KEBERLANJUTAN PERIKANAN PELAGIS
DI TERNATE DAN STRATEGI PENGEMBANGANNYA

ROMMY MODAFAR ABDULLAH

SEKOLAH PASACASARJANA
INSTITUT PERTANIAN BOGOR
2011
PERNYATAAN MENGENAI DISERTASI DAN SUMBER INFORMASI

Dengan ini saya menyatakan bahwa disertasi "Keberlanjutan Perikanan Pelagis Ternate dan Strategi Pengembangannya" adalah karya saya dengan arahan dari Komisi Pembimbing dan belum pernah diajukan dalam bentuk apapun kepada perguruan tinggi manapun. Sumber Informasi yang berasal atau dikutip yang terbitkan maupun yang tidak diterbitkan dari penulis lain, telah disebutkan dalam teks dan dicantumkan dalam daftar pustaka dibagian akhir disertasi ini.

Bogor, Juni 2011

Rommy M. Abdullah
NRP. C 461060144
ABSTRACT

Romy M. ABDULLAH. Sustainability of Pelagic Fisheries in Ternate and Its Development Strategies. Under supervision of SUGENG HARI WISUDO, DANIEL R. MONINTJA, and M. FEDI A. SONDITA.

APFISH on the pelagic fisheries of Ternate indicates that it has fair sustainability state for ecology, economy, and social dimensions (index of 50-75), and less sustainability state for technology and law/institute dimensions (index of 35-50). Attributes that influence sustainability indexes for each dimensions are the length of migration, range collapse, and catch of pre-mature fish (ecology), limited entry regime, market right, and alternative incomes (economy), fishing sector, fishers influence on decision making process, and conflicts (social), post-harvest processing, gear selectivity, and use of FAD’s (technology), and fishers participation in policy determination, and illegal fishing (law and institute). AHP in the fisheries suggested a number of policies to overcome weaknesses in fisheries management: (1) development of law and institutional capacity, (2) improvement of marketing system, (3) improvement of fishing productivity and efficiency, (4) improvement of community welfare, and (5) application of environmentally friendly fishing technology. The five policies need to be implemented with 24 strategies that cover 134 programs. The priority programs are increasing fishermen involvement through the LKM and KUB, business development and diversify sources of fishers incomes through business on fish product processing, aquaculture and supports for fishing activities, awareness program to reduce incidents of catching pre-mature fish, improve knowledge and skills in business management through seminars, workshops, and training to strengthen fishermen influence in fisheries policy making process, monitoring and coaching on on board fish handling process, distribution and marketing of fishery products.

Keywords: RAPFISH, fisheries policies, sustainability status, Ternate.
RINGKASAN

Di Indonesia, salah satu sektor yang diandalkan untuk pembangunan keenapan adalah sektor perikanan. Sektor ini selain dapat memberikan dampak ekonomi kepada sebagian masyarakat Indonesia, juga menjadi salah satu sumber pendapatan negara di samping sebagai sumber mata pencarian sebagian besar masyarakat terutama nelayan di kawasan pantai. Besarnya peranan sektor perikanan ini sehingga pembangunan subsektor perikanan ini perlu dipertahankan sumberkelanjutannya. Pembangunan perikanan yang berkelanjutan, harus dilihat secara lengkap dari berbagai aspek. Kegiatan perikanan yang hanya mengutamakan salah satu aspek saja dan mengabaikan aspek-aspek perikanan lainnya, akan menimbulkan ketimpangan dan akan mengakibatkan ketidakberlanjutan perikanan itu sendiri.

Penelitian ini secara umum mempunyai tujuan untuk merumuskan suatu kebijakan yang terencana dalam pengembangan keberlanjutan perikanan tangkap kala kecil di Kota Ternate berdasarkan status keberlanjutan perikanan tangkap. Tujuan umum tersebut diterjemahkan secara sistematis dalam beberapa tujuan harsus yaitu menggambarkan kondisi sumberdaya perikanan tangkap Kota Ternate, khususnya keragaan pembangunan perikanan tangkap, status sumberdaya perikanan tangkap, dan kinerja usaha perikanan, mengukur status keberlanjutan perikanan tangkap skala kecil dalam perspektif keberlanjutan menurut dimensi ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan, dan mengidentifikasi kebijakan yang tepat dalam rangka mendukung keberlanjutan perikanan tangkap, menurut dimensi ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan.

Analisis status sumberdaya perikanan tangkap menunjukkan bahwa rata-rata effort aktual sudah melebihi dari kondisi optimal MEY dan MSY sehingga peningkatan rata-rata effort aktual ini pada akhirnya diduga telah mengalami economic overfishing sebesar 58,81% dan biological overfishing sebesar 49,12%. Hasil analisis kinerja usaha menunjukan dari keempat usaha perikanan yang ditelaah di Kota Ternate menghasilkan keuntungan baik bagi pemilik, maupun bagi nelayan/ABK. Usaha perikanan tangkap yang memberikan keuntungan paling besar bagi pemilik di perairan Kota Ternate adalah purse seine yaitu Rp. 18.106.700/bulan. Sementara, usaha perikanan tangkap yang menghasilkan pendapatan bagi nelayan/ABK yang lebih tinggi di Kota Ternate adalah rawai tuna yaitu Rp. 3.457.000/bulan.

Menurut analisis multi-dimensional, perikanan tangkap di Kota Ternate memiliki nilai indeks keberlanjutan yang berstatus kurang berkelanjutan
1. Ditanggapi oleh sebagian besar kepala daerah, menurut hasil analisis RAPFISH adalah kebijakan yang bertujuan untuk mengatasi permasalahan lemahnya perhatian dalam pengelolaan yang mengakibatkan ketidakberlanjutan perikanan tangkap di Kota Ternate. Menurut hasil analisis AHP, prioritas kebijakan dikelompokkan sebagai berikut: pengembangan kapasitas hukum dan kelembagaan usaha perikanan tangkap, perbaikan sistem pemasaran produk perikanan tangkap, peningkatan produktivitas, efisiensi penangkapan lestari, peningkatan kesejahteraan pelaku penangkapan, dan pengembangan teknologi penangkapan dan yang ramah lingkungan.

Berasal dari lima kebijakan ini terumuskan 24 strategi dan 134 program kerja yang berpeluang dimplementasikan dalam rangka pengembangan keberlanjutan perikanan tangkap Kota Ternate. Program kerja yang menjadi prioritas dalam keberlanjutan perikanan tangkap Kota Ternate pada dimensi hukum dan kelembagaan yaitu peningkatan keterlibatan pendapatan para nelayan yang terlibat dalam LKM dan KUB/Koperasi dalam pengambilan kebijakan perikanan daerah. Program kerja yang menjadi prioritas dalam keberlanjutan perikanan tangkap Kota Ternate pada dimensi ekonomi yaitu pengembangan usaha dan sumber pendapatan alternatif dengan mengembangkan usaha mengolah hasil perikanan, budidaya perikanan maupun pengembangan usaha senduk kegiatan perikanan tangkap. Program kerja yang menjadi prioritas dalam keberlanjutan perikanan tangkap Kota Ternate pada dimensi ekologi yaitu pembentukan kesadaran nelayan tentang kelestarian SDI melalui pembinaan oleh penangguhan perikanan dalam rangka menghindari tangkapan pra-maturity. Program kerja yang menjadi prioritas dalam keberlanjutan perikanan tangkap Kota Ternate pada dimensi sosial yaitu peningkatan pengetahuan dan keterampilan nelayan dalam hal manajemen usaha melalui kegiatan-kegiatan seminar, lokakarya, dan pelatihan sehingga dapat meningkatkan keterampilan pengaruh nelayan dalam berdemokrasi untuk menentukan suatu kebijakan perikanan melalui pertemuan formal. Program kerja yang menjadi prioritas dalam keberlanjutan perikanan tangkap Kota Ternate pada dimensi teknologi yaitu pemantauan dan pembinaan mutu ikan di atas kapal maupun pada kegiatan distribusi dan pemasaran hasil perikanan.

Kebijakan dan strategi pengembangan usaha perikanan tangkap yang telah dibahas dalam program kerja, sangat perlu untuk dijadikan dasar penyusunan onsep rencana strategis pengelolaan perikanan tangkap di Kota Ternate. Termahtuan dan evaluasi terhadap keberhasilan program kerja diperlukan untuk verus dilakukan sehingga tidak menutup kemungkinan terjadi perubahan terhadap strategi maupun program kerja sesuai dengan perkembangan keadaan.

Kata kunci: RAPFISH, kebijakan perikanan, status keberlanjutan, Ternate.
KEBERLANJUTAN PERIKANAN PELAGIS
DI TERNATE DAN STRATEGI PENGEMBANGANNYA

ROMMY MODAFAR ABDULLAH

Disertasi
sebagai salah satu syarat untuk memperoleh gelar
Doktor pada
Program Studi Teknologi Kelautan

SEKOLAH PASACASARJANA
INSTITUT PERTANIAN BOGOR
2011
Penguji Luar Komisi pada Ujian Tertulis:
1. Dr. Ir. Ghybert E. Mantuaya, D A.
2. Prof. Dr. Ir. Moh. Imam, M.Si.

Penguji Luar Komisi pada Ujian Terbuka:
Dr. Eko Sri Wiyono, S.Pi., M.Si.
Judul Disertasi : Keberlanjutan Perikanan Pelagis di Ternate dan Strategi Pengembangannya
Nama : Rommy Modafar Abdullah
NIM : C461060144

Disetujui

Komisi Pembimbing

Dr. Ir. Sugeng Hari Wisudo, M.Si
Ketua

Prof. Dr. Ir. Daniel R. Monintja
Anggota

Dr. Ir. M. Fedi A. Sondita, M.Sc
Anggota

Diketahui

 Ketua Program Studi
 Teknologi Kelautan

Prof. Dr. Ir. John Haluan, M.Sc

Dr. Ir. Dahrul Syah, M.Sc. Agr

Tanggal Ujian : 24 Juni 2011
Tanggal Lulus : 20 JUL 2011
PRAKATA

Penulisan disertasi ini terselesaikan atas berkat bantuan dari berbagai pihak. Oleh karena itu penulis mengucapkan terima kasih dan penghargaan yang setinggi-tingginya kepada Dr. Ir. Sugeng Hari Wisudo, M.Si, Prof Dr. Ir. Daniel Monintja, dan Dr. Ir. H. M. Fedi A. Sondita, M.Sc selaku komisi pembimbing yang telah mengarahkan dan membantu penyelesaian disertasi ini. Selain itu, kepada Dr. Ir. Gybert E. Mamuya, DAA penulis berterima kasih atas pembekalan yang diberikan untuk teknik analisis RAPFISH. Demikian pula kepada semua pihak yang telah membantu dalam hal sumbangan pemikiran sehingga terselesaikan penulisan disertasi ini.

Disadari sepenuhnya bahwa sebagai suatu hasil proses belajar, uraian dalam disertasi ini tidak lepas dari keterbatasan dan kekurangan. Namun demikian, penulis berharap semoga isi disertasi ini dapat bermanfaat dalam pengembangan pengelolaan perikanan tangkap skala kecil di Indonesia, khususnya di Kota Ternate.

Bogor, Juni 2011

Rommy M. Abdullah
RIWAYAT HIDUP

DAFTAR ISI

Halaman

DAFTAR ISI ... i
DAFTAR TABEL ... v
DAFTAR GAMBAR ... ix
DAFTAR LAMPIRAN ... xi
DAFTAR ISTILAH ... xiii

PENDAHULUAN .. 1
1.1 Latar Belakang ... 1
1.2 Perumusan Masalah ... 5
1.3 Tujuan Penelitian ... 7
1.4. Manfaat Penelitian .. 8
1.5 Kerangka Pemikiran ... 8

TINJAUAN PUSTAKA ... 15
2.1 Letak Geografis dan Kondisi Perairan Pesisir Kota Ternate 15
2.2 Perikanan Tangkap Skala Kecil .. 18
2.3 Keberlanjutan Perikanan Pelagis .. 20
2.4 Penentuan Status Keberlanjutan Perikanan .. 29
2.5 Pengembangan Perikanan Pelagis .. 31
2.6 Proses Hierarki Analitik (Analytical Hierarchy Process) 32
2.7 Penelitian Terkait yang Pernah Dilakukan .. 34
2.7.1 Penelitian yang menggunakan metode RAPFISH 34
2.7.2 Penelitian bidang perikanan tangkap di perairan Kota Ternate 43

METODE UMUM PENELITIAN ... 53
3.1 Lokasi dan Waktu Penelitian ... 53
3.2. Pengumpulan Data ... 53
3.3. Pengolahan dan Analisis Data ... 56
3.3.1 Analisis deskripsi ... 57
3.3.2 Analisis bioekonomi dengan metode CYP (Clark, Yoshimoto dan Pooley 1992) ... 57
3.3.3 Analisis kinerja usaha .. 61
3.3.4 Analisis RAPFISH (Rapid Appraisal for Fisheries).............................. 62
3.3.5 Analytical hierarchy process (AHP) .. 71

KERAGAAN PEMBANGUNAN PERIKANAN TANGKAP DI KOTA TERNATE 75
4.1 Pendahuluan .. 75
4.2 Metode .. 77
5 KEBERLANJUTAN PERIKANAN PELAGIS DI KOTA TERNATE
PADA DIMENSI EKOLOGI .. 99

5.1 Pendahuluan ... 99
5.2 Metode .. 101
5.3 Hasil ... 109
 5.3.1 Sumberdaya perikanan pelagis lokasi penelitian 109
 5.3.2 Produksi dan upaya penangkapan 110
 5.3.3 Produktivitas alat tangkap 111
 5.3.4 *Fishing power index (FPI)* 112
 5.3.5 Standardisasi upaya penangkapan 113
 5.3.6 Pendugaan status sumberdaya perikanan 113
 5.3.7 Kondisi masing-masing atribut keberlanjutan ekologi 120
 5.3.8 Status keberlanjutan perikanan pelagis dimensi ekologi 126
5.4 Pembahasan .. 130
5.5 Kesimpulan .. 135

6 KEBERLANJUTAN PERIKANAN PELAGIS DI KOTA TERNATE
PADA DIMENSI EKONOMI 137

6.1 Pendahuluan ... 137
6.2 Metode .. 139
6.3 Hasil ... 145
 6.3.1 Hasil *financial performance analysis* 145
 6.3.2 Kondisi masing-masing atribut keberlanjutan ekonomi 159
 6.3.3 Status keberlanjutan perikanan pelagis dimensi ekonomi 167
6.4 Pembahasan .. 171
6.5 Kesimpulan .. 175

7 KEBERLANJUTAN PERIKANAN PELAGIS DI KOTA TERNATE
PADA DIMENSI SOSIAL .. 177

7.1 Pendahuluan ... 177
7.2 Metode .. 179
7.3 Hasil ... 183
 7.3.1 Kondisi masing-masing atribut keberlanjutan sosial 183
 7.3.2 Status keberlanjutan perikanan pelagis dimensi sosial 190
7.4 Pembahasan .. 194
7.5 Kesimpulan .. 196
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>KEBERLANJUTAN PERIKANAN PELAGIS DI KOTA TERNATE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PADA DIMENSI TEKNOLOGI</td>
<td>199</td>
</tr>
<tr>
<td>8.1</td>
<td>Pendahuluan</td>
<td>199</td>
</tr>
<tr>
<td>8.2</td>
<td>Metode</td>
<td>201</td>
</tr>
<tr>
<td>8.3</td>
<td>Hasil</td>
<td>205</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Kondisi masing-masing atribut keberlanjutan teknologi</td>
<td>205</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Status keberlanjutan perikanan pelagis dimensi teknologi</td>
<td>211</td>
</tr>
<tr>
<td>8.4</td>
<td>Pembahasan</td>
<td>214</td>
</tr>
<tr>
<td>8.5</td>
<td>Kesimpulan</td>
<td>216</td>
</tr>
<tr>
<td>9</td>
<td>KEBERLANJUTAN PERIKANAN PELAGIS DI KOTA TERNATE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PADA DIMENSI HUKUM DAN KELEMBAGAAN</td>
<td>219</td>
</tr>
<tr>
<td>9.1</td>
<td>Pendahuluan</td>
<td>219</td>
</tr>
<tr>
<td>9.2</td>
<td>Metode</td>
<td>221</td>
</tr>
<tr>
<td>9.3</td>
<td>Hasil</td>
<td>226</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Kondisi masing-masing atribut keberlanjutan hukum dan kelembagaan</td>
<td>226</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Status keberlanjutan perikanan pelagis dimensi hukum dan Kelembagaan</td>
<td>234</td>
</tr>
<tr>
<td>9.4</td>
<td>Pembahasan</td>
<td>236</td>
</tr>
<tr>
<td>9.5</td>
<td>Kesimpulan</td>
<td>239</td>
</tr>
<tr>
<td>10</td>
<td>STATUS KEBERLANJUTAN PERIKANAN PELAGIS KOTA TERNATE BERDASARKAN ALAT TANGKAP</td>
<td>241</td>
</tr>
<tr>
<td>10.1</td>
<td>Pendahuluan</td>
<td>241</td>
</tr>
<tr>
<td>10.2</td>
<td>Metode</td>
<td>243</td>
</tr>
<tr>
<td>10.3</td>
<td>Hasil</td>
<td>244</td>
</tr>
<tr>
<td>10.4</td>
<td>Pembahasan</td>
<td>247</td>
</tr>
<tr>
<td>10.5</td>
<td>Kesimpulan</td>
<td>251</td>
</tr>
<tr>
<td>11</td>
<td>KEBIJAKAN PENGEMBANGAN PERIKANAN PELAGIS YANG KEBERLANJUTAN D' KOTA TERNATE</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Pendahuluan</td>
<td>253</td>
</tr>
<tr>
<td>11.2</td>
<td>Metode</td>
<td>255</td>
</tr>
<tr>
<td>11.3</td>
<td>Hasil</td>
<td>258</td>
</tr>
<tr>
<td>11.4</td>
<td>Pembahasan</td>
<td>262</td>
</tr>
<tr>
<td>11.5</td>
<td>Kesimpulan</td>
<td>264</td>
</tr>
<tr>
<td>12</td>
<td>PEMBAHASAN UMUM</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Status Keberlanjutan Perikanan Tangkap Kota Ternate</td>
<td>267</td>
</tr>
<tr>
<td>12.2</td>
<td>Pengembangan Perikanan Tangkap Keberlanjutan Kota Ternate</td>
<td>267</td>
</tr>
<tr>
<td>12.3</td>
<td>Implementasi Kebijakan Pengembangan Keberlanjutan Perikanan Tangkap Kota Ternate</td>
<td>286</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Program jangka panjang (> 5 tahun)</td>
<td>305</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Program jangka menengah (5 tahun)</td>
<td>306</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Program jangka pendek (1 tahun)</td>
<td>309</td>
</tr>
</tbody>
</table>
13 KESIMPULAN UMUM DAN SARAN .. 313
 13.1 Kesimpulan ... 313
 13.2 Saran ... 315

DAFTAR PUSTAKA ... 317
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>
21 Atribut keberlanjutan perikanan dimensi ekologi dan kriteria pemberian skor dalam analisis RAPFISH untuk perikanan pelagis di Ternate .. 103
22 Definisi sembilan atribut ekologi dalam analisis RAPFISH untuk perikanan pelagis di Ternate .. 104
23 Selang indeks dan status keberlanjutan perikanan pelagis di Ternate 107
24 Jenis-jenis ikan yang biasa tertangkap oleh pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate 110
25 Produksi dan effort aktual dari pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate (2003-2009) .. 111
26 Perkembangan produktivitas alat pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate (2003–2009) 111
27 Rata-rata produktivitas (ton/trip) dan fishing power index (FPI) dari pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate 112
28 Perkembangan effort standar dari pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate ... 113
29 Total produksi aktual, total effort standard dan produktivitas alat tangkap standar di Kota Ternate, 2003-2009 .. 114
30 Produksi, effort, nilai logaritma CPUE pada waktu t+1 dan logaritma CPUE pada saat t serta jumlah effort pada waktu t dan t+1. Perikanan pelagis di Ternate ... 115
31 Parameter biologi dan ekonomi perikanan pelagis di Ternate 116
32 Tingkat biomas, produksi, upaya optimal dan rente ekonomi perikanan pelagis dari berbagai rezim pengelolaan di Ternate 118
33 Nilai indeks dan status keberlanjutan setiap perikanan pelagis pada dimensi ekologi di Ternate ... 127
34 Nilai statistik yang diperoleh dari hasil analisis RAPFISH pada dimensi Ekologi di Ternate ... 128
35 Atribut keberlanjutan perikanan dimensi ekonomi dan kriteria pemberian skor dalam analisis RAPFISH untuk perikanan pelagis di Ternate 142
36 Definisi sepuluh atribut ekonomi dalam analisis RAPFISH untuk perikanan pelagis di Ternate ... 142
37 Jenis investasi dan rata-rata nilai investasi, serta umur teknis investasi pada usaha perikanan pole and line di Ternate 146
38 Jenis biaya tetap dan rata-rata biaya tetap usaha perikanan pole and line di Ternate ... 147
39 Rata-rata biaya tidak tetap usaha perikanan pole and line setiap tahun di Ternate ... 147
1. Jenis ikan, rata-rata jumlah tangkapan, harga rata-rata dan nilai rata-rata setiap tahun untuk usaha perikanan *pole and line* di Ternate .. 148
2. Sistem bagi hasil pada usaha perikanan *pole and line* di Ternate .. 148
3. Kinerja usaha perikanan *pole and line* di Ternate .. 148
4. Jenis investasi dan rata-rata nilai investasi, serta umur teknis investasi pada usaha perikanan *purse seine* di Ternate .. 150
5. Jenis biaya tetap dan rata-rata biaya tetap usaha perikanan *purse seine* di Ternate .. 150
6. Rata-rata biaya tidak tetap usaha perikanan *purse seine* setiap tahun di Ternate .. 151
7. Jenis ikan, rata-rata jumlah tangkapan, harga rata-rata dan nilai rata-rata setiap tahun untuk usaha perikanan *purse seine* di Ternate .. 151
8. Sistem bagi hasil pada usaha perikanan *purse seine* di Ternate .. 152
9. Kinerja usaha perikanan *purse seine* di Ternate .. 152
10. Jenis investasi dan rata-rata nilai investasi, serta umur teknis investasi pada usaha perikanan rawai tuna di Ternate .. 153
11. Jenis biaya tetap dan rata-rata biaya tetap usaha perikanan rawai tuna di Ternate .. 154
12. Rata-rata tidak tetap usaha perikanan rawai tuna setiap tahun di Ternate .. 154
13. Sistem bagi hasil pada usaha perikanan rawai tuna di Ternate .. 155
14. Kinerja usaha perikanan rawai tuna di Ternate .. 155
15. Jenis investasi dan rata-rata nilai investasi, serta umur teknis investasi pada usaha perikanan pencing tonda di Ternate .. 156
16. Jenis biaya tetap dan rata-rata biaya tetap usaha perikanan pencing tonda di Ternate .. 157
17. Rata-rata biaya tidak tetap usaha perikanan pencing tonda setiap tahun di Ternate .. 157
18. Jenis ikan, rata-rata jumlah tangkapan, harga rata-rata dan nilai rata-rata setiap tahun untuk usaha perikanan pencing tonda di Ternate .. 158
19. Sistem bagi hasil pada usaha perikanan pencing tonda di Ternate .. 158
20. Kinerja usaha perikanan pencing tonda di Ternate .. 159
21. Perbandingan kinerja usaha perikanan tangkap menggunakan *pole and line*, *purse seine*, rawai tuna, dan pencing tonda di Ternate .. 160
22. Perbandingan PDRB subsektor perikanan dan sektor pertanian terhadap PDRB Kota Ternate atas dasar harga berlaku dari tahun 2005–2009 .. 161
63 Nilai indeks dan status keberlanjutan setiap perikanan pelagis pada dimensi ekonomi di Ternate ... 168
64 Nilai statistik yang diperoleh dari hasil analisis RAPFISH pada dimensi ekonomi ... 169
65 Atribut keberlanjutan perikanan dimensi sosial dan kriteria pemberian skor dalam analisis RAPFISH untuk perikanan pelagis di Ternate ... 180
66 Definisi sembilan atribut sosial dalam analisis RAPFISH untuk perikanan pelagis di Ternate ... 181
67 Klasifikasi tingkat pendidikan formal nelayan pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate ... 186
68 Nilai indeks dan status keberlanjutan setiap perikanan pelagis pada dimensi sosial di Ternate ... 191
69 Nilai statistik yang diperoleh dari hasil analisis RAPFISH pada dimensi sosial ... 192
70 Atribut keberlanjutan perikanan dimensi teknologi dan kriteria pemberian skor dalam analisis RAPFISH untuk perikanan pelagis di Ternate ... 201
71 Definisi sembilan atribut teknologi dalam analisis RAPFISH untuk perikanan pelagis di Ternate ... 202
72 Perkembangan unit alat tangkap dan trip penangkapan pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate ... 209
73 Nilai indeks dan status keberlanjutan setiap perikanan pelagis pada dimensi teknologi di Ternate ... 211
74 Nilai statistik yang diperoleh dari hasil analisis RAPFISH pada dimensi teknologi ... 212
75 Atribut keberlanjutan perikanan dimensi hukum dan kelembagaan dan kriteria pemberian skor dalam analisis RAPFISH untuk perikanan pelagis di Ternate ... 223
76 Definisi delapan atribut hukum dan kelembagaan dalam analisis RAPFISH untuk perikanan pelagis di Ternate ... 223
77 Beberapa peraturan perundangan yang dikeluarkan pemerintah daerah Kota Ternate berkaitan dengan sumberdaya perikanan ... 228
78 Kelembagaan pengusaha perikanan di Kota Ternate ... 231
79 Kelembagaan koperasi perikanan di Kota Ternate ... 232
80 Nilai indeks dan status keberlanjutan setiap perikanan pelagis pada dimensi hukum dan kelembagaan di Ternate ... 234
81 Nilai statistik yang diperoleh dari hasil analisis RAPFISH pada dimensi hukum dan kelembagaan ... 236
82 Nilai indeks keberlanjutan berdasarkan alat pada dimensi ekologi, ekonomi, sosial, teknologi, dan hukum dan kelembagaan ... 244
<table>
<thead>
<tr>
<th>Daftar Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Kerangka pemikiran penelitian</td>
<td>10</td>
</tr>
<tr>
<td>2 Tahapan penelitian</td>
<td>54</td>
</tr>
<tr>
<td>3 Lembaran kerja Rapscore (contoh dimensi ekologi)</td>
<td>63</td>
</tr>
<tr>
<td>4 Diagram perangkat lunak RAPFISH</td>
<td>64</td>
</tr>
<tr>
<td>5 Hubungan upaya penangkapan (trip) dengan CPUE di Ternate</td>
<td>114</td>
</tr>
<tr>
<td>6 Hubungan produksi lestari dengan effort dan produksi aktal dengan effort pada perikanan tangkap di Ternate</td>
<td>116</td>
</tr>
<tr>
<td>7 Tingkat produksi lestari dan produksi aktal perikanan pelagis di Ternate</td>
<td>117</td>
</tr>
<tr>
<td>8 Perbandingan tingkat effort dalam kondisi MEY, MSY, open access dan aktal di perairan Ternate</td>
<td>119</td>
</tr>
<tr>
<td>9 Perbandingan nilai produksi dalam kondisi MEY, MSY, open access dan aktal di perairan Ternate</td>
<td>119</td>
</tr>
<tr>
<td>10 Keseimbangan bioekonomi perikanan pelagis di Ternate</td>
<td>120</td>
</tr>
<tr>
<td>11 Posisi status keberlanjutan perikanan pelagis di Ternate pada dimensi ekologi</td>
<td>127</td>
</tr>
<tr>
<td>12 Kestabilan nilai ordinasi hasil RAPFISH dengan Monte Carlo pada dimensi ekologi</td>
<td>129</td>
</tr>
<tr>
<td>13 Hasil analisis Leverage dari atribut pada dimensi ekologi</td>
<td>129</td>
</tr>
<tr>
<td>14 Posisi status keberlanjutan perikanan pelagis di Ternate pada dimensi ekonomi</td>
<td>169</td>
</tr>
<tr>
<td>15 Kestabilan nilai ordinasi hasil RAPFISH dengan Monte Carlo pada dimensi ekonomi</td>
<td>170</td>
</tr>
<tr>
<td>16 Hasil analisis Leverage dari atribut pada dimensi ekonomi</td>
<td>171</td>
</tr>
<tr>
<td>17 Posisi status keberlanjutan perikanan pelagis di Ternate pada dimensi sosial</td>
<td>191</td>
</tr>
<tr>
<td>18 Kestabilan nilai ordinasi hasil RAPFISH dengan Monte Carlo pada dimensi sosial</td>
<td>193</td>
</tr>
<tr>
<td>19 Hasil analisis Leverage dari atribut pada dimensi sosial</td>
<td>193</td>
</tr>
<tr>
<td>20 Posisi status keberlanjutan perikanan pelagis di Ternate pada dimensi teknologi</td>
<td>212</td>
</tr>
<tr>
<td>21 Kestabilan nilai ordinasi hasil RAPFISH dengan Monte Carlo pada dimensi teknologi</td>
<td>213</td>
</tr>
</tbody>
</table>
22 Hasil analisis Leverage dari atribut pada dimensi teknologi 214
23 Posisi status keberlanjutan perikanan pelagis di Ternate pada dimensi hukum dan kelembagaan ... 235
24 Kestabilan nilai ordinasi hasil RAPFISH dengan Monte Carlo pada dimensi hukum dan kelembagaan ... 236
25 Hasil analisis Leverage dari atribut pada dimensi hukum dan kelembagaan 237
26 Diagram layang perbandingan nilai indeks keberlanjutan perikanan pelagis berdasarkan alat tangkap di Ternate .. 246
27 Hierarki kebijakan pengembangan perikanan tangkap yang berkelanjutan di Kota Ternate ... 261
DAFTAR LAMPIRAN

Halaman

1. Peta Lokasi Penelitian ... 325
2. Jenis-jenis ikan, udang, dan kerang-kerangan yang ditangkap oleh nelayan di wilayah Kota Ternate (tahun 2009) 327
3. Gambar alat tangkap dan species ikan dominan yang tertangkap di perairan Kota Ternate ... 329
4. Perhitungan parameter bioekonomi perairan Ternate (Laut Maluku) 331
5. Perhitungan keseimbangan bioekonomi perairan Kota Ternate (Laut Maluku) dengan software Maple 11 ... 333
6. Hasil analisis multi dimensional dari keberlanjutan perikanan 335
7. Analisis usaha perikanan pole and line di Ternate .. 343
8. Aliran cash flow usaha perikanan pole and line di Ternate 345
9. Analisis usaha perikanan purse seine di Ternate 347
10. Aliran cash flow usaha perikanan purse seine di Ternate 349
11. Analisis usaha perikanan rawai tuna di Ternate .. 351
12. Aliran cash flow usaha perikanan rawai tuna di Ternate 353
13. Analisis usaha perikanan pancing tonda di Ternate 355
14. Aliran cash flow usaha perikanan pancing tonda di Ternate 357
15. Produk Domestik Regional Bruto (PDRB) Kota Ternate menurut lapangan usaha atas harga berlaku dan harga konstan Tahun 2005-2009 (jutaan rupiah) ... 359
16. Beberapa peraturan formal yang dikeluarkan pemerintah pusat berkaitan dengan pengelolaan sumberdaya perikanan di wilayah Indonesia ... 361
17. Nilai rata-rata indeks keberlanjutan berdasarkan alat tangkap 363
18. Hasil skoring atribut setiap alat tangkap untuk masing-masing dimensi yang dianalisis RAPFISH .. 365
19. Hasil Olahan Data Proses Hierarki Analisis .. 367
20. Permasalahan, kebijakan, dan strategi pengembangan perikanan pelagis yang berkelanjutan di Ternate .. 369
21. Matriks acuan strategi dan program kerja pengembangan perikanan pelagis di Ternate ... 373
DAFTAR ISTILAH

ABK (Anak buah kapal) : Orang yang bekerja di atas kapal
Administrasi : Kegiatan/hal yang berhubungan dengan surat-menyurat

Atribut : Sub faktor yang menentukan besaran skor suatu dimensi keberlanjutan perikanan

Hak-cipta milik IPB (Institut Pertanian Bogor) : Hasil tangkapan sampingan; tambahan dari tujuan utama penangkapan (target spesies)

CRF : [Code of conduct for Responsible fisheries] Tata laksana untuk perikanan yang bertanggungjawab

Common property : Sumberdaya milik bersama

PUE (Catch per Unit Effort) : Hasil tangkapan per satuan upaya penangkapan

Restrictive fishing practices : Praktek/perbuatan dalam menangkap ikan yang bersifat merusak (tidak berkelanjutan)

Baro-dibo : Pedagang pengumpul ikan

Dimensi : Kesatuan dari atribut-attribut terpilih yang digunakan dalam analisis RAPFISH atau istilah dari aspek.

Ekosistem : Tataan kesatuan secara kompleks di dalamnya terdapat habitat, tumbuhan, dan binatang yang dipertimbangkan sebagai unit kesatuan secara utuh, sehingga semuanya akan menjadi bagian mata rantai siklus materi dan aliran energi

Effort : Upaya penangkapan

et al : Dan lain-lain

AD’s : [Fish Aggregating Devices] Alat bantu untuk menarik gerombolan ikan, biasanya digunakan dalam menangkap ikan

AO : [Food Agriculture Organization] Badan/organisasi pangan dunia di PBB

Finansial : Kegiatan/hal yang berhubungan dengan keuangan

INI : Standard ekonomi dalam mengukur ketimpangan dalam pendapatan (distribusi)

Illegal fishing : Penangkapan yang melanggar peraturan
<table>
<thead>
<tr>
<th>Komunitas</th>
<th>Kelompok orang yang saling berinteraksi dalam lokasi tertentu</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS</td>
<td>[Multi Dimensional Scaling] Pensklaan secara multi dimensi, merupakan teknik dalam penentuan posisi skala secara visual untuk mempermudah penggambaran dalam metode RAPFISH</td>
</tr>
<tr>
<td>MEY</td>
<td>[Maximum Economic Yield] Hasil tangkapan maksimum ekonomi lestari</td>
</tr>
<tr>
<td>MSY</td>
<td>[Maximum Sustainable Yield] Hasil tangkapan maksimum lestari yaitu jumlah suatu tangkapan maksimum yang dapat dipanen dari suatu sumberdaya ikan tanpa mengganggu kelestariannya</td>
</tr>
<tr>
<td>NPV (Net Present Value)</td>
<td>Selisih antara nilai sekarang dari penerimaan dengan nilai sekarang dari pengeluaran pada tingkat bunga tertentu</td>
</tr>
<tr>
<td>OA (Open Access)</td>
<td>Akses terbuka untuk siapa saja</td>
</tr>
<tr>
<td>Overcapacity</td>
<td>Pemanfaatan/penangkapan yang melebihi kapasitas</td>
</tr>
<tr>
<td>Overfishing</td>
<td>Tangkap lebih, jumlah upaya penangkapan yang melebihi upaya maksimum</td>
</tr>
<tr>
<td>PDRB</td>
<td>(Produk Domestik Regional Bruto) Jumlah nilai tambah bruto yang dihasilkan oleh seluruh unit usaha dalam wilayah tertentu, atau merupakan jumlah nilai barang dan jasa akhir yang dihasilkan oleh seluruh unit ekonomi.</td>
</tr>
<tr>
<td>Perikanan Pelagis</td>
<td>Suatu kegiatan ekonomi yang mencakup penangkapan atau pengumpulan ikan yang umumnya berenang mendekati permukaan perairan hingga kedalaman 200m.</td>
</tr>
<tr>
<td>Pra-maturity</td>
<td>Belum dewasa (bersifat prematur)</td>
</tr>
<tr>
<td>RTP</td>
<td>(Rumah tanggaPerikanan) Rumah tangga yang bekerja sebagai nelayan</td>
</tr>
<tr>
<td>Sole owner</td>
<td>Salah satu bentuk pengelolaan perikanan yang menganggap bahwa sumberdaya berada pada satu kepemilikan sehingga dikelola agar selalu pada kondisi MEY</td>
</tr>
<tr>
<td>Stakeholder</td>
<td>Pemangku kepentingan</td>
</tr>
</tbody>
</table>
Standardisasi

Stok (stock)

Stress

Rohic level

Zona intertidal

: Upaya untuk menyamakan satuan agar perhitungan jumlah upaya penangkapan dapat dilakukan

: Angka yang menggambarkan suatu nilai dugaan besarnya biomas ikan berdasarkan kelompok jenis ikan dalam kurun waktu tertentu.

: Nilai simpangan baku dari metode MDS sebagai ukuran jarak diantara dua titik

: Sebuah kelompok organisme yang menempati posisi yang sama dalam suatu rantai makanan atau tahap berurutan dalam rantai makanan, ditempati oleh produsen di bagian bawah dan pada gilirannya oleh konsumen primer, sekunder, dan tersier.

: Daerah yang dibatasi oleh pasang tertinggi dan surut terendah
1 PENDAHULUAN

1.1 Latar Belakang

Di Indonesia, salah satu sektor yang diandalkan untuk pembangunan ke depan adalah sektor kelautan dan perikanan. Sektor ini selain dapat menjadi salah satu sumber pendapatan negara (devisa) di samping sebagai sumber mata pencaharian sebagian besar masyarakat terutama nelayan di kawasan pantai. Sektor lain yang ikut menentukan perikanan menjadi andalan pembangunan nasional adalah produk yang dihasilkan pula merupakan bahan pangan penting bagi masyarakat pada umumnya.

Keberlanjutan perikanan termasuk perikanan pelagis memerlukan suatu pengelolaan sumberdaya ikan yang tepat, yaitu pemanfaatan sumberdaya perikanan yang mempertimbangkan keberlanjutan sumberdaya ikan. Dalam perkembangan perikanan pelagis ke depan sangat tergantung pada ketersediaan atau daya dukung sumberdaya tersebut dan lingkungannya.

(kesejahteraan pelaku perikanan pada tingkat individu), keberlanjutan komunitas (keberlanjutan kesejahteraan komunitas), dan keberlanjutan kelembagaan (pemeliharaan aspek finansial dan administrasi yang sehat).

Pemanfaatan sumberdaya alam yang bertentangan dengan paradigma pembangunan berkelanjutan dapat dilihat dari pemanfaatan yang dilakukan dalam beberapa tahun terakhir ini. Pemanfaattannya berfokus pada pembangunan ekonomi yaitu dengan cara menguras sumberdaya alam tanpa mempertimbangkan keberlanjutan sumberdaya dan tidak memperhatikan dampak sosial karena dipacu untuk meningkatkan pertumbuhan ekonomi semata.

Kegiatan pemanfaatan perikanan seperti ini (unsustainable) yaitu yang dilakukan melalui kegiatan destructive fishing practice. Di Indonesia, kegiatan ini dapat menimbulkan kerugian negara hingga 4 kali lebih besar dari manfaat yang diterima (US$ 386.000/tahun). Hal yang sama juga terjadi pada 40.000 nelayan Canada yang kehilangan pekerjaan karena penurunan drastis stok ikan cod di perairan Barat-daya Atlantik pada tahun 1990 (Fauzi dan Buchary 2002).

Bila hasil-hasil kajian yang tersebut dibandingkan dengan apa yang dikaji dalam disertasi ini, maka aspek yang dikaji dalam disertasi ini merupakan hal baru dan belum pernah diteliti pada penelitian terdahulu, baik yang menggunakan metode RAPFISH maupun yang menjadikan Ternate sebagai objek atau wilayah studi. Secara umum penelitian ini dilakukan berkenaan dengan implementasi status keberlanjutan perikanan Ternate khususnya perikanan pelagis. Penelitian dalam disertasi ini secara umum bertujuan untuk merumuskan suatu kegiatan yang terencana dalam mengembangkan keberlanjutan perikanan pelagis di Ternate berdasarkan status keberlanjutan perikanan pelagis yang dihasilkan melalui analisis RAPFISH.

