Technical Paper

Modifikasi Mesin Penyiangan dan Penggulud Tipe Bajak Dua Sayap dan Uji Kinerjanya Pada Tiga Jenis Tanah

Modification The Machine of Power Weeder and Two Wings Type Furrower and Their Performances Test on The Three Different Soil

Gatot S. A. Fatah

Abstract

The machine performance test of power weeder in the heavy soil shows that: Low cannot penetration, High rolling resistance and Gear box was very hot. The objectives research were: 1). Modification the power weeder for applied to the diversity texture of soil, 2). to know performance the rubber wheel compare to iron wheel and 3). to know performance test the coulter. The methods used are: 1) to measure the land condition, such as: moisture content of soil, penetration resistance, shear stress, average mass diameter and roughness surface. 2) to test machine performance, such as: weeded percentage, rolling wheel, forward velocity, gasoline consumed and weeded capacity in the tree researches located. The result of the research were: 1) Design of the iron wheel can be applied to three kind of soil (light, moderate and heavy soil). In the heavy soil (Kendalpayak) weed percentage 58.33%, fuel consumption 1.23 l hour\(^{-1}\) and weed capacity was 13.17 hours ha\(^{-1}\); 2) Design of the rubber wheel can applied in the light soil (Muneng); 3) Coulter can be applied in light and moderate soil for the moisture content of soil was 21.70%.

Key words: Modification power weeder, iron wheel, gear box, coulter.

Pendahuluan

Latar Belakang

Upaya pemerintah dalam meningkatkan produksi kacang-kacangan khususnya kedelai agar dapat memenuhi kebutuhan kedelai yang mencapai lebih dari 2 juta ton/hari (BPS, 2004), seringkali terkendala karena kurang tersedianya produk yang kontinyu. Salah satu permasalahan yang dapat diidentifikasi adalah tindakan perawatan tanaman pada waktu penyiangan yang masih kurang terjamin kelangsungannya. Proses penyiangan dilakukan agar tanaman utama dapat tumbuh dengan baik dan berdaya hasil tinggi, disamping itu produktivitas dan kualitas hasilnya dapat tetap dipertahankan.

Pada pelaksanaan usahatani, proses penyiangan tersebut memerlukan tenaga kerja dan biaya yang cukup tinggi. Proses pengelolaan tanah tersebut menggunakan tenaga kerja manusia, dengan bantuan alat sabit dan cangkul. Namun kecenderungan menurunnya tenaga kerja pertanian yang berlalai ke sektor non pertanian menjadi salah satu kendala dalam mendukung keberlanjutan proses usahatani ini khususnya tanaman kacang-kacangan.

Tanaman kacang-kacangan dapat tumbuh dengan baik dan berdaya hasil tinggi, apabila dilakukan tindakan perawatan tanaman yang baik yaitu penyiangan. Smith dan Wilkes (1979) mengemukakan bahwa penyiangan merupakan suatu bentuk pengendalian gulma secara mekanis dengan menggunakan alat untuk mengaduk atau membalik permukaan tanah sampai kedalaman tertentu dengan cara sedemikian rupa, agar gulma yang masih kecil akan dibinasakan dan pertumbuhan tanaman budaya dapat ditingkatkan.

Menurut Ardjas dan Bangun, (1985) gulma yang dibiarakan tumbuh pada tanaman kedelai dapat menghambat pertumbuhan dan menurunkan hasil sebesar 18-76 %. Oleh karena itu penyiangan pada tanaman kedelai perlu dilakukan agar buddayanya lebih produktif dan hasilnya lebih baik.

Mesin-mesin tersebut belum banyak digunakan

1 Balai Penelitian Tanaman Kacang-kacangan dan Umbi-umbian (BALITKABI), Jl. Raya Kendalpayak Km 8, Malang 65101, gsafatah@yahoo.co.id

Penggunaan mesin tersebut untuk menyiapkan tanaman kacang-kacangan khususnya tanaman kedelai pada jenis tanah yang bertekstur berat pertu dilakukan modifikasi. Oleh karena itu modifikasi yang dilakukan antara lain adalah:

1) Memodifikasi roda karet dengan bahan dari besi agar gaya tariknya lebih baik
2) Memperbesar transmisi (gear box) dari daya 2 HP (Horse Power) menjadi 4 HP dan
3) Menambahkan pisau pemotong atau coulter yang berada pada bagian depan bajak dua sayap agar proses penetrasi tanah dapat lebih baik dan dapat diterapkan pada jenis tanah yang bertekstur berat.

