<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color Polymorphisms on Common Carp Cultured in Indonesia</td>
<td>Rudhy Gustiano</td>
<td>85</td>
</tr>
<tr>
<td>Preliminary Study on the Heterotic Pattern of Tropical Quality Protein Maize (QPM) and Downy Mildew Resistance (DMR) Maize Inbreds D. Ruswandi</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Pendugaan Model Genetik dan Heritabilitas Karakter Ketahanan terhadap Penyakit Bulai pada Jagung</td>
<td>Muhammad Azrazi, Hajrij Aswidinnoor, Jajah Koswara, dan Memen Surahman</td>
<td>101</td>
</tr>
<tr>
<td>Identification of CDNA Fragment Tightly Linked to Nv and Trm-2 Loci in Tomato</td>
<td>Gojo and Fusao Motovoyoshi</td>
<td>111</td>
</tr>
<tr>
<td>Pewarisan Karakter Jumlah Bunga Tiap Nodus Hasil Persilangan Capsicum annum L. dengan Capsicum chinense</td>
<td>Rinda Kirana, Ridwan Setiamihardja, Nani Hermiati, dan A.H. Pernadi</td>
<td>120</td>
</tr>
<tr>
<td>Hubungan Delapan Karakter Vegetatif dan Komponen Hasil Pinang (Areca catechu L.) Sumbar-2 terhadap Produk Buah Mitahoratchman</td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>Pertumbuhan dan Variabilitas Fenotipik Manggis Hasil Irradiasi Sinar Gamma</td>
<td>Hamda Faouza, Murdaningsih H. Karmana, Nani Rostini, dan Ika Manska</td>
<td>133</td>
</tr>
<tr>
<td>Variasi Somakional dan Induksi Mutasi in vitro untuk Mempercepat Pemuliaan Tanaman Pisang</td>
<td>Rita Megia</td>
<td>153</td>
</tr>
<tr>
<td>Karakterisasi Gen β-Laktoglobulin dan Hubungannya dengan Sifat Produksi Susu pada Sapi Hissar</td>
<td>Maskur, Cece Sumantni, dan Muladno</td>
<td>164</td>
</tr>
<tr>
<td>Daya Gabung Karakter Pengisian Gabah Varietas Padi yang Membawa Alel Neral pada Lokus S-5</td>
<td>Aris Haimansis, H. Aswidinnoor, Trikoesmaningtyas, dan Suwarno</td>
<td>172</td>
</tr>
<tr>
<td>Penampilan Ketahanan Penyakit Layu Bakteri pada Hibrida Hibrida Seksual dan Somatik Solanum khasianum Clarke dan Solanum capsicoides ALL</td>
<td>Titik Handiyanti</td>
<td>181</td>
</tr>
<tr>
<td>Sirkulasi Empat Varietas Jagung Hibrida Beserta Tetuanya Berdasarkan Marka Mikrosatelit</td>
<td>Marcia B. Pabedindor, M.J. Mejaya, Subandi, dan M. Dahlan</td>
<td>192</td>
</tr>
</tbody>
</table>
IDENTIFICATION OF CDNA FRAGMENT TIGHTLY LINKED TO NV AND TM-2 LOCI IN TOMATO

(IDENTIFIKASI FRAGMENT CDNA YANG BERPAUTAN DENGAN LOKUS NV DAN TM-2 PADA TOMAT)

Sobir1) and Fusao Motoyoshi2)

Kata kunci: lokus Tm-2, differential display, fragmen cDNA, tomato
Key words: Tm-2 locus, differential display, cDNA fragment, tomat

Abstract

Tm-2 is a resistance gene in tomato to Tomato Mosaic Virus (ToMV), located in heterochromatic region of chromosome nine. Since map based cloning difficult to perform for identify the gene on that region, we apply differential display approach by using two near-isogenic tomato lines (NILs), one without Tm-2 and the other with Tm-2 to identify cDNAs of the transcripts from the region surrounding the Tm-2 locus. Among the 150 combinations of three anchor primers and fifty arbitrary primers, 10 combinations generated cDNA polymorphic bands. Out of them, only one combination of CA6, exhibited polymorphic band under southern blot analysis, subsequently a genetic experiment showed that the CA6 locus tightly linked to the Tm-2 locus. The CA6 fragment also hybridized to genomic DNA fragments from a tomato line carrying Tm-2a, a line of L. peruvianum from which Tm-2a originated, and a tomato line carrying another Tm-2-like gene. A northern hybridization blotting result suggested that the gene corresponding to CA6 fragment was constitutively transcribed.