Evaluasi keberlanjutan perikanan pelagis di Ternate yang dianalisis dengan metode RAPFISH, selain menghasilkan nilai indeks yang mencerminkan status keberlanjutannya, juga menghasilkan atribut-atribut yang lemah dalam

Hal ini yang menjadi landasan dalam menelusuri kemungkinan suatu implementasi pengembangan perikanan pelagis di Ternate. Status keberlanjutan yang berhasil ditentukan dan kemudian atribut-atribut sensitifnya, merupakan landasan untuk menyediakan pilihan kegiatan perencanaan dalam aktivitas perikanan pelagis tersebut. Kegiatan perencanaan tersebut tertuang dalam suatu strategi perencanaan dan pengembangan serta program-program kerja yang meliputi program kerja jangka panjang (> 5 tahun), program kerja jangka menengah (5 tahun), dan program kerja jangka pendek (1 tahun).

1.2 Perumusan Masalah

Status keberlanjutan perikanan pelagis di Ternate terungkap sebagai suatu masalah yang berkaitan dengan kebutuhan untuk dapat mewujudkan suatu kebijakan dalam perencanaan dan pengembangan pemanfaatan sumberdaya ikan yang menerapkan prinsip-prinsip penangkapan ikan secara berkelanjutan. Prinsip-prinsip yang mencakup dimensi ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan ini, dipandang sebagai aspek-aspek yang saling berinteraksi.

Secara umum, kendala dan hambatan yang dihadapi perikanan tangkap termasuk perikanan pelagis di Provinsi Maluku Utara termasuk Kota Ternate meliputi: (1) pengawasan dan pengontrolan belum terpadu, (2) optimalisasi dan produktivitas usaha yang masih rendah, (3) pusat-pusat kegiatan perikanan belum terbentuk pada basis-basis perikanan, (4) perkembangan kegiatan perikanan tangkap belum sesuai dengan karakteristik sosial ekonomi, (5) hak pengelolaan sumberdaya pesisir dan laut belum ditafsirkan dengan jelas, (6) dasar hukum kegiatan perikanan tangkap belum maksimal dituangkan secara jelas dalam daftar produk PERDA, (7) belum adanya pengembangan kerjasama regional maupun global dalam pemanfaatan dan pengelolaan, dan (8) kelemahan sumberdaya manusia (SDM) untuk dapat menerapkan teknologi dan memanfaatkan serta mengelola potensi sumberdaya perikanan tangkap secara efisien dan berkelanjutan (Bappeda Maluku Utara 2007).

Perikanan pelagis di Ternate merupakan suatu aktivitas pengelolaan dan pemanfaatan sumberdaya ikan yang secara aktual berkontribusi dalam penyediaan lapangan kerja, pendapatan masyarakat pesisir dan atau Pendapatan Asli Daerah (PAD), memenuhi kebutuhan protein ikan, dan jasa perniagaan ikan. Dalam penggarapannya, tingkat pemanfaatan sumberdaya ikan di perairan Ternate masih tergolong *under exploitation* yaitu baru sebesar 21,01% (Yulistyo 2006). Di sisi lain, BKKP (2007) mencatat bahwa tingkat pemanfaatan di keseluruhan wilayah perairan Ternate (Laut Maluku), tidak sepenuhnya masih *under exploitation*, melainkan sudah tergolong sedang atau cukupan (*moderately*). Hal ini berarti telah terjadi peningkatan pemanfaatan sumberdaya ikan di wilayah perairan Ternate. Peningkatan pemanfaatan ini jika tidak diperhatikan maka dapat
menimbulkan efek negatif terhadap sumberdaya ikan yang ada dan dapat bermuara pada ketidakberlanjutan sumberdaya ikan tersebut.

Dengan demikian perkembangan usaha dengan memanfaatkan sumberdaya ikan ini membutuhkan berbagai arahan kebijakan yang berkenaan dengan kaidah-kaidah pengelolaan perikanan dan prinsip-prinsip pembangunan berkelanjutan. Sampai sekarang ini yang masih menjadi permasalahan adalah bagaimana status keberlanjutan pengelolaan perikanan pelagis di Ternate dan bagaimana merencanakan dan mengembangkan suatu kebijakan dari status keberlanjutan pembangunan perikanan pelagis yang terintegrasi dari seluruh komponen (secara holistik), baik aspek ekologi, ekonomi, sosial, teknologi maupun pengaturan (hukum/kelembagaan).

Berdasarkan permasalahan di atas dapat disusun tiga pertanyaan penelitian sebagai berikut:

1. Bagaimana kondisi aktual perikanan tangkap di Ternate saat ini?
2. Bagaimana status keberlanjutan aspek ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan dari perikanan pelagis di Ternate?
3. Kebijakan pengembangan apa yang tepat untuk memperbaiki keberlanjutan perikanan pelagis di Ternate?

Pertanyaan di atas diupayakan jawabannya melalui penelitian ini dan selanjutnya dapat menjadi landasan dalam menyusun suatu kebijakan perencanaan dan pengembangan perikanan tangkap khususnya perikanan pelagis secara bijaksana dalam menangani masalah-masalah yang signifikan.

Tujuan Penelitian

Penelitian ini secara umum mempunyai tujuan untuk merumuskan suatu gagasan yang terencana dalam mengembangkan keberlanjutan perikanan pelagis Ternate berdasarkan status keberlanjutan perikannya. Tujuan umum tersebut dijelaskan secara sistematis dalam beberapa tujuan khusus sebagai berikut:

1. Menggambarkan kondisi sumberdaya perikanan tangkap Ternate, khususnya keragaan pembangunan perikanan tangkap, status sumberdaya perikanan pelagis, dan kinerja usaha perikanan.
Mengukur status keberlanjutan perikanan pelagis dalam perspektif keberlanjutan menurut dimensi ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan.

(3) Mengidentifikasi kebijakan dan program kerja yang tepat dalam rangka mendukung keberlanjutan perikanan pelagis, menurut dimensi ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan.

1.4 Manfaat Penelitian

Penelitian dengan tujuan tersebut diharapkan bermanfaat bagi pengembangan ilmu pengetahuan dalam upaya pengembangan perikanan berkelanjutan, baik untuk praktisi di bidang perikanan, perguruan tinggi, para pengamat, dan kebijakan (pemerintah) di tingkat pusat maupun daerah dalam rangka penyusunan kebijakan dan atau strategi perencanaan pengembangan perikanan pelagis yang berkelanjutan khususnya di Ternate.

1.5 Kerangka Pemikiran

Salah satu aktivitas ekonomi sumberdaya yang sangat kompleks adalah perikanan. Hal ini disebabkan ketersediaan dan kelestarian sumberdaya ikan yang dimanfaatkan sangat dipengaruhi oleh cara dan tingkat pemanfaatannya yang terkadang dapat bersifat destruktif. Selain itu, terdapat banyak kegiatan yang memanfaatkan dengan keinginan hanya untuk meningkatkan produksi dan tidak berpikir kelestarian sumberdaya ikan.

Dalam pembangunan perikanan, salah satu isu yang dihadapi oleh negara-negara berkembang termasuk Indonesia adalah pembangunan perikanan yang menyempitkan antara keberlangsungan sumberdaya perikanan dengan tujuan ekonomi. Pada umumnya pengelolaan sumberdaya perikanan yang dilakukan cenderung berorientasi hanya pada pertumbuhan ekonomi semata dengan mengexploitasi sumberdaya perikanan secara besar-besaran tanpa memperhatikan aspek kelestariannya. Selain itu, kondisi sumberdaya perikanan di Indonesia khususnya di wilayah pantai cenderung mulai berkurang, sehingga hasil tangkapan beberapa jenis ikan cenderung menurun. Hal ini dapat terjadi karena semakin banyaknya komunitas yang memanfaatkan sumberdaya atau semakin efektifnya alat tangkap yang digunakan, sementara kapasitas daya
dukung lingkungan (carrying capacity) sumberdaya perikanan semakin menurun. Kondisi seperti ini pada akhirnya dapat memicu terjadinya dampak sosial berupa konflik antar nelayan di wilayah pantai akibat menurunnya tingkat produktivitas dan pendapatan nelayan.

Dalam mewujudkan konsep pengelolaan perikanan yang berkelanjutan, kian terhadap permasalahan yang terdapat di wilayah penelitian secara terpadu yang mencakup aspek ekologi, teknologi, ekonomi, sosial dan kum/kelembagaan diperlukan sebagai landasan dalam suatu kebijakan perencanaan dan pengembangan pemanfaatan sumberdaya perikanan secara keseluruhan. Keterpaduan aspek-aspek keberlanjutan ini diharapkan dapat menggambarkan keberlanjutan perikanan, karena aspek-aspek tersebut telah mencakup semua aspek keberlanjutan perikanan sekaligus merupakan tolok ukur pembangunan berkelanjutan.

Salah satu alternatif pendekatan sederhana yang dapat digunakan untuk mengevaluasi status keberlanjutan dari perikanan tersebut adalah teknik multi-disciplinary rapid appraisal atau RAPFISH, untuk mengevaluasi comparative sustainability dari perikanan berdasarkan sejumlah aspek yang relatif mudah nilai (Fauzi dan Anna 2002a). Penelitian ini mencoba mengaplikasikan pendekatan RAPFISH untuk melihat keberadaan status keberlanjutan perikanan lagis dengan mengambil lokasi di wilayah Ternate (Gambar 1).
Gambar 1 Kerangka pemikiran penelitian

Permasalahan:
1. Hasil produksi belum optimal/terdapat gejala overfishing
2. Pendapatan nelayan belum maksimal
3. Keterbatasan modal usaha
4. Konflik pemanfaatan SDI
5. SDM nelayan lemah dalam penerapan teknologi penangkapan
6. Aturan/hukum belum efektif

Data:
primer dan sekunder

Kondisi aktual kegiatan perikanan tangkap Ternate

Mulai

RAPFISH

STATUS KEBERLANJUTAN PERIKANAN PELAGIS DI TERNATE

Perikanan Pole and line
Perikanan Purse seine
Perikanan Rawai Tuna
Perikanan Pancing Tonda

ATRIBUT-ATRIBUT SENSITIF

Dimensi Ekologi
Dimensi Ekonomi
Dimensi Sosial
Dimensi Teknologi
Dimensi Hukum/Kelembagaan

ALTERNATIF KEBIJAKAN PENGEMBANGAN PERIKANAN YANG KEBERLANJUTAN DI TERNATE

IMPLEMENTASI KEBIJAKAN PENGEMBANGAN KEBERLANJUTAN PERIKANAN PELAGIS DI TERNATE (STRATEGI)

PROGRAM KERJA JANGKA PANJANG
PROGRAM KERJA JANGKA MENENGAH
PROGRAM KERJA JANGKA PENDEK

Selesai

penegakan hukum, keterlibatan nelayan dalam penentuan kebijakan, dan illegal fishing (Soesilo 2003; Suyasa 2007).

Fauzi dan Anna (2002) menyatakan bahwa konsep pembangunan perikanan yang berkelanjutan mengandung aspek-aspek sebagai berikut (1) Keberlanjutan ekologi (ecological sustainability) yakni memelihara keberlanjutan stok/biomass sehingga tidak melewati daya dukungnya, serta peningkatan kapasitas dan ekosistem menjadi perhatian utama, (2) Keberlanjutan sosio-ekonomi (socio-economic sustainability) yakni pembangunan perikanan harus memperhatikan keberlanjutan dan kesejahteraan yang lebih tinggi bagi pelaku perikanan, (3) Keberlanjutan komunitas/masyarakat (community sustainability), mengandung makna bahwa keberlanjutan kesejahteraan dari sisi komunitas atau masyarakat menjadi perhatian pembangunan berkelanjutan, (4) keberlanjutan kelembagaan (institutional sustainability), yakni keberlanjutan kelembagaan yang menyangkut pemeliharaan aspek finansial dan administrasi yang sehat sebagai prasyarat dari ketiga pembangunan berkelanjutan di atas. Dengan melihat aspek-aspek tersebut sangat pentingnya maka kebijakan pembangunan perikanan berkelanjutan harus memelihara tingkat yang layak (reasonable) dari setiap komponen sustainable tersebut. Hasil analisis ini sangat penting agar dapat merancang atau merumuskan suatu alternatif kebijakan yang secara spesifik dapat dilakukan untuk aspek tertentu, sehingga kebijakan tersebut akan lebih mampu untuk memecahkan permasalahan agar pengelolaan perikanan yang bertanggung jawab dan berkelanjutan dapat diwujudkan.

Dalam mewujudkan pengelolaan perikanan yang berkelanjutan, maka berdasarkan alternatif-alternatif kebijakan dalam pengelolaan perikanan yang ada, disusun suatu kegiatan yang terencana dari suatu kebijakan dalam pengembangan perikanan pelagis yang tepat. Analisis kebijakan prioritas pengembangan ini bertujuan untuk mendapatkan gambaran mengenai prioritas kebijakan di sektor perikanan tangkap secara keseluruhan (komprehensif) guna merencanakan pengembangan usaha perikanan pelagis di wilayah penelitian, sehingga berguna bagi para pengambil keputusan di sektor kelautan dan perikanan di daerah. Alat analisis yang digunakan adalah AHP (Analytical Hierarchy Process). AHP merupakan suatu proses yang memasukkan berbagai pertimbangan

dan nilai-nilai pribadi secara logis, yang bergantung pada imajinasi, pengalaman, dan pengetahuan untuk menyelesaikan masalah dan logika.

Berdasarkan hal tersebut diupayakan jawabannya untuk selanjutnya menjadi landasan dalam menelusuri kemungkinan suatu implementasi pengembangan perikanan pelagis di Ternate. Status keberlanjutan yang berhasil ditentukan dan kemudian atribut-atribut sensitifnya, merupakan rujukan untuk menyediakan pilihan kegiatan perencanaan dalam aktivitas perikanan tersebut. Kegiatan perencanaan tersebut tertuang dalam suatu strategi perencanaan dan pengembangan serta program-program kerja yang meliputi program kerja jangka panjang (> 5 tahun), program kerja jangka menengah (5 tahun), dan program kerja jangka pendek (1 tahun).
2 TINJAUAN PUSTAKA

2.1 Letak geografis dan kondisi perairan pesisir Kota Ternate

Secara geografis Kota Ternate merupakan wilayah kepulauan yang terletak pada posisi 0°-2° LU dan 126°-128° BT. Sebagai bagian dari Wilayah Provinsi Maluku Utara, secara keseluruhan daerah ini memiliki luas 5.795,4 km² dan lebih dominasi oleh wilayah laut yaitu sebesar 5.547,55 km² (95,2%), sedangkan layar daratannya sebesar 249,6 km² (4,8%). Wilayah Kota Ternate dibatasi oleh Selat Halmahera dibagian Timur dan Laut Maluku di bagian Utara, Selatan dan Barat (Lampiran 1).

Kota Ternate merupakan daerah kepulauan yang terdiri sebagian besar terahnya bergunung dan berbukit terdiri dari pulau vulkanis dan pulau karang. Delapan buah pulau yang tersebar di wilayah Kota Ternate, 5 pulau diantaranya adalah pulau yang berpenghuni yaitu Ternate (Gunung Gamalama), Hiri, Moti (Gunung Tuanane), Mayau dan Tifure (biasa disebut Batang dua), sedangkan 3 pulau kecil lainnya tidak dihuni yaitu pulau Maka, Mano dan Gurida.

Berdasarkan sumber yang sama juga, selama tahun 2005 diperoleh informasi tentang klimatologi yaitu temperatur rata-rata 26,70°C, kelembaban nisbi rata-rata 84%, tingkat penyinaran 54% dan kecepatan angin rata-rata 8,6 km/jam dengan kecepatan maksimum mutlak rata-rata 33,2 km/jam. Arah angin terbanyak dari Barat Laut yang terjadi pada bulan Januari, Februari, Maret, dan April. Sedangkan pada bulan Mei dan Juni angin terbanyak bertiup dari Barat Daya pada bulan Juli, Agustus, September dan Oktober angin terbanyak bertiup dari arah Tenggara (pancaroba), pada bulan November dan Desember anginembali bertiup dari arah Barat Laut.

Berdasarkan ramalan (prediksi) pasang surut kepulauan Indonesia, perairan di sekitar Pulau Ternate rata-rata mengalami dua kali pasang dan dua kali surut dalam sehari dengan waktu dan tinggi air yang berbeda (tipe campuran keharian ganda). Pada bulan purnama atau bulan baru, tunggang pasut rata-rata sekitar 180 cm, sedangkan pada umur bulan pertama tunggang pasut hanya sekitar 80 cm. Menurut DISHIDROS TNI-AL dan LIPI Ambon (1994) yang dicur alam dalam Bappeda Maluku Utara (2006), tinggi gelombang laut di Pulau Ternate rata-rata berkisar antara 13–60 cm, sedangkan variasi gelombang besar terjadi pada bulan September–Desember dengan ketinggian mencapai 1,50–2,0 meter.

Arus perairan pesisir Kota Ternate dipengaruhi oleh pasang surut dan arus Muson. Faktor lainnya yaitu perbedaan densitas pada umumnya kecil, sehingga arus yang ditimbulkan juga relatif kecil yaitu 0,02–0,2 meter per detik. Arus mengalir dari tenggara dan barat daya kearah utara pada bulan Juni, Juli, Agustus, dan Oktober. Pada bulan lain arus mengalir kearah selatan yang disebabkan oleh pasang surut. Arus yang dihasilkannya dapat mencapai kecepatan 2 knot (sekitar 1 meter/detik), dan arahnya akan berbalik 180° pada setiap detik sesuai dengan sifat pasang surutnya (Bappeda Maluku Utara 2006).

Suhu umumnya air laut di perairan Kota Ternate (Laut Maluku) memiliki suhu berkisar antara 26,7–28,0°C dan salinitas berkisar 30-35 PSU. Salinitas di lain pihak menunjukkan adanya pengenceran akibat curah hujan yang tinggi. Salinitas perairan bervariasi menurut musim. Menurut Tomascik et al. (1997), salinitas perairan Laut Maluku berkisar antara 34,5–34,8 PSU pada bulan Juni-
Agustus atau bertepatan dengan masuknya massa air dari Pasifik, sedangkan pada bulan Desember-Februari, salinitas lebih rendah yaitu 31,1 PSU akibat tingginya curah hujan pada bulan-bulan tersebut.

Secara administratif, Kota Ternate memiliki 77 kelurahan yang tersebar di 7 kecamatan yaitu Kecamatan Ternate Utara (14 kelurahan), Ternate Tengah (15 kelurahan), Ternate Selatan (17 kelurahan), Pulau Ternate (13 kelurahan), Moti (6 kelurahan), Batang Dua (6 kelurahan), dan Kecamatan Hiri (6 kelurahan). Keseluruhan kelurahan tersebut terdapat 51 kelurahan (65%) yang berada di daerah pesisir dan 26 kelurahan (35%) lainnya bergerak bukan daerah pesisir pantai.

Perairan Laut Maluku pada hakekatnya merupakan daerah penangkapan (fishing ground) utama bagi nelayan yang berbasis di wilayah Provinsi Maluku Utara disamping nelayan yang berasal dari Bitung dan Sangihe Talaud Sulawesi Utara, dengan potensi ikan dominan berupa ikan pelagis kecil dan ikan demersal. Untuk itu, upaya memahami ekosistem suatu perairan, termasuk perairan Laut Maluku adalah sangat penting dalam rangka pengelolaan sumberdaya alam yang bersifat dapat pulih, seperti halnya sumberdaya ikan. Hal ini memungkinkan akukannya perhitungan-perhitungan terhadap kondisi keberlanjutan sumberdaya baik dari aspek ekologi, ekonomi, sosial, teknologi dan hukum/kelembagaan untuk dapat dimanfaatkan oleh nelayan dalam waktu yang jang
2.2 Perikanan tangkap skala kecil

Perikanan tangkap nasional sampai saat ini masih didominasi oleh perikanan tangkap skala kecil. Hal ini terlihat dari komposisi armada perikanan tangkap di Indonesia yang sebagian besar masih didominasi oleh usaha perikanan tangkap skala kecil sekitar 97,11%, dan hanya sekitar 2,89% di lakukan oleh usaha perikanan skala yang lebih besar (KKP 2009). Sampai dengan tahun 2009 struktur armada perikanan tangkap nasional didominasi oleh perahu motor tempel 233.530 buah (39,17%), disusul kemudian oleh perahu tanpa motor sebanyak 205.460 buah (34,46%), dan kapal motor 157.240 buah (26,37%). Berasal dari ini, kapal motor berukuran < 5 GT yaitu sebesar 69,70%, disusul kemudian oleh kapal motor berukuran 5-10 GT yaitu sebesar 19,33%, dan selebihnya kapal motor dengan ukuran bervariasi dari 10 sampai dengan 200 GT. Komposisi armada perikanan berukuran < 5 GT dan 5-10 GT tersebut membantu memberikan gambaran bahwa perikanan skala kecil berperan besar dalam perikanan nasional.

Menurut Smith (1983) terdapat berbagai cara untuk membedakan skala perikanan tangkap. Pada dasarnya perbedaan tersebut mencakup perikanan skala kecil atau skala besar, perikanan pantai atau lepas pantai, artisanal atau komersial. Selain itu pengelompokkan juga dapat dilakukan berdasarkan pada ukuran kapal dan tenaga yang dioperasikannya, jarak penangkapan dari pantai, dan tujuan produksinya. Pengelompokan tersebut dilakukan melalui perbandingan perikanan skala kecil (small-scale fisheries) dengan perikanan skala besar (large-scale fisheries), walaupun diakui belum begitu jelas sehingga masih perlu dilihat dari berbagai aspek yang lebih spesifik.

Selanjutnya Smith (1983) mengemukakan bahwa perikanan tradisional memiliki ciri-ciri sebagai berikut:

1. Kegiatan dilakukan dengan unit penangkapan skala kecil, kadang-kadang menggunakan perahu bermesin atau tidak sama sekali.
2. Aktivitas penangkapan merupakan paruh waktu, dan pendapatan keluarga adakalanya ditambah dari pendapatan lain dari kegiatan di luar penangkapan.
3. Kapal dan alat tangkap biasanya dioperasikan sendiri.
4. Alat tangkap dibuat sendiri dan dioperasikan tanpa bantuan mesin.
5. Investasi rendah dengan modal pinjaman dari penampung hasil tangkapan.
6. Hasil tangkapan per unit usaha dan produktivitas pada level sedang sampai sangat rendah.
7. Hasil tangkapan tidak dijual kepada pasar besar yang terorganisir dengan baik tapi diedarkan di tempat-tempat pendaratan atau dijual di laut.
8. Sebagian atau keseluruhan hasil tangkapan dikonsumsi sendiri bersama keluarganya.
Komunitas nelayan tradisional seringkali terisolasi baik secara geografis maupun sosial dengan standar hidup keluarga nelayan yang rendah sampai batas maksimal.

Di Indonesia, skala usaha perikanan dibedakan atas ukuran kapal dan berdasarkan kapal bertenaga mesin atau tidak, sedangkan di Malaysia dibedakan berdasarkan bobot kapal, tipe alat tangkap yang digunakan dan area penangkapan. Sementara di Hongkong dan Singapura membedakannya berdasarkan inshore dan offshore fisheries, dan di Thailand perbedaannya berdasarkan tipe alat tangkap yang digunakan (Smith 1983).

2.3 Keberlanjutan Perikanan Pelagis

Pembangunan yang berkelanjutan (sustainable development) merupakan suatu proses perubahan, di mana eksploitasi sumberdaya, orientasi pengembangan teknologi dan perubahan institusi adalah suatu proses yang harmonis dan menjaga potensi masa kini dan masa mendatang untuk memenuhi kebutuhan dan aspirasi manusia (Kementerian KLH/Bapedal yang dikutip dalam Simbolon 2003).

Konsep pembangunan berkelanjutan oleh WCED ini dinyatakan sebagai pembangunan yang mencukupi kebutuhan generasi sekarang dengan tidak mengurangi kemampuan generasi mendatang untuk mencukupi kebutuhannya. Penerapan pembangunan dalam konteks ini berkaitan dengan kualitas hidup dan bukan pada pertumbuhan ekonomi, walau pun kedua hal tersebut sangat berkaitan dalam sistem perekonomian modern.

Konsep pembangunan berkelanjutan juga dapat dilihat dalam konsep FAO Council (1988) yang diacu dalam FAO (2001) sebagai pengelolaan dan perluhan sumberdaya alam dan perubahan orientasi teknologi dan kelentengan dalam beberapa cara yang dapat mendukung pemenuhan kebutuhan.
generasi sekarang dan yang akan datang. Pembangunan berkelanjutan berusaha untuk melindungi tanah, air, tumbuhan serta sumberdaya genetik hewan, yang tidak menurunkan kualitas lingkungan di mana secara teknis tepat, secara ekonomis berguna, dan secara sosial dapat diterima.

Berdasarkan konsep pembangunan berkelanjutan ini, Peman et al. (1996) yang diacu dalam Fauzi (2004) mengelaborasi lebih lanjut konseptual berkelanjutan dengan mengajukan lima alternatif pengertian, yaitu: (1) suatu kondisi dikatakan berkelanjutan (sustainable) jika utilitas yang diperoleh tidak berkurang sepanjang waktu dan konsumsi tidak menurun sepanjang waktu (non-declining consumption), (2) keberlanjutan adalah kondisi di mana sumberdaya alam dikelola sedemikian rupa untuk memelihara kesempatan produksi di masa mendatang, (3) keberlanjutan adalah kondisi di mana sumberdaya alam (natural capital stock) tidak berkurang sepanjang waktu (non-declining), (4) keberlanjutan adalah kondisi di mana sumberdaya alam dikelola untuk mempertahankan produksi jasa sumberdaya alam, (5) keberlanjutan adalah kondisi di mana kondisi minimum keseimbangan dan daya tahan (resilience) ekosistem terpenuhi.

Pembangunan berkelanjutan merupakan suatu strategi pembangunan yang memberikan ambang batas pada laju pemanfaatan ekosistem alamiah serta sumberdaya alam yang ada di dalamnya. Ambang batas ini tidak bersifat mutlak tetapi merupakan batas yang luwes (flexible) yang tergantung pada kondisi teknologi dan sosial ekonomi tentang pemanfaatan sumberdaya alam serta daya dukung alam (carrying capacity) untuk menerima dampak kegiatan manusia.

Sesuai pengertian pembangunan berkelanjutan (sustainable development), jika keberlanjutan perikanan dapat diartikan sebagai serangkaian aktivitas perikanan yang memenuhi kebutuhan masa kini tanpa mengurangi kemampuan generasi mendatang memenuhi kebutuhannya. Inti dari kata keberlanjutan (sustainability) pembangunan perikanan di seluruh dunia sebenarnya adalah dapat memperbaiki dan memelihara kondisi sumberdaya dan masyarakat perikanan itu sendiri (Charles 2001; Fauzi dan Anna 2002). Pada perikanan pelagis, penekanan yang menjadi prioritas utama adalah menghindari pemanfaatan sumberdaya ikan yang tidak memperhatikan kelestariannya (FAO 2001).
Tujuan pembangunan perikanan pelagis berkelanjutan adalah memelihara stok sumberdaya perikanan dan melindungi habitatnya. Namun demikian, dalam mengelola sumberdaya perikanan pelagis untuk pembangunan yang berkelanjutan (bersifat multi-dimensi dan aktivitas bertingkat/multilevel activities), maka harus mempertimbangkan lebih banyak aspek dibandingkan dengan daya tahan hidup ikan dan perikanan itu sendiri (FAO 2001).

Tabel 1: Dinamika sistem perikanan dan komponen-komponennya.

<table>
<thead>
<tr>
<th>No.</th>
<th>Dinamika sistem</th>
<th>Komponen sistem</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dinamika Sistem Alam</td>
<td>- Dinamika single spesies</td>
<td>Daerah tropis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dinamika multi spesies</td>
<td>Daerah subtropis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dinamika ekosistem dan lingkungan biofisik</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Dinamika Sistem Manusia</td>
<td>- Dinamika upaya</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dinamika tenaga kerja</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dinamika modal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dinamika teknologi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dinamika armada perikanan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dinamika masyarakat dan lingkungan sosial ekonomi</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Dinamika Sistem Manajemen.</td>
<td>- Dinamika perencanaan dan kebijakan perikanan</td>
<td>Tradisional atau orientasi ekspor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dinamika pengelolaan perikanan</td>
<td>Masyarakat lokal atau negara</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dinamika struktur institusional pengelolaan perikanan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dinamika riset ilmiah pengelolaan perikanan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dinamika aspek legal (hukum dan Perundangan)</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Charles (2001)

Charles (2001) mengemukakan bahwa pendekatan yang dapat dilakukan untuk mewujudkan sistem perikanan berkelanjutan dapat dilakukan dengan pendekatan dari aspek lingkungan biofisik, lingkungan manusia dan institusi ekonomi. Lingkungan biofisik ditentukan dengan cara: (1) menetapkan
Pendekatan aspek manusia dilakukan dengan cara: (1) pemenuhan kebutuhan dasar manusia; (2) menerapkan asas kesamaan dan keadilan sosial dan peraturan yang pasti. Selanjutnya, lingkup institusi politik dan ekonomi (lembaga) ditentukan dengan cara: (1) membangun perspektif jangka panjang lebih dominan; 2) menetapkan tujuan ganda (sosial/lingkungan/ekonomi); (3) mengantisipasi perkembangan di masa datang/adaptive (institusi dirancang untuk respon dan memecahkan masalah); (4) responsif terhadap krisis pada level berbeda; (5) menetapkan orientasi dari sistem yang dibangun (interaksi antar komponen, pertukaran, umpan balik) dan (6) menetapkan prinsip-prinsip manajemen yang kondusif (terbuka/jujur/diinformasikan/pemberdayaan keputusan).

Pendekatan ketiga aspek tersebut di atas mempunyai kriteria dan indikator jelas untuk menilai keberlanjutan sistem perikanan. Kriteria sistem perikanan yang berkelanjutan ditinjau dan aspek ekologi meliputi tingkat penangkapan, jumlah *biomass*, ukuran ikan, kualitas lingkungan, keragaman spesies, keragaman ekosistem, luas area rehabilitasi, luas area dilindungi dan pemahaman ekosistem (Tabel 2). Sementara kriteria sistem perikanan yang berkelanjutan ditinjau dan aspek ekonomi masyarakat menurut meliputi fleksibilitas masyarakat, kemandirian masyarakat, daya dukung manusia, daya dukung lingkungan, kesamaan distribusi, kapasitas armada lestari, investasi, plai pangan dan ketahanan pangan jangka panjang (Tabel 3). Adapun kriteria sistem perikanan yang berkelanjutan ditinjau dari aspek institusional meliputi keektitas manajemen, penggunaan metode tradisional, penggabungan *input* eksternal, kapasitas terpasang dan keberlangsungan institusi (Tabel 4).

Aspek-aspek inilah yang kemudian mendasari Charles (2001) mengemukakan bahwa keberhasilan menggapi keberlanjutan perikanan berkaitan erat dengan adopsi secara memadai atas konsepsi tentang perikanan sebagai suatu...
sistem dari interaksi antar masing-masing komponen yaitu ekologi, biofisik, ekonomi, sosial, dan budaya.

<table>
<thead>
<tr>
<th>Kriteria Keberlanjutan</th>
<th>Indikator</th>
<th>Keberlanjutan minimum jika:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tingkat Penangkapan</td>
<td>Biomass (relatif ke rata-rata)</td>
<td>Tangkapan melebihi MSY</td>
</tr>
<tr>
<td>Biomass</td>
<td>Total biomass atau reproduksi stok biomass di bawah ambang kritis</td>
<td></td>
</tr>
<tr>
<td>Trend Biomass</td>
<td>Persentase perubahan rata-rata tahunan selama beberapa tahun</td>
<td>Biomas turun secara cepat (atau kurangnya rekrutmen)</td>
</tr>
<tr>
<td>Ukuran ikan</td>
<td>Rata-rata ukuran ikan (relatif ke rata-rata)</td>
<td>Ukuran rata-rata yang tertangkap relatif lebih kecil dari ukuran optimal</td>
</tr>
<tr>
<td>Kualitas lingkungan</td>
<td>Kualitas (relatif ke rata-rata) + (% perubahan rata-rata)</td>
<td>Kualitas lingkungan rendah dan menurun</td>
</tr>
<tr>
<td>Keragaman (spesies tangkapan)</td>
<td>(Jumlah spesies/rata-rata tangkapan) + (diversitas/rata-rata)</td>
<td>Jumlah spesies tertangkap dan indeks diversitas relatif di bawah tingkat sebelumnya</td>
</tr>
<tr>
<td>Keragaman (ekosistem)</td>
<td>(Jumlah spesies/rata-rata tangkapan) + (diversitas/rata-rata)</td>
<td>Jumlah spesies dan indeks diversitas rendah dan menurun</td>
</tr>
<tr>
<td>Area rehabilitasi</td>
<td>Luas area rehabilitasi (% total area)</td>
<td>Peningkatan luas area yang tercemar</td>
</tr>
<tr>
<td>Area dilindungi</td>
<td>Luas area dilindungi (% total area)</td>
<td>Pengurangan kawasan lindung karena eksploitasi</td>
</tr>
<tr>
<td>Pemahaman ekosistem</td>
<td>Tingkat pengetahuan relatif ke level lebih tinggi</td>
<td>Pemahaman sumberdaya dan ekosistem tidak jelas</td>
</tr>
</tbody>
</table>

Sumber: Charles (2001)
<table>
<thead>
<tr>
<th>Kriteria Keberlanjutan</th>
<th>Indikator</th>
<th>Keberlanjutan minimum jika:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleksibilitas masyarakat</td>
<td>Indeks keragaman tenaga kerja</td>
<td>Kurangnya alternatif pekerjaan yang dapat dilakukan nelayan</td>
</tr>
<tr>
<td>Kemampuan masyarakat</td>
<td>Proporsi kegiatan ekonomi berbasis lokal</td>
<td>Ketergantungan tinggi terhadap kekuatan ekonomi luar</td>
</tr>
<tr>
<td>Ketergantungan tenaga kerja</td>
<td>Proporsi kegiatan ekonomi berbasis lokal</td>
<td>Ketergantungan tinggi terhadap kekuatan ekonomi luar</td>
</tr>
<tr>
<td>Daya dukung manusia (atau pencaharian)</td>
<td>Penggunaan atau potensial kelangsungan tenaga kerja (relatif ke populasi)</td>
<td>Keberlanjutan ekonomi atau lapangan kerja di bawah perkiraan penggunaan atau potensial populasi</td>
</tr>
<tr>
<td>Daya dukung manusia (lingkungan)</td>
<td>Kapasitas daya serap lingkungan/produksi limbah manusia</td>
<td>Limbah manusia melebihi kemampuan lingkungan untuk menerima</td>
</tr>
<tr>
<td>Kesamaan</td>
<td>Rasio koefisien GINI dan pendapatan atau distribusi pangan</td>
<td>Penyebaran pendapatan dan suplai makanan di bawah ketentuan minimum</td>
</tr>
<tr>
<td>Kapasitas tangkapan ikan (fishing capacity)</td>
<td>Rasio kapasitas pada tingkat MSY terhadap kapasitas terpasang</td>
<td>Kapasitas terpasang melebihi hasil tangkapan lestari MSY</td>
</tr>
<tr>
<td>Investasi tepat</td>
<td>Kapastas investasi (samt stok < optimal)</td>
<td>Investasi di atas tingkat kapasitas stok maksimum atau > 0 saat stok menurun</td>
</tr>
<tr>
<td>Suplai makanan</td>
<td>Suplai pangan per kapita (kebutuhan minimum nutrisi relatif)</td>
<td>Ketersediaan pangan per orang di bawah kebutuhan minimum nutrisi</td>
</tr>
<tr>
<td>Ketahanan pangan jangka panjang</td>
<td>Kemungkinan kecukupan pangan 10 tahun ke depan</td>
<td>Stabilitas suplai pangan rendah atau suplai turun dengan cepat</td>
</tr>
</tbody>
</table>

Sumber: Charles (2001)
<table>
<thead>
<tr>
<th>Kriteria Keberlanjutan</th>
<th>Indikator Keberlanjutan</th>
<th>Keberlanjutan minimum jika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keefektifan manajemen</td>
<td>Tingkat keberhasilan pengelolaan negara dan kebijakan pengaturan</td>
<td>Organisasi pengelolaan (DKP) yang ada tidak mampu mengontrol tingkat eksploitasi dan mengatur pengguna sumberdaya</td>
</tr>
<tr>
<td>Penggunaan metode pengelolaan tradisional (local wisdom)</td>
<td>Tingkat penggunaan</td>
<td>Metode pengelolaan lingkungan dan sumberdaya tradisional (local wisdom) tidak digunakan</td>
</tr>
<tr>
<td>Pemantauan atau pemberdayaan institusi lokal</td>
<td>Tingkat pemberdayaan</td>
<td>Pengelolaan/kegiatan perencanaan tidak mempertimbangkan dan menerapkan faktor sosial kultural lokal (tradisi, pengambilan keputusan masyarakat, pengetahuan ekologi, dll)</td>
</tr>
<tr>
<td>Kapasitas terpasang</td>
<td>Tingkat upaya kapasitas terpasang</td>
<td>Kapasitas terpasang dalam organisasi kurang relevan</td>
</tr>
<tr>
<td>Keberlangsungan institusi keuangan dan keberlangsungan organisasi</td>
<td>Tingkat keuangan dan keberlangsungan organisasi</td>
<td>Organisasi pengelolaan kekurangan dana keuangan darurat atau politik pendukung struktur</td>
</tr>
</tbody>
</table>

Sumber: Charles (2001)

Meskipun dinyatakan sangat umum untuk dapat diterapkan dalam perikanan tangkap, sejak awal FAO sudah mengadopsi definisi tentang pembangunan berkelanjutan dalam lima elemen utama, yaitu: sumberdaya alam, lingkungan, kebutuhan manusia (ekonomi dan sosial), teknologi, dan institusi (FAO 2001). Sumberdaya alam dan lingkungan adalah dua elemen untuk dilindungi, sedangkan elemen lainnya dipenuhi, diawasi dan berlangsung sesuai proses pengelolaan.

Elemen sumberdaya alam dan lingkungan (ekologi) didasarkan pada pertimbangan bahwa perubahan lingkungan akan terjadi di waktu yang akan datang dan dipengaruhi oleh aktivitas manusia. Menurut Rees (1994) yang diacu dalam Mamuaya (2007) pandangan aspek ekologis ini didasarkan pada tiga prinsip utama yaitu:
(1) Aktivitas ekonomi yang dilakukan manusia adalah tidak terbatas dan berhadapan dengan ekosistem yang terbatas. Kerusakan lingkungan dan polusi yang ditimbulkannya akan mempengaruhi sistem dukungan kehidupan (*life support system*).

(2) Aktivitas ekonomi yang lebih maju seiring dengan pertumbuhan populasi akan meningkatkan kebutuhan akan sumberdaya alam dan tingginya produksi limbah yang dapat merusak lingkungan karena melebihi daya dukung ekosistem.

(3) Pembangunan yang dilaksanakan dalam jangka panjang akan berdampak pada kerusakan lingkungan yang *irreversible*.

Keberlanjutan komunitas (sosial-budaya) dapat ditandai pada komunitas sebagai sistem insani yang bernilai lebih dari sekedar kumpulan individu-individu. Penekanannya pada pemeliharaan secara kelompok untuk kesejahteraan dan kesehatannya dalam jangka panjang. Selain itu, pemeliharaan sistem penopang kehidupan merupakan prasyarat keberlanjutan sosial (Goodland 1995).

Beberapa pertimbangan hukum yang diperlukannya dalam pembangunan perikanan berkelanjutan menurut FAO (2001) di antaranya meliputi:

1. Pemanfaatan sumberdaya perikanan yang berkelanjutan dan aktivitas pengolahannya harus didasarkan pada ekosistem kelautan tertentu dan teridentifikasi dengan baik.
2. Melibatkan daya dukung sumberdaya terhadap aktivitas pemanfaatan dalam jangka panjang.
3. Menghidupi tenaga kerja dalam bidang perikanan dalam masyarakat yang lebih luas.
4. Memelihara tingkat kesehatan dan kesatuan ekosistem kelautan untuk pemanfaatan yang lain, termasuk di dalamnya keanekaragaman hayati, ilmu pengetahuan, nilai intrinsik, struktur tropis dan kegunaan ekonomi lainnya serta pariwisata dan rekreasi.