Tujuan
Penelitian modifikasi mesin penyiang tipe bajak dua sayap dilakukan dengan tujuan:

1. Memodifikasi mesin penyiang tipe bajak dua sayap dengan mengganti roda karet menjadi roda besi, memperbesar daya gear box dari 2 HP menjadi 4 HP dan menambahkan coulter
2. Menguji kinerja mesin penyiang tipe bajak dua sayap dengan roda karet dibandingkan roda besi serta mesin yang menggunakan pisau coulter dibandingkan dengan tanpa menggunakan pisau coulter pada tiga lokasi (KP Muneng mewakili tanah ringan, KP Jambegede mewakili tanah sedang dan KP Kendalpayak mewakili tanah berat).

Metode Penelitian

Lokasi Penelitian
Pelaksanaan Penelitian bertempat di:

1). Laboratorium Mekanisasi Balai Penelitian Tanaman Kacang-kacangan dan Umbi-umbian (Balitkabi)
2). KP Kendalpayak, Kecamatan Pakisaji, Kabupaten Malang, mewakili jenis tanah berat
3). KP Jambegede, Kecamatan Kepanjen, Kabupaten Malang, mewakili tanah sedang
4). KP Muneng, Kecamatan Sumberars, Kabupaten Probolinggo, mewakili tanah ringan

Bahan dan Alat
Bahan yang digunakan dalam memodifikasi mesin penyiang tipe bajak dua sayap dapat digolongkan menjadi empat bagian yaitu: 1) Bahan utama, 2) Bahan penunjang, dan 3) Bahan uji di lapangan. Bahan utama mesin terdiri dari: 1) Motor penggerak berbahan bakar bensin 5.5 HP, digunakan sebagai sumber tenaga mesin penyiang tipe bajak dua sayap, 2) Penyalur tenaga dari mesin penggerak menuju roda penarik atau gear box berkekuatan 4 HP dengan reduksi putaran sepetigapuluh (1:30), 3) Roda penarik menggunakan roda karet dan roda besi dengan diameter 32 cm, lebar 9 cm dan sirip 14 buah.

Bahan penunjang mesin meliputi: 1) Plat besi ukuran 120 x 240 cm tebal 0,2 cm, 2) Besi siku ukuran 5x5 cm panjang 600 cm, 3) Besi pipa dengan diameter 2,5 cm dan panjang 400 cm, 4) Besi as dengan diameter 1,0 cm dan panjang 100 cm. Sedangkan bahan penunjang pemotong tanah atau coulter dibuat dari plat besi stainless tebal 0,3 cm diameter 17 cm, dengan dilengkapi bearing (komponen penahan putaran coulter pada poros) dengan ukuran as 1,2 cm.

Gambar 1. Mesin Penyiang sebelum dimodifikasi

Tahapan Penelitian

Penelitian modifikasi mesin penyiang tipe bajak dua sayap yang dilakukan meliputi beberapa tahapan sebagai berikut:

1. Memodifikasi mesin penyiang tipe bajak dua sayap di Laboratorium Mekanisasi dan Rekayasa Balai Penelitian Tanaman Kacang-kacangan dan Umbi-umbian (BALITKABI), Desa Kendalpayak, Kecamatan Pakisaji, Kabupaten Malang
2. Menguji daya tahan mesin di Laboratorium sebelum uji kinerja di lapang
3. Menguji kinerja mesin di lapangan pada umur tanaman kedelai 3 sampai 4 minggu setelah tanam, pada:
 a) Tiga Kebun Percobaan dengan jenis tanah yang berbeda, yaitu:
 - KP Kendalpayak, Malang (mewakili tanah berat)
 - KP Jambegede, Malang (mewakili tanah sedang)
 - KP Muneng, Probolinggo (mewakili tanah ringan)
 b) Parameter yang diamati adalah:
 - Kadar air, Tahanan penetrasi, Tahanan geser, Kekecepatan impaksi dan Diameter Massa
 - Prosentase penyiangan, Konsumsi bensin, Kapasitas penyiangan

Untuk mengetahui pengaruh roda maka dilakukan pengujian dengan roda karet dan roda besi, disamping itu untuk mengetahui pengaruh pemotong tanah (coulter) juga dilakukan pengujian dengan menggunakan coulter dan tanpa coulter.