1) Department of Agronomy, Bogor Agricultural University.
2) Research Institute of Bioresources, Okayama University.
Sari

Introduction

Resistance in tomato to Tomato Mosaic Virus (*ToMV*) is conferred by *TM-I*, *TM-2* and *TM-2(2)* (Pelham, 1966; Alexander, 1971). Clayberg (1960) found that *TM-2* confer higher levels of resistance than *TM-I*, some ToMV strains overcome the resistance conferred by either *TM-I* or *TM-2*, and multiply in the resistant varieties. The *TM-2* varieties are usually resistant to more strains of ToMV than *TM-I* varieties (Pelham 1966). *TM-2* and *TM-2(2)* are allelic (Pecaut, 1965), however, they interact differently with the Tomato Mosaic Virus 30 kDa movement protein (Weber et al., 2004).

The *TM-2* is located on the long arm of chromosome 9 in a heterochromatic re-

gion close to the centromere (Khush et al. 1964; Pecaut 1965). It has been known that *TM-2* gene tightly links to a gene called *netted virescent* (*nv*), which causes stunting and yellowing (Pelham 1966). In the tomato chromosomes, typical large heterochromatic regions exist around the centromeres. These heterochromatic regions have been presumed to lack of gene activities (Snod 1963) with some exceptions. As a rare case, Khush et al. (1964) demonstrated that *nv* and *TM-2* reside near the centromere in the heterochromatic region of chromosome 9.

Since the physical distance corresponding to 1 cM in the region surrounding *TM-2* locus has been predicted to be as long as 4000 kb (Ganal et al., 1989) and the region appears to be rich in repetitive sequences (Motoyoshi et al., 1996), it may be difficult to isolate by map-based cloning. Instead, it may be feasible to screen a cDNA candidate corresponding to the target gene from a pool of cDNAs of transcripts from active genes in this specific region.

The differential display of transcripts from different tissues has been recently described as a powerful technique for isolating transcripts of differentially expressing genes between different genotypes, or of stage-specific genes (Liang and Pardee 1992; Liang et al., 1993; Bauer et al., 1993), and has been successfully used for isolating several genes of tomato (Kadyrzhanova et al., 1998). This technique is based on the amplification of fragments from a first-strand cDNA using a combination of a poly-dT anchor primer and a random decamer primer (Liang and Pardee 1992).

In this study, differential display was conducted between two tomato lines GCR26 (+/+) and GCR236 (*TM-2/+/+*), that originated from common genetic background of 'Craigella'. More-
over, southern blot analysis, mapping and northern blot analysis were performed to elucidate genetic properties of polymorphic fragments exhibited in differential display. The study aimed at revealing cDNA fragment linked to Tm-2 loci in tomato and develop them as genetic marker for resistance to ToMV.

Materials and Methods

GCR26 is a tomato variety ‘Craigella’ that is susceptible to ToMV. GCR236 and GCR267 are homozygous for Tm-2 and Tm-2a, respectively, and have a common genetic background with ‘Craigella’ (Smith and Ritchie, 1983). Perou2 is a line bred in France and carries a Tm-2-like gene that is derived from a line of L. peruvianum and allelic to Tm-2 (Laterrot and Pecaut, 1969; Provvidenti and Schroeder, 1969). TMJS54-28, a line bred in Japan, also has a Tm-2-like gene allelic to Tm-2 that has originated from a line of L. peruvianum (Yamakawa et al., 1987). L. peruvianum P.I. 128650 is the source of Tm-2a that has been introgressed into tomato (Alexander, 1971).