Pengembangan perikanan dapat berkelanjutan jika pola dan laju pembangunannya dapat dikelola sedemikian rupa, sehingga total permintaannya (demand) terhadap sumberdaya perikanan dan jasa-jasa lingkungannya tidak melebihi atau kemampuan suplai tersebut. Sedangkan kualitas dan kuantitas permintaan tersebut ditentukan oleh jumlah penduduk dan atau standard kualitas kehidupannya.
2.4 Penentuan Status Keberlanjutan Perikanan

RAPFISH merupakan suatu teknik ordinasi multi-disiplin dan non-parametrik yang digunakan untuk mengevaluasi/menentukan/membandingkan status perikanan, dalam hal keberlanjutannya. Menurut Pitcher dan Preikshot
(2001), keberlanjutan perikanan untuk semua aspeknya, dievaluasi untuk mengetahui statusnya pada suatu periode waktu tertentu. Selanjutnya berdasarkan statusnya, pengambilan keputusan dan atau kebijakan untuk mempertahankan dan atau mengembangkan status dimaksud dapat secara objektif dilakukan yaitu dengan cara perbaikan keadaan dari atribut-atribut keberlanjutan perikanan tersebut.

Pengkajian status keberlanjutan perikanan tangkap dengan aplikasi pendekatan RAPFISH, pertama kali di Indonesia yang dilakukan pada tahun 2002 oleh Fauzi dan Anna, yaitu pada perikanan laut di DKI Jakarta. Hasil pengkajian dari dua belas jenis alat tangkap ini menunjukkan bahwa dari dimensi ekologi, alat tangkap yang beroperasi di luar Teluk Jakarta cenderung memiliki skor keberlanjutan relatif lebih rendah, sebab alat tangkap aktif cenderung memimik masalah ekologi, seperti by catch, non selective, dan catch before maturity. Sebaliknya, alat tangkap yang beroperasi di dalam Teluk Jakarta cenderung pasif dan lebih selektif dan tradisional, sehingga tidak terlalu destruktif. Namun skor keberlanjutan dimensi ekonomi antara perikanan di luar Teluk Jakarta dan di dalam teluk menunjukkan bahwa perikanan di dalam teluk Jakarta cenderung memiliki skor sustainability rendah. Hasil analisis leverage untuk menguji sensitivitas atribut untuk setiap dimensi terhadap skor kelestarian perikanan pesisir Jakarta diperoleh bahwa marketable right, employment sector dan other income mempunyai derajat kepekaan yang tinggi. Sementara pada dimensi sosial, maka tingkat pendidikan, pengetahuan lingkungan serta fishing income mempunyai derajat yang penting dalam mempengaruhi tingkat kelestarian sumberdaya perikanan tersebut. Sementara secara teknis (teknologi) atribut selective gear mendominasi atribut lainnya dalam mempengaruhi tingkat kelestarian tersebut. Sedangkan pada dimensi etika, keterlibatan nelayan dalam penentuan kebijakan (just management) sangat nyata mempengaruhi nilai kelestarian tersebut.

Analisis yang sama terakhir dilakukan oleh Mamuaya (2007) terhadap perikanan Pukat Cincin di Kota Manado. Hasil analisis menunjukkan bahwa status umum perikanan pukat cincin terordinasi 53% dari keberlanjutan perikanan tergolong baik (ordinasi 0-100). Pengembangannya berpeluang dilakukan melalui
program yang diarahkan untuk perbaikan kualitas atribut-atribut keberlanjutan perikanan. Sesuai dimensinya, atribut-atribut keberlanjutan perikanan dimaksud terutama adalah: upah rata-rata dan proporsi pekerjaan (ekonomi), sosialisasi penangkapan dan partisipasi keluarga (sosial), selektivitas alat tangkap dan kemampuan menangkap (teknologi), pilihan perikanan dan ketepatan pengelolaan (etika).

2.5 Pengembangan Perikanan Pelagis

Perikanan pelagis merupakan bagian dari kegiatan perikanan tangkap lain perikanan demersal dan perikanan karang. Dalam pengembangannya, perikanan pelagis tidak lepas dari pengembangan perikanan tangkap secara umum. Perikanan tangkap dapat diartikan sebagai suatu kegiatan ekonomi yang mencakup penangkapan atau pengumpulan hewan dan tanaman air yang hidup di laut atau perairan umum secara bebas. Menurut Monintja (2001), perikanan tangkap merupakan suatu sistem yang terdiri dari beberapa komponen atas elemen atau subsistem yang saling berkaitan dan mempengaruhi satu dengan yang lainnya sebut dengan agribisnis perikanan. Komponen-komponen perikanan tangkap diri dari: (1) sarana produksi; (2) usaha penangkapan; (3) prasarana pelabuhan; (4) unit pengolahan; (5) unit pemasaran; dan (6) unit pembinaan.

Selanjutnya dikatakan bahwa terdapat faktor atau alasan mengapa perikanan tangkap dalam pengembangannya perlu dikelola secara benar dan tepat, yaitu sebagai berikut:

1. Perikanan tangkap berbasis pada sumberdaya hayati yang dapat diperbaharui (renewable), namun dapat mengalami depresi atau kepunahan. Sumberdaya ikan memiliki kelimpahan yang terbatas, sesuai daya dukung (carrying capacity) habitatnya;

2. Sumberdaya ikan dikenal sebagai sumberdaya milik bersama (common property) yang rawan terhadap tangkap lebih (overfishing);

3. Pemanfaatan sumberdaya ikan dapat merupakan sumber konflik (di daerah penangkapan maupun dalam pemasaran hasil tangkapan);
Usaha penangkapan haruslah menguntungkan dan mampu memberikan kehidupan yang layak bagi para nelayan dan pengusahaannya, jumlah nelayan yang melebihi kapasitas akan menimbulkan kemiskinan para nelayan; kemampuan modal, teknologi dan akses informasi yang berbeda antar nelayan menimbulkan kesenjangan dan konflik; dan usaha penangkapan ikan dapat menimbulkan konflik dengan subsektor lainnya, khususnya dalam zona atau tata ruang pesisir dan laut.

Adapun pengelolaan dan pengembangannya menurut Monintja (2001) harus menunjukkan karakteristik penangkapan yang berkelanjutan, yaitu:

1. Proses penangkapan yang ramah lingkungan meliputi: 1. selektivitas tinggi; 2. hasil tangkapan yang terbuang minim; 3. tidak membahayakan keanekaragaman hayati; 4. tidak menangkap jenis ikan yang dilindungi; 5. tidak membahayakan habitat; 6. tidak membahayakan kelestarian sumberdaya ikan target; 7. tidak membahayakan keselamatan nelayan; dan 8. memenuhi ketentuan Code of Conduct for Responsible Fisheries;
2. Volume produksi tidak berfluktuasi drastis (suplai tetap);
3. Pasar tetap atau terjamin;
4. Usaha penangkapan masih menguntungkan;
5. Tidak menimbulkan friksi sosial dan memenuhi persyaratan legal.

Hubungan komponen-komponen dalam suatu kompleks penangkapan ikan yang saling berkaitan antara satu elemen dengan elemen lainnya antara lain adalah (1) analisis aspek pemasaran; (2) analisis sumberdaya ikan (SDI); (3) analisis aspek teknis menyangkut operasi penangkapan ikan; (4) analisis finansial; (5) analisis dampak ekonomi; (6) analisis aspek lingkungan dan sosial; (7) aspek organisasi dan manajemen; dan (8) analisis kepekaan.

2.6 Proses Hierarki Analitik (Analytical Hierarchy Process)

Proses Hierarki Analitik (PHA) adalah suatu metode yang sederhana, fleksibel dan luwes. Metode ini digunakan untuk memecahkan masalah yang kompleks tak berstruktur ke dalam bagian-bagian komponennya. Suatu masalah dipandang sebagai suatu kerangka yang terorganisir tetapi kompleks yang memungkinkan adanya interaksi dan saling ketergantungan antar faktor, namun...
semuanya dapat dipecahkan dalam suatu pola pemikiran yang sederhana. Caranya
yaitu dengan menggunakan hirarki fungsional dengan input utamanya berupa
persepsi. Proses hierarki analitik ini memasukkan berbagai pertimbangan dan
nilai-nilai pribadi secara logis, yang bergantung pada imajinasi, pengalaman, dan
pengetahuan untuk menyesuaikan suatu masalah dan pada logika, intuisi dan
pengetahuan untuk memberikan pertimbangan.

Menurut Saaty (1991) ada tiga prinsip dasar dalam PHA, yakni sebagai
ikut:
(1) Memecah-mecah suatu masalah ke dalam suatu hierarki.
(2) Menetapkan suatu prioritas yaitu dengan menentukan peringkat elemen-
elemen menurut relatif kepentingannya.
(3) Menjamin bahwa semua elemen yang dikelompokkan secara logis dan
diperingkatkan secara konsisten dengan suatu kriteria yang logis.

Untuk memecahkan masalah yang terdiri dari berbagai kriteria dilakukan
dasarkan perbandingan preferensi dari setiap elemen di dalam struktur hierarki
(pairwise comparison). Adapun langkah-langkah dalam PHA ini meliputi :
(1) Merumuskan suatu permasalahan dan tujuan (sasaran utama) yang akan
dicapai.
(2) Menyusun struktur permasalah secara hierarki.
(3) Membuat suatu matriks perbandingan berpasangan dari setiap elemen
yang menggambarkan kontribusi relatif terhadap tujuan atau kriteria
setingkat di atasnya. Dasar perbandingannya adalah tingkat kepentingan
menurut penilaian atau judgement dari pengambil keputusan.
(4) Melakukan perbandingan berpasangan.
(5) Melakukan perhitungan nilai eigen dan menguji konsistensinya melalui
suatu rasio.
(6) Menghitung vector eigen dari setiap matriks perbandingan berpasangan.
(7) Melakukan evaluasi terhadap konsistensi dari seluruh hirarki melalui suatu
rasio. Nilai rasio konsistensi harus 10 persen atau kurang, bila melebihi,
maka penilaian informal harus diperbaiki, baik dengan merevisi
pertanyaan atau dengan mengulang proses. Konsistensi ini diperlukan
dalam menetapkan prioritas untuk menjamin hasil keputusan yang diambil.

PHA juga dapat digunakan untuk menurunkan skala rasio dari beberapa perbandingan berpasangan yang bersifat diskrit maupun kontinyu (Mulyono 1996). Perbandingan berpasangan tersebut dapat diperoleh melalui pengukuran aktual atau relatif dari derajat kesukaan atau kepentingan atau perasaan. Dengan demikian, metode ini sangat berguna untuk membantu mendapatkan skala rasio dari hal-hal yang semula sulit diukur seperti pendapat, perasaan, perilaku dan kepercayaan.

Selanjutnya dikatakan bahwa penetapan prioritas berarti membuat penilaian tentang kepentingan relatif dua elemen pada suatu tingkat tertentu dalam kaitannya dengan tingkat diatasnya. Langkah pertama untuk menyusun prioritas adalah membandingkan kepentingan relatif dari masing-masing elemen dan menduga prioritas untuk sub-faktornya. Sintesis prioritas dilakukan untuk mendapatkan prioritas menyeluruh sub-faktor dan langkah berikutnya adalah melakukan perhitungan menyeluruh untuk masing-masing faktor.

2.7 Penelitian Terkait yang Pernah Dilakukan

2.7.1 Penelitian yang menggunakan metode RAPFISH

Pengevaluasian terhadap status keberlanjutan pengelolaan perikanan tangkap di Indonesia dengan menggunakan metode RAPFISH telah banyak dilakukan. Sebagai gambar umum dari penelitian-penelitian tersebut, Tabel 5 menyajikan garis-garis besar dari setiap penelitian itu yang meliputi nama peneliti, judul, tahun, tujuan penelitian dan kesimpulannya.

<table>
<thead>
<tr>
<th>Peneliti/Tahun/Judul</th>
<th>Tujuan Penelitian</th>
<th>Kesimpulan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akhmad Fauzi dan Susy Anna (2002), Evaluasi status Keberlanjutan Pembinaan Perikanan: Aplikasi pendekatan RAPFISH (Studi Kasus Perairan Pesisir DKI Jakarta) dan Lautan</td>
<td>Mengaplikasi pendekatan RAPFISH untuk mengevaluasi status keberlanjutan perikanan di Pesisir DKI Jakarta</td>
<td>Analisis evaluasi keberlanjutan yang dihasilkan dalam studi memperlihatkan bahwa teknik yang sederhana namun komprehensif (RAPFISH), assessment terhadap perikanan dapat dilakukan secara utuh.</td>
</tr>
<tr>
<td>Peneliti/Tahun/Judul</td>
<td>Tujuan Penelitian</td>
<td>Kesimpulan</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Setyo Budi Soesilo (2003), Keberlanjutan pembangunan pulau-pulau kecil: Studi kasus Kelurahan Pulau Panggang dan Pulau Pari, Kepulauan Seribu, DKI Jakarta</td>
<td>Menilai keberlanjutan pembangunan pulau-pulau kecil di Kelurahan Pulau Panggang dan di Kelurahan Pulau Pari Kabupaten Administrasi Kepulauan Seribu DKI Jakarta.</td>
<td>Status keberlanjutan pembangunan pulau-pulau kecil di Kelurahan Pulau Panggang dan di Kelurahan Pulau Pari Kabupaten Administrasi berada dalam kategori cukup berkelanjutan karena indeksnya berada pada selang 50-75 dari skala indeks 0-100. Mendeterminasi tingkat kemajuan maupun ketertinggalan atribut-atribut aspek pembangunan di daerah studi serta membuat evaluasi dinamika variabel ekonomi dan ekologi untuk memudahkan perencanaan pembangunan selanjutnya agar sesuai dengan kriteria pembangunan yang berkelanjutan.</td>
</tr>
</tbody>
</table>
Tabel 5 (lanjutan)

<table>
<thead>
<tr>
<th>Peneliti/Tahun/Judul</th>
<th>Tujuan Penelitian</th>
<th>Kesimpulan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kondisi keberlanjutannya masih kurang. Didalam dimensi teknologi terdapat 3 (tiga) atribut yang paling sensitif, yaitu penggunaan alat bantu penangkapan ikan, selektivitas alat tangkap, dan jenis alat penangkapan ikan. Dari 3 atribut ini yang masih perlu diperbaiki adalah atribut penggunaan alat bantu penangkapan ikan sedangkan dua atribut yang lainnya masih dalam kondisi yang baik ditinjau dari kriteria keberlanjutannya. Didalam dimensi hukum dan kelembagaan terdapat 4 (empat) atribut yang relatif paling sensitif, yaitu adanya tokoh panutan yang disegani masyarakat, ketersediaan aturan adat dan kepercayaan yang berkaitan dengan pengelolaan sumberdaya alam dan lingkungan, ada tidaknya aturan "limited entry", dan ketersediaan personil penegak hukum di lokasi. Dari 4 atribut di atas, 2 atribut yang pertama kondisinya masih baik dan perlu dipertahankan sedangkan 2 atribut yang terakhir masih perlu diperbaiki. Atribut ketersediaan personil penegak hukum di lokasi yang masih perlu diperbaiki adalah di Kelurahan Pulau Pari sedangkan di Kelurahan Pulau Panggang kondisinya masih baik.</td>
<td>Mengembangkan metode evaluasi status keberlanjutan pembangunan pulau-pulau kecil, sehingga dapat dilakukan secara luas di Indonesia baik oleh instansi pemerintah maupun oleh masyarakat luas.</td>
</tr>
<tr>
<td>Peneliti/Tahun/Judul</td>
<td>Tujuan Penelitian</td>
<td>Kesimpulan</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Yozki Wandri (2005), Analisis Pembangunan Perikanan Tangkap Di Kabupaten Pesisir Selatan- Tesis</td>
<td>Menganalisis perkembangan tenaga kerja subsektor perikanan di setiap kecamatan pesisir Kabupaten Pesisir Selatan</td>
<td>Tenaga kerja subsektor perikanan mengalami peningkatan dari tahun ke tahun di setiap kecamatan pesisir. Faktor pertumbuhan tenaga kerja dan sektor basis terutama lebih banyak dipengaruhi oleh tidak tersedianya alternatif pekerjaan lain</td>
</tr>
<tr>
<td>Peneliti/Tahun/Judul</td>
<td>Tujuan Penelitian</td>
<td>Kesimpulan</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Maman Hermawan (2006), Keberlanjutan Perikanan Tangkap Skala Kecil (Kasus Perikanan Pantai Di Serang dan Tegal)</td>
<td>Menentukan status perikanan tangkap skala kecil dalam perspektif keberlanjutan menurut dimensi ekologi, teknologi, sosial, ekonomi serta hukum dan kelembagaan dalam perairan pantai Pasauran Serang dan Perairan Tegal</td>
<td>Perikanan tangkap skala kecil di Pasauran Serang hanya perikanan jaring udang yang berstatus cukup berkelanjutan yang didukung oleh kelima dimensi keberlanjutan. Alat tangkap payang bugis berstatus kurang berkelanjutan, karena walaupun secara ekologi, ekonomi, sosial, hukum dan kelembagaan cukup berkelanjutan, tetapi dari dimensi teknologi statusnya kurang berkelanjutan. Kegiatan perikanan tangkap di Tegal untuk semua alat tangkap yang ditetapkan berstatus kurang berkelanjutan. Secara umum perikanan jaring rampus, bundes dan gemplo di perairan Tegal ini tidak didukung oleh keberlanjutan dimensi ekologi dengan skor kurang berkelanjutan bahkan mendekati skor buruk.</td>
</tr>
<tr>
<td>Mengidentifikasi kebijakan untuk mendukung keberlanjutan perikanan tangkap di lokasi penelitian</td>
<td>Kebijakan pengembangan keberlanjutan perikanan yaitu pengembangan yang harus memperhatikan bio-technico-socioeconomic approach yaitu secara biologi tidak merusak atau mengganggu kelestarian sumberdaya ikan, secara teknis alat tangkap harus efektif untuk dioperasikan, secara sosial alat tangkap harus dapat diterima oleh masyarakat nelayan, secara ekonomi alat tangkap tersebut harus menguntungkan.</td>
<td></td>
</tr>
</tbody>
</table>
Hamdan (2007)
Analisis kebijakan Perikanan Tangkap Berkelanjutan di Kabupaten Indramayu Provinsi Jawa Barat -

<table>
<thead>
<tr>
<th>Peneliti/Tahun/Judul</th>
<th>Tujuan Penelitian</th>
<th>Kesimpulan</th>
</tr>
</thead>
</table>

Mengkaji faktor-faktor pengungkit yang berpengaruh terhadap keberlanjutan sumber daya ikan di perairan Kabupaten Indramayu

Faktor pengungkit dalam pembangunan perikanan tangkap di Kabupaten Indramayu adalah aspek ekologi (tekanan terhadap lahan mangrove dan sedimentasi), aspek ekonomi (besarnya subsidi dan pendapatan asli daerah), aspek sosial (tingkat pendidikan dan frekuensi konflik), aspek teknologi (alat tangkap destruktif, mobilitas alat tangkap, dan penanganan pasca panen), aspek etika (mitigasi habitat dan ekosistem, aturan pengelolaan, dan akses terhadap sumber daya), dan aspek kelembagaan (transparansi dan intensitas pemanfaatan). |

Menyusun strategi pengelolaan perikanan tangkap di lokasi penelitian

Stategi kebijakan yang harus dilakukan dalam pengelolaan sumberdaya ikan di Kabupaten Indramayu adalah (1) konservasi dan rehabilitasi hutan mangrove; (2) pengaturan jumlah alat tangkap, (3) penanganan pasca panen, (4) modernisasi armada besar yang beroperasi di wilayah lepas pantai, (5) pengurangan armada kecil yang tidak efisien dan tidak ramah lingkungan, (6) pengembangan industri pengolahan ikan,
<table>
<thead>
<tr>
<th>Peneliti/Tahun/Judul</th>
<th>Tujuan Penelitian</th>
<th>Kesimpulan</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Peneliti/Tahun/Judul</th>
<th>Tujuan Penelitian</th>
<th>Kesimpulan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mengidentifikasi faktor penentu keberhasilan usaha dan mengukur kinerja usaha perikanan pelagis kecil yang berbasis di pantai utara Jawa</td>
<td>Hasil tangkapan ikan yang diperoleh nelayan ditentukan oleh ukuran kapal, lamanya trip penangkapan, pengalaman anak buah kapal (terutama nakhoda) sebagai nelayan. Sedangkan keuntungan yang diperoleh sangat dipengaruhi oleh harga solar dan jenis alat tangkap yang dipergunakan. Rata-rata tingkat efisiensi produksi alat tangkap purse-seine adalah 0,635; payang 0,638 dan gillnet 0,677. Sedangkan rata-rata tingkat efisiensi keuntungan alat tangkap purse-seine 0,386; alat tangkap payang 0,412 dan alat tangkap gillnet 0,437.</td>
<td></td>
</tr>
<tr>
<td>Menentukan status keberlanjutan perikanan pelagis kecil, berdasarkan aspek ekologi, ekonomi, teknologi, sosial, etik dan kelembagaan</td>
<td>Keberlanjutan perikanan pelagis kecil baik dilihat dari dimensi ekologi, ekonomi, etik dan teknologi, pada umumnya berada pada kategori kurang. Sedangkan dilihat dari dimensi sosial dan kelembagaan menunjukkan kategori sedang dan baik</td>
<td></td>
</tr>
<tr>
<td>Merumuskan kebijakan yang tepat dalam rangka meningkatkan kesejahteraan nelayan dan menjaga kelestarian sumberdaya ikan</td>
<td>Prioritas utama strategi kebijakan perikanan pelagis kecil adalah menggunakan kekuatan yang dimiliki untuk menghindari ancaman, dengan kebijakan pembangunan terdiri dari diversifikasi usaha perikanan, relokasi nelayan dan armada perikanan serta perbaikan ekosistem perairan dengan melibatkan masyarakat.</td>
<td></td>
</tr>
</tbody>
</table>

Menentukan status keberlanjutan perikanan pukat cincin di daerah Kota Manado

Status umum perikanan pukat cincin terordinasi 53% dari keberlanjutan perikanan yang tergolong baik (ordinasi 0–100). Pengembangannya berpeluang dilakukan melalui program yang diarahkan untuk perbaikan kualitas atribut-atribut keberlanjutan perikanan seperti upah rata-rata dan proporsi pekerjaan (ekonomi), sosialisasi penangkapan dan partisipasi keluarga (sosial), selektivitas alat tangkap dan kemampuan menangkap (teknologi), pilihan perikanan dan ketepatan pengelolaan (etika).
Menyusun model umpan balik sistematis hasil tangkapannya

Menentukan pilihan kebijakan untuk dipertimbangkan dalam pengembangan perikanan tersebut

2.7.2 Penelitian bidang perikanan tangkap di perairan Kota Ternate

Sejauh penelusuran pustaka, penelitian di bidang perikanan tangkap yang secara spesifik menjadikan perairan Kota Ternate sebagai objek atau wilayah studi masih tergolong sedikit. Sebagai gambar umum dari penelitian-penelitian tersebut, berikut ini garis-garis besar dari setiap penelitian itu yang meliputi nama peneliti, judul, tahun, tujuan penelitian dan kesimpulannya (Tabel 6).

<table>
<thead>
<tr>
<th>Peneliti/Tahun/Judul</th>
<th>Tujuan Penelitian</th>
<th>Kesimpulan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulyati Munaf (2004), Peran Gender dalam Pengelolaan dan Pemasaran Hasil Perikanan (Studi Kasus) di Kota Ternate Provinsi Maluku Utara—Tesis</td>
<td>Mengkaji peran gender dalam pengolahan dan pemasaran hasil perikanan</td>
<td>Secara umum dinamika intra dan inter rumah tangga dalam kegiatan reproduktif, produktif dan kegiatan sosial masih dipengaruhi oleh nilai gender. Hal ini terlihat dari pembagian kerja yang mana pada semua strata menunjukkan kecenderungan yang sama untuk kegiatan reproduktif yang masih didominasi oleh perempuan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analisis sosial ekonomi dan budaya menunjukkan bahwa rumah tangga nelayan di Kota Ternate cenderung memiliki karakteristik sosial ekonomi yang sama. Variabel yang dominan dalam membentuk karakteristik sosial ekonomi dan budaya masyarakat Kota Ternate adalah pendidikan, pendapatan, penguasaan aset rumah tangga, dan pengeluaran</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pada profit akses dan kontrol perempuan dalam beberapa aspek keputusan menunjukkan adanya subordinasi yang disebabkan akses dan kontrol dari lelaki pada peralatan nelayan lebih tinggi karena langsung terlibat pada kegiatan mencari ikan. Sedangkan akses dan kontrol perempuan pada kegiatan pemasaran hasil perikanan lebih tinggi dari lelaki karena pada kegiatan ini lelaki menyerahkan sepenuhnya pada perempuan untuk dijual langsung di pasar lokal.</td>
</tr>
<tr>
<td>Peneliti/Tahun/Judul</td>
<td>Tujuan Penelitian</td>
<td>Kesimpulan</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Mengkaji curahan waktu untuk kegiatan di dalam dan di luar rumah tangga</td>
<td>Secara keseluruhan rata-rata curahan waktu lelaki untuk kegiatan reproduktif 1,6 jam dan perempuan 4,9 jam per hari. Ini berarti bahwa curahan waktu perempuan lebih besar 3,3 jam dari lelaki dalam kegiatan reproduktif. Ketimpangan gender dapat terlihat dari adanya stereotip peran perempuan dan lelaki, dimana ditemukan bahwa yang berkewajiban melakukan pekerjaan rumah tangga hanyalah perempuan. Rata-rata curahan waktu lelaki untuk kegiatan produktif adalah sebesar 9,2 jam dan perempuan 7,2 jam per hari. Jika dihitung per satuan bulan kerja maka rata-rata curahan waktu lelaki untuk kegiatan produktif adalah sebesar 135,9 JK dan perempuan sebesar 124,8 JK. Dalam hal ini lelaki lebih dominan dari perempuan karena selain melakukan kegiatan mencari ikan (nelayan), juga melakukan kegiatan non nelayan. Disini terlihat ketimpangan gender dalam hal beban kerja.</td>
</tr>
<tr>
<td></td>
<td>Mengetahui tingkat kesejahteraan masyarakat Kota Ternate dalam pemanfaatan sumberdaya perikanan tangkap</td>
<td>Usaha pemanfaatan usaha perikanan tangkap mampu meningkatkan kesejahteraan masyarakat nelayan. Hal ini tercermin dari surplus producen yang lebih baik dibandingkan surplus konsumen. Hal ini berarti pemanfaatan sumberdaya perikanan di Kota Ternate cukup</td>
</tr>
<tr>
<td>Peneliti/Tahun/Judul</td>
<td>Tujuan Penelitian</td>
<td>Kesimpulan</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>menyumbang kepada kesejahteraan masyarakat nelayan.</td>
<td></td>
</tr>
<tr>
<td>Mengetahui kondisi sosial dan ekonomi masyarakat nelayan sebelum dan sesudah konflik di Kota Ternate</td>
<td>Konflik menyebabkan terjadinya perubahan struktur sosial dan ekonomi masyarakat nelayan. Dari sisi pengelolaan sumberdaya pesisir dan pelaku nelayan, perubahan terlihat dari terkikisnya adat dolobololo. Dari sudut ekonomi, tidak terjadi perubahan yang berarti terhadap pendapatan masyarakat nelayan.</td>
<td></td>
</tr>
<tr>
<td>Mengetahui karakteristik nelayan yang dapat mempengaruhi kondisi sosial ekonomi sebelum dan sesudah konflik</td>
<td>Konflik berkepanjangan menyebabkan terjadinya perubahan-perubahan karakteristik nelayan yang mempengaruhi pendapatan. Sebelum konflik, karakteristik nelayan yang berpengaruh adalah umur nelayan, sarana transportasi, sarana penangkapan, kemudahan penjualan dan kemudahan memperoleh pekerjaan sampingan. Setelah konflik, karakteristik nelayan yang mempengaruhi pendapatan adalah jumlah hasil tangkapan, teknologi, kemudahan memperoleh pekerjaan sampingan, dan interaksi jumlah tanggungan serta tingkat pendidikan.</td>
<td></td>
</tr>
<tr>
<td>Mengkaji keunggulan komparatif dan kompetitif sub sektor perikanan terhadap perekonomian wilayah Kota Ternate</td>
<td>Saat ini subsektor perikanan bukan merupakan faktor yang memiliki keunggulan komparatif dan kompetitif dalam perekonomian daerah. Fenomena pergeseran keunggulan ini disebabkan adanya konflik yang tidak memungkinkan terjadinya</td>
<td></td>
</tr>
<tr>
<td>Peneliti/Tahun/Judul</td>
<td>Tujuan Penelitian</td>
<td>Kesimpulan</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Sufyani M. Sahami (2006), Dampak Pemberian Bantuan Unit Penangkapan Ikan Terhadap Tingkat Pendapatan Nelayan di Kota Ternate Maluku Utara</td>
<td>Menghitung perbedaan tingkat pendapatan nelayan sebelum dan sesudah menerima bantuan unit penangkapan ikan</td>
<td>Bantuan alat tangkap jaring insang, jaring kalase dan pajeko (pukat cincin) dari Pemerintah Kota Ternate memberikan dampak yang sangat berarti terhadap peningkatan pendapatan nelayan. Hal ini terlihat dari perbedaan tingkat pendapatan nelayan sebelum dan sesudah menerima bantuan. Setelah menerima bantuan unit penangkapan ikan sejak tahun 2004, pendapatan nelayan mengalami peningkatan yang cukup besar yang masing-masing meningkat sebesar 369,39% per tahun (nelayan jaring insang), 415,11% per tahun (nelayan jaring kalase) dan 1.054,18% per tahun (nelayan pajeko).</td>
</tr>
</tbody>
</table>

| Yulistyo (2006), Analisis Kebijakan Pengembangan Armada Perikanan Ikan Berdasarkan Ketentuan yang Berlaku di Wilayah Pesisir Kota Ternate, Maluku Utara | Menentukan strategi peningkatan pendapatan masyarakat nelayan di wilayah pesisir Kota Ternate | Strategi peningkatan pendapatan nelayan adalah (1) pemberian unit penangkapan ikan, (2) peningkatan ketrampilan masyarakat nelayan, (3) pelaksanaan pengelolaan sumberdaya perikanan berbasis masyarakat secara partisipatif dan (4) peningkatan jumlah prasarana perikanan. |

| Yulistyo (2006), Analisis Kebijakan Pengembangan Armada Perikanan Ikan Berdasarkan Ketentuan yang Berlaku di Wilayah Pesisir Kota Ternate, Maluku Utara | Menyusun pengembangan armada kapal perikanan yang terstruktur, baik itu yang nantinya akan dioperasikan oleh nelayan tradisional maupun perusahaan besar sekalipun | Armada kapal perikanan yang terpilih untuk meningkatkan produktivitas usaha penangkapan ikan yaitu armada pole and line berukuran 10-30 GT dan berukuran 5-10 GT, diikuti dengan jenis armada purse seine berukuran 10-30 GT. Hasil analisis finansial menunjukkan bahwa armada pole and line, purse seine dengan ukuran 10 - 30 GT layak dan efisien untuk |
47

Tabel 6 (lanjutan)

<table>
<thead>
<tr>
<th>Peneliti/Tahun/Judul</th>
<th>Tujuan Penelitian</th>
<th>Kesimpulan</th>
</tr>
</thead>
<tbody>
<tr>
<td>terus dikembangkan. Namun demikian akibat kenaikan harga BBM pada tanggal 1 Oktober 2005 armada bottom handline = 10 GT dapat menjadi prioritas pertama untuk dikembangkan, dikarenakan tingkat kelayakan usahanya lebih menjanjikan dan pengembalian investasinya bisa lebih cepat, kemudian diikuti dengan armada pole and line 10 – 30 GT dan selanjutnya armada purse seine 10 – 30 GT. Hasil analisis CCRF dengan menggunakan kriteria seperti selektivitas alat, discard dan ghost fishing didapatkan bahwa armada pole and line merupakan yang ramah lingkungan diikuti dengan armada bottom handline, sedangkan armada purse seine tidak ramah lingkungan. Pengembangan usaha perikanan tangkap dapat dilakukan melalui pengalokasian jumlah optimum armada pole and line sesuai alokasi sebanyak 24 unit dan purse seine sebanyak 4 unit dengan ukuran 10 – 30 GT, sedangkan armada bottom handline = 10 GT jumlah optimum sesuai alokasi sebanyak 347 unit.</td>
<td>terus dikembangkan. Namun demikian akibat kenaikan harga BBM pada tanggal 1 Oktober 2005 armada bottom handline = 10 GT dapat menjadi prioritas pertama untuk dikembangkan, dikarenakan tingkat kelayakan usahanya lebih menjanjikan dan pengembalian investasinya bisa lebih cepat, kemudian diikuti dengan armada pole and line 10 – 30 GT dan selanjutnya armada purse seine 10 – 30 GT. Hasil analisis CCRF dengan menggunakan kriteria seperti selektivitas alat, discard dan ghost fishing didapatkan bahwa armada pole and line merupakan yang ramah lingkungan diikuti dengan armada bottom handline, sedangkan armada purse seine tidak ramah lingkungan. Pengembangan usaha perikanan tangkap dapat dilakukan melalui pengalokasian jumlah optimum armada pole and line sesuai alokasi sebanyak 24 unit dan purse seine sebanyak 4 unit dengan ukuran 10 – 30 GT, sedangkan armada bottom handline = 10 GT jumlah optimum sesuai alokasi sebanyak 347 unit.</td>
<td></td>
</tr>
</tbody>
</table>

Menyusun kebijakan pengembangan yang nantinya dapat dipakai sebagai bahan pertimbangan bagi pengambil keputusan dalam kaitannya dengan armada penangkapan yang akan beroperasi di perairan Maluku Utara, khususnya di Ternate. Mengacu pada 6 analisis yang telah dilakukan dalam penelitian serta berdasarkan prinsip-prinsip pada ketentuan perikanan yang bertanggung jawab (CCRF), maka kebijakan pengembangan armada penangkapan ikan di Ternate, Propinsi Maluku Utara adalah : perlu dikembangkannya armada penangkapan ikan *pole and line* antara 10 – 30 GT, *bottom handline* = 10 GT dan pengendalian armada *purse seine*. Strategi yang menjadi prioritas adalah mengembangkan usaha perikanan tangkap dengan penambahan armada kapal ikan dengan pola operasi yang mengacu pada Ketentuan Perikanan yang bertanggung jawab. Kebijakan yang harus | Menyusun kebijakan pengembangan yang nantinya dapat dipakai sebagai bahan pertimbangan bagi pengambil keputusan dalam kaitannya dengan armada penangkapan yang akan beroperasi di perairan Maluku Utara, khususnya di Ternate. Mengacu pada 6 analisis yang telah dilakukan dalam penelitian serta berdasarkan prinsip-prinsip pada ketentuan perikanan yang bertanggung jawab (CCRF), maka kebijakan pengembangan armada penangkapan ikan di Ternate, Propinsi Maluku Utara adalah : perlu dikembangkannya armada penangkapan ikan *pole and line* antara 10 – 30 GT, *bottom handline* = 10 GT dan pengendalian armada *purse seine*. Strategi yang menjadi prioritas adalah mengembangkan usaha perikanan tangkap dengan penambahan armada kapal ikan dengan pola operasi yang mengacu pada Ketentuan Perikanan yang bertanggung jawab. Kebijakan yang harus |
Tabel 6 (lanjutan)

<table>
<thead>
<tr>
<th>Peneliti/Tahun/Judul</th>
<th>Tujuan Penelitian</th>
<th>Kesimpulan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahar Kaidati (2008)</td>
<td>Mengestimasi berapa besar kerugian ekonomi yang disebabkan oleh unreported fisheries yang terjadi di wilayah Kota Ternate.</td>
<td>Unreported fisheries yang terjadi di Kota Ternate, khususnya dari nelayan lokal telah menyebabkan pemerintah mengalami kerugian ekonomi (economic loss) rata-rata per bulan sebesar Rp 54,277,596.98 dengan jumlah produksi yang tidak dilaporkan rata-rata per bulan sebesar 268,34 ton. Kerugian ekonomi riel adalah terjadinya proses pemasaran yang tidak kena retribusi di PPN atau PPI dan distribusi manfaat ekonomi yang tidak merata dari keberadaan sumberdaya perikanan. Perbandingan antara nilai produksi yang tidak dilaporkan dengan nilai produksi yang dilaporkan adalah rata-rata 46% per bulan, artinya pemerintah telah kehilangan (kerugian) jumlah nilai produksi rata-rata per bulan adalah sebesar 46% dari total nilai produksi perikanan yang aktual.</td>
</tr>
<tr>
<td>Peneliti/Tahun/Judul</td>
<td>Tujuan Penelitian</td>
<td>Kesimpulan</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>terjadi peningkatan anggaran (Total Cost) pembiayaan dari tahun 2005 ke tahun 2006 sebesar 47% namun pengaruh terhadap kenaikan jumlah produksi dan total nilai produksi yang diperoleh masing-masing hanya 25% dan 23%.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Mengkaji faktor-faktor yang menyebabkan terjadinya unreported fisheries di Kota Ternate dan bagaimana solusinya. | Mengkaji bagaimana pemanfaatan sumberdaya perikanan yang ekonomis dan lestari di Kota Ternate. | Berdasarkan pendekatan berbagai literatur dan referensi serta hasil observasi lapangan, maka dapat diidentifikasi beberapa faktor yang potensial mempengaruhi terjadinya unreported fisheries di Kota Ternate, yaitu faktor ekonomi, sosial budaya, geografis dan kebijakan pemerintah. Hasil analisis korelasi Rank Spearman menunjukkan bahwa faktor ekonomi yang terdiri dari variabel hasil atau pendapatan, biaya, harga, dan pasar yang memiliki korelasi positif kecil (0,275) namun signifikan relatif besar terhadap unreported fisheries yang terjadi di Kota Ternate. Sosialisasi adalah solusi penting dalam faktor kebijakan pemanfaatan dan pengelolaan sumberdaya perikanan. Hal ini dilakukan untuk membangun komunikasi dan informasi antar pemerintah dan para nelayan dan sebagai media persuasif dalam membangun moral suation kepada para nelayan untuk memanfaatkan sumberdaya secara optimal. Namun jika hal ini tidak dilakukan secara intensif, maka terjadi berbagai fenomena yang merugikan semua stakeholder yang terlibat dalam pemanfaatan dan pengelolaan sumberdaya perikanan, termasuk terjadinya unreported fisheries (perikanan yang tidak dilaporkan). |

<p>| Dalam pemanfaatan sumberdaya perikanan, upaya yang harus dilakukan adalah menyelisaiakan masalah unreported fisheries yang terjadi dengan pendekatan ekonomi, sosial budaya, geografis |</p>
<table>
<thead>
<tr>
<th>Peneliti/Tahun/Judul</th>
<th>Tujuan Penelitian</th>
<th>Kesimpulan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>dan kebijakan. Pendekatan ini dileburkan kedalam rencana program pemerintah dan merealisasikannya untuk pemanfaatan sumberdaya perikanan yang ekonomis dan lestari demi kesejahteraan semua pihak yang terlibat dalam sektor perikanan dan yang paling utama adalah para nelayan. Kondisi pemanfaatan dan pengelolaan sumberdaya perikanan tangkap yang “faktual” merupakan kondisi ideal yang harus diketahui oleh pihak Pemerintah sebagai pengambil kebijakan, untuk mengeliminir berbagai masalah yang muncul akibat miss-calculation terhadap stok sumberdaya ikan dan merupakan informasi strategis bagi semua pihak yang terlibat dalam pemanfaatan dan pengelolaan sumberdaya perikanan tangkap di Kota Ternate.</td>
</tr>
</tbody>
</table>

Mengkaji bagaimana keterkaitan antara unreported fisheries dengan rezim pengelolaan sumberdaya perikanan tangkap. Pemanfaatan sumberdaya perikanan yang ekonomis dan lestari adalah pada kondisi sole owner atau MEY dengan tingkat effort sebesar 119.732,74 trip per tahun, jumlah produksi yang dihasilkan sebanyak 2.423,61 ton.
Peneliti/Tahun/Judul Tujuan Penelitian Kesimpulan per tahun dan rente ekonomi yang
di peroleh sebesar Rp.
8.600.896.899,60 per tahun.
Produksi *unreported fisheries* di
Kota Ternate telah memasuki
kategori *overfishing* karena
jumlahnya telah melampaui titik
MSY dan MEY, namun
fenomena ini tidak tampak karena
terjadi melalui proses
pemanfaatan sumberdaya
perikanan yang tidak terkontrol
dan diabaikan.