Hasil dan Pembahasan

Hasil Modifikasi Mesin Penyiang

Berdasarkan hasil uji kinerja pada rancangan pertama mesin penyiang tipe bajak dua sayap, maka mesin tersebut hanya sesuai untuk jenis tanah yang bertekstur ringan (Desa Tawangasari, Kecamatan Garum, Kabupaten Blitar). Sedangkan untuk uji kinerja pada dua lokasi penelitian dengan jenis tanah yang bertekstur berat (KP Kendalpayak, Kecamatan Pakisaji, Kabupaten Malang dan Desa Mojowarno, Kecamatan Mojosari, Kabupaten Mojokerto), mesin tersebut tidak dapat dioperasikan.

Permasalahan yang terjadi di lapangan (pada tanah bertekstur berat) antara lain adalah: 1. Slip roda karet tinggi karena gaya tarik roda tidak mampu untuk mengimbangi gaya tarik bajak tipe dua sayap, 2. Gear box (sistem penyalur tenaga dari mesin menuju roda) panas atau bagian penutup oli mengeluarkan asap.

Mesin penggerak yang dipergunakan adalah merek "YASUKA" berbahan bakar bensin dengan daya sebesar 5,5 HP. Sistem transmisi atau gear box yang dipergunakan untuk menyalurkan tenaga dari mesin penggerak menuju roda besi, berkekuatan 4 HP.
Tabel 1. Spesifikasi teknis dan harga komponen mesin

<table>
<thead>
<tr>
<th>Uraian</th>
<th>Merek</th>
<th>Ukuran (cm)</th>
<th>Tenaga (p xIX t)</th>
<th>Harga (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesin</td>
<td>Yasuka</td>
<td>50 x 40 x 60</td>
<td>5,5 HP</td>
<td>750.000</td>
</tr>
<tr>
<td>Gear Box</td>
<td>HRF</td>
<td>40 x 20 x 40</td>
<td>4,0 HP</td>
<td>800.000</td>
</tr>
<tr>
<td>Roda Besi</td>
<td>-</td>
<td>Ø = 32, l = 12</td>
<td>-</td>
<td>150.000</td>
</tr>
<tr>
<td>Bajak</td>
<td>-</td>
<td>21 x 17 x 15</td>
<td>-</td>
<td>250.000</td>
</tr>
<tr>
<td>Coulter</td>
<td>-</td>
<td>Ø = 24, tb = .03</td>
<td>-</td>
<td>100.000</td>
</tr>
<tr>
<td>Kerangka</td>
<td>-</td>
<td>50 x 30 x 45</td>
<td>-</td>
<td>500.000</td>
</tr>
<tr>
<td>Kemudi</td>
<td>-</td>
<td>125 x 70 x 25</td>
<td>-</td>
<td>150.000</td>
</tr>
<tr>
<td>Penyambung</td>
<td>-</td>
<td>Ø = 9, tb = 1,3</td>
<td>-</td>
<td>45.000</td>
</tr>
<tr>
<td>Penunjang</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>450.0000</td>
</tr>
<tr>
<td>Ongkos</td>
<td>-</td>
<td>-</td>
<td>2 orang</td>
<td>1.250.000</td>
</tr>
<tr>
<td>Jumlah</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.445.000</td>
</tr>
</tbody>
</table>

Keterangan:
p = panjang, l = lebar, t = tinggi, tb = tebal, Ø = diameter (cm) = sentimeter, (HP) = Horse Power atau Tenaga Kuda, (Rp) = Rupiah

Sebelum dimodifikasi, sistem transmisi atau gear box berkekuatan 2 HP (hanya dipergunakan untuk tanah ringan).

Semua komponen utama tersebut, yaitu mesin penggerak dan sistem transmisi atau 'gear box', mudah diperoleh pada toko-toko yang menjual alat pertanian dengan harga yang terjangkau. Harga mesin penggerak merek ‘Yasuka’ 5,5 HP adalah Rp 750.000,- dan Sistem transmisi atau 'gear box' merek 'HRF' adalah Rp 800.000,- (bulan Januari 2006).