Total RNA was isolated from fully developed leaves of 40 days old tomato seedlings by guanidium thiocyanate-phenol-chloroform extraction method (Chomczynski and Sacchi, 1987). One gram of fresh leaf tissue was ground in liquid nitrogen with a mortar and pestle, and homogenized in 10 ml RNA isolation buffer containing: 4 M guanidium thiocyanate, 25 mM sodium citrate pH 7.0, 0.5% lauroylsarcosine and 0.1 M mercaptoethanol. One ml 2 M sodium acetate pH 4.0, 10 ml water-saturated phenol, and 2 ml chloroform: isoamyl-alcohol (24:1) was added to the homogenate successively. The mixture was vortexed and centrifuged at 10 000 g for 20 min. The lower phase was discarded, and 10 ml isopropanol was added to the upper phase to precipitate the RNA. The RNA was pelleted by centrifugation at 3000 rpm for 10 min. The pellet was resuspended by vigorous mixing with the maximum speed of a vortex mixer in 2 ml of 4 M LiCl to solubilize polysaccharides. The insolubilized RNA was pelleted by centrifugation at 3000 rpm for 10 min, and the supernatant was discarded. The resulting pellet was redisolved in 0.6 ml 10 mM Tris, pH 7.5, 1 M EDTA, 0.5% sodium dodecyl sulfate (SDS), and 0.6 ml chloroform: isoamyl-alcohol (24:1) was added and mixed with the water phase by vortexing. After centrifugation at 15 000 rpm for 15 min, the upper phase was collected and precipitated by adding a mixture of 0.6 ml isopropanol and 60 µl 2.0 M of sodium acetate pH 5.0.

Using 2.5 µg of total RNA, first strand cDNA was synthesized using GT15N (N=G, A, C) as an anchor primer at a concentration of 2.5 µM. Each reaction was performed in the presence of the four dNTPs of 0.5 µM and 200 units MMLV reverse transcriptase (Gibco BRL) in a volume of 20 µl at 25°C for 10 min and 42°C for 50 min. The reaction was stopped by heating at 72°C for 15 min. The reaction mixture was meshed up to 100 µl.

A 2 µl aliquot of the mixture containing the reverse transcript was used for PCR. The final reaction mixture of 25 µl contained the reverse transcript as a template, 100 µM of each dNTPs, 0.4 mM of each GT15N (N=G, A, or C) primer, 0.4 mM arbitrary decamer primer (Nippon Gene) and 1 U of Gene Taq Polymerase (Nippon Gene). The reaction was carried out using a Perkin Elmer Cetus DNA thermal cycler 2400, for one cycle of 3 min at 95°C, 5 min at 40°C and 5 min at 72°C, and then for 24 cycles of 15 seconds at 95°C, 1 minute at 40°C and 2 min at 72°C, followed by a final extension step of 10 min at 72°C.
PCR amplification products were resolved in 12% denaturing polyacrylamide gels by electrophoresis and stained with ethidium bromide.

Cloning of polymorphic bands. The cDNA bands that were confirmed to be polymorphic in two trials using independently prepared RNA samples were selected for cloning. Each band was excised from a gel and placed at -20°C in a refrigerator until use. The excised band was pulverized with a micro-pipette tip in a 0.5 ml PCR tube, diluted with 38 µl H₂O, and vortexed vigorously. The cDNA in the diluted gel extract was further amplified by PCR using the same primer combination. The PCR was carried out in a final volume of 50 µl containing 38 µl of the diluted gel extract, 5 µl PCR buffer, 5 µl of 10 mM each dNTPs mixture, 1 µl of 10 mM anchor primer, 1 µl of 10 mM arbitrary primer, and 2 U Taq Polymerase (Perkin Elmer) by means of a Perkin Elmer Cetus DNA thermal cycler 2400, for one cycle of 2 min pre-PCR at 95°C, and for 20 cycles of 15 sec at 95°C, 1 min at 40°C and 2 min at 72°C, followed by the final extension step of 7 min at 72°C.

The terminal ends of the amplified fragment were filled with T4 DNA polymerase (Toyobo), and phosphorylated with T4 polynucleotide kinase (Toyobo). The blunt ends of the fragments were ligated to the SmaI site of a pBluescript II SK vector (Stratagene).