<table>
<thead>
<tr>
<th>Peneliti/Tahun/Judul</th>
<th>Tujuan Penelitian</th>
<th>Kesimpulan</th>
</tr>
</thead>
<tbody>
<tr>
<td>agembangan Perikanan</td>
<td>perikanan mini purse seine</td>
<td>penanganan alat bantu rumpon.</td>
</tr>
<tr>
<td>ni Purse seine (soma</td>
<td>(soma pajeko) yang berbasis di</td>
<td>Hasil tangkapan terbanyak</td>
</tr>
<tr>
<td>Sekitar Pulau Mayau,</td>
<td>perairan sekitar pulau Mayau</td>
<td>adalah ikan layang (Decapaterus</td>
</tr>
<tr>
<td>ta Ternate Provinsi</td>
<td>wilayah administrasi Kota</td>
<td>spp) yaitu berkisar 79% sampai</td>
</tr>
<tr>
<td>luku Utara - Tesis</td>
<td>Ternate.</td>
<td>94% dari total hasil tangkapan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total hasil tangkapan ikanc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>meningkat pada tahun 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sebesar 1.249,99 ton,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>produktivitas armada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dan produktivitas rumpon tertinggi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pada tahun 2005 sebesar 229,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ton. Keuntungan yang diperoleh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oleh nelayan lokal selama satu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tahun dalam usaha perikanan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mini purse seine (soma pajeko)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sebesar Rp125,336,665,79, dan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nelayan andon sebesar Rp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>183,733,749,13. Net B/C nelayan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lokal sebesar 3,30 (net B/C>1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dan Net B/C nelayan andon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sebesar 3,22.</td>
</tr>
</tbody>
</table>

Menyusun alternatif pengembangan usaha perikanan *mini purse seine* (soma pajeko) di pulau Mayau yang berkelanjutan dan berkeadilan.

Alternatif strategi melakukan kerjasama dalam pengelolaan sumberdaya perikanan bersama di perairan sekitar pulau Mayau antara Dinas Perikanan dan Kelautan Kota Bitung dengan Dinas Perikanan dan Kelautan Kota Ternate Provinsi Maluku Utara memberikan dampak yang lebih signifikan terhadap pengembangan usaha perikanan *mini purse seine* (soma pajeko) di pulau Mayau.

Hak cipta miliar IPB (Institut Pertanian Bogor)
3 METODE UMUM PENELITIAN

3.1 Lokasi dan Waktu Penelitian

3.2 Pengumpulan data

Dalam memenuhi tujuan yang ditetapkan, penelitian ini dilakukan dalam beberapa tahapan yang dimulai dari penelitian pendahuluan, pengumpulan fakta dan data di lapangan, dan penelusuran pustaka. Data yang terkumpul mencakup seluruh atribut-atribut keberlanjutan perikanan yaitu pada aspek ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan. Data ini diperoleh melalui wawancara langsung dengan para pelaku perikanan (nelayan/ABK, pemilik kapal, pengumpul/dibo-dibo, petugas TPI, Pelabuhan Perikanan, dan stakeholders lainnya) dengan menggunakan kuisier dan pengamatan langsung di lokasi penelitian.

Gambar 2 Tahapan penelitian

<table>
<thead>
<tr>
<th>Komponen/ Bidang</th>
<th>Atribut yang digunakan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekologi</td>
<td>(1) status eksploitasi, (2) keragaman rekrutmen, (3) perubahan trophic level, (4) jarak migrasi, (5) tingkatan kolaps, (6) perubahan ukuran ikan tangkapan, (7) tangkapan pra-maturity, (8) discarded by catch, (9) spesies tangkapan.</td>
</tr>
<tr>
<td>Ekonomi</td>
<td>(1) keuntungan (2) kontribusi pada PDRB, (3) gaji/upah rata-rata, (4) pembatasan masuk, (5) sifat pemasaran, (6) pendapatan lain, (7) ketenagakerjaan, (8) kepemilikan, (9) pasar utama, (10) subsidi.</td>
</tr>
<tr>
<td>Sosial</td>
<td>1) sosialisasi penangkapan, (2) pertumbuhan komunitas penangkapan, (3) sektor penangkapan, (4) pengetahuan lingkungan, (5) tingkat pendidikan, (6) status konflik, (7) pengaruh nelayan, (8) pendapatan penangkapan, (9) pastisipasi keluarga.</td>
</tr>
<tr>
<td>Teknologi</td>
<td>(1) lama trip, (2) tempat pendaratan, (3) pengolahan pra-jual, (4) penanganan di kapal, (5) selektivitas alat tangkap, (6) penggunaan FADs, (7) ukuran kapal, (8) daya tangkap, (9) efek samping alat tangkap.</td>
</tr>
<tr>
<td>Hukum/Kelembagaan</td>
<td>(1) ketersediaan peraturan formal pengelolaan perikanan, (2) keadilan dalam hukum, (3) ketersediaan personil penegak hukum, (4) keterlibatan nelayan dalam penentuan kebijakan, (5) illegal fishing (Pitcher & Preikshot 2001), (6) peranan kelembagaan formal yang mendukung pengelolaan sumberdaya perikanan, (7) kepatuhan nelayan terhadap peraturan perikanan (Suyasa 2007), (8) manfaat aturan formal bagi nelayan.</td>
</tr>
</tbody>
</table>

Sumber: Pitcher & Preikshot (2001); Soesilo (2003); Suyasa (2007)

Atribut pada Bab 6 (dimensi ekologi), penulis telah melakukan modifikasi disesuaikan dengan kondisi lapangan dengan tujuan agar hasil kajian ini pat lebih bermanfaat dan diaplikasikan pada situasi yang lebih bervariasi.
Modifikasi tersebut adalah atribut sifat pemasaran, dimana pada metode umum teknik RAPFISH hanya mengenal pasar lokal, nasional dan regional (negara tetangga), dan pasar internasional (negeri jauh) dengan skor 0, 1, 2. Fakta di lapangan menunjukkan adanya pasar lokal di sekitar Kota Ternate, dipasarkan nasional antar provinsi, dan dipasarkan secara internasional (diesport). Selain itu, pemasaran ikan yang dilakukan di Kota Ternate, tidak seutuhnya semua ikan hasil tangkapan dipasarkan tepat pada satu sifat pemasaran, dimana ada sebagian yang dipasarkan secara lokal, nasional maupun diesport.

Penentuan responden untuk masing-masing wilayah terpilih di Kota Ternate dilakukan secara acak berdasarkan 4 jenis perikanan pelagis yang dominan secara proporsional. Responden dalam penelitian ini berasal dari: (1) kelompok kegiatan perikanan pelagis perjenis alat tangkap; (2) kelembagaan yang terkait dengan kegiatan perikanan pelagis yaitu dinas terkait, organisasi pemerintahan daerah, organisasi pemerintahan desa, dan lainnya; (3) Pihak swasta yang terkait dengan kegiatan organisasi di wilayah pantai termasuk dibo-dibo; (4) Tokoh masyarakat setempat; (5) Key person lainnya yang relevan dengan aktivitas perikanan pelagis di lokasi penelitian.

3.3 Pengolahan dan Analisis Data

Berdasarkan data yang dikumpulkan sebagaimana dikemukakan sebelumnya, pengolahan dan analisisnya akan dikerjakan dengan mengikuti prosedur yang lazim, baik untuk penilaian dan pendugaan parameter sumberdaya perikanan, maupun penentuan status keberlanjutan perikanan dari aspek-aspek ekologis, ekonomi, sosial, teknologi, dan hukum dan kelembagaan, penentuan alternatif kebijakan, serta untuk implementasi pengembangan pengelolaan perikanan pelagis yang berkelanjutan.

3.3.1 Analisis deskripsi

3.3.2 Analisis bioekonomi dengan metode CYP (Clark, Yoshimoto, dan Pooley 1992)

Sebagaimana dikemukakan sebelumnya, salah satu metode yang digunakan RAPFISH dalam atribut ekologi adalah penilaian atau pendugaan sumberdaya perikanan. Hal terpenting yang perlu diketahui dalam penilaian ini, adalah nilai estimasi tangkapan lestari dari stok ikan. Penilaian sumberdaya perikanan ini idealnya dilakukan pada setiap spesies (stock-by-stock basis). Nilai estimasi menggambarkan tingkat berkelanjutan dari stok ikan, yang biasanya dievaluasi dengan model...
kuantitatif. Model surplus produksi akan digunakan dalam perhitungan nilai sumberdaya ekologi ini. Model ini mengasumsikan stok ikan sebagai penjumlahan biomass dalam persamaan yang diacu dalam Fauzi (2004) yaitu:

\[
\frac{dX}{dt} = F(X_t) - h_t \tag{3.1}
\]

Di mana:
- \(F(X_t)\) : Fungsi pertumbuhan alami biomass ikan
- \(h_t\) : Laju penangkapan

Untuk menggambarkan stok biomass ini menggunakan model logistik. Persamaan dari model logistik tersebut adalah:

\[
\frac{dX}{dt} = rX(1 - \frac{X_t}{K}) - h_t \tag{3.2}
\]

Di mana:
- \(r\) : Laju pertumbuhan intrinsik
- \(K\) : Daya dukung lingkungan

Bentuk fungsi logistik adalah bentuk simetris di mana ada titik puncak kuadratik. Jika stok sumberdaya perikanan mulai dieksploitasi oleh nelayan, maka laju eksploitasi sumberdaya perikanan dalam satuan waktu tertentu diawali dengan fungsi dari input (effort) yang digunakan dalam menangkap ikan dan stok sumberdaya yang tersedia. Dalam fungsi hubungan itu dapat digambarkan sebagai berikut:

\[
h(t) = H(E(t), X(t)) \tag{3.3}
\]

Selanjutnya diawali bahwa laju penangkapan \(linier\) terhadap biomass dan effort yaitu:

\[
(t) = qE_tX_t \tag{3.4}
\]

Di mana:
- \(q\) : Koefisien kemampuan penangkapan (catchability coefsien)
- \(E_t\) : Upaya penangkapan

Asumsi kondisi keseimbangan (equilibrium) maka kurva tangkapan upaya lestari (yield-effort-curve) dari fungsi di atas dapat ditulis sebagai berikut:
Estimasi parameter r, K dan q untuk persamaan yield-effort dari model logistik di atas melibatkan teknik non-linier. Namun demikian dengan menuliskan $U_t = \frac{h_t}{E_t}$, maka persamaan MSY pada tingkat effort yaitu $E_{MSY} = \frac{-a}{2b}$ dapat transformasikan menjadi persamaan linier sehingga metode regresi biasa dapat digunakan untuk mengestimasi parameter biologi dari fungsi di atas. Dalam penelitian ini teknik untuk mengestimasi parameter biologi dari model surplus produksi adalah melalui penduga koefisien yang dikembangkan oleh Clark, Yoshimoto, dan Poley (1992) atau sering dikenai dengan metode CYP (Fauzi 2004). Persamaan CYP dalam bentuk matematis dapat ditulis sebagai berikut:

$$
\ln(U_{t+1}) = \frac{2r}{2+r} \ln(qK) + \frac{(2-r)}{2+r} \ln(U_t) - \frac{q}{2+r} (E_t + E_{t+1}) \quad \text{[3.6]}
$$

Dengan meregresikan hasil tangkap per unit input (effort) yang dilambangkan dengan U pada periode t+1 dan dengan U pada periode t, serta penjumlahan input pada periode t dan t+1, akan diperoleh koefisien r, q dan K secara terpisah. Selanjutnya setelah disederhanakan persamaan 3.6 dapat diestimasi dengan OLS (Ordinary Least Square) melalui:

$$
\ln(U_{n+1}) = C_1 + C_2 \ln(U_n) + C_3 (E_n + E_{n+1}) \quad \text{[3.7]}
$$

Sehingga nilai parameter r, q dan K pada persamaan 3.5 dapat diperoleh melalui persamaan berikut:

$$
\begin{align*}
 r &= \frac{2(1-C_2)}{(1+C_2)} \\
 q &= -C_3 (2+r) \\
 K &= \frac{e^{C_3(2+r)/2r}}{q}
\end{align*} \quad \text{[3.8]}
$$

Dengan mengetahui koefisien ini maka dapat diketahui kondisi optimal manfaatan pada setiap kondisi pengelolaan, yaitu:

$$
h_t = qKE_t - \left(\frac{q^2 K}{r} \right) E_t^2 \quad \text{[3.5]}
$$
(1) Kondisi MEY (Maximum Economic Yield)

Pengelolaan perikanan pada kondisi MEY juga dikenal dengan rezim pengelolaan Sole Owner. Manfaat ekonomi dari ekstraksi sumberdaya ikan pada kondisi MEY yaitu:

\[
\pi = pqKE\left(1 - \frac{q}{r}E\right) - CE \quad \text{[3.9]}
\]

Menggunakan hasil dari persamaan 3.8 terhadap effort (E) akan menghasilkan:

\[
E^* = \frac{r}{2q}\left(1 - \frac{c}{pqK}\right) \quad \text{[3.10]}
\]

Dengan tingkat panen optimal sebesar:

\[
h^* = \frac{rK}{4}\left(1 + \frac{c}{pqK}\right)\left(1 - \frac{c}{pqK}\right) \quad \text{[3.11]}
\]

\[
X^* = \frac{h}{qE} \quad \text{[3.12]}
\]

Dengan mensubstitusikan persamaan 3.10 dan persamaan 3.11 ke dalam persamaan 3.9, diperoleh manfaat ekonomi yang optimal.

(2) Kondisi MSY (Maximum Sustainable Yield)

Manfaat ekonomi dari ekstraksi sumberdaya ikan pada kondisi pengelolaan MSY yaitu:

\[
\pi = ph_{MSY} - CE_{MSY} \quad \text{[3.13]}
\]

Menggunakan hasil dari persamaan (3.8) terhadap effort (E) menghasilkan:

\[
E_{MSY} = \frac{r}{2q} \quad \text{[3.14]}
\]

Dengan tingkat panen optimal sebesar:

\[
h_{MSY} = \frac{rK}{4} \quad \text{[3.15]}
\]

Dengan tingkat biomas optimal sebesar:
Manfaat ekonomi dari ekstraksi sumberdaya ikan pada kondisi open access yaitu:

$$\pi = ph_{OA} - cE_{OA}$$ \[3.17\]

Menggunakan hasil dari persamaan (3.8) terhadap effort (E) menghasilkan:

$$E_{OA} = \frac{r}{q} \left(1 - \frac{c}{pqK}\right)$$ \[3.18\]

Dengan tingkat panen optimal sebesar:

$$h_{OA} = \left(\frac{rc}{pq}\right) \left(1 - \frac{c}{pqK}\right)$$ \[3.19\]

Dengan tingkat biomas optimal sebesar:

$$x_{OA} = \frac{c}{pq}$$ \[3.20\]

3.3 Analisis kinerja usaha

Dalam menganalisis kinerja usaha perikanan pelagis atau financial performance analysis dilakukan dengan mencari NPV, RTO, RTL, ROI, dan PP menurut Choliq et al. (1993) pada wilayah studi sebagai berikut:

1. NPV (Net Present Value) merupakan selisih antara nilai sekarang dari penerimaan dengan nilai sekarang dari pengeluaran pada tingkat bunga tertentu, yang dinyatakan dengan rumus:

$$NPV = \sum_{t=0}^{T} \frac{B_t - C_t}{(1 + r)^t}$$

$$= \frac{B_0 - C_0}{(1 + r)^0} + \frac{B_1 - C_1}{(1 + r)^1} + \cdots + \frac{B_T - C_T}{(1 + r)^T}$$ \[3.21\]

mana:

\(t = 1, 2, ..., 10;\)
\(i = \text{interest rate (discount rate);}\)
\((1 + i)^t = \text{the discounted factor.}\)
2. RTO (Return to Owner) yaitu untuk mengetahui net benefit yang diterima oleh pemilik

\[RTO = \text{Penerimaan} - \text{Total Biaya} \] \[3.22 \]

3. RTL (Return to Labour) yaitu untuk mengetahui penerimaan yang diterima oleh masing-masing ABK pada usaha perikanan

\[L = \omega \left(\text{Penerimaan} - \text{Biaya operasional} \right) / \text{Jumlah ABK} \] \[3.23 \]

Dimana: \(\omega = \text{bagi hasil} \)

4. ROI (Return of Investment) yaitu untuk mengetahui tingkat pengembalian investasi dari benefit (pendapatan) yang diterima pemilik

\[\text{ROI} = \text{Benefit} / \text{Investasi} \] \[3.24 \]

5. PP (Payback Period) yaitu untuk mengetahui lamanya pengembalian investasi dari benefit (pendapatan) yang diterima pemilik.

\[PP = \text{Investasi} / \text{Benefit} \] \[3.25 \]

Di dalam melaksanakan kegiatan perikanan pelagis dapat disusun analisis kinerja usaha dan Net Present Value (NPV) pada wilayah studi. Kegiatan perikanan pelagis dianalisis berdasarkan jenis alat tangkap yang digunakan.

3.3.4 Analisis RAPFISH (Rapid Appraisal for Fisheries)

Analisis keberlanjutan dengan teknik RAPFISH ini dimulai dengan review, mengidentifikasi dan mendefinisikan atribut perikanan yang digunakan. Setelah itu dilakukan penilaian (scoring) perikanan yang dianalisis. Dalam melakukan penilaian (scoring), itu didasarkan pada ketentuan yang sudah ditetapkan dalam teknik RAPFISH. Data hasil skoring selanjutnya diproses menggunakan fasilitas perangkat lunak (Software) RAPFISH yang dipunah (add-ins) pada MS-Excel. Sesuai masukan hasil skor atribut yang tersusun dalam matriks 'RapScores' dalam bentuk lembaran kerja perangkat lunak MS-Excel, maka proses pengolahan data selanjutnya berlangsung dalam perangkat lunak tersebut (Gambar 3).
Dalam perangkat lunak (Software) RAPFISH, pengolahan terjadi dalam setiap modul VBA (Visual Basic Applications) yang masing-masing terhubung pada file modul "g77ALSCAL.dll" untuk operasi multi-dimensional scaling (MDS), analisis leverage (JackKnife), dan analisis Monte Carlo. Diagram perangkat lunak tersebut dapat diilustrasikan pada Gambar 4.
Analisis multi-dimensional pada dasarnya adalah teknik statistik yang mencoba melakukan transformasi multidimensi ke dalam dimensi yang lebih rendah. Transformasi ini adalah untuk menentukan posisi relatif dari perilaku perikanan (Fauzi dan Anna 2002a).
Menurut Kavanagh & Pitcher (2004), atribut-atribut menurut dimensi (j) dari perikanan (i) yang diolah datanya dalam modul 'RunRap' dan 'g77ALSCAL.dll' meliputi: (1) perhitungan statistik ('CalcStats'), (2) pembakuan ('Standardize'), (3) jarak matriks ('Proximities'), (4) rotasi ('Rotate'), dan (5) koreksi posisi ('FlipNScale'). Pengolahan data dari kelima langkah

Perhitungan statistik ('CalcStats')

Untuk semua perikanan (kolom i) yang ditelaah (n=4: pole and line, purse seine, rawai tuna dan pancing tonda), ukuran pemusatan (µ) dan penyebaran (σ) dari skor setiap atributnya (kolom j) diperoleh mengikuti persamaan 3.26 dan 3.27

\[\mu_j = \frac{\sum_{i=1}^{N} X_{ij}}{N} \] \hspace{1cm} (3.26)

\[\sigma_j = \left(\frac{\sum_{i=1}^{N} X_{ij} - \left(\frac{\sum_{i=1}^{N} X_{ij}}{N} \right)^2}{N - 1} \right)^{1/2} \] \hspace{1cm} (3.27)

Pembakuan ('Standardize')

Pembakuan nilai skor dilakukan untuk setiap atribut agar setiap atribut mempunyai bobot yang seragam dan perbedaan antar skala pengukuran dapat dililangkan. Pembakuan skala hasil skor atribut setiap kolom j dari matriks X mengikuti persamaan 3.28.

\[X_{01i,j} = X_{i,j} - \mu_j / \sigma_j \] \hspace{1cm} (3.28)

Dalam hal ini diasumsikan skor setiap atribut menyebbar normal (Gaussian) dan \(\mu \) dan \(\sigma \) diestimasikan secara tepat oleh nilai tengah dan simpangan baku setiap atribut. Dengan demikian, setiap atribut yang dibakukan bobotnya menjadi \(X_{01} \), distribusi secara normal (Kavanagh & Pitcher 2004).

Jarak matriks ('Proximities')

Di dalam analisis multi-dimensional, objek atau titik yang diamati dipetakan ke dalam ruang dua atau tiga dimensi, sehingga objek atau titik tesebut tampak sesaat mungkin terhadap titik asal. Dengan kata lain, dua titik atau objek yang sama dipetakan ke dalam satu titik yang saling berdekatan satu sama lain. Sebaliknya objek atau titik yang tidak sama digambarkan pada titik yang
saling berjauhan. Teknik penentuan jarak (ordinasi) di dalam MDS dihitung dengan menggunakan metode Euclidian Distance Squared (Seuclid). Penentuan jarak atau kesamaan matriks diproses oleh modul 'g77ALSCAL.dll'. Sesuai masukan matriks X01, jarak Euclidean Squared (Seuclid) diperhitungkan menurut persamaan berikut ini.

\[\text{Seuclid}_{i, j} = \sum_{k=1}^{N} (X_{i,k} - X_{j,k})^2 \]

(3.29)

Keluaran dari matriks Seuclid berdimensi NxN di mana N merupakan jumlah atribut dalam suatu dimensi perikanan. Skala multi-dimensional dari matriks ini diubah oleh routine 'g77ALSCAL.dll' menjadi matriks berdimensi Nx2. Secara singkat, hasil ordinasi merupakan transformasi keseluruhan atribut dalam suatu dimensi keberlanjutan perikanan, kemudian jarak atau kesamaan matriksnya diperhitungkan kembali. Ketepatan pengukuran dan/atau transformasi ini ditunjukkan oleh nilai 'stres'. Selain itu, koefisien determinasi (R²) yang menggambarkan proporsi ragam dari masukan data matriks yang dapat dijelaskan oleh hasil skala multi-dimensional.

Mengikut rumusan Kruskal Johnson & Wichern (1992) diacu dalam Mamduaya (2007), nilai stres (Q) secara sederhana dalam modul 'g77ALSCAL.dll' dihitung sebagai berikut:

\[Q = \frac{\left(\bar{d}_{i,j} - \bar{d}_{i,j}^{*} \right)^2}{\left(\bar{d}_{i,j} - d_{i,j} \right)^2} \]

(3.30)

di mana:

- \(\bar{d}_{i,j} \) = rata-rata jarak dalam ordinasi
- \(\bar{d}_{i,j}^{*} \) = rata-rata jarak turunan atau kemiripan yang dihasilkan (transformasi)
- \(d_{i,j} \) = data jarak atribut

Analisis ini berhenti jika nilai stres telah memenuhi persyaratan yang didefinisikan, yaitu sampai pada tingkat terkecil. Nilai stres yang semakin kecil akan mempertajam pendugaan posisi ‘jarak’ antar titik atau mempertajam pengujian dugaan susunan peringkat jarak. Persyaratan yang dimaksud dalam hal ini adalah < 0,05 atau jika nilai stres in tidak turun lagi dalam setiap iterasi (Kavanagh 2001). Namun demikian Fisheries.com (1999) mengatakan bahwa nilai stres

Tabel 8 Kualifikasi nilai stres dalam transformasi skala multi-dimensional

<table>
<thead>
<tr>
<th>Nilai Stres (%)</th>
<th>Kualifikasi ketepatan (goodness of fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,0</td>
<td>Poor (rendah)</td>
</tr>
<tr>
<td>10,0</td>
<td>Fair (cukup)</td>
</tr>
<tr>
<td>5,0</td>
<td>Good (layak)</td>
</tr>
<tr>
<td>2,5</td>
<td>Excellent (unggul)</td>
</tr>
<tr>
<td>0,0</td>
<td>Perfect (sempurna)</td>
</tr>
</tbody>
</table>

Rotasi ('Rotate'),

Pengolahan data selanjutnya menerapkan metode trigonometri untuk rotasi. Misalkan matriks V (Nx2) menjadi matriks 'Vrotate' pada vektor horisontal atau vektor yang sisi kirinya 'buruk' dan sisi kanannya 'baik'. Untuk menghitung sudut vektor dari 'buruk' ke 'baik' dengan notasi 'Igood' dan 'Ibad' sebagai nomor baris terkait 'baik' dan 'buruk' pada matriks V, acuannya menurut Kavanagh dan Pitcher (2004) adalah:

\[
\Delta x = V(I_{good},1) - V(I_{bad},1) \tag{3.31}
\]

\[
\Delta y = V(I_{good},2) - V(I_{bad},2) \tag{3.32}
\]

\[
\theta = \tan^{-1}\left(\frac{\Delta y}{\Delta x}\right) \tag{3.33}
\]

Demikian pula rotasi matriks V dengan sudut -\(\theta\), routine 'g77ALSCAL.dll' diprogramkan untuk setiap baris i = l, 2,..N dari matriks V, menyelesaikan:

1) Perubahan V dari kordinat (x,y) ke kordinat polar (magnitude, fase)

\[
x = V(i,1) \quad ; \quad y = V(i,2); \quad \text{Magnitude} = \sqrt{x^2 + y^2}; \quad \text{fase} = \tan^{-1}\left(\frac{y}{x}\right)
\]

2) Fase baru = fase – \(\theta\)

3) Pengembalian ke kordinat (x,y) dengan fase baru

\[
V_{rotate}(i,1) = \text{magnitude} \cdot \cos(\text{fase baru})
\]

\[
V_{rotate}(i,2) = \text{magnitude} \cdot \sin(\text{fase baru})
\]
Koreksi posisi ('FlipNScale').

Kesalahan posisi titik yang bersifat kebalikan kebalikan cermin (mirror image ambiguity) bisa terjadi dalam MDS, tetapi dengan adanya titik-titik acuan tambahan (anchors) kesalahan ini jaring terjadi. Untuk menjamin tidak terjadinya kesalahan ini maka dalam proses 'g77ALSCAL.dll' ini juga dilakukan proses ‘kebalikan cermin’ (flip) untuk titik tertentu yang mengalami kesalahan. Untuk mengoreksi posisi titik dan skala ordinasi pada sumbu y, rangkaian proses dalam 'g77ALSCAL.dll' memungkinkan semua titik dalam matriks V yang berkebalikan dengan 'atas' berada di atas 'bawah'. Selanjutnya, sesuai batasan untuk perikanan acuan 'I-up' adalah nomor baris 'atas' dan 'I-down' adalah nomor baris 'bawah'. Operasional koreksi tersebut berlangsung sebagai berikut:

Persamaan:

\[
\text{If } V(I-up,2) < V(I-down,2) \\
\text{Then } V\text{flip}(i,2) = -V(i,2) \text{ untuk semua perikanan acuan} \\
\text{Else } V\text{flip}(i,2) = V(i,2) \text{ untuk semua perikanan acuan}
\]

Dalam hal ini, skala dan pergeseran Vflip secara vertikal, sepanjang abis dari titik nol ('buruk') hingga titik 100 ('baik'), berada di antara ordinal -50 ('bawah') dan ordinal 50 ('atas'). Akhirnya, pergeseran pada abis sepanjang ordinal = 0, mengikuti persamaan untuk semua i=1,2,...N di bawah ini.

\[
V\text{flip}(i,1) = \frac{V(i,1) - V(I\text{bad},1)}{V(I\text{good},1) - V(I\text{bad},1)} \\
V\text{flip}(i,2) = \frac{V(i,2) - V(I\text{bad},2)}{V(I\text{good},2) - V(I\text{bad},2)}
\]

Dengan demikian untuk semua i = 1, 2, ...N

\[
V\text{flips}(i,2) = V\text{flip}(i,2) - V\text{flip}(I\text{good},2)
\]

Keseluruhan proses pengolahan dan analisis data yang berlangsung pada modul 'RunRap' dan 'g77ALSCAL.dll' tersebut di atas, menghasilkan keluaran dalam bentuk laporan, pembaruan kerja MS-Excel. Keluaran dimaksud mencakup antara lain data hasil ordinasi (skala 0-100), nilai stress (Q), koefisien determinasi (R^2), dan tampilan peta ordinasi status keberlanjutan perikanan.
B. Analisis leverage/JackKnife (Sensitivitas)

Setelah nilai ordinasi (indeks) keberlanjutan ditemukan melalui ordinasi RAPFISH (Hasil MDS), maka analisis leverage dilakukan untuk melihat atribut apa yang paling sensitif berpengaruh dalam memberikan kontribusi terhadap nilai indeks keberlanjutan. Selain itu, analisis ini dilakukan untuk memperhitungkan sensitivitas setiap atribut dalam menentukan ordinasi status keberlanjutan perikanan. Pengolahan datanya dilakukan secara berulang yaitu direduksi satu per satu atribut dari dimensi keberlanjutan perikanan yang ditelah. Untuk setiap dimensi keberlanjutan perikanan, setiap reduksi satu atributnya diproses dalam '7ALSCAL.dll' untuk menghasilkan ordinasi status keberlanjutan, dan lanjutnya diterima sebagai masukan oleh modul 'levereging'. Dalam modul ini, pengaruh setiap reduksi atribut diperhitungkan melalui akar kuadrat nilai tengah (MS) ordinasi status keberlanjutan perikanan mengikuti persamaan umum:

\[RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(X_{\text{red}} - \bar{X} \right)^2} \]

(3.37)

dimana:
- \(X_{\text{red}} \) = hasil ordinasi reduksi atribut ('Vflip-remove'),
- \(X_{\text{flip}} \) = hasil ordinasi tanpa reduksi atribut ('Vflip'),
- \(N \) = jumlah perikanan (pole and line, purse seine, rawai tuna, pancing tonda).

Keluaran dari proses pengolahan data dalam modul 'levereging' ditunjukkan dalam lembaran kerja MS-Excel. Dalam hal ini, hasil-hasil analisis MDS disajikan berupa ordinasi status keberlanjutan perikanan (skala 0–100) dari setiap reduksi satu atribut ('Vflip-remove'), dan hasil-hasil ordinasi tanpa reduksi atribut ('Vflip'). Sesuai persamaan (3.47), hasil perhitungan RMS dinyatakan sarannya sesuai hasil komputasi dari ordinasi status keberlanjutan perikanan (skala 0-100). Artinya, semakin besar nilai perubahan RMS akibat hilangnya satu atribut tertentu, maka semakin besar pula peranan atribut dalam penentuan nilai indeks keberlanjutan pada skala 0-100, atau dengan kata lain semakin sensitif atribut tersebut dalam status keberlanjutan perikanan tangkap.
C. Analisis Monte Carlo

Dalam modul ‘Monte Carlo’ yang terhubung dengan ‘g77ALSCAL.dll’, serangkaian proses simulasi berlangsung untuk menguji pengaruh dari beragam kekeliruan (ketidak-pastian), baik yang berkenaan dengan scoring maupun dalam proses ordinasi status keberlanjutan perikanan. Menurut Law dan Kelton (2000), simulasi Monte Carlo yang umumnya statik, digunakan untuk memecahkan permasalahan stokastik atau deterministik tertentu. Menurut Kavanagh dan Pitcher (2004), pembangkit bilangan acak dalam analisis ini didasarkan pada sebaran normal galat angka skor dengan nilai tengah 0 dan simpangan baku (σ) terseleksi (noise) dalam selang kepercayaan (confidence interval) 95% dalam proporsi 20% dari selang skor setiap atribut (skor antara ‘baik’ dan ‘buruk’). Sesuai tabel Gaussian yang menunjukkan untuk selang kepercayaan 95% sebesar 3,92, simpangan baku tersebut diperhitungkan sebagai berikut.

\[
\sigma_{\text{noise}} = 0,20 \frac{\text{skor atribut 'baik' - skor atribut 'buruk'}}{3,92} \quad \text{……….. (3.38)}
\]

Selanjutnya, untuk membangkitkan peubah acak normal ‘Galat’ (G_1 dan G_2) dengan nilai tengah 0, dan σ_{\text{noise}} di gunakan metode transformasi kebalikan “Box-Muller” (Kavanagh 2001). Langkah awalnya yaitu membentuk sepasang peubah acak bebas ‘uniform’ (U_1 dan U_2) yang menyebar antara 0 dan 1 guna menentukan magnitude (r) dan fase (θ) dengan kaidah berikut.

\[
r = \sqrt{-2 \ln(U_1)} \quad \text{……………………………………………..... (3.39)}
\]
\[
\theta = 2 \pi U_2 \quad \text{……………………………………………….......... (3.40)}
\]

Dalam hal ini, r mengikuti sebaran Rayleigh dan θ tersebar ‘uniform’ dari 0 ke 1. Pasangan peubah acak Gaussian dengan nilai tengah 0 dan simpangan baku σ (noise) kemudian diperhitungkan mengikuti:

\[
X_1 = r \cos(\theta) \quad \text{……………………………………………….. (3.41)}
\]
\[
X_2 = r \sin(\theta) \quad \text{……………………………………………….. (3.42)}
\]

Pada akhirnya, penyesuaian nilai tengah dan simpangan baku dari G_1 dan G_2 diselenggarakan mengikuti:
Untuk setiap atribut keberlanjutan perikanan yang ditelaah, peubah acak normal tersebut (G) difungsikan sebagai 'gangguan' yang kemudian direkam pengaruhnya dalam ordinasi status keberlanjutan perikanan. Sesuai pilihan dalam perangkat lunak RAPFISH, analisis ini dijalankan sebanyak 30 kali. Hasilnya yang kemudian disajikan dalam lembaran kerja MS-Excel mencakup data dan pencaran posisi yang antara lain menunjukkan ordinasi status keberlanjutan perikanan (skala 0–100) yang dipengaruhi berulang secara acak.

Secara keseluruhan, keluaran analisis RAPFISH yaitu status keberlanjutan perikanan ditinjau dari berbagai dimensi ini nantinya merupakan dasar untuk analisis selanjutnya (AHP) dan dalam menyusun kegiatan yang terencana dalam pengembangan pengelolaan selanjutnya mengacu pada atribut-atribut sensitif yang mempengaruhi status perikanan pada masing-masing aspek yang dianalisis.

3.3.5 Analytical hierarchy process (AHP)

Pengambilan keputusan dengan Analytical Hierarchy Process (AHP) atau Proses Hierarki Analisis (PHA) dilakukan melalui pendekatan sistem. Pemahaman terhadap situasi dan kondisi sistem membantu untuk melakukan prediksi dalam mengambil keputusan. Prinsip-prinsip dasar dalam menyelesaikan persoalan dengan menggunakan PHA yaitu: (1) menyusun hierarki, (2) menetapkan prioritas, (3) konsistensi logis.

Untuk dapat memahami permasalahan yang kompleks, perlu memecah persoalan tersebut ke dalam elemen-elemen pokoknya, kemudian elemen dibagi dalam sub-sub elemennya seterusnya sampai membentuk suatu hierarki. Dengan memecah permasalahan kedalam gugusan yang lebih kecil, dapat padukan sejumlah besar informasi ke dalam struktur masalah yang membentuk elemen yang lengkap dari keseluruhan sistem.

Prioritas strategi yang diharapkan dapat diperoleh dengan menggunakan analisis PHA. Langkah pertama yang dilakukan dalam analisis ini adalah pendefinisikan masalah dan menentukan solusi yang ingin dicapai dan lanjutnya penyusunan struktur hierarki dimulai dari tujuan umum (tingkat 1),

\[
G_1 = \text{nilai tengah} + X_1 \text{ (simpangan baku)} \hspace{1cm} (3.43) \\
G_2 = \text{nilai tengah} + X_2 \text{ (simpangan baku)} \hspace{1cm} (3.44)
\]
1. Dilihat mengenai alokasi atau perlu alokasi bantuan, baik itu dalam bentuk uang bersubsidi atau dalam bentuk lainnya. Kemudian aktor yang berperan dalam mencapai tujuan umum (tingkat 2), kriteria dalam mencapai tujuan umum (tingkat 3), tujuan berdasarkan atribut sensitif keluaran dari analisis RAPFISH (tingkat 4), dan kemungkinan alternatif kebijakan pada tingkatan paling bawah (tingkat 5).

Langkah selanjutnya adalah membuat skala perbandingan (matrik berpasangan). Matrik berpasangan ini dibuat dari puncak hierarki, kemudian satu tingkat dibawanya dan seterusnya dibuat untuk keseluruhan tingkatan hierarki. Matrik perbandingan berpasangan diperoleh berdasarkan pendapat responden yang sudah dipilih. Matriks banding berpasang diisi dengan suatu bilangan yang menggambarkan relatif pentingnya suatu elemen atas elemen lainnya.

Pembobotan bilangan yang digunakan adalah suatu skala nilai dari 1 sampai 9 mengacu pada panduan skala perbandingan Saaty (1991) (Tabel 9).

<table>
<thead>
<tr>
<th>Intensitas Pentingnya</th>
<th>Definisi</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Atribut yang satu dengan yang lainnya sama penting</td>
<td>Dua aktivitas memberikan kontribusi yang sama kepada tujuan</td>
</tr>
<tr>
<td>3</td>
<td>Atribut yang satu sedikit lebih penting (agak kuat) dari atribut yang lainnya.</td>
<td>Pengalaman dan selera sedikit menyebabkan yang satu lebih disukai daripada yang lain</td>
</tr>
<tr>
<td>5</td>
<td>Sifat lebih pentingnya atribut yang satu dengan lain kuat</td>
<td>Pengalaman dan selera sangat menyebabkan penilaian yang satu lebih dari yang lain, yang satu lebih disukai dari yang lain.</td>
</tr>
<tr>
<td>7</td>
<td>Menunjukkan sifat sangat penting satu atribut dengan atribut lain</td>
<td>Aktivitas yang satu sangat disukai dibandingkan dengan yang lain, dominasinya tampak dalam kenyataan</td>
</tr>
<tr>
<td>9</td>
<td>Satu atribut ekstrim penting dari atribut lainnya</td>
<td>Bukti bahwa antara yang satu lebih disukai daripada yang lain menunjukkan kepastian tingkat tertinggi yang dapat dicapai. Diperlukan kesepakatan (kompromi)</td>
</tr>
</tbody>
</table>

Nilai tengah diantara dua penilaian
Jika aktivitas i, dibandingkan dengan j, mendapat nilai bukan nol, maka j jika dibandingkan dengan i, mempunyai nilai kebalikannya
Rasio yang timbul dari skala

| Sumber: | (Saaty 1991) |
Pembobotan perbandingan dilakukan berdasarkan pada pertanyaan seberapa kuat suatu elemen berkontribusi, mendominasi, mempengaruhi, memenuhi atau menguntungkan pada suatu pertimbangan (sifat yang dibandingkan) dibandingkan dengan elemen lain. Berkenaan dengan hal ini, maka dalam penelitian ini dilakukan perbandingan atas masing-masing aktor, masing-masing tujuan, dan setiap tujuan yang ada dengan beberapa alternatif yang diwakarkan. Skala perbandingan ini di buat berdasarkan tingkatan kualitatif dari kriteria yang dikuantitatifkan dari tujuan untuk mendapatkan suatu skala baru yang memungkinkan untuk melakukan perbandingan antar beberapa alternatif.