Roda yang dimodifikasi terbuat dari besi tebal besi 2 cm dengan diameter 32 cm serta lebar 12 cm. Roda penggerak sebelum modifikasi terbuat dari bahan karbon, dengan dimensi yang sama (diameter 32 cm, lebar 12 cm). Modifikasi roda dilakukan dengan tujuan untuk meningkatkan efisiensi gaya tank (traksi roda) agar slip roda kecil (Gill dan Vanden Berg, 1968).

Pada bagian tengah roda dibalut dengan karet V-belt tipe B-39, yaitu karet belt tipe V yang digunakan untuk menyatukan putaran mesin dengan puli tipe B yang kelilingnya sebesar 39 inci. Rancangan tersebut bertujuan untuk memudahkan operator agar tidak perlu mengganti roda pada saat operasi maupun transportasi di lapangan. Disamping itu rancangan roda besi tersebut diharapkan dapat dipergunakan pada beberapa jenis tanah, mulai tanah ringan sampai berat.

Roda besi dirancang untuk pengoperasian mesin penyiang pada tanah kering. Jumlah sirip sebanyak 14 buah dengan jarak antar sirip pada bagian luar roda sebesar 3,5 cm serta sudut kemiringan sirip sebesar - 30° dari poros roda atau sudut radial - 30° (Gambar 2). Sedangkan berat mesin total adalah 75 kg, daya 5,5 HP termasuk mesin ringan, sehingga model sirip roda dengan sudut radial - 30° tersebut dapat membantu gaya tekan kebawah sehingga dapat mengurangi slip pada roda besi (Mas’ud 1984). Sedangkan rancangan roda karet sebelumnya bentuk sirip sejajar dengan arah pusat roda (sudut radial 0°) dan pada tiap sirip membentuk kemiringan 45° (sudut

![Gambar 2. Mesin Penyiang sebelum dan sesudah modifikasi](image-url)
cord 45°) dari arah gerak maju roda. Dengan rancangan roda karet, slip roda pada tanah berat cukup tinggi.

Bajak tipe dua sayap yang dirancang dilengkapi dengan pengatur kedalaman, sehingga apabila menginginkan beberapa kedalaman tinggal mengatur sudut potong bajak dengan memutar baut pengaturnya (Anonymous, 1999). Panjang bajak yang dirancang 21 cm, lebar sayap 17 cm, tinggi bajak 15 cm dan luas dua sayap adalah 450 cm². Lebar mata bajak atau kajen (share) adalah 9 cm.

Pada bagian depan bajak dilengkapi dengan pemotong tanah atau coulter sebanyak satu buah. Coulter berfungsi untuk memotong tanah secara vertikal yang searah dengan pergerakan maju mesin sebelum tanah tersebut dipotong dan dibalik oleh bajak tipe dua sayap. Diameter pemotong tanah 24 cm dan tebalnya 0,03 cm. Tipe coulter adalah Plain Blade yaitu tipe pisau berbentuk lingkaran yang datar.

Komponen penunjang mesin penyiang tipe bajak dua sayap adalah kerangka besi yang dapat dibongkar pasang atau dirancang dengan sistem knock down. Dengan sistem knock down tersebut waktu yang diperlukan untuk membongkar mesin berkisar 25 menit, sedangkan untuk merakit kembali mesin penyiang tipe bajak dua sayap berkisar 35 menit. Jumlah tenaga kerja yang diperlukan untuk membongkar dan merakit mesin adalah dua orang operator. Rancangan mesin tersebut dibuat dengan tujuan agar mesin dapat dengan mudah dimasukkan pada bagasi kendaraan.

Komponen penunjang lainnya adalah sistem kemudi mesin penyiang yang dapat diatur ketinggiannya, untuk menyesuaikan dengan operator yang menjejakannya.

Kondisi Tanah Sebelum Uji Kinerja

a. Kadarn air tanah

Uji kinerja mesin selanjutnya adalah di KP Kendalipayak, Pakisaji, Malang, kadar air dan jenis tanahnya berbeda dengan yang di KP Muneng. Roda yang dapat diuji di KP Kendalipayak hanya roda besi, sedangkan roda karet tidak dapat diuji karena slip rode tinggi. Implemen pemotong tanah atau ‘coulter’ tidak dapat digunakan, dikarenakan ‘coulter’ tidak mampu penetrasi.