Southern hybridization analysis. Extraction of genomic DNA for Southern hybridization was performed by using method of Doyle and Doyle (1987) with slight modification. A total genomic DNA sample of 3 µg was digested with a restriction enzyme for overnight, and electrophoresed in a 1.0% agarose gel. The gel was soaked for 30 min in 0.5 N NaOH containing NaCl 1.5 M at with constant and gentle agitation for DNA denaturation, followed by blotting DNA bands to nylon membranes (Hybond-N, Amersham) by capillary transfer with alkaline solution (1.0 M Na₂CO₃, 20 mM NaOH) overnight as described by Kreike et al. (1990). After blotting, the DNAs were fixed by baking at 80°C for 2 hours.

The membrane was prehybridized in hybridization solution containing 50% (v/v) formamide, 5XSSC, 0.05 M Na-phosphate pH 7.0, 0.1% (w/v) lauroyl-sarcosine, (w/v) 2% blocking reagent, 0.5% (w/v) yeast RNA, and 7% (w/v) SDS at 42°C for 1 hour. After boiling for denaturation, the DIG-labeled (Boehringer Mannheim) probe was added into the hybridization buffer and the blots were hybridized overnight at 42°C. The membrane was washed twice for every 5 min at room temperature with 2XSSC and 0.1%SDS, and twice for every 15 min at 50°C with 0.5X SSC containing 0.1%SDS. After washing, the membrane was equilibrated in buffer I [0.1 M maleic acid, 0.15 M NaCl and 0.3% (v/v) tween] for 5 min, and submerged in anti-DIG solution [1% (w/v) blocking reagent and 0.01% (v/v) anti-Digoxigenin-AP (Boehringer Mannheim) in buffer I] for 1 hour at room temperature. The membrane was washed twice with buffer I. To develop chemical luminescent signals, the membrane was submerged in CSPD (Boehringer Mannheim) solution and exposed to an X-ray film for 2 hours.

Mapping. An F2 population consisting of 108 plants derived from a cross between GCR236 (Tm-2/Tm-2, n/v/v) and GCR26 (+/+ , +/+) was analyzed for the linkage relationship of the locus corresponding to a cDNA fragment CA6 to the nv locus and three SCAR markers that tightly linked to the Tm-2 (Sobir et al. 2000). Genomic DNA was extracted by the method of Murray and Thompson (1980) with slight modifications. Approximately 0.1 mg fresh
leaf tissue was frozen in liquid nitrogen, and pulverized with a plastic micro-
pipe tip in a 1.5 ml Eppendorf tube, and 400 μl of the extraction buffer [100
mM Tris-HCl pH 8.0, 0.35 M sorbitol, 5
mM EDTA and 10% (v/v) 2-mercapto-
ethanol] was added to each of the sample. The samples were centrifuged
for 15 min at 4000 rpm at room tem-
perature. The pellet was resuspended in
200 μl of extraction buffer containing
1.0% (w/v) CTAB (hexadecyltrimethyl-
ammonium bromide), 1 M NaCl, 25
mM EDTA, and 1.0% (w/v) lauroyl-
sarcosine, and incubated at 60°C for 20
min. The lysate was extracted once with
chloroform/isoamylalcohol (24:1) and
the aqueous phase was mixed with an
equal volume of isopropanol to pre-
cipitate DNA. The precipitate was
washed with 70% (v/v) ethanol, and
dissolved in 50 μl TE (10 mM Tris-HCl
pH 8.0, 1 mM EDTA) containing
RNase A at 10 μg/ml.

Northern hybridization analysis. For
RNA gel blot hybridization, an aliquot
of total RNA was denatured and elec-
trophoresed (10 μg per lane) in a de-
naturing gel (1.2% agarose, 0.2 M
formaldehyde). The gel was blotted
onto Hybrid-N™ nylon membranes
(Amersham) with 20XSSC, and then
the RNA was fixed to the membrane by
baking at 80°C for 2 hours. The mem-
brane was prehybridized for 1 hour in
hybridization buffer containing 0.25 M
Na2HPO4, 1 mM EDTA, 20% SDS and
0.5% blocking reagent (Boehringer
Mannheim). After denaturation by
boiling, the DIG-labeled (Boehringer
Mannheim) probe was added to the
hybridization buffer and the blot was
hybridized overnight at 42°C. After hy-
bridization, the membrane was washed
twice with 20 mM Na2HPO4, 1 mM
EDTA and 1% SDS at 65°C for 15 min.
After washing, the membrane was
submerged in anti-DIG solution for 1
hour at room temperature, washed twice
with a solution containing 0.1 M maleic
acid, 3 M NaCl and 0.3% tween. To
develop chemical-luminescent signals,
the membrane was submerged in CSPD
solution and exposed for to an X-ray
film for 2 hours.