Prioritas menyeluruh dari berbagai pertimbangan dari permasalahan pengambilan keputusan, diperoleh dengan cara mensintesis terhadap keseluruhan pertimbangan. Sintesis dilakukan dengan pembobotan dan penjumlahan untuk menghasilkan bilangan tunggal yang menunjukkan prioritas setiap elemen. Dalam kajian ini, pembobotan dilakukan dengan menggunakan rata-rata aritmetik. Formulasi untuk menentukan vektor prioritas dari elemen-elemen pada setiap matriks dengan menggunakan pembobotan rata-rata aritmatik adalah sebagai berikut:

1) Menjumlahkan nilai-nilai dalam setiap kolom

\[N_{kj} = \sum_{k=1}^{n} a_{ij} (k) \]

Dimana:
- \(N_{kj} \) : Nilai kolom ke-j
- \(a_{ij} \) : Nilai setiap entri dalam matriks pada baris i kolom j
- \(n \) : jumlah elemen

2) Membagi setiap entri dalam setiap kolom dengan jumlah pada kolom untuk memperoleh matriks yang dinormalisasi (Ndij)

\[Nd_{ij} = \frac{a_{ij}}{N_{kj}} \]

Dimana:
- \(Nd_{ij} \) : Nilai setiap entri yang dinormalisasi pada baris i dan kolom j

3) Vektor prioritas dari setiap elemen diperoleh dengan menrata-ratakan nilai sepanjang baris (Vpi)

\[V_{pi} = \sum_{j=1}^{n} \frac{Nd_{ij}}{n} \]

(3.47)
Dalam persoalan pengambilan keputusan, tidak diharapkan bahwa suatu keputusan didasarkan pada pertimbangan yang memiliki konsistensi rendah sehingga nampak pada pertimbangan acak. PHA mengukur konsistensi menyeluruh dari berbagai pertimbangan melalui rasio konsistensi \((CR)\). Nilai rasio konsistensi harus lebih kecil dari 10% dimana jika rasio konsistensi lebih dari 10%, pertimbangan tersebut mungkin acak dan perlu diperbaiki. Rasio konsistensi dihitung melalui rumus sebagai berikut:

1) **Perhitungan akar ciri atau nilai eigen \((eigen\ value)\) maksimum \((\lambda_{maks})\)

\[A = a_{ij} \times V_p \text{ dengan } VA = (V_{aij}) \] (3.49)

Dimana :

\[VA \quad : \text{Vektor Antara} \]

\[B = \frac{VA}{V_P} \text{ dengan } VB = V_{bi} \] (3.50)

Dimana :

\[VB \quad : \text{nilai eigen} \]

\[\max = \Sigma_{i=1}^{n} V_{Bi} \] (3.51)

2) **Perhitungan Indeks konsistensi \((CI)\)**

\[CI = \frac{\lambda_{maks} - n}{n - 1} \]

3) **Perhitungan rasio konsistensi \((CR)\)**

\[CR = \frac{CI}{RI} \]

Dimana :

\[RI = \text{Indeks acak dari matriks berordo yang digunakan untuk menentukan rasio konsistensi (Mulyono 1996)} \]
4 KERAGAAN PEMBANGUNAN PERIKANAN TANGKAP DI KOTA TERNATE

4.1 Pendahuluan

Pengelolaan perikanan bertujuan untuk menjamin adanya hasil dari sumber daya alam yang optimal bagi masyarakat setempat, daerah dan negara yang diperoleh dari memanfaatkan sumberdaya ikan secara berkelanjutan. Pengelolaan perikanan itu sendiri menurut FAO (1995) adalah proses yang terpadu antara pengumpulan informasi, melakukan analisis, membuat perencanaan, melakukan konsultasi, pengambilan keputusan, menentukan alokasi sumber daya serta perumusan dan pelaksanaan, bila diperlukan menggunakan penegakan hukum dari aturan dan peraturan yang mengendalikan kegiatan perikanan dengan tujuan untuk menjamin keberlanjutan produksi dari sumberdaya dan tercapainya tujuan perikanan lainnya.

Selanjutnya menurut UU No. 45 Tahun 2009, pengelolaan perikanan adalah semua upaya, termasuk proses yang terintegrasi dalam pengumpulan informasi, analisis, perencanaan, konsultasi, pembuatan keputusan, alokasi sumber daya ikan, dan implementasi serta penegakan hukum dari peraturan perundang-undangan di bidang perikanan, yang dilakukan oleh pemerintah atau otoritas lain yang diarahkan untuk mencapai kelangsungan produktivitas sumberdaya hayati perairan dan tujuan yang telah disepakati.
Sejalan dengan kedua pengertian pengelolaan di atas dan misi pembangunan kelautan dan perikanan di Indonesia (DJ PT 2005), yaitu memahami, memanfaatkan, dan memelihara sumberdaya perikanan, maka salah satu upaya awal dalam pengelolaan perikanan adalah memahami keberadaan keragaan perikanan termasuk perikanan tangkap melalui suatu proses yang terintegrasi dalam pengumpulan informasi keragaan pembangunan sub-sektor perikanan tangkap yang antara lain meliputi aspek sumberdaya manusia perenggala, sarana dan teknologi, produksi penangkapan dan pengelolaan hasil produksi.

Dengan informasi keragaan perikanan tangkap ini, maka upaya pengelolaannya setidaknya akan lebih memadai, tidak menimbulkan tekanan terhadap sumberdaya perikanan dan mampu menjadi referensi bagi stakeholders kelaun dan perikanan di daerah maupun nasional dalam mengetahui dan memahami pencapaian pembangunan secara kuantitatif yang telah dilakukan di sub-sektor kelautan dan perikanan khususnya di Kota Ternate.

Penelitian ini bertujuan untuk memberikan gambaran keragaan pembangunan sub-sektor perikanan tangkap di Kota Ternate. Secara spesifik, tujuan penelitian ini yaitu mengetahui perkembangan keberadaan pengelolaan sub-sektor perikanan tangkap di Kota Ternate yang objektif, akurat dan aktual dalam periode waktu tertentu mengenai jumlah Rumah Tangga Perikanan (RTP)/Nelayan, kapal penangkapan, alat tangkap, produksi penangkapan pasca panen, daerah penangkapan ikan dan musim penangkapan.

Manfaat yang diharapkan dari kajian ini yaitu untuk memberikan pemahaman terhadap keberadaan pencapaian pengelolaan sumberdaya perikanan tangkap kepada pihak-pihak yang terkait (stakeholders) sehingga inisiatif meningkatkan mutu rencana pengelolaan perikanan tangkap di daerah ini dapat semakin diterapkan, lebih efektif, tepat sasaran dan berkesinambungan. Selain itu juga kajian pada bab ini diharapkan dapat menjadi dasar dalam analisis keberlanjutan (RAPFISH) pada bab-bab selanjutnya yang meliputi analisis keberlanjutan dimensi ekologi (Bab 5), ekonomi (Bab 6), sosial (Bab 7), teknologi.
4.2 Metode

Penggambaran tersebut meliputi pengamatan langsung di lapangan dan berasal dari informasi statistik mengenai atribut-atribut keragaaan perikanan tangkap di Kota Ternate seperti kependudukan (RTP), kapal penangkapan, jenis alat tangkap, volume dan nilai produksi penangkapan, penanganan pasca panen, daerah penangkapan (fishing ground) dan musim penangkapan.

Pengumpulan data dilakukan melalui pengamatan langsung di lapangan dan penelusuran pustaka. Data mengenai daerah penangkapan (fishing ground) dan musim penangkapan serta sebagian data penanganan pasca panen diperoleh melalui wawancara langsung dengan para pelaku perikanan seperti nelayan/ABK, pengumpul (dibo-dibo), dan petugas TPI/Pelabuhan Perikanan. Pemilihan nelayan sebagai contoh dilakukan secara aksidensial (accidental sampling), artinya penentuan contoh berdasarkan siapa saja yang secara kebetulan bertemu dengan peneliti yang dapat dipergunakan sebagai contoh jika dipandang orang tersebut layak diterima sebagai sumber data/informasi (Ruslan 2003).

Adapun data mengenai kependudukan (RTP), kapal penangkapan, jenis alat tangkap, trip penangkapan, volume dan nilai produksi penangkapan diperoleh berasal dari laporan statistik tahunan Dinas Perikanan dan Kelautan Provinsi Maluku Utara, Dinas Kelautan dan Perikanan Kota Ternate, dan BPS (Badan Pusat Statistik) Kota Ternate.

Berdasarkan data yang dihimpun sebagaimana dikemukakan terdahulu, pengolahan dan analisanya dikerjakan dengan menggunakan analisis deskriptif kuantitatif yaitu teknik analisis yang dilakukan dalam bentuk data/angka yang kemudian dianalisis dan diinterpretasikan dalam bentuk uraian (Nasir 1983). Untuk menghitung produktivitas alat tangkap dilakukan dengan pembagian antara...
jumlah hasil tangkapan (catch) dengan jumlah upaya penangkapan (effort) pada satuan waktu (Sparre and Venema 1998).

4.3 Hasil

4.3.1 Rumah tangga perikanan (RTP)/Penduduk nelayan

Jumlah penduduk Kota Ternate pada tahun 2009 berdasarkan perhitungan estimasi Badan Pusat Statistik Kota Ternate adalah sejumlah 183.113 jiwa. Dengan luas wilayah darat 249,6 km2 dan jumlah penduduk 183.113 jiwa, maka kepadatan penduduk Kota Ternate pada tahun 2009 adalah sekitar 734 jiwa/km2 dengan peningkatan sebesar 3,55% dari tahun sebelumnya. Di Kota Ternate terdapat 37.571 RT (Rumah Tangga), maka dengan jumlah penduduk 183.113 jiwa, berarti satu RT terdiri dari 4 sampai 5 jiwa (BPS Kota Ternate 2009).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah penduduk</td>
<td>151.178</td>
<td>163.166</td>
<td>170.778</td>
<td>176.838</td>
<td>183.113</td>
<td>4,92</td>
<td>3,55</td>
<td></td>
</tr>
<tr>
<td>RTP</td>
<td>32.024</td>
<td>34.533</td>
<td>34.852</td>
<td>36.089</td>
<td>37.571</td>
<td>4,10</td>
<td>4,11</td>
<td></td>
</tr>
<tr>
<td>Jumlah kapal</td>
<td>464</td>
<td>474</td>
<td>471</td>
<td>466</td>
<td>414</td>
<td>(2,67)</td>
<td>(11,16)</td>
<td></td>
</tr>
</tbody>
</table>

| Jumlah kapal motor | 293 | 303 | 298 | 297 | 240 | (4,44) | (19,19) |

Penurunan jumlah RTP ini, tidak seiring dengan perkembangan jumlah RT di Kota Ternate. Perkembangan rata-rata per tahun jumlah RT di Kota Ternate mengalami peningkatan sebesar 4,10%, yaitu dari 32.044 buah pada tahun 2005
menjadi 37.571 pada tahun 2009. Selanjutnya jika dibandingkan antara jumlah RTP dengan RT di Kota Ternate pada tahun 2009 hanya sebesar 1,1%.

4.3.2 Kapal penangkapan

Peningkatan dan penurunan jumlah unit kapal penangkapan ikan tersebut pada dasarnya sejalan dengan program motorisasi dan pengadaan kapal
penangkap ikan yang penangkapannya dapat menjangkau perairan yang lebih jauh (di sekitar pulau Batang Dua) baik dari Dinas Perikanan dan Kelautan Provinsi Maluku Utara, maupun dari Dinas Kelautan dan Perikanan Kota Ternate.

<table>
<thead>
<tr>
<th>Jenis Kapal</th>
<th>Tahun Rata-rata (GT)</th>
<th>Rata-rata perubahan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perahu Tanpa</td>
<td>135 (unit)</td>
<td>135</td>
</tr>
<tr>
<td>Motor Tempel</td>
<td>152 (unit)</td>
<td>152</td>
</tr>
<tr>
<td>Kapal Motor</td>
<td>141 (unit)</td>
<td>151</td>
</tr>
<tr>
<td>0 – 5 (GT)</td>
<td>58 (unit)</td>
<td>67</td>
</tr>
<tr>
<td>5 – 10 (GT)</td>
<td>69 (unit)</td>
<td>69</td>
</tr>
<tr>
<td>10 – 20 (GT)</td>
<td>8 (unit)</td>
<td>9</td>
</tr>
<tr>
<td>Jumlah</td>
<td>428 (unit)</td>
<td>438</td>
</tr>
</tbody>
</table>

4.3.3. Alat tangkap

Berdasarkan data Dinas Perikanan dan Kelautan Provinsi Maluku Utara terdapat 17 jenis alat tangkap yang dioperasikan di wilayah Kota Ternate. Dilihat dari alat tangkap yang dioperasikan, terdapat 10 jenis alat tangkap yang memiliki jumlah unit yang banyak, sedangkan 7 jenis alat tangkap lainnya memiliki jumlah yang sedikit. Kesepuluh jenis alat tangkap yang memiliki jumlah unit yang banyak yaitu purse seine, gillnet, pole and line, bottom handline, pukat pantai, jaring insang hanyut, rawai tuna, pancing tonda, jaring insang lingkar, dan bubu. Secara keseluruhan, jenis alat tangkap pole and line merupakan alat tangkap paling terbanyak dibandingkan dengan alat tangkap lain yang ada wilayah ini, disusul kemudian oleh alat tangkap purse seine dan pancing tonda.

Peningkatan rata-rata tahunan dari seluruh jenis alat tangkap yang ada hanya terdapat 4 alat tangkap yang mengalami peningkatan yaitu purse seine, pole and line, pancing tonda, dan muroami, sedangkan 13 alat tangkap lainnya mengalami penurunan jumlah atau tetap (tidak berubah jumlahnya). Peningkatan rata-rata per tahun jumlah alat tangkap terbesar terjadi pada alat tangkap purse seine yaitu sebesar 24,55% yaitu dari 18 unit pada tahun 2005 menjadi 39 buah kapal pada tahun 2009, disusul kemudian oleh alat tangkap pancing tonda.

Tabel 12 Perkembangan jumlah alat penangkapan ikan di Kota Ternate, 2005–2009

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Alat Tangkap</th>
<th>Tahun (unit)</th>
<th>Rata-rata perubahan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Pole and line</td>
<td>2005 38 40 42 40</td>
<td>3,52 (4,76)</td>
</tr>
<tr>
<td>4.</td>
<td>Bottom handline</td>
<td>2005 30 40 40 18</td>
<td>(5,42) (55,00)</td>
</tr>
<tr>
<td>5.</td>
<td>Pukat pantai</td>
<td>2005 18 18 18 18</td>
<td>0,00 0,00</td>
</tr>
<tr>
<td>6.</td>
<td>Jaring insang hanyut</td>
<td>2005 18 18 15 15</td>
<td>(4,17) 0,00</td>
</tr>
<tr>
<td>7.</td>
<td>Rawai tuna</td>
<td>2005 14 15 15 12</td>
<td>(3,21) (20,00)</td>
</tr>
<tr>
<td>8.</td>
<td>Pancing tonda</td>
<td>2005 20 22 42 22</td>
<td>13,32 (47,62)</td>
</tr>
<tr>
<td>10.</td>
<td>Bubu</td>
<td>2005 10 12 10 10</td>
<td>(0,83) 0,00</td>
</tr>
<tr>
<td>11.</td>
<td>Rawai hanyut</td>
<td>2005 4 4 4 4</td>
<td>0,00 0,00</td>
</tr>
<tr>
<td>12.</td>
<td>Rawai tetap</td>
<td>2005 3 4 4 2</td>
<td>(4,17) (50,00)</td>
</tr>
<tr>
<td>13.</td>
<td>Bagan tancap</td>
<td>2005 2 2 2 2</td>
<td>0,00 0,00</td>
</tr>
<tr>
<td>14.</td>
<td>Sero</td>
<td>2005 1 1 1 1</td>
<td>0,00 0,00</td>
</tr>
<tr>
<td>15.</td>
<td>Muroami</td>
<td>2005 3 2 3 3</td>
<td>4,17 0,00</td>
</tr>
<tr>
<td>16.</td>
<td>Trammel net</td>
<td>2005 4 4 3 3</td>
<td>(6,25) 0,00</td>
</tr>
<tr>
<td>17.</td>
<td>Jaring klitik</td>
<td>2005 2 2 1 1</td>
<td>(12,5) 0,00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>227 236 252 269 228</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 13 Perkembangan jumlah trip operasi penangkapan ikan menurut jenis alat Penangkapan ikan di Kota Ternate, 2005–2009

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Alat Tangkap</th>
<th>Tahun</th>
<th>Rata-rata perubahan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>purse seine</td>
<td>5.040</td>
<td>5.040</td>
</tr>
<tr>
<td>2.</td>
<td>gillnet</td>
<td>4.290</td>
<td>4.310</td>
</tr>
<tr>
<td>4.</td>
<td>bottom handline</td>
<td>6.840</td>
<td>6.840</td>
</tr>
<tr>
<td>6.</td>
<td>jaring insang hanyut</td>
<td>2.376</td>
<td>2.376</td>
</tr>
<tr>
<td>7.</td>
<td>awai tuna</td>
<td>1.680</td>
<td>2.160</td>
</tr>
<tr>
<td>8.</td>
<td>lancing tonda</td>
<td>3.360</td>
<td>3.360</td>
</tr>
<tr>
<td>10.</td>
<td>bubu</td>
<td>720</td>
<td>1.296</td>
</tr>
<tr>
<td>11.</td>
<td>awai hanyut</td>
<td>864</td>
<td>864</td>
</tr>
<tr>
<td>12.</td>
<td>awai tetap</td>
<td>252</td>
<td>432</td>
</tr>
<tr>
<td>13.</td>
<td>bagan tancap</td>
<td>21</td>
<td>252</td>
</tr>
<tr>
<td>14.</td>
<td>sero</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>15.</td>
<td>Muroami</td>
<td>84</td>
<td>120</td>
</tr>
<tr>
<td>16.</td>
<td>Trammel net *)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17.</td>
<td>Jaring klitik</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

Sumber: Dinas Perikanan dan Kelautan Provinsi Maluku Utara (2005-2009); *) data tidak tersedia

4.3.4 Produksi penangkapan

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Jumlah Produksi (Ton)</th>
<th>Perkembangan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>5.865,34</td>
<td>(15.21)</td>
</tr>
<tr>
<td>2001</td>
<td>6.158,31</td>
<td>4,99</td>
</tr>
<tr>
<td>2002</td>
<td>7.130,00</td>
<td>15,78</td>
</tr>
<tr>
<td>2003</td>
<td>7.457,84</td>
<td>4,60</td>
</tr>
<tr>
<td>2004</td>
<td>9.998,50</td>
<td>34,07</td>
</tr>
<tr>
<td>2005</td>
<td>12.759,06</td>
<td>27,61</td>
</tr>
<tr>
<td>2006</td>
<td>12.064,26</td>
<td>(5,45)</td>
</tr>
<tr>
<td>2007</td>
<td>15.305,52</td>
<td>26,87</td>
</tr>
<tr>
<td>2008</td>
<td>17.866,21</td>
<td>16,73</td>
</tr>
<tr>
<td>2009</td>
<td>24.311,41</td>
<td>36,07</td>
</tr>
<tr>
<td>Rata-rata</td>
<td></td>
<td>14,61</td>
</tr>
</tbody>
</table>

Perkembangan produksi hasil perikanan tersebut merupakan dari hasil produksi dari setiap alat tangkap yang beroperasi di Kota Ternate. Volume produksi dari 10 alat penangkap ikan dominan yang dioperasikan di perairan Kota Ternate menunjukan bahwa pada tahun 2009 produksi alat tangkap pole and line memiliki nilai tertinggi yaitu sebesar 11.040,00 ton, disusul kemudian oleh alat tangkap purse seine yaitu sebesar 9.781,20 ton.

Berasal dari alat-alat tangkap tersebut, peningkatan produksi rata-rata per tahun terbesar terjadi pada jenis alat tangkap muroami sebesar 35,65% yaitu sebesar 9,71 ton pada tahun 2005 menjadi 27,00 ton pada tahun 2009 disusul kemudian oleh alat tangkap pole and line dan purse seine yang masing-masing perkembangannya sebesar 26,07% dan 20,49%. Selanjutnya peningkatan produksi besar pada tahun 2008-2009 terjadi pada alat tangkap jaring insang hanyut yaitu
sebesar 69,99%, disusul kemudian oleh alat tangkap purse seine dan pole and line yang masing-masing sebesar 48,30% dan 35,23%.

Tabel 15 Perkembangan produksi tahunan menurut jenis alat tangkap Kota Ternate, 2005–2009

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Gillnet</td>
<td>211,36</td>
<td>149,69</td>
<td>149,60</td>
<td>67,39</td>
<td>81,60</td>
<td>(15,78)</td>
<td>21,09</td>
</tr>
<tr>
<td>3.</td>
<td>Pole and line</td>
<td>4.546,73</td>
<td>4.442,66</td>
<td>6.266,25</td>
<td>8.164,00</td>
<td>11.040,00</td>
<td>26,07</td>
<td>35,23</td>
</tr>
<tr>
<td>4.</td>
<td>Bottom handline</td>
<td>368,65</td>
<td>309,72</td>
<td>412,95</td>
<td>720,00</td>
<td>646,00</td>
<td>20,36</td>
<td>(10,28)</td>
</tr>
<tr>
<td>5.</td>
<td>Pukat pantai</td>
<td>521,60</td>
<td>552,42</td>
<td>451,96</td>
<td>346,68</td>
<td>346,00</td>
<td>(8,94)</td>
<td>(0,20)</td>
</tr>
<tr>
<td>6.</td>
<td>Jaring insang</td>
<td>181,34</td>
<td>97,91</td>
<td>74,18</td>
<td>74,18</td>
<td>126,10</td>
<td>(0,06)</td>
<td>69,99</td>
</tr>
<tr>
<td>7.</td>
<td>Rawai tuna hanyut</td>
<td>562,71</td>
<td>400,12</td>
<td>745,72</td>
<td>540,00</td>
<td>664,48</td>
<td>13,24</td>
<td>23,05</td>
</tr>
<tr>
<td>8.</td>
<td>Pancing tonda</td>
<td>671,32</td>
<td>605,88</td>
<td>666,47</td>
<td>739,20</td>
<td>972,00</td>
<td>10,66</td>
<td>31,49</td>
</tr>
<tr>
<td>10.</td>
<td>Wai pu</td>
<td>46,65</td>
<td>15,12</td>
<td>12,60</td>
<td>12,60</td>
<td>12,56</td>
<td>(21,14)</td>
<td>(0,32)</td>
</tr>
<tr>
<td>11.</td>
<td>Wai yut</td>
<td>82,52</td>
<td>65,78</td>
<td>65,78</td>
<td>61,79</td>
<td>65,65</td>
<td>(5,03)</td>
<td>6,25</td>
</tr>
<tr>
<td>12.</td>
<td>Wai tetap</td>
<td>175,60</td>
<td>124,51</td>
<td>50,32</td>
<td>42,77</td>
<td>21,38</td>
<td>(38,42)</td>
<td>(50,01)</td>
</tr>
<tr>
<td>13.</td>
<td>Bagan cap</td>
<td>136,70</td>
<td>28,35</td>
<td>28,35</td>
<td>9,6</td>
<td>9,6</td>
<td>(36,35)</td>
<td>0,00</td>
</tr>
<tr>
<td>14.</td>
<td>Roamnl</td>
<td>4.91</td>
<td>2,24</td>
<td>2,24</td>
<td>2,24</td>
<td>2,24</td>
<td>(13,59)</td>
<td>0,00</td>
</tr>
<tr>
<td>15.</td>
<td>Trammel net</td>
<td>94,45</td>
<td>44,27</td>
<td>33,20</td>
<td>14,40</td>
<td>0</td>
<td>(58,59)</td>
<td>(100)</td>
</tr>
<tr>
<td>16.</td>
<td>Jaring klitik</td>
<td>4,25</td>
<td>1,77</td>
<td>0,89</td>
<td>0,06</td>
<td>0</td>
<td>(60,16)</td>
<td>(100)</td>
</tr>
</tbody>
</table>

Setiap unit alat tangkap mempunyai kemampuan menangkap berbeda-beda sesuai dengan ikan yang menjadi tujuan penangkapan dalam menghasilkan produksi. Untuk itu, dalam kajian ini produktivitas hasil penangkapan dari alat tangkap ikan yang ada di Kota Ternate dihitung berdasarkan hasil tangkapan (Tabel 15) per satuan upaya/trip dari masing-masing alat tangkap (Tabel 13). Hasil perhitungan menunjukkan bahwa pada tahun 2009 alat tangkap pole and line merupakan alat tangkap yang paling produktif dalam melakukan penangkapan. Nilai produktivitas alat tangkap pole and line adalah sebesar 1,15 ton per trip.

Peningkatan rata-rata per tahun produktivitas jenis alat tangkap tertinggi jadi pada alat tangkap jaring insang lingkar sebesar 22,95% yaitu 0,08 ton/trip pada tahun 2005 menjadi sebesar 0,15 ton/trip pada tahun 2009, disusul kemudian oleh alat tangkap pole and line sebesar 18,97%. Sebaliknya, penurunan produktivitas rata-rata per tahun terbesar terjadi pada alat tangkap rawai tetap sebesar 33,31% yaitu 0,70 ton/trip pada tahun 2005 menjadi sebesar 0,10 ton/trip pada tahun 2009. Peningkatan produktivitas tahun terakhir (2008-2009) terbesar jadi pada alat tangkap bagan tancap sebesar 100%, yaitu sebesar 0,10 ton/trip pada tahun 2005 menjadi 0,20 ton/trip pada tahun 2009, dan disusul kemudian oleh alat tangkap pole and line sebesar 27,79, yaitu sebesar 0,60 ton/trip pada tahun 2005 menjadi 1,15 ton/trip pada tahun 2009. Penurunan produktivitas terbesar terjadi pada alat tangkap jaring klitik yaitu sebesar 100%. Perkembangan produktivitas jenis alat tangkap di Kota Ternate dapat dilihat pada Tabel 16.
Tabel 16 Perkembangan produktivitas jenis alat tangkap di Kota Ternate, 2005-2009 (ton/trip)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Purse seine</td>
<td>0,96</td>
<td>0,94</td>
<td>1,20</td>
<td>1,00</td>
<td>1,10</td>
<td>4,76</td>
<td>10,00</td>
</tr>
<tr>
<td>2.</td>
<td>Gillnet</td>
<td>0,05</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
<td>(14,14)</td>
<td>0,00</td>
</tr>
<tr>
<td>3.</td>
<td>Pole and line</td>
<td>0,60</td>
<td>0,54</td>
<td>0,73</td>
<td>0,90</td>
<td>1,15</td>
<td>18,97</td>
<td>27,79</td>
</tr>
<tr>
<td>4.</td>
<td>Bottom handline</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
<td>0,08</td>
<td>0,08</td>
<td>12,54</td>
<td>0,00</td>
</tr>
<tr>
<td>5.</td>
<td>Jak pantai</td>
<td>0,11</td>
<td>0,12</td>
<td>0,12</td>
<td>0,08</td>
<td>0,08</td>
<td>(6,82)</td>
<td>0,00</td>
</tr>
<tr>
<td>6.</td>
<td>Jaring insang hanyut</td>
<td>0,08</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>(11,50)</td>
<td>0,00</td>
</tr>
<tr>
<td>7.</td>
<td>Awai tuna</td>
<td>0,33</td>
<td>0,19</td>
<td>0,35</td>
<td>0,25</td>
<td>0,25</td>
<td>3,02</td>
<td>0,00</td>
</tr>
<tr>
<td>8.</td>
<td>Jaring tonda</td>
<td>0,20</td>
<td>0,18</td>
<td>0,18</td>
<td>0,20</td>
<td>0,25</td>
<td>5,97</td>
<td>22,73</td>
</tr>
<tr>
<td>9.</td>
<td>Jaring insang lingkar</td>
<td>0,08</td>
<td>0,07</td>
<td>0,07</td>
<td>0,15</td>
<td>0,15</td>
<td>22,95</td>
<td>0,00</td>
</tr>
<tr>
<td>10.</td>
<td>Ubu</td>
<td>0,06</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>(20,58)</td>
<td>0,00</td>
</tr>
<tr>
<td>11.</td>
<td>Awai hanyut</td>
<td>0,10</td>
<td>0,08</td>
<td>0,08</td>
<td>0,08</td>
<td>0,08</td>
<td>(3,53)</td>
<td>0,00</td>
</tr>
<tr>
<td>12.</td>
<td>Awai tetap</td>
<td>0,70</td>
<td>0,29</td>
<td>0,12</td>
<td>0,10</td>
<td>0,10</td>
<td>(33,31)</td>
<td>0,00</td>
</tr>
<tr>
<td>13.</td>
<td>Agan tancap</td>
<td>6,51</td>
<td>0,11</td>
<td>0,11</td>
<td>0,10</td>
<td>0,20</td>
<td>(2,35)</td>
<td>100</td>
</tr>
<tr>
<td>14.</td>
<td>Ero</td>
<td>0,03</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>(13,59)</td>
<td>0,00</td>
</tr>
<tr>
<td>15.</td>
<td>Muroami</td>
<td>0,12</td>
<td>0,06</td>
<td>0,06</td>
<td>0,05</td>
<td>0,05</td>
<td>(16,58)</td>
<td>0,00</td>
</tr>
<tr>
<td>16.</td>
<td>Jaring klitik</td>
<td>0,04</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
<td>(4,8)</td>
<td>(100)</td>
</tr>
</tbody>
</table>

Peningkatan volume produksi rata-rata per tahun dari jenis ikan yang ditangkap terbesar di Kota Ternate adalah jenis ikan tuna yaitu sebesar 43,09%, dimana ditangkap sebesar 600,80 ton pada tahun 2005 menjadi 2.193,65 ton pada tahun 2009. Kemudian disusul oleh jenis ikan layang sebesar 34,52%.

menurut jenis ikan dominan yang tertangkap nelayan di Kota Ternate dilihat pada Tabel 17.

Tabel 17 Perkembangan volume produksi menurut jenis ikan dominan di Kota Ternate, 2005 – 2009

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Ikan</th>
<th>Tahun</th>
<th>Rata-rata perubahan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cakalang (Katsuwonus pelamis)</td>
<td>5.342,78</td>
<td>4.465,08</td>
</tr>
<tr>
<td>2</td>
<td>Layang (Decapterus lajang)</td>
<td>3.142,15</td>
<td>1.396,93</td>
</tr>
<tr>
<td>3</td>
<td>Tuna (Thunnus albacares)</td>
<td>600,80</td>
<td>551,93</td>
</tr>
<tr>
<td>4</td>
<td>Teri (Stolephorus spp)</td>
<td>2.153,80</td>
<td>949,19</td>
</tr>
<tr>
<td>5</td>
<td>Tongkol (Euthynnus spp)</td>
<td>905,42</td>
<td>1.028,65</td>
</tr>
</tbody>
</table>

Tabel 18 Perkembangan nilai produksi (dalam rupiah) menurut jenis ikan dominan di Kota Ternate, 2005 – 2009

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Ikan</th>
<th>Tahun</th>
<th>Rata-rata perubahan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cakalang (Katsuwonus pelamis)</td>
<td>26.713,89</td>
<td>22.325,38</td>
</tr>
<tr>
<td>2.</td>
<td>Layang (Decapterus lajang)</td>
<td>15.710,74</td>
<td>6.984,63</td>
</tr>
<tr>
<td>3.</td>
<td>Tuna (Thunnus albacares)</td>
<td>3.004,00</td>
<td>2.759,67</td>
</tr>
<tr>
<td>4.</td>
<td>Teri (Stolephorus spp)</td>
<td>10.768,99</td>
<td>4.745,95</td>
</tr>
<tr>
<td>5.</td>
<td>Tongkol (Euthynnus spp)</td>
<td>5.885,21</td>
<td>6.686,22</td>
</tr>
</tbody>
</table>

4.3.5 Penanganan pasca panen

Berdasarkan wawancara dengan nelayan yang ada di Kota Ternate, bahwa hasil tangkapan yang diperoleh langsung diperjualbelikan baik melalui pembeli penampung (Dibo-dibo) yang berada di pelabuhan ikan, maupun langsung dijual langsung di pasar samping sebagian digunakan untuk konsumsi harian untuk keluarga. Harga ikan yang dipasarkan berfluktuatif tergantung musim dan biasanya dijual per kilogram. Harga jenis ikan hasil tangkapan yang biasanya dipasarkan ke pembeli penampung dapat dilihat pada Tabel 19 di bawah ini.

Tabel 19 Harga ikan hasil tangkapan yang di pasarkan ke pembeli penampung di pasar ikan.

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Ikan</th>
<th>Musim dan harga ikan per kg (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Katsuwonus pelamis</td>
<td>Puncak 4.000–5.000</td>
</tr>
<tr>
<td>2.</td>
<td>Decapterus lajang</td>
<td>Puncak 2.000–2.500</td>
</tr>
<tr>
<td>3.</td>
<td>Euthynnus spp</td>
<td>Puncak 2.000–3.000</td>
</tr>
<tr>
<td>4.</td>
<td>Thunnus albacares</td>
<td>Puncak 5.000–7.000</td>
</tr>
<tr>
<td>5.</td>
<td>Selaroides spp</td>
<td>Puncak 5.000–6.000</td>
</tr>
</tbody>
</table>

ikan yang dijual nelayan kepada pedagang ikan di pasar ikan (pasar Dufa dufa di pasar Gamalama) adalah berupa ikan segar yang kemudian dijual kembali kepada masyarakat umum di Kota Ternate. Sementara ikan yang dijual ke

Tabel 20 Perkembangan jenis perlakuan terhadap produksi perikanan tangkap di Kota Ternate, 2005–2009

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Perlakuan</th>
<th>Tahun</th>
<th>Rata-rata perubahan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Konsumsi segar</td>
<td>11.500,60</td>
<td>7.968,36</td>
</tr>
<tr>
<td>2</td>
<td>Pembekuan</td>
<td>2.984,73</td>
<td>2.235,69</td>
</tr>
<tr>
<td>3</td>
<td>Pengeringan</td>
<td>931,30</td>
<td>535,27</td>
</tr>
<tr>
<td>4</td>
<td>Pengasapan</td>
<td>345,05</td>
<td>682,47</td>
</tr>
<tr>
<td>5</td>
<td>Pindang</td>
<td>62,10</td>
<td>57,74</td>
</tr>
</tbody>
</table>

4.3.6 Daerah penangkapan ikan dan musim penangkapan

Daerah penangkapan (fishing ground) di sekitar perairan pulau Ternate umumnya dicapai dengan menggunakan perahu tanpa motor berada disekitar rumpon yang berjarak sekitar 1–3 mil (jika fasilitas tersebut tersedia) dengan waktu penangkapan satu hari (one day trip). Selain itu, penangkapan skala sedang dengan menggunakan motor tempel dan kapal motor (>10 GT) penangkapannya menggunakan daerah yang lebih jauh, namun masih dalam wilayah perairan Provinsi Maluku Utara yaitu di sekitar pulau Batang Dua, Halmahera, Kayoa dengan waktu melar-rata dua hari sampai satu minggu.

Berkaitan dengan ikan sasaran tangkap, penangkapan untuk ikan pelagis besar dan kecil seperti tuna dan cakalang, layang dan tongkol dilakukan pada daerah penangkapan di perairan bagian belakang pulau Hiri dan di perairan sekitar Pulau Batang Dua (pulau Mayau dan Tifure), pulau Moti, dan pulau Kayoa. Sementara penangkapan untuk ikan demersal umumnya dilakukan pada daerah...
penangkapan disekitar perairan pesisir pulau Ternate, pulau Tidore, pulau Kayoa, dan pesisir pulau Bacan. Adapun musim penangkapan dilakukan sepanjang tahun dan musim puncak pada bulan Januari-April serta September-Oktober.

4.4 Pembahasan

Kondisi aktual pengelolaan sub-sektor perikanan tangkap di Kota Ternate ini menunjukkan adanya perkembangan dari tahun ke tahun, walaupun masih adanya perbaikan dalam pengelolaannya. Kota Ternate yang lebih dominasi oleh laut (95,2%) menggambarkan bahwa wilayah ini memiliki sumberdaya perikanan dan kelautan sangat besar dan berpeluang kontribusi baik untuk peningkatan kesejahteraan dan taraf hidup masyarakat maupun berkontribusi terhadap peningkatan Pendapatan Asli Daerah (PAD).

Dilihat dari faktor-faktor penunjang pengelolaan perikanan tangkap seperti jumlah nelayan/RTP. Perkembangan jumlah RTP tahun 2005–2009 menunjukan penurunan rata-rata sekitar 2,67% per tahun. Jika dibandingkan dengan jumlah penduduk Kota Ternate, hasilnya lebih kecil lagi yaitu sekitar 0,25–0,30%. Jumlah RTP ini masih tergolong sangat kecil atau hanya sekitar 9,6% dari jumlah RTP yang ada di Provinsi Maluku Utara. Berdasarkan jumlah RTP tersebut tereidentifikasi sebanyak 91% adalah nelayan yang menangkap ikan hanya untuk memenuhi kebutuhan sendiri atau disebut nelayan subsisten (subsistence fishers) dan nelayan yang sedikit banyak memiliki karakter yang sama dengan kelompok yang pertama, namun juga memiliki hak untuk melakukan aktivitas secara komersial walaupun dalam skala kecil. Selanjutnya sisanya 9% adalah nelayan sambilan yaitu orang-orang yang secara prinsip melakukan kegiatan penangkapan hanya sekedar untuk kesenangan atau berolah raga atau disebut nelayan rekreasi (PIK 2006).

Salah satu penyebab kurangnya jumlah RTP ini adalah minimnya sarana penangkapan seperti jumlah kapal penangkap yang ada di Kota Ternate. Perbandingan jumlah RTP dan jumlah kapal atau perahu penangkap ikan pat dikatakan tidak seimbang. Hal ini dapat dilihat dari perkembangan jumlah kapal penangkapan dari tahun 2005–2009 yang selalu lebih kecil dari jumlah perkembangan RTP. Selain itu, kurangnya jumlah nelayan (RTP) di Kota Ternate sebabkan karena ada beberapa RTP yang mengalihkan pekerjaan dari sebagai

Komposisi kapal perikanan di Kota Ternate tergolong sama dengan komposisi armada perikanan tangkap di Indonesia. Menurut KKP (2009) komposisi kapal perikanan di Indonesia sebagian besar masih didominasi oleh usaha perikanan tangkap skala kecil yaitu sekitar 97,11%, dan hanya sekitar 2,89% lagi yang dilakukan oleh usaha perikanan skala yang lebih besar. Struktur armada perikanan tangkap nasional didominasi oleh perahu motor tempel 233.530 buah (39,16%), disusul kemudian oleh perahu tanpa motor sebanyak 205.460 buah (34,40%), dan kapal motor 157.240 buah (26,37%). Berasal dari 26,37% ini, kapal motor penangkap ikan < 5 GT yaitu sebesar 69,70%, disusul kemudian oleh kapal
motor berukuran 5-10 GT yaitu sebesar 19,33%, dan selebihnya kapal motor dengan ukuran bervariasi dari 10 sampai dengan di atas 200 GT. Komposisi armada perikanan berukuran < 5 GT dan 5-10 GT tersebut memberikan gambaran bahwa perikanan skala kecil berperan besar dalam perikanan nasional.

Dengan melihat perkembangan komposisi kapal perikanan di Kota Ternate dalam tahun terakhir menunjukkan bahwa telah terjadi perubahan yang signifikan yaitu dengan mulai berkurangnya perahu tanpa motor dan kapal motor berukuran kapal 5-10 GT dan selanjutnya bertambahnya pengoperasian kapal berukuran 10-GT dan 20-30 GT. Hal ini berarti bahwa perikanan tangkap di Kota Ternate mengalami perubahan yang signifikan dalam pengelolaan dalam rangka peningkatan produksi hasil tangkapan, walaupun secara umum komposisi kapal perikanan masih dominan pada skala kecil.

Dominannya armada penangkapan berukuran kecil (kapal tanpa motor dan kapal motor tempel) di Kota Ternate pada dasarnya disebabkan oleh rendahnya penguasaan modal (capital) oleh nelayan, sehingga kemampuan didalam melakukan investasi pada kapal yang ukurannya lebih besar dan alat tangkap yang lebih produktif menjadi rendah. Dengan komposisi armada penangkapan seperti sebelumnya, maka Daerah Penangkapan Ikan (DPI) sebagian besar berada di sekitar Pulau Ternate (WPP 716). Fishing ground nelayan Kota Ternate umumnya berada di sekitar rumpon pada jarak sekitar 1–3 mil, sedangkan yang menggunakan motor tempel dan kapal motor dapat menjangkau daerah yang sedikit lebih jauh yaitu di Pulau Batang Dua, Halmahera, Kayao, dan sekitarnya.

