan pada beberapa nilai kuantil, yaitu pada nilai \(r = 0.05 \), \(0.50 \), \(0.75 \); dan \(0.95 \). Regresi kuantil pada \(r = 0.50 \) digunakan untuk menggambarkan model di pusat data, pada kuantil \(r = 0.75 \) digunakan untuk menggambarkan model di kuartil ketiga, dan pada kuantil \(r = 0.05 \) dan \(0.95 \) digunakan untuk menggambarkan model pada nilai ekstrim. Parameter regresi kuantil diduga dengan metode simpleks, selang kepercayaan koefisien regresi kuantil diperoleh dengan metode resampling, dan pengujian hipotesis dilakukan dengan menggunakan uji Wald.

HASIL DAN PEMBAHASAN

Pengelompokan wilayah hujan
Dari lima metode penggabungan jarak pada metode hirarki diketahui metode pautan lengkap merupakan metode yang terbaik dalam mengelompokkan stasiun-stasiun penakar hujan. Pengelompokan dengan metode pautan lengkap menghasilkan dua kelompok dengan anggota masing-masing adalah 5 dan 18 stasiun.

paling kecil. Pada kedua gambar juga tampak keragaman antar bulan tidak sama.

![Gambar 1. Curah hujan rata-rata tahunan kelompok-1 (---) dan kelompok-2 (——).](image1)

Pada kelompok-1, musim kemarau terjadi pada bulan Mei hingga bulan Oktober dan musim hujan terjadi pada bulan Nopember hingga bulan April. Sedangkan pada kelompok-2 musim kemarau terjadi pada bulan April hingga bulan Nopember dan musim hujan terjadi pada bulan Desember hingga bulan Maret. Dengan demikian kelompok-1 memiliki musim hujan yang lebih panjang daripada kelompok-2.

![Gambar 2. Diagram kotak garis curah hujan bulanan kelompok-1.](image2)

![Gambar 3. Diagram kotak garis curah hujan bulanan kelompok-2.](image3)

Deskripsi statistik kedua kelompok dapat dilihat pada Tabel 1. Kelompok-1 merupakan wilayah yang memiliki curah hujan rata-rata tahunan sebesar 1890 mm per tahun. Curah hujan maksimum terjadi tahun 1993 dengan curah hujan sebesar 2879 mm dan curah hujan minimum terjadi tahun 1982 dengan curah hujan sebesar 1158 mm. Pada kelompok-2 rata-rata tahunan sebesar 1405 mm per tahun. Curah hujan maksimum terjadi tahun 1977 dengan curah hujan sebesar 1799 mm dan curah hujan minimum terjadi tahun 1982 dengan curah hujan sebesar 1039 mm.
Tabel 1. Deskripsi curah hujan tahunan kelompok-1 dan kelompok-2.

<table>
<thead>
<tr>
<th>Karakteristik</th>
<th>Kelompok 1</th>
<th>Kelompok 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH rata-rata (mm)</td>
<td>1890</td>
<td>1405</td>
</tr>
<tr>
<td>CH maks (mm)</td>
<td>2879</td>
<td>1799</td>
</tr>
<tr>
<td>CH min (mm)</td>
<td>1158</td>
<td>1039</td>
</tr>
<tr>
<td>Musim kemarau</td>
<td>Mei-Okt</td>
<td>Apr-Nov</td>
</tr>
<tr>
<td>Musim hujan</td>
<td>Nov-Apr</td>
<td>Des-Mar</td>
</tr>
</tbody>
</table>