Pada uji kinerja mesin di KP Jambegede kadar air tanah rata-rata 21,70 % (Gambar 3). Mesin penyiang tipe bajak dua sayap dapat dioperasikan dengan baik, pemotong tanah (coulter) juga dapat bekerja dengan baik. Uji kinerja di KP Jambegede dapat dilakukan sampai tiga kali karena ada tanaman kedelai yang belum dilakukan penyiangan dengan menggunakan alat cangkul.

Pada Gambar 3, dapat dilihat bahwa pengoperasian mesin penyiang tipe bajak dua sayap oleh operator pada kondisi yang sesuai. Dimana kadar air tanah tidak terlalu kering dan juga tidak terlalu basah. Oleh karena itu kinerja mesin dapat berlangsung dengan baik dan operator dapat merasakan lebih nyaman pada saat pengoperasian mesin penyiang tipe bajak dua sayap. Implement pemotong tanah (coulter) dapat dipasang dan berfungsi dengan baik.

Sedangkan pada uji mesin penyiang tipe bajak dua sayap di KP Kendalipayak (dilakukan pada tanggal 14 Maret 2006), hanya dapat menguji roda besi saja tanpa roda karet, dikarenakan sip roda karet sangat tinggi. Implemen atau peralatan pemotong tanah (coulter) juga tidak dapat dipasang karena kondisi tanah cukup keras, sehingga pemotong tersebut tidak mampu untuk melakukan penetrasi atau memotong tanah sebelum dilakukan pemotongan dan pembaikan oleh bajak. Pada jenis tanah yang berat (Entisol berat dengan kandungan liat 48 %, debu 33 % dan pasir 19 %, mesin penyiang dengan implemen pemotong tanah atau ‘coulter’ tidak mampu penetrasi.

Dari uji statistik terlihat bahwa antara lokasi KP Kendalipayak, KP Jambegede dan KP Muneng terdapat perbedaan kadar air yang nyata. Oleh karena itu perbedaan tersebut berpengaruh pada uji kinerja,
<table>
<thead>
<tr>
<th>Parameter uji kinerja yang diukur</th>
<th>Kendalpayak</th>
<th>Jambegede</th>
<th>Muneng</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar air (%)</td>
<td>27.90 c</td>
<td>21.77 b</td>
<td>9.67 a</td>
</tr>
<tr>
<td>Penetrometer sedalam 5 cm</td>
<td>171.67 b</td>
<td>46.67 a</td>
<td>33.33 a</td>
</tr>
<tr>
<td>Penetrometer sedalam 10 cm</td>
<td>203.33 b</td>
<td>63.33 a</td>
<td>60.00 a</td>
</tr>
<tr>
<td>Shear stress 10 cm</td>
<td>81.67 b</td>
<td>36.67 a</td>
<td>35.33 a</td>
</tr>
<tr>
<td>Kekasaran Permukaan</td>
<td>7.67 a</td>
<td>8.33 a</td>
<td>9.00 a</td>
</tr>
<tr>
<td>Kekasaran Permukaan Rata-rata</td>
<td>9.00 a</td>
<td>10.33 a</td>
<td>13.67 b</td>
</tr>
<tr>
<td>Persentase penyiangan (%)</td>
<td>42.77 c</td>
<td>32.43 b</td>
<td>14.67 a</td>
</tr>
<tr>
<td>Slip pada roda besi (%)</td>
<td>58.33 a</td>
<td>65.00 a</td>
<td>71.67 a</td>
</tr>
<tr>
<td>Kecepatan maju m dt⁻¹</td>
<td>32.67 b</td>
<td>24.33 ab</td>
<td>18.33 a</td>
</tr>
<tr>
<td>Konsumsi BBM</td>
<td>0.71 a</td>
<td>0.72 a</td>
<td>0.75 a</td>
</tr>
<tr>
<td>Kapasitas Penyiangan</td>
<td>1.23 b</td>
<td>1.14 a</td>
<td>1.13 a</td>
</tr>
<tr>
<td>Kapasitas Penyiangan</td>
<td>13.17 a</td>
<td>11.68 a</td>
<td>10.35 a</td>
</tr>
</tbody>
</table>

*) Angka pada baris yang sama dan didampingi huruf yang sama, menunjukkan tidak berbeda nyata pada taraf uji Duncan p < 0.05.