Dengan dominannya penangkapan yang dilakukan nelayan Ternate yaitu pada jarak dari pantai ke lokasi penangkapan yang tergolong dekat ini, maka hal ini merupakan kegiatan perikanan tangkap di Kota Ternate ke dalam perikanan tangkap skala kecil (Charles, 2001)

Perairan Kota Ternate (Laut Maluku) merupakan daerah penangkapan ikan utama bagi nelayan yang ada di Provinsi Maluku Utara umumnya dan nelayan yang berasal dari Sulawesi Utara dan Sulawesi Tengah. Menurut FPIK Akhahir (2006), hal ini disebabkan karena perairan ini merupakan jalur migrasi pelagis besar, dan memiliki pola arus utama yang berasal dari Samudra Pasifik yang masuk ke perairan laut Indonesia sehingga beberapa jenis ikan
pelagis besar seperti tuna (Tunna albacares), cakalang (Katsuwenus pelamis),
tongkol (Euthynnus spp), dan jenis-jenis ikan pelagis kecil seperti kembung
(Rastralliger sp), layang (Decapterus lajang), tembang (Sardinella spp), selar
(Selaroides spp) dan beberapa jenis ikan pelagis lainnya dapat ditangkap oleh
nelayan Maluku Utara. Keadaan ini yang membuat perairan Kota Ternate
merupakan salah satu kawasan perikanan yang masih tergolong produktif di
Indonesia.

Dilihat dari data produksi tahunan (10 tahun terakhir) menunjukan trend
peningkatan penangkapan ikan dengan rata-rata peningkatan jumlah produksi
tahunan sebesar 14,61%, walaupun pada tahun 1999 sampai 2000 mengalami
penurunan sebesar 15,21% yang disebabkan karena pada tahun tersebut di Kota
Ternate terjadi kerusuhan sosial sehingga mengakibatkan banyak nelayan tidak
melakukan penangkapan ikan.

Rata-rata peningkatan produksi penangkapan ini pada hakakatnya tidak
lepas dari produktivitas jenis alat tangkap yang dipergunakan untuk menangkap
ikan. Dari 16 alat tangkap yang ada di Ternate terdapat dua alat tangkap yang
gergolong paling dominan dalam menghasilkan produksi penangkapan yaitu
pole and line dan purse-seine dengan jenis ikan calakang (Katsuwenus pelamis)
dan layang (Decapterus lajang). Dominannya alat tangkap pole and line di Kota
Ternate ini diikuti juga oleh beberapa wilayah Kabupaten/Kota di Provinsi
Maluku Utara, seperti di Kota Tidore Kepulauan dan Kabupaten Halmahera
Selatan masing-masing sebanyak 45 unit, dan Kabupaten Halmahera Utara
sebanyak 30 unit (Dinas Perikanan dan Kelautan Provinsi Maluku Utara 2009).
Selain itu juga dominan pada wilayah lain di kawasan timur Indonesia seperti di
Provinsi Gorontalo, Papua, dan Sulawesi Selatan (Monintja et al 2001). Simbolon
dan staruddin (2006) mengemukakan penangkapan cakalang (Katsuwenus
pelamis) di Kabupaten Sorong memberi kontribusi tertinggi dari total
penangkapan yaitu 7.639 ton per tahun. Sementara penangkapan layang
(Decapterus lajang) di Selat Makassar bagian selatan berkonsibusi sekitar 58%
dari keluaran hasil penangkapan (Prasetyo dan Suwarso 2010)

Nilai total produksi perikanan tangkap Kota Ternate tahun 2009 adalah
sebesar Rp 244,52 milyar dengan penyumbang produksi terbesar adalah produksi

Dengan melihat produksi perikanan tangkap secara keseluruhan (4.311,41 ton), dan kemudian dikaitkan dengan potensi perikanan tangkap yang niliki perairan Kota Ternate, maka pemanfaatan sumberdaya perikanan Tangkap Kota Ternate tercatat potensi lestari ikan di perairan Kota Ternate sebesar 57.405,9 ton per tahun dari standing stock yang dimiliki sebesar 757,38 ton dengan tingkat pemanfaatan potensi perikanan baru mencapai 43,35% dari potensi lestarnya (DKP 2010). Selanjutnya, menurut hasil evaluasi yang telah dilakukan oleh Pusat Riset Perikanan Tangkap, BRKP (2007) menyimpulkan bahwa wilayah perairan Ternate (Laut Maluku), tergolong belum mengalami overfishing.

Peluang pengembangan dapat dilihat dari hasil produksi yang dicapai hanya dengan jumlah RTP yang begitu kecil dari jumlah Rumah Tangga (RT) di Kota Ternate (< 5%). Di samping itu rendahnya penguasaan modal (capital) oleh nelayan, sehingga kemampuan didalam melakukan investasi pada kapal yang ukurannya lebih besar dan alat tangkap yang lebih produktif menjadi rendah sehingga optimalisasi dan produktivitas usaha yang masih rendah dan lemahnya sumberdaya nelayan (SDM) untuk dapat menerapkan teknologi dan pemanfaatkan serta mengelola potensi sumberdaya perikanan tangkap secara sisen (Bappeda Maluku Utara 2007). Penanganan pasca panen juga belum dilakukan dengan optimal. Sebagian besar hasil tangkapan nelayan dijual ke pembeli/penampung (dibo-dibo) dibandingkan melalui proses penjualan. Faktor ini, harga yang ada di pasar perikanan cenderung kadang-kadang turun drastis dan akhirnya keuntungan yang diperoleh oleh nelayan cenderung...

Sementara itu ada beberapa dibo-dibo yang menjual ikan pada beberapa tempat industri kecil yang berada di sekitar Kota Ternate untuk diolah kembali. Pengolahan ikan pada industri tradisional di Kota Ternate dilakukan melalui proses pengeringan, pindang, dan pengasapan (fufu).

4.5 Kesimpulan

(1) Keberadaan rumah tangga perikanan terhadap jumlah rumah tangga di Kota Ternate masih tergolong sangat kecil. Perubahan rata-rata jumlah rumah tangga perikanan per tahun di Kota Ternate dari tahun 2005 sampai 2009
mengalami penurunan sebesar 2,67%. Hal yang sama juga terjadi dari tahun 2008–2009 dimana terjadi penurunan sebesar 11,16%.

(2) Perikanan tangkap Kota Ternate masih tergolong pada kegiatan perikanan tangkap skala kecil. Secara keseluruhan jenis kapal penangkap ikan Kota Ternate masih di dominasi oleh perahu tanpa motor dan motor tempel, sedangkan armada tangkap bermotor didominasi oleh jenis kapal berukuran 10-20 GT dan kurang dari 5 GT. Peningkatan rata-rata per tahun jumlah kapal motor terbesar terjadi pada kapal motor yang berukuran antara 10-20 GT sebesar 72,22%, disusul kemudian oleh kapal motor berukuran 20-30 GT (25%).

Alat tangkap yang dioperasikan di wilayah Kota Ternate didominasi oleh jenis alat tangkap pole and line, disusul kemudian oleh alat tangkap purse seine dan pancing tonda. Peningkatan rata-rata per tahun jumlah alat tangkap terbesar terjadi pada alat tangkap purse seine yaitu sebesar 24,55%, disusul kemudian oleh alat tangkap pancing tonda (13,32%).

Pada periode tahun 2000-2009, perkembangan produksi rata-rata tahunan perikanan tangkap di Kota Ternate meningkat sebesar 14,61%.

(6) Jenis ikan yang ditangkap didominasi oleh cakalang (Katsuwonus pelamis) dengan volume produksi sebesar 9.469,95 ton, diikuti kemudian oleh layang (Decapterus lajang) sebesar 5.579,26 ton, teri (Stolephorus spp) sebesar 2.205,60 ton, tuna (Thunnus albacares) sebesar 2.193,65 ton, dan tongkol (Euthynnus spp) sebesar 1.948,39 ton.

(7) Daerah penangkapan umumnya dilakukan di perairan Laut Maluku (WPP 715) dan musim penangkapan dilakukan sepanjang tahun dan musim puncak pada bulan Januari-April serta September-Oktober.
5 KEBERLANJUTAN PERIKANAN PELAGIS DI TERNATE
PADA DIMENSI EKOLOGI

5.1 Pendahuluan

Keberlanjutan perikanan pelagis berdasarkan aspek ekologi merupakan salah satu aspek yang menjadi perhatian dalam pengelolaan perikanan yang berkelanjutan secara keseluruhan disamping aspek-aspek lainnya seperti ekonomi, sial, teknologi, dan hukum/kelembagaan. Dalam keberlanjutan perikanan pelagis diperlukan upaya agar tidak terjadi penangkapan ikan yang melebihi daya dukung yang ada di suatu perairan. Menurut Fauzi dan Anna (2002), konsep pembangunan perikanan yang berkelanjutan secara ekologi (ecological sustainability) yakni memelihara keberlanjutan stok/biomasa sehingga tidak melewati daya dukungnya, serta peningkatan kapasitas dan ekosistem menjadi utama. Artinya pemanfaatan sumberdaya perikanan, tidak boleh mengancam kesinambungan fungsi ekologi pendukung keberlanjutan produktivitas kegiatan perikanan yang bernilai ekonomis. Secara ekologi, kegiatan perikanan dapat berkelanjutan apabila dilaksanakan dengan memenuhi persyaratan pokok, yang diantaranya adalah terjaganya daya dukung lingkungan perairan, terjadanya daya dukung lingkungan perairan, dan tingkat pemanfaatan yang terkendali.

Pengelolaan sumberdaya perikanan yang berkelanjutan secara ekologi juga diartikan sebagai suatu upaya konservasi stok untuk menghindari penangkapan yang berlebihan (King dan Ilgorm 1989). Hal tersebut juga tertuang dalam Undang-Undang Nomor 45/2009 tentang perikanan (pasal 1), konservasi sumberdaya ikan didefinisikan sebagai upaya perlindungan, pelestarian, dan pemanfaatan sumberdaya ikan, termasuk ekosistem, jenis, dan genetik untuk menjaga keberadaan, ketersediaan, dan kesinambungan dengan tetap memelihara dan meningkatkan kualitas nilai dan keanekaragaman sumberdaya ikan.

Upaya mempertahankan ketersediaan dan kesinambungan sumberdaya ikan perlu dilakukan pendekatan kehati-hatian dalam eksploitasi sumberdaya ikan.
Dalam mengeksploitasi sumberdaya perikanan pelagis diperlukan dugaan mengenai potensi sumberdaya perikanan yang dapat memberikan gambaran mengenai tingkat dan batasan maksimal dalam pemanfaatan sumberdaya perikanan di suatu wilayah, sehingga pembangunan perikanan dapat direncanakan sedemikian rupa dan sumberdaya perikanan dapat dimanfaatkan secara berkelanjutan.

Tujuan penelitian ini adalah untuk mengukur status keberlanjutan perikanan pelagis dalam perspektif keberlanjutan menurut aspek ekologi di Ternate. Sedangkan tujuan spesifik dari penelitian ini adalah:

1. Menentukan nilai maximum sustainable yield (MSY) dan nilai maximum economic yield (MEY).
2. Menentukan tingkat upaya optimal (optimal effort), baik pada tingkat MSY maupun pada tingkat MEY.
3. Menghitung manfaat ekonomi yang dapat dihasilkan untuk setiap kondisi, baik pada tingkat MSY, MEY, maupun open access.
4. Menentukan status keberlanjutan perikanan pelagis di Ternate berdasarkan dimensi ekologi.

Manfaat yang diharapkan dari hasil penelitian ini adalah untuk mendapatkan gambaran dan informasi yang berkaitan dengan status perikanan pelagis pada dimensi ekologi, untuk dijadikan salah satu dasar dalam analisis dan pembahasan selanjutnya (Bab 11), khususnya dalam hal pengambilan keputusanbijakan daerah untuk menjaga keberlanjutan perikanan pelagis dari aspek ekologi.

5.2 Metode

Perikanan Kota Ternate, dan tulisan-tulisan ilmiah yang berasal dari beberapa hasil-hasil penelitian yang berhubungan dengan dengan kajian ini.

Pemilihan nelayan sebagai contoh dilakukan secara aksidensial (accidental sampling), artinya penentuan contoh berdasarkan kebetulan dijumpai atau siapa saja yang secara kebetulan bertemu dengan peneliti yang dapat dipergunakan sebagai contoh jika dipandang orang tersebut layak diterima sebagai sumber data/informasi (Ruslan 2003). Pengelompokkan nelayan dilakukan berdasarkan jenis kegiatan perikanan (alat tangkap) yang dipergunakan untuk menangkap ikan pelagis, yaitu huhate (pole and line), somajoko (purse seine), rawai tuna, dan pancing tonda (Lampiran 2). Terpilihnya keempat jenis kegiatan perikanan pelagis ini disebabkan bahwa jenis kegiatan perikanan ini merupakan jenis kegiatan perikanan yang dapat mewakili keseluruhan jenis kegiatan perikanan yang ada di Ternate. Berdasarkan uraian dalam Bab 4 (Keragaan pembangunan perikanan tangkap di Kota Ternate), dari 17 jenis kegiatan perikanan yang beroperasi di Ternate, keempat jenis kegiatan perikanan ini mendominasi keseluruhan jenis kegiatan perikanan di Ternate, yang meliputi komposisi alat tangkap, volume produksi dan nilai produksi menurut jenis ikan tangkapan (Dinas Perikanan dan Kelautan Provinsi Maluku Utara 2009). Jumlah contoh yang dipergunakan dalam penelitian ini adalah sebanyak 192 nelayan/ABK, yang terdiri dari 72 orang nelayan pole and line, 78 orang nelayan purse seine, 18 orang nelayan rawai tuna dan 24 orang nelayan pancing tonda. Nelayan-nelayan tersebut berasal masyarakat nelayan yang berdomisili di Pulau Ternate, Pulau Moti, Pulau Batang-Dua, dan Pulau Hiri.

<table>
<thead>
<tr>
<th>Atribut</th>
<th>Skor</th>
<th>Kriteria pemberian skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status eksploitasi</td>
<td>0; 1; 2; 3;</td>
<td>Skala FAO: under- (0); fully- (1); heavyfly- (2); over-exploited (3); kolaps (4)</td>
</tr>
<tr>
<td>Keragaman rekrutmen</td>
<td>0; 1; 2; 3</td>
<td>Koefisien keragaman: < 20% (0); 20 - 60% (1); 60 - 100% (2); > 100% (3)</td>
</tr>
<tr>
<td>Perubahan trophic level</td>
<td>0; 1; 2;</td>
<td>Penurunan trophic level dalam ekosistem: tidak (0); perlahan (1); cepat (2)</td>
</tr>
<tr>
<td>Jarak migrasi</td>
<td>0; 1; 2;</td>
<td>Jumlah jurisdiksi yang terkait selama daur-hidup: 1-2 (0); 3-4 (1); >4 (2)</td>
</tr>
<tr>
<td>Tingkatan kolaps</td>
<td>0; 1; 2; 3</td>
<td>Pengurangan lokasi arena tangkap: tidak (0); sedikit (1); beberapa (2); banyak (3)</td>
</tr>
<tr>
<td>Ukuran ikan tangkapan</td>
<td>0; 1; 2;</td>
<td>Didaratkan berubah 5 tahun terakhir?: tidak berubah (0); ya gradual (1); ya cepat (2)</td>
</tr>
<tr>
<td>Tangkapan prematurity</td>
<td>0; 1; 2;</td>
<td>Terhadap hasil tangkapan: < 30% (0); 30 – 60% (1); > 60% (2)</td>
</tr>
<tr>
<td>Discarded by catch</td>
<td>0; 1; 2;</td>
<td>Terhadap target hasil tangkapan: < 10% (0); 10 - 40% (1); > 40% (2)</td>
</tr>
<tr>
<td>Spesies tangkapan</td>
<td>0; 1; 2;</td>
<td>Termasuk by-catch: 1 - 10 (0); 10 - 100 (1); >100 (2)</td>
</tr>
</tbody>
</table>

Sumber: RAPFISH Group UBC (2005)

Dalam memudahkan penentuan skor dari masing-masing atribut di atas, bel 22 memberikan pengertian atau definisi dari masing-masing atributologi. Berkaitan dengan skor keberlanjutan, penggunaan atribut-atribut dalam dimensi ekologi ini mengandung maksud dan deskripsi tertentu dalam mengevaluasi status keberlanjutan. Atribut status eksploitasi menggambarkan bagaimana semakin rendah tingkat eksploitasi sumberdaya perikanan di unit analisis, maka risiko/ancaman bagi keberlanjutan perikanan di wilayah/unit analisis makin kecil (skor baik = 0; buruk = 4).
<table>
<thead>
<tr>
<th>No.</th>
<th>Atribut</th>
<th>Definisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Status eksploitasi:</td>
<td>Perbandingan potensi dan produksi/tingkat pemanfaatan sumberdaya ikan</td>
</tr>
<tr>
<td>2.</td>
<td>Keragaman rekruitmen:</td>
<td>Kehadiran kelompok ikan muda sebagai sasaran tangkapan atau jumlah individu suatu stok ikan yang memasuki kawasan penangkapan untuk pertama kali setiap tahun (misalnya akibat terjadinya perubahan musim)</td>
</tr>
<tr>
<td>3.</td>
<td>Perubahan trophic level:</td>
<td>Perubahan jenis ikan sasaran dan atau perubahan ukuran (pada jenis ikan yang sama) dibandingkan dengan ukuran yang lazim ditangkap</td>
</tr>
<tr>
<td>4.</td>
<td>Jarak migrasi:</td>
<td>Jarak migrasi dari jenis ikan sasaran selama daur hidupnya</td>
</tr>
<tr>
<td>5.</td>
<td>Tingkatan kolaps:</td>
<td>Tingkat berkurangnya lokasi penangkapan ikan</td>
</tr>
<tr>
<td>6.</td>
<td>Keterusan ikan</td>
<td>Keragaman ukuran ikan yang ditangkap menurut operasi penangkapan dalam periode waktu tertentu</td>
</tr>
<tr>
<td>7.</td>
<td>Tingkatan pre-maturity:</td>
<td>Proporsi produksi jenis ikan target yang belum dewasa terhadap total total produksi</td>
</tr>
<tr>
<td>9.</td>
<td>Spesies tangkapan:</td>
<td>Jumlah species tangkapan yang diperoleh dari operasi penangkapan ikan, termasuk jenis by catch</td>
</tr>
</tbody>
</table>

Atribut keragaman rekruitmen atau recruitment variability yang rendah/konsisten dari jenis-jenis ikan yang dianalisis menunjukkan fungsi ekosistem masih berjalan baik, dimana tingkat pemulihan dari jenis ikan tersebut masih belum berubah. Semakin baik fungsi ekosistem maka secara tidak langsung risiko/ancaman bagi keberlanjutan usaha perikanan di wilayah/unit analisis semakin kecil (skor baik = 0; buruk = 3).

Atribut perubahan trophic level dari sumberdaya ikan di suatu wilayah/unit analisis menunjukkan tingkat kemantapan ekosistem tersebut (terkait dengan rantai pangan dan jaring makanan). Oleh karena itu jika trophic level/daur makanan dari kelompok sumberdaya ikan yang dieksploitasi tidak berubah menunjukkan tidak adanya perubahan ekosistem (skor baik = 0; buruk = 2).

Semakin kecil atribut jarak migrasi menunjukan bahwa semakin kecil/ sempit ruaya dari ikannya yang ditangkap maka semakin efektif usaha pengelolanya,
sehingga seiring dengan itu risiko/ancaman terhadap keberlanjutan usaha perikanan di wilayah/unit analisis semakin kecil pula (skor baik = 0; buruk = 2).

Atribut tingkatan kolaps menunjukkan bahwa semakin sedikit/tidak adanya gejala penurunan jumlah ikan dalam geografis/cakupan area yang luas menunjukkan ekosistem yang baik. Dengan demikian semakin kecil pula risiko/ancaman terhadap keberlanjutan usaha perikanan di wilayah/unit analisis (skor baik = 0; buruk = 3). Adapun atribut ukuran ikan tangkap menggambarkan bahwa tidak berubahnya ukuran ikan yang tertangkap selama 5 tahun terakhir mengindikasikan cukup waktu bagi ikan untuk dewasa sebelum tertangkap. Hal ini menunjukkan ancaman bagi keberlanjutan usaha perikanan di layah yang dianalisis kecil. Ukuran mata jaring dapat menunjukkan ukuran ikan yang tertangkap, sehingga dapat pula digunakan sebagai informasi berupaakah terjadi penurunan ukuran mata jaring dalam 5 tahun terakhir (skor baik = 0; buruk = 2). Selanjutnya atribut tangkapan pra-maturity menggambarkan sumberdaya perikanan termasuk kategori sumber daya dapat pulih (renewable resources). Apabila tingkat kemampuan pulihnya secara alami makin terjamin dimana sumberdaya ikan yang dieksploitasi memiliki sempatan untuk matang atau bereproduksi minimal satu kali sebelum tertangkap, maka secara langsung risiko/ancaman terhadap keberlanjutan usaha perikanan di wilayah/unit analisis akan semakin kecil (skor baik = 0; buruk = 2).

Atribut discarded by catch menunjukkan tingkat efisiensi penggunaan sumberdaya perikanan. Semakin sedikit ikan sampai yang tertangkap dan dibuang berarti semakin efisien penggunaan/pemanfaatan sumberdaya perikanan. Lebih lanjut hal ini berimplikasi pada semakin terjaminnya keberlanjutan usaha perikanan di wilayah/unit yang dianalisis (skor baik = 0; buruk = 2).

Atribut spesies tangkapan menggambarkan penangkapan ikan yang selampai tingkat lestari secara terus menerus, dapat mengakibatkan terjadinya deplesi. Dalam hal ini, berkurangnya jumlah species ikan yang tertangkap dapat jadi indikasi terjadinya kepunahan terhadap species ikan yang ada (skor baik 0; buruk = 2).
Khusus dalam hal melakukan penskoran atribut status eksploitasi, sebelumnya dilakukan analisis status sumberdaya ikan. Dalam analisis ini dipergunakan data runtun waktu *(time series)* produksi ikan dan upaya yang dipergunakan selama 5 tahun terakhir, yang berasal dari Dinas Perikanan dan Kelautan Provinsi Maluku Utara dan Dinas Kelautan dan Perikanan Kota Ternate.

Dalam aplikasinya, pendekatan di atas mengikuti tahapan-tahapan yang dilakukan oleh Purnomo *et al.* (2002) sebagai berikut:

1. **Desk study**
 Pada tahap ini dilakukan pencaharian informasi yang terkait dengan perikanan pelagis di Ternate, melalui berbagai saluran informasi seperti perpustakaan, website, lembaga penelitian, perguruan tinggi dan lembaga pemerintah lainnya. Hal ini dimaksudkan untuk dipergunakan dalam mengisi kolom nilai bagi atribut-atribut RAPFISH yang telah dipersiapkan untuk lokasi penelitian.

2. **Konsultasi ahli terkait**
 Kolom nilai atribut yang tidak dapat diisi oleh informasi sekunder yang ada, lanjutnya dikonsultasikan ke narasumber yang dianggap memiliki penguasaan pengetahuan berkaitan dengan pertanyaan pada kolom atribut. Melalui konsultasi ahli ini, juga dilakukan penggalian informasi berkaitan dengan data sekunder yang telah ada guna penyempurnaan informasi.

3. **Verifikasi lapang**
 Kegiatan ini dilakukan melalui kunjungan lapangan untuk memperkaya data sekunder dengan fakta-fakta yang ada di lapangan. Dalam kunjungan lapangan ini juga dilakukan wawancara/diskusi kepada berbagai pihak, seperti:
 1. Pejabat pemerintah terkait yang bertanggung jawab atas kegiatan perikanan di lokasi, berkaitan dengan kebijakan lokal, pengalaman lapangan pejabat, kegiatan perikanan dan lokasi.
 2. Pelaku perikanan terpilih, dan dibantu dengan daftar pertanyaan yang telah dipersiapkan sebelumnya.
(4) Tabulasi dan pengolahan data

Sebelum dilakukan tabulasi, seluruh data yang dikumpulkan didiskusikan kembali untuk memperoleh jawaban akhir berkaitan dengan atribut yang dipergunakan dalam RAPFISH. Selanjutnya, hasil tabulasi dijadikan bahan dasar bagi tahapan entry data ke program RAPFISH.

Interpretasi hasil

Dalam melakukan interpretasi hasil, setiap kegiatan perikanan diamati aspek-aspeknya yang berkinerja baik, sedang, kurang atau buruk, sehingga dapat ditentukan statusnya. Mengingat nilai indek keberlanjutan perikanan pada metode RAPFISH berada dalam selang 0 (bad) sampai 100 (good), maka untuk mempermudah penentuan status keberlanjutannya dilakukan pengelompokkan hadap nilai indeks dimaksud. Nilai indeks keberlanjutan yang digunakan dalam penelitian ini mengacu pada Soesilo (2003), Hermawan (2006), Hamdan et al. (2006), dan Suyasa (2007) yang membagi status keberlanjutan dalam 4 kategori, yaitu (1) tidak berkelanjutan, (2) kurang bekelanjutan, (3) cukup berkelanjutan dan (4) bekelanjutan (Tabel 23).

Tabel 23 Selang indeks dan status keberlanjutan perikanan pelagis di Ternate

<table>
<thead>
<tr>
<th>Selang indeks keberlanjutan</th>
<th>Status keberlanjutan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 25</td>
<td>Buruk</td>
</tr>
<tr>
<td>26 – 50</td>
<td>Kurang</td>
</tr>
<tr>
<td>51 – 75</td>
<td>Cukup</td>
</tr>
<tr>
<td>76 – 100</td>
<td>Baik</td>
</tr>
</tbody>
</table>

Sumber: Soesilo (2003); Hermawan (2006); Hamdan et al. (2006); Suyasa (2007)

Untuk mengetahui atribut-atribut yang sensitif atau yang paling berpengaruh hadap tingkatan baik buruknya kinerja pada dimensi ekologi ini, maka dilakukan analisis leverage yang penjelasannya telah diuraikan dalam bab sebelumnya.

Sebagaimana telah dikemukakan sebelumnya, pendekatan yang dipergunakan dalam penentuan status eksploitasi adalah dengan menggunakan metode CYP (Clark, Yosimoto, and Pooley 1992). Alasan menggunakan metode CYP ini adalah mengikuti kajian-kajian pendugaan status sumberdaya perikanan...

\[\text{FPI} = \frac{C_{st}}{E_{st}} \]

\[\text{CPUE}_{st} = \frac{C_{st}}{E_{st}} \]

\[\text{FPI}_{i} = \frac{\text{CPUE}_{i}}{\text{CPUE}_{st}} \]

Di mana:
- Jumlah hasil tangkapan alat standar
- Jumlah hasil tangkapan alat i
- Jumlah upaya penangkapan alat standar
- Jumlah upaya penangkapan alat i

Fishing power index atau FPI setiap tahun dari masing-masing alat tangkap kemudian dirata-ratakan. Selanjutnya, FPI ini dikalikan dengan effort atau trip masing-masing alat sehingga diperoleh nilai effort standard. Setelah melalui standardisasi ini diperoleh total produksi aktual dan total effort standard yang akan digunakan dalam metode analisis selanjutnya.

Hal terpenting yang perlu diketahui dalam penilaian sumberdaya perikanan adalah nilai estimasi tangkapan lestari dari stok ikan. Untuk mengetahui nilai estimasi tangkapan lestari tersebut, terlebih dahulu perlu diketahui produksi vitas dari stok ikan yang biasanya diestimasi dengan model kuantitatif. Selanjutnya, model surplus produksi adalah yang digunakan dalam perhitungan nilai sumberdaya ekologi ini sebagaimana diuraikan dalam Bab 3 (Metodologi Umum Penelitian).
5.3 Hasil

5.3.1 Sumberdaya perikanan pelagis lokasi penelitian

Setiap jenis alat tangkap dapat menangkap beberapa jenis ikan karena keanekaragaman hayati ikan dan nelayan umumnya siap untuk memanfaatkan apa saja yang tertangkap. Sebagaimana disebutkan dalam Bab 4 (Keragaan Pembangunan Perikanan Tangkap di Kota Ternate), dari 17 alat tangkap yang dipasang, teridentifikasi 50 jenis ikan yang tertangkap oleh nelayan Ternate. Jenis ikan yang tertangkap didominasi oleh cakalang (*Katsuwonus pelamis*), layang (*Decapterus lajang*), tongkol (*Euthynnus spp*), tuna (*Thunnus albacares*), dan teri (*Stolephorus spp*), dengan hasil tangkapan tahun 2009 untuk lima jenis ikan tersebut berkisar 87% dari total hasil tangkapan.

Jenis cakalang (*Katsuwonus pelamis*) dan layang (*Decapterus lajang*) adalah jenis ikan unggulan yang ditangkap oleh nelayan di Ternate. Dengan menggunakan alat tangkap *pole and line* dan *purse seine*, untuk kedua jenis ikan ini dapat menghasilkan tangkapan adalah sebesar 58,12% dari total tangkapan pada tahun terakhir. Secara keseluruhan alat tangkap pancing tonda dan *purse seine* memiliki jumlah ikan yang dikumpulkan terbanyak dibandingkan dengan *pole and line* dan rawai tuna, dan jenis ikan yang biasa tertangkap oleh keempat alat tangkap dominan disajikan pada Tabel 24.

Beragamnya setiap alat tangkap menyebabkan perlu adanya standardisasi untuk perhitungan total *effort* tahunan. Standarisasi alat tangkap diperlukan untuk menyeragamkan satuan upaya penangkapan dari berbagai alat tangkap yaitu dengan menggunakan salah satu alat tangkap yang dominan dalam menangkap ikan untuk dijadikan sebagai alat tangkap standard. Sebagaimana diuraikan sebelumnya, jenis alat tangkap yang dioperasikan di Ternate didominasi oleh alat tangkap *pole and line* (Dinas Perikanan dan Kelautan Provinsi Maluku Utara, 2009). Selain jumlahnya dominan, jenis alat ini juga yang paling banyak dioperasikan oleh nelayan Ternate dan terus dioperasikan sepanjang tahun.
Tabel 24 Jenis-jenis ikan yang biasa tertangkap oleh *pole and line*, *purse seine*, rawai tuna, dan pancing tonda di Ternate

<table>
<thead>
<tr>
<th>Jenis Ikan</th>
<th>Nama Ilmiah</th>
<th>Pole and line</th>
<th>Purse seine</th>
<th>Rawai tuna</th>
<th>Pancing tonda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cakalang</td>
<td>Katsuwonus pelamis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Tongkol</td>
<td>Auxis thazard</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Sungilir</td>
<td>Elogotis sp</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Teri</td>
<td>Stolephorus spp</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layang</td>
<td>Decapterus lajang</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenbih</td>
<td>Rastrelliger sp</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Kerapu</td>
<td>Spenehelus sp</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Kakap</td>
<td>Lates spp</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Kuwe</td>
<td>Caranx sexfesciatus spp</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Selar</td>
<td>Selaroides sp</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Julung-lajang</td>
<td>Hemirhampus sp</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bambangan</td>
<td>Lutjanus spp</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Tuna</td>
<td>Thunnus albacares</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbangtel</td>
<td>Cypsilurus sp</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bawal putih</td>
<td>Pampus argenteus</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Cucut</td>
<td>Sphyridiidae</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Tenggiri</td>
<td>Scombermororuss spp</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekor Kuning</td>
<td>Caesio sp</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Lencam</td>
<td>Lethrinus spp</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Kerong-kong</td>
<td>Therapon spp</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Gerol-gelat</td>
<td>Pristipoma spp</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Biji Nangka</td>
<td>Upeneus sp</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banyar</td>
<td>Rastrelliger sp</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Lemadang</td>
<td>Coryphaena spp</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Cum-cumi</td>
<td>Loligo spp</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Sotong</td>
<td>Sepia spp</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Sumber: Diolah dari data Dinas Perikanan dan Kelautan Provinsi Maluku Utara (2009)

5.3.2 Produksi dan upaya penangkapan

Produksi dan effort aktual dari pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate, 2003-2009.

Tabel 25

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Produksi (ton)</th>
<th>Upaya Penangkapan (trip)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pole and line</td>
<td>Purse seine</td>
</tr>
<tr>
<td>2003</td>
<td>1.432,45</td>
<td>1.025,40</td>
</tr>
<tr>
<td>2004</td>
<td>1.920,44</td>
<td>1.374,72</td>
</tr>
<tr>
<td>2006</td>
<td>4.442,66</td>
<td>4.925,42</td>
</tr>
<tr>
<td>2008</td>
<td>8.164,00</td>
<td>6.595,56</td>
</tr>
<tr>
<td>2009</td>
<td>11.040,00</td>
<td>9.781,20</td>
</tr>
</tbody>
</table>

5.3 Produktivitas alat tangkap

Produktivitas adalah hasil tangkapan tiap satu unit alat tangkap tahunan atau harian di suatu daerah penangkapan atau wilayah perikanan. Perhitungan produktivitas dapat dilakukan jika data tentang hasil tangkapan dan jumlah unit atau hari tangkap (trip) tiap alat tangkap yang mampu menangkap jenis ikan tersebut diketahui. Dengan dua data tersebut (produksi dan upaya penangkapan), produktivitas dapat dihitung dengan satuan ton per unit alat tangkap per tahun atau kilogram per unit alat tangkap per hari. Dengan demikian, perhitungan produktivitas yang digunakan dalam penelitian ini adalah hasil tangkapan per alat tangkap dibagi dengan jumlah trip tahunan alat tangkap tersebut. Data produktivitas pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate dari tahun 2003–2009 dapat dilihat pada Tabel 26.

Tabel 26

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Produktivitas (ton/trip)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pole and line</td>
</tr>
<tr>
<td>2003</td>
<td>0,79</td>
</tr>
<tr>
<td>2004</td>
<td>0,42</td>
</tr>
<tr>
<td>2005</td>
<td>0,60</td>
</tr>
<tr>
<td>2006</td>
<td>0,54</td>
</tr>
<tr>
<td>2007</td>
<td>0,73</td>
</tr>
<tr>
<td>2008</td>
<td>0,90</td>
</tr>
<tr>
<td>2009</td>
<td>1,15</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>0,62</td>
</tr>
</tbody>
</table>
Produktivitas dari alat tangkap *purse seine* lebih tinggi dari pada alat tangkap lainnya. Rata-rata produktsivitas alat tangkap *purse seine* sebesar 0,86 yang berarti dalam setiap trip penangkapan rata-rata tangkapan diperoleh sebesar 0,86 ton per unit alat tangkap per tahun. Sebaliknya, rata-rata produktivitas terendah adalah alat tangkap pancing tonda dan rawai tuna dengan rata-rata tangkapan diperoleh masing-masing sebesar 0,20 dan 0,23 ton per unit alat tangkap per tahun.

5.3.4 Fishing power index (FPI)

Fishing power index (FPI) adalah tingkat kemampuan suatu alat tangkap dalam menangkap ikan atau suatu jenis ikan tertentu dalam waktu dan daerah peharianan tertentu pula. Perhitungan *fishing power index* diperlukan jika alat tangkap yang mengeksploitasi sumberdaya ikan atau suatu jenis ikan tertentu jumlahnya lebih dari satu. Selanjutnya dalam perhitungannya perlu dipilih salah satu alat tangkap yang paling dominan dalam operasi penangkapan untuk dijadikan rujukan dalam menyetelkan jumlah upaya penangkapan (effort) yang terjadi terhadap jenis ikan atau sumberdaya ikan tersebut. Selain itu, dengan berasumsi bahwa alat tangkap rujukan tersebut tidak terjadi perubahan teknologi, adanya kemampuan nelayan dalam menggunakan alat tangkap tersebut, dan alat tangkap tersebut cepat mengakses sumberdaya ikan yang tersedia, maka dalam perhitungan ini, alat tangkap yang digunakan sebagai rujukan adalah *pole and line* sehingga nilai FPI alat tangkap *pole and line* adalah 1, *purse seine* = 1,39, rawai tuna = 0,37 dan pancing tonda = 0,32 (Tabel 27).

Nilai indeks ini digunakan sebagai faktor pengali terhadap trip masing-masing alat tangkap tersebut. Total trip penangkapan baku dalam satu periode dipetakan dari jumlah trip penangkapan yang telah dikalikan dengan FPI.

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Pole and line</th>
<th>Purse seine</th>
<th>Rawai tuna</th>
<th>Pancing tonda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rata-rata aktivitas (CPUE)</td>
<td>0,62</td>
<td>0,86</td>
<td>0,23</td>
<td>0,20</td>
</tr>
<tr>
<td>FPI</td>
<td>1</td>
<td>1,39</td>
<td>0,37</td>
<td>0,32</td>
</tr>
</tbody>
</table>
5.3.5 Standardisasi upaya penangkapan

Standardisasi upaya penangkapan adalah menyeragamkan besarnya nilai upaya penangkapan (effort) beberapa jenis alat tangkap ke dalam satuan jenis upaya alat tangkap tertentu yang dijadikan standard (Tabel 28). Tabel tersebut menyiapkan hasil perkalian data trip tiap alat tangkap pada Tabel 25 dengan nilai FPI masing-masing alat tangkap pada Tabel 27, menghasilkan trip standard pole and line, purse seine, rawai tuna dan pancing tonda.

Tabel 28 Perkembangan effort standar dari pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate.

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Pole and line</th>
<th>Purse seine</th>
<th>Rawai tuna</th>
<th>Pancing tonda</th>
<th>Total trip standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>1.809</td>
<td>2.128,32</td>
<td>405,55</td>
<td>382,04</td>
<td>4.725</td>
</tr>
<tr>
<td>2005</td>
<td>7.560</td>
<td>7.024,72</td>
<td>627,37</td>
<td>1.064,38</td>
<td>16.276</td>
</tr>
<tr>
<td>2006</td>
<td>8.208</td>
<td>7.024,72</td>
<td>806,62</td>
<td>1.064,38</td>
<td>17.104</td>
</tr>
<tr>
<td>2007</td>
<td>8.640</td>
<td>7.024,72</td>
<td>806,62</td>
<td>1.170,82</td>
<td>17.642</td>
</tr>
<tr>
<td>2009</td>
<td>9.600</td>
<td>12.393,61</td>
<td>860,40</td>
<td>1.254,45</td>
<td>24.108</td>
</tr>
</tbody>
</table>

5.3.6 Pendugaan status sumberdaya perikanan

Tabel 29 Total produksi aktual, total effort standar, dan produktivitas alat tangkap standar di Ternate, 2003-2009.

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Produksi (ton)</th>
<th>Effort (Trip) standard</th>
<th>CPUE (ton/trip)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>2.821,57</td>
<td>4.725</td>
<td>0,59717</td>
</tr>
<tr>
<td>2004</td>
<td>3.904,16</td>
<td>9.243</td>
<td>0,42239</td>
</tr>
<tr>
<td>2005</td>
<td>10.617,87</td>
<td>16.276</td>
<td>0,65234</td>
</tr>
<tr>
<td>2006</td>
<td>10.172,30</td>
<td>17.104</td>
<td>0,59474</td>
</tr>
<tr>
<td>2007</td>
<td>13.726,44</td>
<td>17.642</td>
<td>0,77805</td>
</tr>
<tr>
<td>2008</td>
<td>16.038,76</td>
<td>19.078</td>
<td>0,84071</td>
</tr>
<tr>
<td>2009</td>
<td>22.357,68</td>
<td>24.108</td>
<td>0,92738</td>
</tr>
</tbody>
</table>

Gambar 5 Hubungan upaya penangkapan (trip) dengan CPUE di Ternate

Hasil evaluasi dengan menggunakan data runtun waktu dari tahun 2003 sampai dengan 2009 tentang produksi perikanan dan upaya (effort) yang dipergunakan di perairan Ternate (Laut Maluku), menunjukkan bahwa hubungan antara jumlah upaya penangkapan standar (trip) dengan CPUE pada perikanan Ternate adalah CPUE = 0,408 + 0,069x dengan nilai $R^2 = 0,767$. Ini artinya, hubungan yang terjadi memiliki nilai intercept sebesar 0,408 dan sudut kemiringan (slope) sebesar 0,069, dengan tingkat hubungan antara peubah tak bebas (dependent variable) dan peubah bebas (independent variable) sebesar 77%.