Results

Differential display. The 150 com-
binations of 3 anchor primers and 50
arbitrary primers produced 2742 dis-
crete PCR products, with an average of
18.28 products per primer combination.
The size of amplified fragments ranged
from 100 to 1000 bp, with majority of
150–300 bp. Most of the products were
common between GCR26 (+/+), and
GCR236 (Tm-2/Tm-2), while 41 primer
combinations (27%) produced polymor-
phic bands between NILs. Out of them,
some fragments amplified by 39 com-
binations were apparently specific to
GCR236, while those by two combina-
tions were to GCR26 (Table 1).

Since the reaction for differential dis-
play was reported often to produce
artifacts (Liang et al., 1993), we did the
differential display again using inde-
dependently prepared RNA samples and
the primer combinations that generated
polymorphism in the first trial. In this
step, we found that 10 primer com-
binations (6.7%) reproduced polymor-
phic bands, which appeared to be
identical to those produced in the first
trial. From those 10 combinations, the
bands produced with the nine combina-
tions were specific to GCR236 and
that with one combination was specific
to GCR 26 (Table 1). The fragment size
ranged from 150 to 300 bp. To verify
specificity of these cloned cDNA frag-
ments to GCR236, cross hybridization
of blots of the cDNA clones with the
DIG-labeled GCR26 RNA was per-
formed. The clones that were not
hybridizes with the GCR26 RNA were
chosen for genomic Southern analysis.
Figure 1. Mapping of the site corresponding to the CA6 clone to tomato chromosome 9.

Table 1. Primer combinations produced polymorphic bands in two trials of differential displays.

<table>
<thead>
<tr>
<th>Anchor primer</th>
<th>Arbitrary primer First trial (RNA Sample I)</th>
<th>Second trial (RNA Sample II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT15G</td>
<td>A2, A10, A11, A13, A18, A24, B6, B14, B23</td>
<td>A2, A7 A10</td>
</tr>
</tbody>
</table>

Southern analysis. In order to examine whether the polymorphic fragments exhibited in the differential display are products from genes in the introgressed segment on chromosome 9, the 10 clones were labeled with DIG, and were hybridized to blots of restriction-digested genomic DNAs from GCR26 and GCR236.

The Southern hybridization revealed that there were one to four copies of the sequences homologous to the cDNA fragments in both of the NILs. Out of them, three clones, AA13, CA6 and GA10, hybridized to one copy, five clones, AA2, AA10, CB6, CA7 and GA2, to two copies, one clone, CA11, to three copies, and one clone, GA7, to four copies of homologous sequences. The CA6 clone hybridized to restriction enzyme-digested fragments of different sizes, one specific to GCR236 and the other to GCR26, i.e. this clone exhibited a restriction fragment length polymorphism (RFLP) between the two tomato lines. With the other clones, no RFLPs were detected between the NILs.
Mapping of a sequence corresponding to CA6 cDNA fragment. For further confirmation that the CA6 fragment was derived from the introgressed region surrounding the Tm-2 locus, a pair of 24-mer primers specific to CA6 fragment was designated. The sequences are:

CTTTCGTCTGTGTCATC
ATCTGTAGT (CA6A) and
CACCCGACCCCTGAGCCCTAC
ATTAC (CA6B).

This primer pair produced a single band specific to GCR236. In linkage analysis, the locus corresponding to the CA6 fragment was proved to be tightly linked to the nv locus and the three SCAR markers SCE16900, SCG09700 and SCN131000 (Sobir et al., 2000), suggesting that the locus corresponding to the CA6 fragment (the CA6 locus) resides in the introgressed region surrounding the Tm-2 locus (Table 2, Figure 1).