b. Tahanan Penetraian Tanah

Hasil pengukuran yang dilakukan sebelum melakukan uji kinerja menunjukkan bahwa ada perbedaan yang signifikan antara ketiga Kebun Percobaan. Pada KP Muneng, Sumberasari, Probolinggo pada kedalaman 5 dan 10 cm cenderung paling kecil (33 N cm⁻² dan 60 N cm⁻²) bila dibandingkan dengan, KP Jambegede, Kepanjen, Malang (47 N cm⁻² dan 63 N cm⁻²), dan KP Kendalpayak, Pakisaji, Malang (173 N cm⁻² dan 203 N cm⁻²). Dari data (Tabel 2) dapat dilihat bahwa KP Kendalpayak berbeda nyata dengan kedua Kebun Percobaan lain yaitu KP Jambegede dan KP Muneng. Hal demikian dimungkinkan karena jenis tanah dan kadar air tanah pada saat uji kinerja mesin pada masing-masing Kebun Percobaan berbeda. Penetraian tanah pada masing-masing Kebun Percobaan akan sangat berpengaruh terhadap kinerja mesin penyiang. Dimana pada tanah yang nilai penetraian tanahnya tinggi maka alat lebih sulit untuk melakukan penetraian atau memotong, mengangkat dan membalik permukaan tanah. Demikian pula sebaliknya bila penetraian tanah kecil maka mesin dengan mudah dapat melakukan penetraian, sehingga akan berpengaruh terhadap kapasitas mesin penyiang.

c. Tahanan Geser Tanah

Pengukuran tahanan geser tanah menggunakan alat "Fan Shear Stress" dengan luas kerucut 1 cm².

Gamma 4. Penetraian tanah kedalaman 5 dan 10 cm di tiga lokasi

Gambar 5. Tahanan geser tanah kedalaman 10 cm di tiga lokasi
diperoleh data seperti pada Tabel 2. Dari pengukuran tahanan geser pada kedalaman penyiangan yang sama (10 cm) menunjukkan bahwa tahanan geser terkecil terjadi pada tanah yang berlokasi di KP Muneng, Sumberari, Probolinggo dengan nilai rerata sebesar 35,56 N cm\(^{-2}\) kemudian disusul pada tanah di KP Jambegede, Kepanjen, Malang dengan nilai rata-rata sebesar 36,33 N cm\(^{-2}\) (tidak berbeda dengan KP Muneng) dan yang terbesar adalah pada KP Kendalpayak, Pakisaji, Malang dengan nilai rerata sebesar 81,60 N cm\(^{-2}\) (berbeda nyata dibandingkan dengan KP Muneng dan Jambegede). Perbedaan tahanan geser, mempunyai kecenderungan sama dengan tahanan penetrasi tanah. Tahanan tersebut juga dipengaruhi kondisi tanah pada saat uji kinerja.

d. Kekasaran Permukaan Tanah
Hasil pengukuran menggunakan alat "relief meter" menunjukkan bahwa selisih permukaan tanah yang tertinggi dan terendah (Kekasaran Permukaan) sebelum penyiangan pada masing-masing sebagai berikut: 1) KP Muneng, Sumberari, Probolinggo sebesar 9,00 cm, 2). KP Jambegede, Kepanjen, Malang sebesar 8.33, sedangkan 3). KP Kendalpayak, Pakisaji, Malang nilaiya sebesar 7,67 cm. Nilai kekasaran permukaan tanah pada masing-masing Kebun Percobaan sebelum uji kinerja mesin dipengaruhi oleh jenis tanah atau tekstur tanahnya, serta cara pengolahan tanahnya.

Kondisi Sesudah Uji Kinerja Mesin

a. Kekasaran Permukaan Tanah
Hasil pengukuran sesedah uji kinerja menunjukkan bahwa Kekasaran Permukaan sesudah penyiangan pada masing-masing sebagai berikut: 1) KP Muneng, Sumberari, Probolinggo sebesar 13,67 cm, 2). KP Jambegede, Kepanjen, Malang sebesar 10,33, sedangkan 3). KP Kendalpayak, Pakisaji, Malang nilaiya sebesar 9,00 cm.

Dari hasil perhitungan analisis korelasi atau hubungan antara kadar air dengan kekasaran permukaan dengan taraf yang sangat nyata. Pada Gambar 6. diperoleh nilai \(R^2 = 0.9969\) dan persamaan \(y = -0.2587x + 16.116\).