Pendugaan parameter biologi dengan menggunakan metode CYP perlu nilai logaritma CPUE pada waktu $t+1$ dan logaritma CPUE pada saat t serta jumlah effort pada waktu t dan $t+1$. Nilai tersebut sesuai dengan persamaan sistematis CYP. Dengan menggunakan Ordinary Least Square (OLS), persamaan sebut dapat disederhanakan menjadi $Y = \alpha + \beta X_1 + \gamma X_2$. Hasil dari OLS dengan menggunakan Microsoft Excel diperoleh nilai koefisien $\alpha = 1,376654074$; koefisien $\beta = -0,196354828$; dan koefisien $\gamma = 2,88594E-05$. Tabel 30 menyajikan rata-rata produksi tahunan dari semua jenis alat tangkap yang dioperasikan di Ternate.

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Produksi (ton)</th>
<th>Effort (Trip)</th>
<th>CPUE (ton/trip)</th>
<th>Ln CPUE$_{t+1}$</th>
<th>Ln CPUE$_t$</th>
<th>$E_t + E_{t+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>2.821,57</td>
<td>4.725</td>
<td>0,59717</td>
<td>0,86183</td>
<td>0,51556</td>
<td>13.967,96728</td>
</tr>
<tr>
<td>2004</td>
<td>3.904,16</td>
<td>9.243</td>
<td>0,42239</td>
<td>0,42718</td>
<td>0,86183</td>
<td>25.519,52884</td>
</tr>
<tr>
<td>2005</td>
<td>10.617,87</td>
<td>16.276</td>
<td>0,65234</td>
<td>0,51963</td>
<td>0,42718</td>
<td>33.380,19410</td>
</tr>
<tr>
<td>2006</td>
<td>10.172,30</td>
<td>17.104</td>
<td>0,59474</td>
<td>0,25097</td>
<td>0,51963</td>
<td>34.745,88156</td>
</tr>
<tr>
<td>2007</td>
<td>13.726,44</td>
<td>17.642</td>
<td>0,77805</td>
<td>0,17351</td>
<td>0,25097</td>
<td>36.719,85091</td>
</tr>
<tr>
<td>2008</td>
<td>16.038,76</td>
<td>19.078</td>
<td>0,84071</td>
<td>0,07539</td>
<td>0,17351</td>
<td>43.186,14731</td>
</tr>
<tr>
<td>2009</td>
<td>22.357,68</td>
<td>24.108</td>
<td>0,92738</td>
<td>-</td>
<td>0,07539</td>
<td>-</td>
</tr>
</tbody>
</table>

Dari nilai-nilai koefisien yang diperoleh tersebut, selanjutnya dihitung dengan persamaan 3.8 untuk memperoleh nilai r, q, dan K. Hasil perhitungan
diperoleh tingkat pertumbuhan intristik \((r) \) sebesar 2,977321009, koefisien kemampuan tangkap \((q) \) sebesar 0,00014364, dan daya dukung lingkungan/perairan \((K) \) adalah 22.002,05 ton. Kemudian berdasarkan hasil wawancara dengan nelayan, diperoleh rata-rata harga ikan per ton \((p) \) adalah Rp. 7.000.000,00 (Tabel 19) dan biaya per trip rata-rata \((c) \) adalah Rp. 1.350.000,00.

Secara lengkap hasil perhitungan parameter biologi dan ekonomi perikanan dapat dilihat pada Tabel 31 berdasarkan hasil analisis yang terdapat pada Lampiran 4.

<table>
<thead>
<tr>
<th>No.</th>
<th>Keterangan</th>
<th>Simbol</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tingkat pertumbuhan</td>
<td>(r)</td>
<td>2,977321009</td>
</tr>
<tr>
<td>2.</td>
<td>Koefisien kemampuan tangkap</td>
<td>(q)</td>
<td>0,00014364</td>
</tr>
<tr>
<td>3.</td>
<td>Daya dukung lingkungan perairan (ton)</td>
<td>(K)</td>
<td>22.002,05355</td>
</tr>
<tr>
<td>4.</td>
<td>Harga rata-rata per ton (Rp.)</td>
<td>(p)</td>
<td>7.000.000,00</td>
</tr>
<tr>
<td>5.</td>
<td>Biaya rata-rata per trip (Rp.)</td>
<td>(c)</td>
<td>1.350.000,00</td>
</tr>
</tbody>
</table>

Fungsi pertumbuhan perikanan yang umum digunakan adalah fungsi pertumbuhan logistik dan fungsi produksi yaitu \(h = qXE \). Dengan menggunakan fungsi pertumbuhan dan fungsi produksi tersebut dapat diketahui tingkat produksi lestari \((h) \) sumberdaya perikanan yang merupakan fungsi dari tingkat upaya aktual yang dilakukan setiap tahun. Diketahui bahwa semakin tinggi tingkat upaya yang diusahakan (melebihi kondisi optimal) akan mengakibatkan terkurasnya sumberdaya perikanan sehingga tidak ada lagi yang dapat dimanfaatkan. Untuk lebih jelasnya pada Gambar 6 disajikan perbandingan fluktuasi produksi aktual dan produksi lestari dengan perubahan upaya penangkapan \((effort) \) untuk kegiatan perikanan pelagis di perairan Ternate Laut Maluku.
Menurut Gambar 6, terlihat bahwa secara umum perubahan atau penambahan effort masih terus dikuti dengan penambahan produksi. Tingkat produksi aktual terus naik semenjak tahun 2003 sampai dengan tahun 2009, yang mana hal ini terjadi karena upaya penangkapan yang dilakukan oleh nelayan juga terus mengalami peningkatan. Hubungan antara produksi aktual dan produksi lestari menunjukan bahwa dengan perubahan atau penambahan effort, tingkat produksi aktual yang dihasilkan tersebut masih berada dibawah tingkat produksi lestari. Perbandingan antara tingkat produksi aktual dengan produksi lestari tahunan dapat dilihat seperti Gambar 7.

Secara keseluruh biomas, produksi, *effort* dan rente ekonomi pada ketiga rezim pengelolaan MSY, MEY dan *open access* disajikan pada Tabel 32. dan keseimbangan bioekonomi perikanan di perairan Ternate dalam bentuk grafik yang merupakan hasil proses *software* MAPLE disajikan pada Lampiran 5.
Tabel 32 Tingkat biomas, produksi, upaya optimal dan rente ekonomi perikanan pelagis dari berbagai rezim pengelolaan di Ternate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Simbol</th>
<th>Rezim pengelolaan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MEY</td>
</tr>
<tr>
<td>Biomass (ton)</td>
<td>x</td>
<td>11.672,34</td>
</tr>
<tr>
<td>Produksi (ton)</td>
<td>h</td>
<td>16.315,81</td>
</tr>
<tr>
<td>Rente ekonomi (Rp)</td>
<td>π</td>
<td>101.073.499,942</td>
</tr>
</tbody>
</table>

Berdasarkan hasil analisis sebagaimana terlihat pada Tabel 32, rente ekonomi tertinggi diperoleh dari rezim MEY (Rp. 101.073.499,942) sedangkan yang terendah adalah rezim akses terbuka dan hal tersebut berlaku juga untuk parameter biomas atau stok ikan. Untuk jumlah produksi terbesar yang dapat hasilkan adalah pada rezim MSY dan terkecil pada rezim open access, namun baliknya upaya optimal tertinggi yang diperbolehkan adalah pada rezim open access dan terendah rezim MEY.

Sementara perbandingan effort rata-rata pada kondisi aktual dan effort rata-rata pada kondisi MEY dan MSY menunjukan bahwa effort rata-rata pada kondisi aktual berada pada posisi di atas kondisi MEY dan kondisi MSY, namun effort rata-rata pada kondisi aktual ini berada dibawah kondisi open access. Rata-rata effort aktual sudah melebihi dari kondisi optimal MEY. Tingkat effort yang semakin meningkat ini juga akan meningkatkan biaya operasional sehingga rente ekonomi yang diterima nelayan semakin menurun. Berdasarkan keseluruhan perbandingan ini, peningkatan rata-rata effort aktual ini pada akhirnya diduga telah mengalami economic overfishing sebesar sebesar 58,91% (MEY) dan biological overfishing sebesar 49,12% (MSY) (Gambar 8) dan Lampiran 4.

Selanjutnya sebagaimana ditunjukan oleh Gambar 9, terlihat bahwa tingkat produksi yang berbeda dari masing-masing rezim pengelolaan dan rata-rata kondisi aktual. Rata-rata produksi pada kondisi aktual berada pada posisi lebih rendah dari setiap rezim pengelolaan baik MEY, MSY, maupun open access.
Gambar 8 Perbandingan tingkat effort dalam kondisi MEY, MSY, open access dan aktual di perairan Ternate.

Gambar 9 Perbandingan nilai produksi dalam kondisi MEY, MSY, open access dan aktual di perairan Ternate.

Secara grafis keseimbangan bioekonomi perikanan pelagis di perairan Ternate yang dihasilkan melalui software MAPLE di sajikan pada Gambar 10 dan proses perhitungannya ditampilkan dalam Lampiran 5.
5.3.7 Kondisi masing-masing atribut keberlanjutan ekologi

Pada bagian ini, diuraikan kondisi aktual dari atribut keberlanjutan dari dimensi ekologi sekaligus dengan pemberian skor yang berkaitan dengan sumberdaya perikanan di Ternate dari keempat jenis perikanan pelagis. Atribut- atribut tersebut adalah status eksploitasi, keragaman rekrutmen, perubahan trophic level, jarak migrasi, tingkatan kolaps, ukuran ikan tangkapan, tangkapan yang pre-maturity, discarded, perubahan ukuran ikan, dan species tangkapan.

Semua atribut tersebut secara berurutan diuraikan sebagai berikut.

Status eksploitasi

Selama ini, nelayan Ternate memanfaatkan sebagian besar kawasan lautan Laut Maluku sebagai daerah penangkapan ikan. Sebagaimana hasil analisis bioekonomi, status pemanfaatan sumberdaya perikanan tangkap di Ternate (Laut Maluku) tergolong dalam gejala telah mengalami overfishing. Hal ini disebabkan oleh perbandingan effort rata-rata pada kondisi aktual dan effort rata-rata pada kondisi MEY dan MSY menunjukkan bahwa effort rata-rata pada
1. Diterangkan bahwa bagaimana dalam kondisi aktual berada pada posisi di atas kondisi MEY dan kondisi MSY. Rata-rata effort aktual sudah melebihi dari kondisi optimal MEY dan MSY sehingga peningkatan rata-rata effort aktual ini pada akhirnya diduga telah mengalami economic overfishing sebesar 58,81% dan biological overfishing sebesar 49,12% (Gambar 8 dan Lampiran 4). Dengan demikian, tingkat pemanfaatan sumber daya ikan dapat terkualifikasi over exploited. Atribut ini diberi skor tiga.

2) Keragaman rekrutmen

Menurut Cadima (2003) yang diacu dalam Mamuaya (2007), rekrutmen ke fase eksploitasi adalah jumlah individu suatu stok ikan yang memasuki penangkapan untuk pertama kali setiap tahun. Rekrutmen ikan pada suatu kawasan perairan secara sederhana dapat ditandai dengan kehadiran kelompok ikan muda sebagai sasaran tangkapan. Berasal dari hasil wawancara, ikan-ikan yang menjadi sasaran tangkap perikanan pole and line selama ini adalah jenis cakalang (Katsuwonus pelamis), namun kadang menghasilkan jenis ikan yang lain seperti tuna (Thunnus albacares) yang ukurannya tergolong muda. Keadaan yang serupa juga di alami oleh perikanan purse seine, dimana selama ini yang menjadi sasaran tangkap adalah jenis layang (Decapterus lajang) namun ditemukan juga secara bersama dengan kelompok ikan pelagis besar yang menjadi sasaran tangkap dari perikanan pole and line. Pada perikanan pancing tonda, kehadiran kelompok ikan muda sebagai sasaran tangkapannya/jumlah individu suatu stok ikan yang memasuki kawasan penangkapan untuk pertama kalinya sering terjadi karena hasil/jenis ikan yang diperoleh sangat tergantung pada perubahan musim. Jenis hasil tangkapan ini dijumpai oleh sifat biologinya dan terkesan masuk sebagai kelompok rekrutmen yang beragam baik menurut waktu (musim) dan jumlah individunya. Recruitment variability yang terkesan konsisten tercermin pada perikanan rawai tuna dimana konsisten pada dua jenis saja yaitu tuna (Thunnus albacares) dan tenggiri (Scomberomorus spp).

Berdasarkan dari informasi yang sangat terbatas ini, koefisien keragaman (waktu pemunculan dan jumlah individu) dari rekrutmen jenis-jenis ikan yang ditangkap oleh keempat alat tangkap di atas, hanya dapat ditentukan secara garis
besarnya saja. Sesuai pilihan yang disediakan dalam atribut RAPFISH, untuk sementara keragaman rekruitmen perikanan pole and line dan purse seine dari stok ikan-ikan sasaran tangkap, diperkirakan tidak tinggi atau tidak melebihi 60% (skor satu). Sedangkan pada perikanan pancing tonda, jumlah individu yang mengalami rekruitmen, keragamannya diperkirakan antara 60-100% (skor dua) dan perikanan rawai tuna diperkirakan tidak lebih dari 20% (skor nol). Perkiraan ini ditetapkan bagi gambaran umum saja dan memerlukan klarifikasi melalui suatu kajian susus yang bertujuan mengukur recruitment variability secara spesifik.

Perubahan trophic level

Jenis-jenis ikan yang dihasilkan dari operasi penangkapan ikan menggunakan pole and line oleh nelayan di Ternate, menurut wawancara dalam beberapa tahun terakhir belum terjadi perubahan jenis ikan sasaran. Sesuai data yang terhimpun (Tabel 24) dan observasi yang dilakukan, komposisi jenis ikan yang dihasilkan oleh aktivitas perikanan pole and line tidak berubah dari jenis-jenis ikan cakalang, tongkol, dan sedikit tuna. Hal yang serupa juga dialami oleh aktivitas perikanan rawai tuna dan pancing tonda. Rawai tuna menghasilkan tangkapan tuna dan sedikit tenggiri, sedangkan pancing tonda dalam beberapa
hun terakhir ini menghasilkan bermacam-macam jenis dengan jenis yang dominan bervariasi menurut musim. Ketiga jenis perikanan ini secara terbatas dapat dikategorikan belum terjadi perubahan trophic level (skor nol).

Sementara, komposisi jenis ikan yang dihasilkan oleh aktivitas perikanan purse seine telah terjadi perubahan secara perlahan dalam hal pengurangan jenis ikan tangkapan. Sasaran ikan tangkapan khususnya sepuluh tahun terakhir awalnya adalah layang dan beberapa jenis ikan pegagis lainnya, namun secara perlahan dalam lima tahun terakhir ini telah terjadi perubahan (pengurangan) jenis ikan dalam hasil tangkapan yaitu ikan terbang (Cypsilurus sp), gerot-gerot (Pristipoma spp), dan ekor kuning (Caesio sp). Hal ini mengindikasikan bahwa secara perlahan telah terjadi perubahan trophic level (skor satu).

4) Jarak migrasi

5) Tingkatan *kolaps*

Hasil wawancara dengan nelayan *pole and line* dan rawai tuna Ternate, daerah tangkap dari aktivitas perikanan ini semakin jauh dari pangkalan pendaratan ikan. Menurut Taeran (2007), nelayan *pole and line* yang berpangkalan di Kelurahan Dufa-Dufa (Kota Ternate) mengalami kendala mereka dalam menangkap ikan terutama dalam hal sulitnya menemukan gerombolan cakalang dan mengharus menangkap jauh dari pangkalan pendaratan ikan. Daerah tangkap telah menjangkau hingga jauh ke perairan laut di luar wilayah tangkap belumnya terutama bagi nelayan rawai tuna.

Dengan sulitnya dalam menemukan gerombolan ikan sasaran tangkap, ingatlah al inilah yang mendorong nelayan *pole and line* dan rawai tuna untuk menggunakan alat bantu rumpon dalam mengumpulkan ikan pada lokasi-lokasi tertentu. Walauupun demikian dilihat dari produksi tangkapan perikanan ini dari tahun ke tahun cenderung mengalami peningkatan (Tabel 14). Peningkatan produksi tangkapan ini bukan semata disebabkan karena adanya peningkatan *skill* nelayan dalam menangkap ikan tetapi lebih disebabkan karena adanya perubahan ukuran kapal yang bisa menjangkau daerah tangkap yang lebih jauh dari pangkalan pendaratan ikan. Menurut data Dinas Perikanan dan Kelautan Provinsi Maluku Utara, keadaan armada penangkap yang berukuran 10–20 GT dan 20–30 GT di Ternate ditandai jumlah rata-ratanya meningkat selama lima tahun terakhir ini (Tabel 11). Dari uraian ini, berarti bahwa telah terjadi beberapa pengurangan lokasi penangkapan ikan, sehingga tingkatan *kolaps* untuk perikanan *pole and line* dan rawai tuna ini dapat digolongkan beberapa (skor dua).

Sementara nelayan *purse seine* dan nelayan pancing tonda Ternate, jumlah daerah tangkap tergolong masih banyak yaitu disekitar wilayah perairan antar Pulau Ternate dan Pulau Halmahera (bagian barat Kepulauan Bacan), sehingga perburuan dilakukan ke daerah yang tidak begitu jauh dari lokasi domisili nelayan. Berdasarkan hasil wawancara walauupun jumlahnya sedikit, daerah tangkap yang dekat dengan pangkalan pendaratan ikan semakin lama semakin dikit. Tingkatan kolaps untuk kedua perikanan ini kualifikasinya tergolong dikit (skor satu).
6) Ukuran ikan tangkapan

Berdasarkan pengamatan langsung, ukuran ikan yang tertangkap dengan keempat alat tangkap ini, tampaknya beragam menurut periode waktu dan musim. Menurut informasi dari nelayan, ukuran berat rata-rata ikan pada beberapa jenis ikan yang tertangkap, telah mengalami perubahan secara gradual selama lima tahun terakhir ini. Sebagai contoh, jenis cakalang yang dulunya tertangkap dengan *pole and line* berukuran berat rata-rata sebesar 2,0–2,5 kg per ekor, saat ini yang tertangkap rata-rata sebesar 1,5 kg per ekor. Selain itu, jenis tuna yang ditangkap sekitar lima tahun lalu berkisar 40-60 kg per ekor, namun sekarang yang ditangkap adalah tuna dengan berat kurang lebih 25-30 kg per ekor. (semua skor satu).

7) Tangkapan yang belum dewasa

Pencatatan aspek-aspek biologi yang berkaitan dengan umur dan pertumbuhan ikan untuk jenis-jenis ikan yang tertangkap dengan keempat alat tangkap ini masih terbatas. Untuk itu, pemahaman tentang aspek biologi perikanan ini yang dapat mendasari estimasi proporsi ikan yang belum dewasa dari kumpulan ikan-ikan yang tertangkap masih sedikit.

Sebagaimana uraian dalam atribut ukuran ikan tangkapan sebelumnya, operator penangkapan ikan saat ini menghasilkan ikan-ikan yang ukurannya relatif kecil dibandingkan dengan ukuran rata-rata ikan yang lazimnya tertangkap. Jenis ikan target tangkapan dengan alat tangkap *pole and line* yang terkadang berukuran kecil adalah ikan cakalang, sedangkan jenis ikan yang bukan target adalah tuna berukuran tergolong muda dan ini sudah berlangsung cukup lama. Selanjutnya untuk perikanan *purse seine*, ikan layang biru yang belum matang gonad mendominasi sebesar 55% dari keseluruhan hasil tangkapan nelayan Maluku Utara (Irham 2009). Sementara menurut hasil wawancara, ikan hasil tangkapan rawa tergolong sebagian besar juga berukuran rata-rata 25 kg per ekor.

Dengan demikian, dalam aktivitas perikanan di daerah ini ditemukan hasil tangkapan ikan yang belum dewasa. Perikanan *pole and line* dan pancing tonda diperkirakan < 30% dari total hasil tangkapan adalah ikan yang belum dewasa (skor nol), perikanan *purse seine* memiliki proporsinya terhadap total hasil
tangkapan, diperkirakan tidak lebih dari 60% belum dewasa (skor satu), dan sementara rawai tuna memiliki proporsinya sebagian besar (> 60%) belum dewasa terhadap total hasil tangkapan (skor dua).

8) **Discarded by catch**

Sasaran utama penangkapan ikan dengan keempat alat tangkap menghasilkan tangkapan ikan yang terdiri dari berbagai spesies sesuai dengan teknologi penangkapannya (Tabel 24). Berdasarkan hasil observasi dan wawancara, semua hasil tangkapan yang diperoleh baik tubuh seutuhnya maupun bagian dari tubuh ikan-ikan tersebut hampir semua tidak ada yang dibuang, belum dipasarkan dan atau dikonsumsi oleh keluarga. Dengan demikian, dalam aktivitas perikanan pelagis di Ternate, tidak ditemukan *discarded by catch*. Skor ini pada keempat alat tangkap adalah nol.

Spesies tangkapan

Operasi penangkapan ikan dengan *pole and line*, *purse seine*, rawai tuna, dan pancing tonda menghasilkan spesies tangkapan yang jumlahnya terbatas sesuai dengan kondisi perairan atau daerah penangkapannya. Berdasarkan pengamatan di lapangan dan data dari Dinas Perikanan Provinsi Maluku Utara, dalam sepuluh tahun terakhir ini total hasil tangkapan dari aktivitas perikanan *pole and line* dan rawai tuna memanen tidak lebih dari 10 species (skor nol), sedangkan total hasil tangkapan dari aktivitas perikanan *purse seine* dan pancing tonda memanen lebih dari 10 species (skor satu).

5.3.8 **Status keberlanjutan perikanan pelagis dimensi ekologi**

Nilai skor yang terdapat pada masing-masing atribut dimensi ekologi bagaimana disebutkan sebelumnya, kemudian dianalisis dengan menggunakan metode RAPFISH. Output yang diperoleh dengan metode RAPFISH pada dimensi ekologi menunjukkan nilai indeks keberlanjutan perikanan pelagis secara sebagaimana disajikan pada Tabel 33 dan Lampiran 6. Nilai ini yang menentukan posisi relatif dari setiap kegiatan perikanan terhadap ordinasi yang terhadap kisaran baik (good) dengan nilai 100, dan buruk (bad) dengan nilai 0. Selanjutnya jika nilai dimensi ekologi pada Tabel 33 tersebut di plotkan
1. Diberikan Gambar 11 yang menunjukkan posisi status keberlanjutan perikanan pelagis di Ternate pada dimensi ekologi. (Keterangan: PL= pole and line, PS= purse seine, RT= rawai tuna, PT= pancing tonda)

2. Analisis ordinais dalam dimensi ekologi dengan jumlah iterasi sebanyak 3 (tiga) kali ini, menghasilkan nilai kuadrat korelasi (R^2) dan nilai stress (S). Nilai stress mencerminkan ketepatan (goodness of fit) dalam multi-dimensional scaling (MDS) yang menunjukkan ukuran seberapa tepat konfigurasi dari suatu titik dapat mencerminkan data aslinya. Nilai stress yang rendah menunjukkan goodness of fit berkategori sempurna (perfect), sementara nilai stress yang tinggi menunjukkan kondisi sebaliknya. Dengan demikian, analisis dimensi ekologi

Gambar 11. Posisi status keberlanjutan perikanan pelagis di Ternate pada dimensi ekologi. (Keterangan: PL= pole and line, PS= purse seine, RT= rawai tuna, PT= pancing tonda)

Tabel 33: Nilai indeks dan status keberlanjutan setiap perikanan pelagis pada dimensi ekologi di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Kegiatan Perikanan Pelagis</th>
<th>Indeks Keberlanjutan</th>
<th>Status Keberlanjutan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pole and line</td>
<td>60,66</td>
<td>Cukup</td>
</tr>
<tr>
<td>2.</td>
<td>Purse seine</td>
<td>55,38</td>
<td>Cukup</td>
</tr>
<tr>
<td>3.</td>
<td>Rawai tuna</td>
<td>49,18</td>
<td>Kurang</td>
</tr>
<tr>
<td>4.</td>
<td>Pancing tonda</td>
<td>67,22</td>
<td>Cukup</td>
</tr>
<tr>
<td></td>
<td>Rata-rata indeks</td>
<td>58,11</td>
<td>Cukup</td>
</tr>
</tbody>
</table>
dalam penelitian ini menunjukkan kondisi goodness of fit kategori cukup (fair), mengingat nilai stress yang diperoleh adalah sebesar 14,46% (< 25 %). Beberapa nilai statistik yang diperoleh dari MDS dalam RAPFISH pada dimensi ekologi dapat dilihat pada Tabel 34.

Tabel 34 Nilai statistik yang diperoleh dari hasil analisis RAPFISH pada dimensi ekologi.

<table>
<thead>
<tr>
<th>Atribut Statistik</th>
<th>Nilai Statistik</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress</td>
<td>0,1446</td>
<td>14,46</td>
</tr>
<tr>
<td>R²</td>
<td>0,9279</td>
<td>92,79</td>
</tr>
<tr>
<td>Jumlah iterasi</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Berdasarkan Tabel 34, nilai koefisien determinasi (nilai kepercayaan) atau untuk dimensi ekologi adalah lebih besar 0,90. Hasil estimasi nilai proporsi gam data masukan yang dapat dijelaskan oleh teknik analisis ini, terindikasi memadai. Sementara analisis yang ditujukan untuk melihat tingkat kestabilan hasil analisis ordinasi, dilakukan dengan simulasi Monte Carlo. Simulasi ini pada kekatnya ditujukan untuk melihat tingkat gangguan (pertubation) terhadap hasil ordinasi sehingga dapat diketahui seberapa jauh hasil analisis dapat dipercaya (Spence and Young 1978 yang dikutip dalam Purnomo et al., 2002), dan dilakukan dengan iterasi sebanyak 30 kali. Hasil simulasi Monte Carlo untuk dimensi ekologi dapat dilihat pada Gambar 12.

Analisis sensitifitas pada dimensi ekologi dengan metode analisis leverage pada RAPFISH memperlihatkan bahwa atribut migratory range (jarak migrasi), range collapse (tingkat kolaps) dan catch pra-matuary (tangkapan belum dewasa) merupakan atribut yang sangat berpengaruh terhadap keberlanjutan sirkulan pelagis di Ternate. Hal ini dapat dilihat dari nilai root mean square change yang ditunjukkan oleh Gambar 13, dimana ketiga atribut tersebut nampak lebih tinggi dibandingkan dengan atribut-atribut lainnya.
12 Kestabilan nilai ordinasi hasil RAPFISH dengan Monte Carlo pada dimensi ekologi. (Ket.: biru = pole and line, merah muda = purse seine, kuning = rawai tuna, biru muda = pancing tonda)

Gambar 12 Kestabilan nilai ordinasi hasil RAPFISH dengan Monte Carlo pada dimensi ekologi.

Gambar 13 Hasil analisis Leverage dari atribut pada dimensi ekologi.
5.4 Pembahasan

Sebagaimana telah dikeluarkan sebelumnya, bahwa didalam melakukan penskoran terhadap atribut status sumberdaya perikanan pelagis di lokasi penelitian ini dipergunakan pendekatan model bio-ekonomi dari Metode CYP (Clark, Yoshimoto, dan Pooley 1992). Pendekatan ini dapat menduga laju eksploitasi sumberdaya perikanan dalam satuan waktu tertentu dan menghasilkan curva tangkapan upaya lestari. Dengan mengetahui koefisien-koefisien dalam metode ini, maka kondisi optimal pemanfaatan pada setiap kondisi/rezim pengelolaan dapat diketahui juga, sehingga pada pendekatan ini mampu memberikan penjelasan tentang manfaat ekonomi (rente ekonomi), yang merupakan selisih penerimaan dari pemanfaatan sumberdaya ikan dengan biaya yang dikeluarkan untuk kegiatan tersebut.

Perhitungan parameter biologi, teknis maupun ekonomi terhadap data yang ada menghasilkan nilai-nilai yang diperlukan untuk analisa selanjutnya. Dari nilai-nilai yang diperoleh tersebut dapat diduga tingkat pertumbuhan intristik \(r \) sebesar 2,977321009. Besaran nilai tingkat pertumbuhan intrinsik ini mencerminkan kemampuan ikan untuk tumbuh secara alami setiap tahunnya di perairan tersebut sebesar 297,73%. Koefisien kemampuan tangkap \(q \) sebesar 0,00014364, sehingga tingkat upaya optimal dalam standar baku alat tangkap Pole and line dapat diketahui yaitu sebesar 11.001,03 trip. Adapun daya dukung lingkungan/perairan (K) adalah 22.002 ton. Nilai daya dukung lingkungan perairan ini menunjukkan bahwa, perairan Laut Maluku mempunyai kemampuan daya dukung kelompok ikan pelagis sebesar 22.002 ton per tahun. Parameter ekonomi yang digunakan dalam analisis bioekonomi sumberdaya perikanan ini adalah rata-rata harga ikan per ton dan rata-rata biaya per trip penangkapan.

Secara aktual, perkembangan produksi dan effort mengalami peningkatan tinggi dengan pertambahan waktu. Peningkatan ini lebih disebabkan adanya program pemerintah daerah dalam bidang sarana dan prasarana yaitu dengan memberi bantuan kepada kelompok-kelompok nelayan di sekitar Kota Ternate dalam hal pengadaan kapal dan alat tangkap baru, bukan disebabkan dengan tingkat sumberdaya nelayan (skill) dalam penangkapan. Hal ini

Sementara produksi maksimum pada tingkat MEY tercapai sebelum tingkat produksi maksimum lestari (MSY). Dengan kata lain, jumlah upaya optimalnya juga berada dibawah jumlah upaya optimal yang diperlukan untuk menghasilkan produksi sebesar maksimum lestari. Ini artinya, setiap upaya yang berada pada tingkat MSY adalah lebih efisien dibandingkan dengan upaya yang ada pada tingkat MEY, sehingga rente ekonomi pada rezim MSY di Laut Maluku lebih besar dibandingkan dengan rente ekonomi pada rezim MEY.

Kondisi berbeda terjadi pada rezim pengelolaan yang bersifat akses terbuka (open access), dimana pertambahan upaya tidak akan berhenti kecuali dicapai titik yang dikenal sebagai keseimbangan akses terbuka (open access equilibrium). Pada titik ini, jumlah penerimaan dari eksploitasi sumberdaya ikan akan sama besarnya dibandingkan dengan jumlah biaya yang dikeluarkan untuk kegiatan eksploitasi sumberdaya ikan (total revenue = total cost). Dengan kata

Perbandingan input aktual dibandingkan dengan input optimal pada rezim MEY adalah 158,11% dan output adalah 69,73%, sedangkan pada rezim MSY adalah 149,12% dan output adalah 69,47%. Sementara perbandingan input aktual terhadap input *open access* adalah 79,40% dan output adalah 303,10%. Nilai persentasi diatas 100% menunjukkan bahwa nilai aktual lebih besar dibandingkan dengan nilai optimal dan sebaliknya. Keadaan menunjukkan bahwa rata-rata output/produksi pada kondisi aktual lebih rendah dari kondisi pengelolaan MEY,dan MSY, serta lebih tinggi dari kondisi *open access*. Hal ini menunjukkan bahwa belum terjadi kelebihan tangkapan (over harvested). Namun pada sisi *input/effort*, perbandingan rata-rata pada kondisi aktual dan rata-rata pada kondisi MEY dan MSY menunjukkan bahwa *effort* rata-rata pada kondisi aktual berada pada posisi di atas kondisi MEY dan kondisi MSY (>100%). Rata-rata input/effort aktual sudah melebihi dari kondisi input/effort optimal MEY menandakan bahwa nelayan mengalami *economic overfishing* sebesar 58,81% dan rata-rata input/effort aktual sudah melebihi dari kondisi input/effort optimal MSY menandakan bahwa
telah mengalami *biological overfishing* sebesar 49,12%. Oleh karena itu dapat dikatakan bahwa di perairan Ternate (Laut Maluku) telah terjadi *economic overfishing* dan *biological overfishing* dari sisi input atau *effort*.

Nilai indeks keberlanjutan dari keempat jenis perikanan ini (yang diplotkan sebagaimana terlihat pada Gambar 11, dihasilkan dari analisis ordinasi dengan iterasi atau pengulangan perhitungan sebanyak 3 (tiga) kali. Selanjutnya dilihat tingkat kestabilan hasil analisis *ordinansi* ini, maka telah dilakukan simulasi *Monte Carlo* dengan iterasi 30 kali. Kestabilan nilai ordinasi dari
RAPFISH dengan simulasi Monte Carlo ini menunjukan bahwa kegiatan perikanan pelagis di Ternate pada setiap jenis perikanan secara ekologi sedikit mengalami gangguan (perturbation) yang ditunjukkan oleh pancaran plot yang menyebar (Gambar 12).

Namun, jika dibandingkan dengan Gambar 11, penyebaran plot-plot tersebut berada pada jarak yang tidak jauh dan saling berimpit dengan posisi dinasi indeks keberlanjutan atau dapat dikatakan berada pada posisi yang relatif. Status perikanan pole and line terordinasi sekitar 65, sedangkan untuk purse seine, rawai tuna, dan pancing tonda, masing-masing berada pada nilai 59, 54, dan sekitar nilai 72. Hal ini menunjukan bahwa dalam kesalahan dalam pembuatan skor pada setiap atribut dan kesalahan prosedur metode analisis sangat kecil dimana hasil analisis Monte Carlo ini mendukung akurasi penentuan dinasi status keberlanjutan yang ditelah.

Kekuratan penentuan ordinasi ini diperkuat oleh hasil iterasi yang menghasilkan nilai kuadrat korelasi (R^2) lebih besar dari 90% (Tabel 34). Secara statistics, nilai R^2 ini sudah termasuk tinggi yang mana berarti tingkat kepercayaan (efisien determinasi) terhadap analisis multi dimensional dapat dipercaya dan pertanggungjawabkan. Selanjutnya hasil pengukuran untuk melihat seberapa tepat konfigurasi dari suatu titik dapat mencerminkan data aslinya, nilai stress (S) menunjukan hasil yang rendah yaitu lebih kecil dari 20%. Berdasarkan kriteria yang terdapat Tabel 8, menunjukan bahwa analisis keberlanjutan dimensi ekologi dalam penelitian ini, berada pada kondisi goodness of fit dengan kualifikasi fair atau cukup. Dalam model RAPFISH, nilai stress yang diinginkan adalah lebih kecil 25 persen (Fauzi dan Anna 2005).

Penentuan ordinasi status keberlanjutan diperoleh berdasarkan penilaian atas atribut-atribut yang keakuratannya telah diperkuat dengan hasil simulasi Monte Carlo ini, menghasilkan sensifitas dari setiap atribut-atributnya. Gambar juga menunjukan kontribusi setiap atribut pada status keberlanjutan dimensi ekologi. Kesembilan atribut tersebut memiliki nilai yang bervariasi antara 1,57% dan 6,39% kontribusinya pada ordinasi status keberlanjutan dimensi ekologi. Saran nilai pengungkitan atribut ini berada antara 0,27 sampai 7,18% dimana
menurut Kavanagh dan Pitcher (2004), atribut yang mempengaruhi ordinasi lebih dari 8% tidak dapat lagi menjadi indikator yang menunjukkan situasi multivariate yang sesungguhnya. Ketiga atribut sensitif hasil keluaran dari analisis sensitifitas atau analisis leverage (pengungkitan) ini yaitu atribut migratory range (jarak migrasi), range collapse (tingkatan kolaps) dan catch pra-maturity (tangkapan belum dewasa), merupakan atribut yang sangat peka terhadap keberlanjutan perikanan pelagis di Ternate. Jika terjadi perubahan yang sedikit saja maka dapat berakibat terjadi perubahan indeks keberlanjutannya.

Valaupun jika diperhadapkan dengan hasil ordinasi status keberlanjutan dimensi ekologi masih tergolong pada cukup berkelanjutan, namun dalam pengelolaan dan pengelolaannya diperlukan suatu kebijakan ekologi yang menganalisis pada perbaikan ketiga atribut sensitif di atas. Berkenaan dengan hal itu, perbaikan ditujukan pada gejala mulai berkurangnya lokasi penangkapan ikan di lokasi penelitian (tingkat kolaps), semakin luas atau jauh ikan sasaran yang ditangkap oleh nelayan Ternate (jarak migrasi), dan banyaknya hasil tangkapan ikan sebelum matang telur (tingkatan belum dewasa). Semakin besar tingkat kolaps menunjukkan bahwa semakin tinggi adanya gejala penurunan jumlah ikan dalam skala wilayah penangkapan ikan yang ada sehingga mengindikasikan bahwa ekosistem yang ada semakin terancam.

Sementara, jarak migrasi menunjukkan bahwa semakin luas ruaya dari ikan yang ditangkap, maka semakin tidak efektif dalam usaha pengelolaannya. Begitu juga apabila tingkat kemampuan pulihnya sumberdaya ikan secara alami semakin terjalin atau sumberdaya ikan yang diekstrapotisi memiliki kesempatan untuk matang atau bereproduksi minimal satu kali sebelum tertangkap, maka secara langsung risiko/ancaman terhadap keberlanjutan usaha perikanan di wilayah unit analisis akan semakin kecil.

5.5 Kesimpulan

(1) Hasil perhitungan status sumberdaya perikanan pelagis menunjukkan bahwa besarnya MSY di perairan Ternate (Laut Maluku) adalah 16.376,79 ton per tahun, dengan upaya/effort optimum 10.363,66 trip dan rente ekonomi yang dihasilkan sebesar Rp 100.646.618.928,00. Sementara perhitungan dengan pendekatan MEY diperoleh pada tingkat produksi sebesar 16.315,81 ton per
tahun, yang dihasilkan melalui upaya upaya/effort optimal sebanyak 9.731,24 trip standard, dengan rente ekonomi maksimum mencapai Rp 101.073.499.942,00.-. Adapun kondisi keseimbangan akses terbuka (open access equilibrium) tercapai pada tingkat produksi sebesar 3.753,48 ton per tahun, dengan jumlah upaya sebanyak 19.462,49 trip. Keadaan ini jika dibandingkan dengan kondisi produksi dan effort aktual yaitu sebesar 11.376,97 ton dan 15.454 trip, maka pada sisi output masih berada di bawah kondisi MSY dan MEY, namun pada sisi input telah mengalami economic overfishing sebesar 58,81% dan biological overfishing sebesar 49,12%.

Perikanan pancing tonda yang dioperasikan di perairan Ternate mempunyai nilai indeks keberlanjutan dimensi ekologi paling tinggi dibandingkan perikanan pole and line, purse seine, dan rawai tuna, sehingga pengelolaan perikanan pancing tonda ini harus tetap dipertahankan. Sementara, perikanan rawai tuna yang memiliki nilai terendah yang mengindikasikan bahwa perikanan ini perlu mendapat perhatian yang lebih dalam pengelolaannya dan pengembangannya.

Secara keseluruhan, status keberlanjutan dimensi ekologi terhadap keempat jenis perikanan pelagis yang dikaji mempunyai nilai indeks keberlanjutan antara 51–75 (cukup berkelanjutan). Pengembangan yang berpeluang dilakukan melalui suatu kebijakan yang diarahkan untuk perbaikan kualitas atribut-atribut keberlanjutan perikanan pada dimensi ekologi terutama atribut migratory range (jarak migrasi), range collapse (tingkatan kolaps) dan catch pra-maturity (tangkapan belum dewasa).
1. Dilihat Perangkap Lokasi Reboisasi, luas 1,2 ha, berada di dalam daerah opakun tonpa (IPB).
2. Dilihat Perangkap Lokasi Reboisasi, luas 1,2 ha, berada di dalam daerah opakun tonpa (IPB).
3. Dilihat Perangkap Lokasi Reboisasi, luas 1,2 ha, berada di dalam daerah opakun tonpa (IPB).
4. Dilihat Perangkap Lokasi Reboisasi, luas 1,2 ha, berada di dalam daerah opakun tonpa (IPB).
5. Dilihat Perangkap Lokasi Reboisasi, luas 1,2 ha, berada di dalam daerah opakun tonpa (IPB).
6 KEBERLANJUTAN PERIKANAN PELAGIS DI TERNATE PADA DIMENSI EKONOMI

6.1 Pendahuluan

Pembangunan perikanan yang merupakan bagian dari pembangunan ekonomi nasional pada hakekatnya ditujukan untuk meningkatkan taraf hidup dan sejahtera masyarakat khususnya nelayan, dan sekaligus untuk menjaga kelestarian sumberdaya ikan serta lingkungannya. Saat ini tujuan tersebut perluas cakupannya yaitu untuk meningkatkan kontribusi terhadap pembangunan perekonomian daerah.