Analisis regresi kuantil

Gambar 6 dan 7 memperlihatkan grafik regresi kuantil beserta plot curah hujan bulannya berturut-turut untuk kelompok-1 dan kelompok-2. Pada kuantil ke-5, curah hujan bulanan kedua kelompok dari bulan Januari hingga bulan Desember nilainya kurang dari 200 mm. Bahkan, dari bulan Maret hingga bulan Desember curah hujannya kurang dari 100 mm. Bulan Juni hingga Oktober dengan nilai curah hujan mendekati nilai memperlihatkan bahwa kemungkinan besar tidak terjadi hujan pada bulan-bulan tersebut. Kondisi demikian akan sangat merugikan karena dapat menyebabkan kekeringan.
<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Kuantil ke</th>
<th>Parameter</th>
<th>Dugaan</th>
<th>Selang Kepercayaan</th>
<th>Stat. Wald</th>
<th>Nilai-p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>Intersep</td>
<td>211,75</td>
<td>178,30, 245,21</td>
<td>-</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulan</td>
<td>-53,00</td>
<td>-64,21, -41,79</td>
<td>93,40</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulan*bulan</td>
<td>3,25</td>
<td>2,33, 4,17</td>
<td>54,50</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Intersep</td>
<td>518,55</td>
<td>476,26, 560,84</td>
<td>-</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulan</td>
<td>-134,86</td>
<td>-148,15, -121,60</td>
<td>481,72</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulan*bulan</td>
<td>9,32</td>
<td>8,35, 10,30</td>
<td>387,5</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>Intersep</td>
<td>582,62</td>
<td>520,33, 644,91</td>
<td>-</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulan</td>
<td>-137,16</td>
<td>-159,28, -115,03</td>
<td>150,55</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulan*bulan</td>
<td>9,54</td>
<td>7,94, 11,13</td>
<td>153,06</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>Intersep</td>
<td>797,13</td>
<td>662,30, 931,95</td>
<td>-</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulan</td>
<td>-182,00</td>
<td>-226,91, -137,09</td>
<td>53,81</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulan*bulan</td>
<td>12,72</td>
<td>9,60, 15,8</td>
<td>55,96</td>
<td><0,0001</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Intersep</td>
<td>206,43</td>
<td>183,64, 229,21</td>
<td>-</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulan</td>
<td>-54,86</td>
<td>-63,48, -46,23</td>
<td>67,71</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulan*bulan</td>
<td>3,58</td>
<td>2,83, 4,31</td>
<td>111,0</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Intersep</td>
<td>402,60</td>
<td>370,68, 434,52</td>
<td>-</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulan</td>
<td>-104,73</td>
<td>-113,60, -95,86</td>
<td>375,54</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulan*bulan</td>
<td>7,13</td>
<td>6,54, 7,73</td>
<td>385,56</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>Intersep</td>
<td>480,00</td>
<td>442,15, 517,85</td>
<td>-</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulan</td>
<td>-121,47</td>
<td>-134,18, -108,75</td>
<td>209,50</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulan*bulan</td>
<td>8,47</td>
<td>7,51, 9,42</td>
<td>193,51</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>Intersep</td>
<td>666,83</td>
<td>581,38, 752,28</td>
<td>-</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bulan</td>
<td>-161,00</td>
<td>-188,07, -134,00</td>
<td>88,84</td>
<td><0,0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulan*bulan</td>
<td>11,17</td>
<td>9,28, 13,06</td>
<td>83,87</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

Curah hujan maksimum pada kuantil ke-50 mencapai 400 mm untuk kelompok-1 dan mencapai 300 mm untuk kelompok-2. Curah hujan minimumnya terjadi pada bulan Juli untuk kedua kelompok dengan nilai yang mendekati nol. Grafik regresi kuantil Kelompok 2 pada kuantil ke-75 memiliki kecepatan yang hampir sama dengan kuantil ke 50. Curah hujan maksimum pada kuantil ke 75 mencapai 450 mm untuk kelompok-1 dan mencapai 400 mm untuk kelompok-2.

Gambar 4. Selang kepercayaan 95% bagi nilai dugaan koefisien parameter regresi kuantil kelompok-1 (---) batas atas, (—) koefisien, (—) batas bawah.

Gambar 5. Selang kepercayaan 95% bagi nilai dugaan koefisien parameter regresi kuantil kelompok-2, (---) batas atas, (—) koefisien, (—) batas bawah.

Gambar 6. Grafik regresi kuantil curah hujan Kelompok-1 pada kuantil ke-5 (---), 50 (—), 75 (—), dan 95 (—).

Gambar 7. Grafik regresi kuantil curah hujan Kelompok-2 pada kuantil ke-(---), 50 (—), 75 (—), dan 95 (—).

Curah hujan bulan-bulan lainnya yang juga relatif tinggi dibanding nilai dugaan kuantil ke-95 kemungkinan dipengaruhi faktor lain.

KESIMPULAN

Pengelompokan 23 stasiun penakar curah hujan di Kabupaten Indramayu dengan menggunakan jarak Euclid dan metode pautan lengkap

Dugaan parameter regresi kuantil kedua kelompok pada kuantil ke-5, 50, 75, dan 95 berbeda, akan tetapi trennya sama. Seiring meningkatnya nilai kuantil, nilai dugaan bagi intersep semakin meningkat, nilai dugaan parameter bulan semakin menurun, dan nilai dugaan parameter kuartil bulan (bulan*bulan) semakin meningkat. Regresi kuantil dapat digunakan untuk mendeteksi kondisi-kondisi ekstrem, baik ekstrim kering (kuantil ke-5) maupun ekstrim basah (kuantil ke-95).

DAFTAR PUSTAKA