Gambar 6. Hasil pengukuran dengan relief meter, sebelum dan sesudah penyiangan di KP Kendalpayak

Gambar 7. Hasil pengukuran dengan relief meter, sebelum dan sesudah penyiangan di KP Jambegede

Gambar 8. Hasil pengukuran dengan relief meter, sebelum dan sesudah penyiangan di KP Muneng

Gambar 9. Hubungan antara kadar air dg kekasaran permukaan

Gambar 10. Pengukuran diameter massa rerata pada tiga lokasi
b. Diameter Massa Rerata

Alat yang digunakan untuk mengukur diameter massa rerata (DMR) adalah "Seed Bed Sampling". Pada pengukuran DMR untuk jenis tanah yang ringan (KP Muneng), nilai rata-ratanya adalah 14,62 mm; pada tanah sedang (KP Jambegede) nilai rata-ratanya 32,43 mm dan pada tanah berat (KP Kendalpayak) nilai rata-ratanya adalah 42,67 mm (Gambar 10).

Diameter massa rerata dipengaruhi juga oleh: Kandungan air saat pengolahan tanah; Alat olah tanah yang digunakan; Bahan organik serta Kelembaban tanah alat. Dari hasil pengukuran dapat dikeluarkan bahwa tekstur tanah pada ketiga Kebun Percobaan berbeda, sehingga akan mempengaruhi pengukuran diameter rerata agregat di lapang. Dimana pada tanah yang berat DMR semakin besar dan pada tanah yang ringan DMR kecil.

Dari perhitungan analisis varians diperoleh bahwa kekayaan permukaan pada tiga lokasi penelitian berbeda (Tabel 2). Oleh karena itu sesuai dengan yang dikemukakan oleh Karlén (1990), bahwa kegemburan tanah adalah salah satu dari beberapa karakteristik penting dari tanah yang menggambarkan hasil olahan tanah, semakin kecil DMR maka tanah semakin remah dan gembur. Oleh karena itu urutan kegemburan tanah pada tiga lokasi penelitian adalah KP Muneng, disusui KP Jambegede dan yang terakhir adalah KP Kendalpayak.

c. Prosentase penyiangan

Penyiangan dengan menggunakan mesin penyiang tipe bajak dua sayap dapat mencapai 71,8 % pada tanah ringan (KP Muneng), 70,3 % pada tanah sedang (KP Jambegede) dan 63,4 % pada tanah berat (KP Kendalpayak). Prosentase penyiangan dipengaruhi oleh perbandingan banyaknya rumpun yang diisang dengan sebelum disiang yang berada diantara lajur tanaman serta kedalaman penetrasi bajak.

Dari hasil perhitungan analisa statistik, diperoleh bahwa prosentase penyiangan tidak berbeda nyata pada ketiga lokasi penelitian hal ini ditandai dengan notasi yang sama pada huruf dibelakang hasil pengukuran di lapangan. Disamping itu prosentase penyiangan juga tidak mempunyai hubungan atau korelasi yang nyata dengan parameter pengukuran yang lainnya.

d. Slip roda

Pada uji kinerja mesin penyiang di KP Kendalpayak, Kecamatan Pakisaji, Kabupaten Malang, menunjukkan bahwa slip roda pada saat menggunakan roda karet sangat besar (mesin tidak jalan). Roda karet tersebut tidak mampu untuk menyalurkan tenaga dari "gear box" ke tanah, sehingga slip roda sangat besar, oleh karena itu roda karet tidak sesuai digunakan pada jenis tanah yang berat (Entisol, kandungan liat 48 %, debu 33 % dan pasir 19 %).

Hal demikian berbeda pada uji kinerja di KP Muneng, Kecamatan Sumberasri, Kabupaten Probolinggo. Slip roda untuk roda karet rata-rata 23,67% sedangkan dengan roda besi slip roda hanya 18,33%. Dari analisa data pada ketiga Kebun Percobaan tersebut terdapat hubungan yang nyata antara kadar air tanah dan slip roda besi (Gambar 11); dimana pada tanah yang kadar airnya tinggi mengakibatkan slip roda juga tinggi (Setyadi, 2004), sedangkan pada kadar air tanah yang rendah maka slip roda juga rendah. Dari grafik hubungan atau korelasi tersebut didapatkan persamaan dengan nilai y = 0,7418 x + 10,329, dan nilai R² = 0,9086.