Detection of loci homologous for the CA6 locus. To know whether the CA6 locus is conserved in the other tomato lines, TMJ54-28 (homozygous for Tm-2 like gene), GCR267 (Tm-2a/Tm-2a) and L. peruvianum P.I. 128650 (Tm-2a/Tm-2a), Southern hybridization analysis was carried out. Their genomic DNAs were digested with EcoRV that generated a distinct polymorphic band specific to GCR236. The DNA blots were hybridized with DIG-labeled CA6 fragment. As a result, GCR267 and L. peruvianum P.I. 128650 showed a signal of the same size as that of GCR236, while TMJ54-28 showed a single signal that was polymorphic to those in GCR26 and GCR236 (Figure 2).

Figure 2. Southern hybridization to genomic DNA of tomato GCR26 (1), GCR236 (2), TMJ54-28 (3), GCR267 (4) and L. peruvianum P.I. 128650 (5), digested with EcoRV and hybridized to CA6 mRNA fragment.

Expression pattern of the CA6 locus. In order to identify whether the CA6 locus is constitutively transcribed or alternatively its transcription is induced by ToMV infection, cotyledons of GCR267 (Tm-2a/Tm-2a) which is

<table>
<thead>
<tr>
<th>Locus</th>
<th>Phenotype</th>
<th>Phenotype</th>
<th>(\chi^2)</th>
<th>(\chi^2_{AB})</th>
<th>(\chi^2_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA6</td>
<td>nv</td>
<td>AB 74 0 0 30</td>
<td>0.82</td>
<td>128.07**</td>
<td>99.18**</td>
</tr>
<tr>
<td>CA6</td>
<td>SCE16900</td>
<td>AB 74 0 0 30</td>
<td>0.82</td>
<td>128.07**</td>
<td>99.18**</td>
</tr>
<tr>
<td>CA6</td>
<td>SCG09700</td>
<td>AB 74 0 0 30</td>
<td>0.82</td>
<td>128.07**</td>
<td>99.18**</td>
</tr>
<tr>
<td>CA6</td>
<td>SCN131000</td>
<td>AB 74 0 0 30</td>
<td>0.82</td>
<td>128.07**</td>
<td>99.18**</td>
</tr>
</tbody>
</table>
resistant to Ltb1, a ToMV strain, were inoculated with this strain or mock-inoculated with 50 mM phosphate buffer without ToMV. The inoculated and mock-inoculated plants were maintained at 25°C. The cotyledons were harvested 48 hours after inoculation, and total RNAs were extracted from them. The Northern hybridization of the RNAs with the DIG labeled CA6 fragment as a probe (Figure 3) showed that the levels from the gene corresponding to the CA6 locus were similar in the inoculated and mock-inoculated cotyledons, suggesting that the CA6 locus is constitutively transcribed.

The region surrounding the Tm-2 locus in GCR236 might be less heterochromatic than the homologous region in GCR26, since nine of the ten cDNAs differentially displayed is specific to GCR236 and only one is to GCR26. Khush et al. (1964) speculated that the loci themselves of active genes are not heterochromatic, though they exist in a heterochromatin. These 10 cDNA fragments however do not necessary correspond to all 10 actives genes; i.e. more than one fragment might amplified from different parts of one locus as indicated by Habu et al. (1997).

The CA6 fragment corresponds to a single copy locus. The proposal of Khush et al. (1964) suggests a possibility that the CA6 cDNA fragment is available for a specific marker to represent an euchromatic part in a heterochromatic region. In addition the CA6 cDNA fragment can be used as a co-dominant RFLP marker, especially for differentiating the Tm-2-like gene in TMJ54-28 from Tm-2 and Tm-2a.

Conclusions

Differential Display technique on two near isogenic lines of GCR26 (+/++) and GCR236 (Tm-2/Tm-2) of tomato, resulted CA6 cDNA fragment that exhibited polymorphic band under southern blot analysis, and tightly linked to the nv and Tm-2 locus.

The CA6 fragment hybridized to genomic DNA fragments from a tomato line carrying Tm-2a, a line of L. peruvianum from which Tm-2a originated, and a tomato lines carrying another Tm-2-like gene.

Northern hybridization analysis result suggested that the gene corresponding to CA6 fragment was constitutively transcribed.
References

Tm-2 and *Tm-2(2)*. Arch. Virol. 149: 1499–514.