e. Konsumsi bahan bakar

Bahan bakar yang dipergunakan untuk mesin penggerak merek "YASUKA" dengan kekuatan 5,5 HP adalah bensin murni. Bukuan gas pada mesin penggerak saat uji kinerja pada kondisi yang sama (bukaan gas tiga per empat (3/4) dari bukaan gas penuh. Pada bukaan gas tersebut maka putaran mesin penggerak saat sebelum operasi sebesar 1700 putaran per menit. Konsumsi bensin rata-rata pada saat uji kinerja di tanah berat (KP Kendalpayak) y = 0,7418x + 10,329

Gambar 11. Hubungan kadar air dengan slip roda di tiga lokasi

Gambar 12. Hubungan antara tahanan geser tanah dengan konsumsi bahan bakar pada tiga lokasi

126
mencapai 205 ml/10 menit operasi, atau 1,23 l jam⁻¹. Pada KP Jambegede rata-rata 190 ml/10 menit, atau 1,14 l jam⁻¹. Sedangkan konsumsi bahan bakar pada KP Muneng rata-rata sebesar 188 ml/10 menit, atau 1,13 l jam⁻¹. Dari konsumsi tersebut terlihat bahwa semakin besar tahanan geser tanah konsumsi bahan bakar juga meningkat, begitu juga sebaliknya. Hubungan antara konsumsi bahan bakar (bensin) dengan tahanan geser tanah dapat dilihat pada Gambar 11 berikut. Persamaan yang didapatkan dari grafik tersebut adalah Y = 0,0021 X + 1,0604 dengan nilai R² = 0,9988.

f. Kapasitas penyiangan

Dari hasil pengukuran kapasitas di lapang menunjukkan bahwa kapasitas terbesar pada KP Muneng (10,35 jam ha⁻¹), disusul kemudian KP Jambegede (11,68 l jam⁻¹) dan yang terkecil pada KP Kendalpayak (13,17 l jam⁻¹). Pada uji kinerja tersebut rodanya digunakan adalah rodanya, sedangkan rodanya karet hanya dapat diuji dengan baik pada KP Muneng. Uji kinerja rodanya karet di KP Muneng kapasitasnya 10,98 jam ha⁻¹ (tidak berbeda nyata dengan rodanya, hal demikian dikarenakan adanya perbedaan slip roda. Dimana slip pada rodanya karetnya lebih besar bila dibandingkan dengan slip roda besi. Akan tetapi, konsumsi bahan bakar per jami tanah tidak berbeda antara penggunaan rodanya karet dan rodanya besi. Hal demikian dimungkinkan gara disini rodanya besi maupun rodanya karet pada tekstur tanah yang ringan tidak berbeda, sehingga tenaga yang diperlukan untuk menarik bajak tipe dua sayap juga hampir sama.

Kesimpulan dan Saran

1. Hasil modifikasi didapatkan mesin penyiangan tipe bajak dua sayap yang dilengkapi roda penggerak dari besi, gear box 4 HP dan coulter. Mesin dapat dioperasikan pada tiga jenis tanah (ringan, sedang dan berat).

2. Uji kinerja mesin pada tanah berat (KP Kendalpayak, Pakisaj, Malang) dapat dilakukan hanya dengan implemen rodanya besi, pada kadar air tanah sebesar 27,9 %, prosentase penyiangan 63,4 %, konsumsi bahan bakar 1,23 l jam⁻¹ dan kapasitas penyiangan sebesar 13,67 jam ha⁻¹.

3. Implemen atau peralatan pemotong tanah (coulter) dapat dipergunakan pada tanah yang ringan sampai sedang. Untuk tanah ringan di KP Muneng, pada kadar air rerata 9,67 % dan tanah sedang di KP Jambegede, Kecamatan Kepanjen, Kabupaten Malang pada kadar air tanah rerata sebesar 21,70 %.

Saran

Untuk meningkatkan kinerja mesin pada penyiangan tanaman kedelai musim kemarau, perlu disempurnakan dengan menambahkan pisau rotari agar prosentase penyiangan lebih meningkat.

Ucapan Terima Kasih

Kami mengucapkan terima kasih kepada semua pihak yang telah membantu dalam penelitian ini, terutama kepada saudara Mugiono yang banyak mengorbankan waktu dan tenaganya baik di Laboratorium maupun di Lapangan.

Daftar Pustaka