Potensi sumberdaya perikanan tangkap termasuk perikanan pelagis di lautan Ternate yang mencapai 24.311,41 ton/tahun merupakan aset potensial yang memberikan kontribusi untuk mencapai tujuan pembangunan daerah. Untuk menggali potensi perikanan tangkap yang cukup besar sekaligus dalam rangka menumbuh-kembang usaha di bidang perikanan tangkap di Ternate, maka diperlukan suatu kondisi yang kondusif untuk menunjang pengembangan ekonomi daerah khususnya usaha perikanan tangkap dan penanaman investasi di bidang perikanan tangkap dengan memperhatikan aspek-aspek keberlanjutannya.

Sehubungan dengan itu, dalam melihat keberlanjutan perikanan pelagis, kajian ekonomi sangat penting mengingat berbagai interaksi dalam kegiatan perikanan pelagis seperti interaksi teknologi dan sosial selalu terkait dengan alasan atau tujuan ekonomi. Pembangunan berkelanjutan perikanan dari aspek ekonomi menurut Munasinghe (1994), bertujuan untuk memaksimalkan sejahtera manusia melalui pertumbuhan ekonomi dan efisiensi penggunaan sumberdaya. Tujuan sebutan ini dapat dicapai melalui upaya perencanaan pembangunan secara comprehensif dengan tetap berpijak pada tujuan-tujuan jangka panjang. Selain itu, ada pengurangan eksploitasi sumberdaya secara berlebihan dan menutupi dampak yang mungkin timbul dari eksploitasi sumberdaya dengan memberikan tawar kepada sumberdaya dan biaya tambahan. Dengan demikian, sasaran
ekonomi dalam pembangunan berkelanjutan adalah peningkatan ketersediaan dan kecukupan kebutuhan ekonomi, keberlanjutan aset dalam arti efisiensi pemanfaatan sumberdaya yang ramah lingkungan, berkeadilan bagi masyarakat pada masa kini dan yang akan datang. Sementara keberlanjutan sosio-ekonomi difokuskan pada tingkat makro, seperti mempertahankan dalam jangka panjang kesejahteraan sosio-ekonomi pelaku perikanan termasuk distribusi keuntungan secara adil (Charles 2001).

Sebagaimana diuraikan dalam Bab 5 (Keberlanjutan perikanan pelagis di Ternate pada dimensi ekologi), dalam mengukur keberlanjutan perikanan pelagis pada dimensi ekonomi menurut analisis RAPFISH, ditentukan oleh beberapa indikator yang disebut sebagai atribut. Penentuan atribut pada dimensi ekonomi ini yaitu dengan menggunakan indikator yang digunakan oleh RAPFISH yang disesuaikan dengan kondisi aktual kegiatan perikanan pelagis di lokasi penelitian.

Posisi relatif status keberlanjutan perikanan pelagis dimensi ekonomi di Ternate terungkap sebagai suatu permasalahan dalam mewujudkan suatu kebijakan perencanaan dan pengembangan pemanfaatan SDI secara berkelanjutan. Dalam kajian keberlanjutan perikanan pelagis pada dimensi ekonomi di Ternate ini dilakukan dengan mengevaluasi keempat jenis kegiatan perikanan pelagis yang terdapat di Ternate. Keempat kegiatan perikanan pelagis tersebut adalah kegiatan penangkapan ikan pelagis yang menggunakan alat tangkap yaitu pole and line, soma pajeko (purse seine), rawai tuna, dan pancing tonda. Terpilihnya keempat kegiatan perikanan pelagis ini disebabkan bahwa alat-alat tangkap yang digunakan dalam kegiatan perikanan ini merupakan alat tangkap yang dapat mewakili keseluruhan kegiatan perikanan tangkap yang ada di Ternate baik dalam hal...
jumlah alat tangkap, volume produksi, dan nilai produksi dari jenis ikan tangkapan (Dinas Perikanan dan Kelautan Provinsi Maluku Utara 2009).

Uraian atribut-atribut keberlanjutan pada dimensi ekonomi sebagaimana disebutkan sebelumnya dan penentuan status keberlanjutan akan dikenalkan dalam bab ini. Berkenaan dengan atribut keuntungan, dan gaji/upah rata-rata, untuk penentuan skoranya terlebih dahulu dilakukan pendekatan lewat analisis financial performance analysis.

Tujuan penelitian ini adalah untuk mengukur status keberlanjutan perikanan pelagis dalam perspektif keberlanjutan menurut aspek ekonomi di Ternate. Sedangkan tujuan spesifik dari penelitian ini adalah:

1. Menghitung nilai NPV (Net Present Value) perikanan pelagis pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate.
2. Mengetahui net benefit yang diterima pemilik dan nelayan pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate.
3. Mengetahui tingkat pengembalian investasi dan lamanya pengembalian investasi dari benefit (pendapatan) yang diterima pemilik usaha perikanan pelagis di Ternate.
4. Menentukan status keberlanjutan perikanan pelagis di Ternate berdasarkan dimensi ekonomi.

Adapun manfaat yang diharapkan dari hasil penelitian ini adalah untuk mendapatkan gambaran dan informasi yang berkaitan dengan status perikanan pelagis pada dimensi ekonomi. Selain itu, hasil penelitian ini dapat dijadikan salah satu dasar dalam analisis dan pembahasan selanjutnya (Bab 11), khususnya dalam hal pengambilan keputusan kebijakan daerah untuk menjaga keberlanjutan perikanan tangkap khususnya perikanan pelagis dari aspek ekonomi.

Metode

Metode yang digunakan dalam penelitian ini sama seperti yang telah dibahas pada Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi), yaitu metode deskriptif melalui observasi langsung di lapangan. Penentuan indeks keberlanjutan dimensi ini dilakukan dengan pendekatan RAPFISH, yaitu melalui timatika seperti yang telah diuraikan pada Bab 3 (Metode umum penelitian).
Pengumpulan data untuk melakukan penskoran terhadap atribut-atribut ekonomi dalam pendekatan RAPFISH diperoleh melalui pengamatan langsung di lokasi penelitian dan wawancara lewat alat bantu kuisier. Pemilihan nelayan sebagai contoh (responden) dilakukan secara aksidensial (accidental sampling) berdasarkan pengelompokkan alat tangkap yang dipergunakan untuk menangkap ikan, yaitu huate (pole and line), soma pajeko (purse seine), rawai tuna, dan pancing tonda. Jumlah responden untuk wawancara sama seperti yang telah diuraikan pada Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi).

Daftar pertanyaan yang diajukan mengarah pada seluruh data dan informasi mengenai kegiatan usaha perikanan berdasarkan alat tangkap masing-masing. Hal ini dimaksudkan untuk dipergunakan dalam mengisi kolom skor bagi atribut RAPFISH yang telah dipersiapkan. Kolom skor atribut yang tidak dapat diisi oleh informasi yang diperoleh melalui observasi langsung dan wawancara, maka dilakukan pencaharian informasi yang berkaitan dengan atribut tersebut melalui berbagai saluran informasi seperti penelusuran pustaka dan laporan dari lembaga-lembaga terkait antara lain seperti Dinas Perikanan dan Kelautan Provinsi Maluku Utara dan Dinas Kelautan dan Perikanan Kota Ternate.

Pengisian skor untuk atribut keuntungan, dan gaji/upah rata-rata dilakukan berdasarkan hasil analisis kinerja usaha. Kegiatan tersebut meliputi empat usaha perikanan yaitu usaha perikanan pole and line, purse seine, rawai tuna, dan pancing tonda. Dalam menganalisis kinerja usaha atau financial performance analysis dilakukan dengan mencari nilai dari NPV, RTO, RTL, ROI, dan PP.

NPV (Net Present Value) merupakan selisih antara nilai sekarang dari penerimaan dengan nilai sekarang dari pengeluaran pada tingkat bunga tertentu, RTO (Return to Owner) yaitu untuk mengetahui net benefit yang diterima oleh pemilik, RTL (Return to Labour) yaitu untuk mengetahui penerimaan yang diterima oleh masing-masing ABK pada usaha perikanan, ROI (Return of Investment) yaitu untuk mengetahui tingkat pengembalian investasi dari benefit (pendapatan) yang diterima pemilik, dan PP (Payback Period) yaitu untuk...
mengetahui lamanya pengembalian investasi dari *benefit* (pendapatan) yang diterima pemilik.

Hasil analisis yang dikelompokkan menurut alat tangkap ini terdiri dari sejumlah biaya dan penerimaan. Biaya-biaya tersebut meliputi biaya investasi (perahu, alat tangkap dan mesin), biaya tetap (penukaran investasi, perbaikan perahu, perbaikan mesin, dan perbaikan alat tangkap), biaya variabel (bensin, solar dan perbekalan lainnya). Nilai penerimaan yang diperoleh dari analisis ini, merupakan hasil perkalian dari seluruh hasil tangkapan dengan harga. Lanjutnya, dengan menghitung total hasil tangkapan dikurangi total biaya, dapat dihitung keuntungan per bulan dan per tahun. Dari perkiraan-perkiraan ini dapat diperoleh NPV dari perikanan tangkap setiap jenis alat tangkap. Dengan demikian, secara keseluruhan dapat dilihat tingkat manfaat atau keuntungan dari giatan usaha perikanan tangkap yang dianalisis.

Pada dimensi ini, modifikasi dilakukan yang disesuaikan dengan kondisi dengan tujuan agar hasil kajian ini dapat lebih bermanfaat dan aplikasikan pada situasi yang lebih bervariasi. Modifikasi tersebut adalah atribut pemasaran, dimana pada metode umum teknik RAPFISH hanya mengenal pasar lokal, nasional/regional (negara tetangga), dan pasar internasional (negeri jauh) dengan skor 0, 1, 2. Fakta dilapangan menunjukkan adanya pasar lokal sekitar Kota Ternate, pasar nasional antar provinsi, dan dipasarkan secara internasional (diekspor). Selain itu, pemasaran ikan yang dilakukan di wilayah Ternate, tidak seutuhnya semua ikan hasil tangkapan dipasarkan tepat pada satu...
kriteria dari atribut sifat pemasaran, dimana ada sebagian yang dipasarkan secara lokal, nasional, maupun diekspor. Untuk itu, dalam memudahkan penskoran dilakukan dengan melihat jumlah ikan dominan yang dipasarkan menurut kriteria modifikasi di atas.

Tabel 35 Atribut keberlanjutan perikanan dimensi ekonomi dan kriteria pemberian skor dalam analisis RAPFISH untuk perikanan pelagis di Ternate

<table>
<thead>
<tr>
<th>No.</th>
<th>Atribut</th>
<th>Skor</th>
<th>Kriteria pemberian skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Keuntungan</td>
<td>0; 1; 2; 3</td>
<td>Sangat menguntungkan, (0); Menguntungkan, (1); Break Even Point, (2); Kurang menguntungkan, (3)</td>
</tr>
<tr>
<td>2</td>
<td>Kontribusi pada PDRB</td>
<td>0; 1; 2</td>
<td>Rendah (0); medium (1); tinggi (2)</td>
</tr>
<tr>
<td>3</td>
<td>Gaji/upah rata-rata</td>
<td>0; 1; 2; 3</td>
<td>Nelayan terhadap lain pekerja: << (0); < (1); = (2); > (3); >> (4)</td>
</tr>
<tr>
<td>4</td>
<td>Pembatasan masuk</td>
<td>0; 1; 2; 3</td>
<td>open occes (0); hampir tidak (1); sangat kecil (2); beberapa (3); banyak (4)</td>
</tr>
<tr>
<td>5</td>
<td>Sifat pemasaran</td>
<td>0; 1; 2</td>
<td>Kuota/"share"? tidak (0); beberapa (1); campuran atau lainnya (2)</td>
</tr>
<tr>
<td>6</td>
<td>Pendapatan lain</td>
<td>0; 1; 2; 3</td>
<td>Penangkapan dilakukan: sambilan (0); partime (1); musiman (2); full time (3)</td>
</tr>
<tr>
<td>7</td>
<td>Ketenagakerjaan</td>
<td>0; 1; 2</td>
<td>Aktivitas ini terhadap lain perikanan: <10% (0); 10-20% (1); >20 (2)</td>
</tr>
<tr>
<td>8</td>
<td>Kepemilikan</td>
<td>0; 1; 2</td>
<td>Profit perikanan terutama untuk: lokal (0); campuran (1); asing (2)</td>
</tr>
<tr>
<td>9</td>
<td>Pasar utama</td>
<td>0; 1; 2</td>
<td>Lokal (0); nasional (1); internasional (2)</td>
</tr>
<tr>
<td>10</td>
<td>Subsidi</td>
<td>0; 1; 2; 3</td>
<td>Tidak (0); beberapa (1); banyak (2); sangat tergantung (3); hampir seluruh (4)</td>
</tr>
</tbody>
</table>

Sumber: RAPFISH Group UBC (2005) - dimodifikasi

Dalam memudahkan penentuan skor dari masing-masing atribut di atas, Tabel 36 memberikan pengertian atau definisi dari masing-masing atribut ekonomi.

Tabel 36 Definisi sepuluh atribut ekonomi dalam analisis RAPFISH untuk perikanan pelagis di Ternate

<table>
<thead>
<tr>
<th>No.</th>
<th>Atribut</th>
<th>Definisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Keuntungan</td>
<td>Besar kecilnya keuntungan yang diperoleh pemilik usaha berdasarkan nilai NPV atau B/C ratio.</td>
</tr>
<tr>
<td>2</td>
<td>Kontribusi pada PDRB</td>
<td>Besarnya kontribusi kegiatan perikanan terhadap PDRB selama periode waktu tertentu</td>
</tr>
<tr>
<td>3</td>
<td>Gaji/upah rata-rata</td>
<td>Penghasilan nelayan/ABK perbulan dari kegiatan penangkapan ikan</td>
</tr>
<tr>
<td>4</td>
<td>Pembatasan masuk</td>
<td>Ada tidaknya pembatasan jumlah pelaku usaha perikanan tangkap</td>
</tr>
</tbody>
</table>
Sementara dalam kaitannya dengan kondisi keberlanjutan, penggunaan atribut-atribut dalam dimensi ekonomi ini mengandung penjelasan tertentu dalam mengevaluasi status keberlanjutan. Atribut keuntungan menunjukkan jika tingkat keuntungan hasil tangkapan per trip dalam volume dari semua jenis tangkapan semakin tinggi, maka tingkat eksploitasi per trip akan cenderung menurun (per tahun). Hal ini berakibat pada semakin kecilnya risiko/ancaman terhadap keberlanjutan usaha perikanan di wilayah yang analisis (skor baik = 0; buruk = 3). Atribut kontribusi pada PDRB menggambarkan bahwa jika dalam wilayah yang analisis, sektor usaha perikanan relatif memberikan kontribusi terhadap terekonomian yang lebih besar (tampak dari kontribusi terhadap PDRB), maka perhatian (dari para stakeholder) terhadap keberlanjutan dari usaha perikanan tersebut akan semakin besar (skor baik = 2; buruk = 0).

Atribut gaji/upah rata-rata mengartikan jika pendapatan rata-rata masyarakat perikanan dibandingkan rata-rata penduduk di wilayah/unit analisis secara keseluruhan semakin tinggi maka kecenderungan masyarakat tersebut akan mendukung keberlanjutan usaha perikanan (skor baik = 4; buruk = 0).
Sementara atribut pembatasan menunjukkan bahwa pembatasan akses/peluang yang dikombinasikan dengan pengelolaan yang baik dapat mengurangi tekanan terhadap stok ikan jenis-jenis tertentu dengan mengurangi jumlah nelayan yang menangkap jenis-jenis ikan tersebut (skor baik = 4; buruk = 0).

Atribut sifat pemasaran menggambarkan semakin mudah hak pemilikan pengusahaan perikanan dipindah tangankan (dijual), maka akan menciptakan suatu insentif keuangan untuk memelihara kelestarian dan meningkatkan kualitas sumberdaya perikanan (penjualan semakin tinggi jika kualitas perikanan tinggi/menghasilkan banyak keuntungan). Dengan demikian skor baik adalah 2, dan skor buruk adalah 0. Atribut pendapatan lain menunjukan semakin sedikit masyarakat perikanan yang dialisis melakukan kegiatan di sektor perikanan sebagai pekerjaan utama, maka risiko/ancaman terhadap keberlanjutan usaha perikanan yaitu overfishing semakin rendah (skor baik = 0; buruk = 3).

Atribut ketenagakerjaan menunjukan semakin kecil prosentase jumlah nelayan dengan alat tangkap yang sama maka tingkat persaingan didalam upaya mengeksploitasi sumberdaya perikanan semakin rendah. Disamping itu, nelayan semakin mudah untuk diatur dan akhirnya risiko/ancaman terhadap keberlanjutan usaha perikanan di wilayah/unit analisis menjadi semakin kecil (skor baik = 0; buruk = 2). Sementara, atribut kepemilikan menunjukan jika keuntungan lebih banyak dinikmati oleh komunitas lokal, cenderung mereka akan lebih mendukung keberlanjutan usaha perikanan dan memelihara sumber pendapatan mereka, sehingga ancaman terhadap kelestarian sumberdaya perikanan semakin kecil kecil (skor baik = 0; buruk = 2). Atribut pasar utama menunjukan bahwa pasar atau pengguna lokal cenderung akan lebih peduli/bersahabat (concern/friendship) atas sumber daya perikanan di wilayah yang analisis jika pengguna lokal dapat lebih memanfaatkan keuntungan usaha perikanan yang ada (skor baik = 0; buruk = 2). Atribut subsidi menunjukan bahwa semakin kecil subsidi yang diberikan/diperoleh nelayan, maka secara tidak langsung menunjukkan kemampuan mereka untuk mendukung keberlanjutan usaha perikanan semakin
besar. Maksudnya, akan semakin kecil ancaman terhadap keberlanjutan usaha perikanan kecil (skor baik = 0; buruk = 4).

Penyusunan skor di atas dilakukan berdasarkan acuan-acuan yang telah dibuat baik melalui literature maupun judgment dari penulis dengan asumsi-asumsi dan dasar-dasar ilmiah. Skor yang diperoleh kemudian dimasukkan ke dalam program MS-Excel dengan template ekonomi yang telah dipersiapkan belumnya kemudian di-run sehingga diperoleh nilai multidimensional scaling dari RAPFISH yang lebih dikenal dengan indeks keberlanjutan. Penggolongan nilai indeks keberlanjutan perikanan pelagis pada metode RAPFISH untuk dimensi ekonomi ini adalah dengan menggunakan reference dari bad (buruk) sampai good (baik) dalam selang 0-100. Selang indeks keberlanjutan tersebut yaitu selang 0-25 dalam status buruk, selang 26-50 dalam status kurang, selang 51-75 dalam status cukup dan selang 76-100 dalam status baik.

Selanjutnya, interpretasi awal dari RAPFISH ini dikaji ulang berdasarkan catatan lapang atau data yang relevan lainnya, untuk mempertajam akurasi hasil running program RAPFISH (Purnomo et al. 2002). Untuk mengetahui atribut-atribut yang sensitif atau yang paling berpengaruh terhadap tingkatan baik buruknya kinerja pada dimensi ekonomi ini, yang ditunjukkan melalui hasil analisis leverage (Pitcher and Preikshot 2001).

6.3 Hasil

6.3.1 Hasil financial performance analysis

Berdasarkan survei, hasil analisis kinerja usaha (financial performance analysis) dikelompokkan menurut alat tangkap yang terdiri dari sejumlah biaya dan penerimaan. Sebagai suatu diagnosis, uraian yang mencakup biaya investasi, ikan, tetap, biaya tidak tetap (variable usaha), harga ikan, sistem bagi hasil, dan kinerja usaha dikemukakan secara berurutan menurut keempat alat tangkap rinkint ini.

Alat tangkap pole and line (huhate)

Investasi awal usaha penangkapan dengan alat tangkap pole and line ini membutuhkan biaya sebesar Rp. 343.350.000,00, yang terdiri dari pembelian
kapal penangkapan sebesar Rp. 225.000.000,00, mesin sebesar Rp. 75.000.000,00,
perlengkapan pancing sebesar Rp. 2.000.000,00, rumpon laut dalam sebesar Rp. 30.000.000,00, GPS sebesar Rp. 4.000.000,00, kompas sebesar Rp. 350.000,00,
Radio HT sebesar Rp. 6.000.000,00, dan drum BBM sebesar 1.000.000,00. Umur teknis kapal penangkapan, mesin, radio HT, dan drum BBM masing-masing 5 tahun, sedangkan umur teknis GPS dan kompas adalah masing masing 3 tahun, serta rumpon laut dalam adalah 1 tahun. Jenis dan nilai investasi serta umur teknis sarana perikanan tangkap dengan alat tangkap pole and line dapat dilihat pada Tabel 37 dan Lampiran 7.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis investasi</th>
<th>Rata-rata nilai investasi (Rp.)</th>
<th>Umur teknis (tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kapal penangkapan</td>
<td>225.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Mesin (15 GT)</td>
<td>75.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Perlengkapan pancing</td>
<td>2.000.000,00</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>Rumpon laut dalam</td>
<td>30.000.000,00</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>GPS</td>
<td>4.000.000,00</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>Kompas</td>
<td>350.000,00</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>Radio HT</td>
<td>6.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>8.</td>
<td>Drum BBM</td>
<td>1.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>343.350.000,00</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Diolah dari data primer/responden.

Bioa tetap terdiri dari biaya perawatan dan penyusutan. Biaya perawatan meliputi perawatan kapal penangkapan, perawatan mesin, perawatan perlengkapan pancing, dan perawatan rumpon laut dalam. Adapun biaya penyusutan meliputi kapal, penyusutan mesin, penyusutan perlengkapan pancing, penyusutan rumpon laut dalam, penyusutan GPS, penyusutan kompas, penyusutan radio HT, dan penyusutan drum BBM. Total biaya tetap yang dikeluarkan setiap tahun sebesar Rp. 112.160.000,00. Rata-rata biaya tetap usaha perikanan pelagis dengan alat tangkap pole and line dapat dilihat pada Tabel 38 dan Lampiran 7.

Sementara itu total rata-rata biaya tidak tetap yang dikeluarkan setiap tahun sebesar Rp. 320.400.000,00. Biaya tidak tetap terdiri dari minyak tanah sebesar Rp. 54.000.000,00, bensin sebesar Rp. 81.000.000,00, oli sebesar Rp. 32.400.000,00, umpan sebesar Rp. 90.000.000,00, perbekalan konsumsi (makan,
kopi dan rokok) sebesar Rp.350.000,00 per trip atau dalam setahun sebesar Rp. 63.000.000,00. Rata-rata biaya tidak tetap usaha perikanan dengan alat tangkap pole and line dapat dilihat pada Tabel 39 dan Lampiran 8.

Tabel 38 Jenis biaya tetap dan rata-rata biaya tetap usaha perikanan pole and line di Ternate

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis biaya tetap</th>
<th>Rata-rata biaya tetap (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perawatan dan penyusutan kapal penangkapan</td>
<td>85.500.000,00</td>
</tr>
<tr>
<td>2</td>
<td>Perawatan dan penyusutan mesin</td>
<td>8.700.000,00</td>
</tr>
<tr>
<td>3</td>
<td>Perawatan dan penyusutan perlengkapan pancing</td>
<td>1.000.000,00</td>
</tr>
<tr>
<td>4</td>
<td>Perawatan dan penyusutan rumpon laut dalam</td>
<td>15.500.000,00</td>
</tr>
<tr>
<td>5</td>
<td>Penyusutan GPS</td>
<td>500.000,00</td>
</tr>
<tr>
<td>6</td>
<td>Penyusutan kompas</td>
<td>60.000,00</td>
</tr>
<tr>
<td>7</td>
<td>Penyusutan radio HT</td>
<td>1.300.000,00</td>
</tr>
<tr>
<td>8</td>
<td>Penyusutan drum BBM</td>
<td>100.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>112.160.000,00</td>
</tr>
</tbody>
</table>

Sumber : data primer/responden (diolah).

Tabel 39 Rata-rata biaya tidak tetap usaha perikanan pole and line setiap tahun di Ternate

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis biaya tidak tetap</th>
<th>Rata-rata biaya tidak tetap (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minyak tanah</td>
<td>54.000.000,00</td>
</tr>
<tr>
<td>2</td>
<td>Bensin</td>
<td>81.000.000,00</td>
</tr>
<tr>
<td>3</td>
<td>Oli</td>
<td>32.400.000,00</td>
</tr>
<tr>
<td>4</td>
<td>Umpan</td>
<td>90.000.000,00</td>
</tr>
<tr>
<td>5</td>
<td>Perbekalan konsumsi</td>
<td>63.000.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>320.400.000,00</td>
</tr>
</tbody>
</table>

Keterangan : harga BBM dan biaya perbekalan adalah nilai pada saat penelitian.
Sumber : Diolah dari data primer/responden.

Jenis ikan yang tertangkap dengan menggunakan alat tangkap pole and line didominasi oleh cakalang, tongkol, dan tuna. Rata-rata hasil tangkapan ikan rata-rata harga setiap tahun untuk ikan cakalang sebanyak 98.550 kg. (Rp. 7.000,00), tongkol sebanyak 4.140 kg. (Rp. 6.000,00), dan tuna sebanyak 13.500 (Rp. 10.000,00). Rata-rata total pendapatan setiap tahun untuk armada yang beroperasi dengan alat tangkap pole and line di Ternate sebesar Rp. 9.690,000.00. Jenis ikan, rata-rata jumlah tangkapan, harga rata-rata dan nilai rata-rata setiap tahun disajikan dalam Tabel 40.
Sistem bagi hasil yang digunakan untuk *pole and line* dalam setiap *trip* adalah 5 bagian besar sebelum dikurangi biaya tidak tetap/operasional (Tabel 41).

Sistem bagi hasil ini terdiri dari Pemilik (perawatan kapal, mesin, alat tangkap, dan rumpon) sebesar 35%, ABK sebesar 22%, nakhoda sebesar 2%, juru mesin sebesar 1% dan biaya operasional sebesar 40%. Dalam satu armada *pole and line* mempunyai 13 orang ABK sehingga setiap ABK memperoleh 1,69%.

Tabel 40: Jenis ikan, rata-rata jumlah tangkapan, harga rata-rata dan nilai rata-rata setiap tahun untuk usaha perikanan *pole and line* di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis ikan tertangkap</th>
<th>Rata-rata jumlah tangkapan (kg)</th>
<th>Harga rata-rata (Rp.)</th>
<th>Nilai rata-rata (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cakalang</td>
<td>98.550,00</td>
<td>7.000,00</td>
<td>689.850,00</td>
</tr>
<tr>
<td>2.</td>
<td>Tongkol</td>
<td>4.140,00</td>
<td>6.000,00</td>
<td>24.840,00</td>
</tr>
<tr>
<td>3.</td>
<td>Ika</td>
<td>13.500,00</td>
<td>10.000,00</td>
<td>135.000.00</td>
</tr>
</tbody>
</table>

| Rata-rata total pendapatan per tahun | 849.690.000.00 |

Sumber: Diolah dari data primer/responden

Tabel 41: Sistem bagi hasil pada usaha perikanan *pole and line* di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Peruntukan</th>
<th>Bagi hasil yang diterima (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pemilik (Kapal, Mesin, Alat tangkap,</td>
<td>35,00</td>
</tr>
<tr>
<td></td>
<td>dan rumpon)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>ABK (13 orang)</td>
<td>22,00</td>
</tr>
<tr>
<td>3.</td>
<td>Nakhoda (1 orang)</td>
<td>1,80</td>
</tr>
<tr>
<td>4.</td>
<td>Juru Mesin (1 orang)</td>
<td>1,20</td>
</tr>
<tr>
<td>5.</td>
<td>Operasional</td>
<td>40,00</td>
</tr>
</tbody>
</table>

Sumber: Diolah dari data primer/responden

Pendapatan pemilik armada *pole and line* per bulan sebesar Rp. 14.370.000,00, atau dalam setahun memperoleh Rp. 172.440.000,00 sedangkan untuk pendapatan rata-rata per satu ABK armada *pole and line* per bulan sebesar Rp. 108.717,95 atau dalam setahun memperoleh Rp. 14.384.615,38. Secara lengkap kinerja usaha perikanan *pole and line* di Ternate disajikan dalam Tabel 42.
Tabel 42 Kinerja usaha perikanan *pole and line* di Ternate

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter kinerja usaha perikanan</th>
<th>Nilai (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>NPV</td>
<td>2.097.205.404,00</td>
</tr>
<tr>
<td>2.</td>
<td>Pendapatan rata-rata pemilik perbulan</td>
<td>14.398.333,33</td>
</tr>
<tr>
<td>3.</td>
<td>Pendapatan rata-rata pemilik pertahun</td>
<td>172,440,000,00</td>
</tr>
<tr>
<td>4.</td>
<td>Pendapatan rata-rata 1 ABK perbulan</td>
<td>1.198.717,95</td>
</tr>
<tr>
<td>5.</td>
<td>Pendapatan rata-rata 1 ABK pertahun</td>
<td>14.384.615,38</td>
</tr>
<tr>
<td>6.</td>
<td>ROI</td>
<td>0,50</td>
</tr>
<tr>
<td>7.</td>
<td>PP</td>
<td>1,99</td>
</tr>
</tbody>
</table>

Berdasarkan hasil perhitungan dan interest rate sebesar 12% diperoleh hasil NPV dari usaha perikanan *pole and line* sebesar Rp. 2.097.205.404,00. Angka ini menunjukkan bahwa hasil bersih yang diperoleh selama kurun waktu 10 tahun ke depan jika dinilai sekarang adalah sebesar Rp. 2.097.205.404,00, bagaimana dilihat pada Tabel 42 di atas dan Lampiran 7. Selanjutnya tingkat pengembalian investasi (*return of investment* atau ROI) untuk perikanan *pole and line* sebesar 0,50. Hal ini berarti *benefit* yang diterima pemilik selama 1 tahun besar 50% dari investasi. *Payback period* (PP) yang diperoleh sebesar 1,99 yang berarti waktu pengembalian investasi yang telah dilakukan akan kembali dalam waktu 2 tahun atau 24 bulan. Dengan kata lain, secara *financial performance* untuk kegiatan usaha perikanan dengan alat tangkap *pole and line* memberikan nilai yang positif (menguntungkan).

(2) Alat tangkap *purse seine* (soma pajeko)

Investasi awal usaha penangkapan dengan alat tangkap *purse seine* ini adalah sebesar Rp. 259,650,000,00 yang terdiri dari pembelian kapal penangkapan sebesar Rp. 30.000.000,00, perahu lampu sebesar Rp. 6.000.00,00, mesin sebesar 64.000.00,00, jaring sebesar Rp. 130.000.000,00, rumpon sebesar Rp. 60.000.00,00, keranjang ikan sebesar Rp. 1.000.000,00, kompas sebesar Rp. 10.000,00, Radio HT sebesar Rp. 1.500.00,00, jerigen sebesar 300.000,00, dan lampu petromaks sebesar Rp. 1.500.00,00. Umur teknis kapal penangkapan, perahu lampu, mesin, jaring, dan rumpon masing-masing 5 tahun, sedangkan umur teknis keranjang ikan, radio HT, jerigen, dan lampu pertomaks adalah masing-masing 6 tahun dan kompas 3 tahun. Jenis dan nilai investasi serta umur
Biaya tetap terdiri dari biaya perawatan dan penyusutan. Biaya perawatan meliputi perawatan kapal penangkapan, perawatan perahu lampu, perawatan mesin, perawatan jaring, perawatan rumpon, dan perawatan lampu petromaks. Adapun biaya penyusutan meliputi pengusutan kapal penangkapan, penyusutan perahu lampu, penyusutan mesin, penyusutan jaring, penyusutan rumpon, penyusutan keranjang ikan, penyusutan kompas, penyusutan radio HT, dan penyusutan jerigen. Total biaya tetap yang dikeluarkan setiap tahun sebesar Rp. 53.250.000,00. Rata-rata biaya tetap per tahun usaha perikanan pelagis dengan alat tangkap *purse seine* dapat dilihat pada Tabel 44 (Lampiran 9).

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis investasi</th>
<th>Rata-rata nilai investasi (Rp.)</th>
<th>Umur teknis (tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kapal penangkapan</td>
<td>30.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Perahu lampu</td>
<td>6.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Mesin (12 GT)</td>
<td>64.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Jaring</td>
<td>130.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>Rumpon</td>
<td>15.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td>Keranjang ikan</td>
<td>1.000.000,00</td>
<td>6</td>
</tr>
<tr>
<td>7.</td>
<td>Kompas</td>
<td>350.000,00</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>Radio HT</td>
<td>1.500.000,00</td>
<td>6</td>
</tr>
<tr>
<td>9.</td>
<td>Jerigen</td>
<td>300.000,00</td>
<td>6</td>
</tr>
<tr>
<td>10.</td>
<td>Lampu Petromaks</td>
<td>1.500.000,00</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>249.650.000,00</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Diolah dari data primer/responden
Tabel 44 Rata-rata biaya tetap per tahun usaha perikanan *purse seine* di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis biaya tetap</th>
<th>Rata-rata biaya tetap (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Perawatan dan penyusutan kapal penangkapan</td>
<td>6.650.000,00</td>
</tr>
<tr>
<td>2.</td>
<td>Perawatan dan penyusutan perahu lampu</td>
<td>3.200.000,00</td>
</tr>
<tr>
<td>3.</td>
<td>Perawatan dan penyusutan mesin</td>
<td>8.700.000,00</td>
</tr>
<tr>
<td>4.</td>
<td>Perawatan dan penyusutan jaring</td>
<td>25.200.000,00</td>
</tr>
<tr>
<td>5.</td>
<td>Penyusutan rumpon</td>
<td>7.500.000,00</td>
</tr>
<tr>
<td>6.</td>
<td>Penyusutan keranjang ikan</td>
<td>30.000,00</td>
</tr>
<tr>
<td>7.</td>
<td>Perawatan dan penyusutan kompas</td>
<td>60.000,00</td>
</tr>
<tr>
<td>8.</td>
<td>Penyusutan radio HT</td>
<td>1.300.000,00</td>
</tr>
<tr>
<td>9.</td>
<td>Penyusutan jerigen</td>
<td>10.000,00</td>
</tr>
<tr>
<td>10.</td>
<td>Perawatan dan penyusutan lampu petromaks</td>
<td>600.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>53.250.000,00</td>
</tr>
</tbody>
</table>

Sumber : Diolah dari data primer/responden

Sementara itu total rata-rata biaya tidak tetap yang dikeluarkan setiap tahun sebesar Rp. 164.700.000,00. Biaya tidak tetap terdiri dari minyak tanah sebesar Rp. 64.800.000,00, bensin sebesar Rp. 27.000.000,00, oli sebesar Rp. 40.500.000,00, umpan sebesar Rp. 90.000.000,00, perbekalan konsumsi (makan, minum, dan rokok) sebesar Rp.350.000,00 per trip atau dalam setahun sebesar Rp. 32.400.000,00. Rata-rata biaya tidak tetap usaha perikanan dengan alat tangkap *purse seine* dapat dilihat pada Tabel 45 dan Lampiran 10.

Tabel 45 Rata-rata biaya tidak tetap usaha perikanan *purse seine* setiap tahun di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis biaya tidak tetap</th>
<th>Rata-rata biaya tidak tetap (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Minyak tanah</td>
<td>64.800.000,00</td>
</tr>
<tr>
<td>2.</td>
<td>Bensin</td>
<td>27.000.000,00</td>
</tr>
<tr>
<td>3.</td>
<td>Oli</td>
<td>40.500.000,00</td>
</tr>
<tr>
<td>4.</td>
<td>Perbekalan konsumsi</td>
<td>32.400.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>164.700.000,00</td>
</tr>
</tbody>
</table>

Sumber : Diolah dari data primer/responden

Jenis ikan yang tertangkap dengan menggunakan alat tangkap *purse seine* dominasi oleh layang, tongkol, kembung, cakalang dan selar. Rata-rata hasil tangkapan ikan dan rata-rata harga setiap tahun untuk ikan layang sebanyak 1120 kg (Rp. 4.000,00), cakalang sebanyak 4.500 kg (Rp.7.000,00), kembung sebanyak 5.400 kg (5.000,00), tongkol sebanyak 13.500 (Rp. 3.500,00), dan selar
sebanyak 18.000 kg ekor (Rp. 7.000,00). Rata-rata total pendapatan setiap tahun untuk armada yang beroperasi dengan alat tangkap purse seine di Ternate sebesar Rp. 616.230.000.00. Jenis ikan, rata-rata jumlah tangkapan, harga rata-rata dan nilai rata-rata setiap tahun disajikan dalam Tabel 46.

Tabel 46 Jenis ikan, rata-rata jumlah tangkapan, harga rata-rata dan nilai rata-rata setiap tahun untuk usaha perikanan purse seine di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis ikan tertangkap</th>
<th>Rata-rata jumlah tangkapan (kg)</th>
<th>Harga rata-rata (Rp.)</th>
<th>Nilai rata-rata (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Layang</td>
<td>96.120</td>
<td>4.000,00</td>
<td>383.480.000.00</td>
</tr>
<tr>
<td>2.</td>
<td>Cakalang</td>
<td>4.500</td>
<td>7.000,00</td>
<td>31.500.000.00</td>
</tr>
<tr>
<td>3.</td>
<td>Kembung</td>
<td>5.400</td>
<td>5.000,00</td>
<td>27.000.000.00</td>
</tr>
<tr>
<td>4.</td>
<td>Tongkol</td>
<td>13.500</td>
<td>3.500,00</td>
<td>47.250.000.00</td>
</tr>
<tr>
<td>5.</td>
<td>Selar</td>
<td>18.000</td>
<td>7.000,00</td>
<td>126.000.000.00</td>
</tr>
</tbody>
</table>

Rata-rata total pendapatan per tahun 616.230.000.00

Sumber: Diolah dari data primer/responden

Sistem bagi hasil yang digunakan untuk purse seine dalam setiap trip adalah bagian besar sebelum dikurangi biaya tidak tetap (operasional). Sistem bagi hasil ini terdiri dari pemilik (perawatan kapal, mesin, alat tangkap, dan lampu petromak) sebesar 35%, ABK sebesar 32%, nakhoda sebesar 3%, dan biaya operasional sebesar 30%. Dalam satu armada purse seine mempunyai 14 orang ABK sehingga setiap ABK memperoleh 2,28%. Secara tabulasi, sistem bagi hasil usaha perikanan purse seine di Ternate diperlihatkan dalam Tabel 47.

Tabel 47 Sistem bagi hasil pada usaha perikanan purse seine di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Peruntukan</th>
<th>Bagi hasil yang diterima</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pemilik (kapal, mesin, alat tangkap, dan lampu petromak)</td>
<td>35%</td>
</tr>
<tr>
<td>2.</td>
<td>ABK (14 orang)</td>
<td>32%</td>
</tr>
<tr>
<td>3.</td>
<td>Nakhoda (1 orang)</td>
<td>3%</td>
</tr>
<tr>
<td>4.</td>
<td>Operasional</td>
<td>30%</td>
</tr>
</tbody>
</table>

Sumber: Diolah dari data primer/responden

Pendapatan pemilik armada purse seine per bulan sebesar Rp. 18.106.700,00, atau dalam setahun memperoleh Rp. 217.280.000,00, sedangkan pendapatan rata-rata per satu ABK armada purse seine per bulan sebesar Rp. 1.125.000,00 atau dalam setahun memperoleh Rp. 13.500.000,00. Secara lengkap kinerja usaha perikanan purse seine di Ternate disajikan dalam Tabel 48.
Berdasarkan hasil perhitungan dan interest rate sebesar 12% diperoleh nilai NPV dari usaha perikanan purse seine sebesar Rp. 1.092.893.786,00. Angka ini menunjukkan bahwa hasil bersih yang diperoleh selama kurun waktu 10 tahun depan jika dinilai sekarang adalah sebesar Rp. 1.092.893.786,00 sebagaimana diuraikan pada Tabel 48 di atas dan Lampiran 10. Selanjutnya tingkat pengembalian investasi (return of investment atau ROI) untuk perikanan purse seine sebesar 0,87. Hal ini berarti benefit yang diterima pemilik selama 1 tahun sebesar 87% dari investasi. Payback period (PP) yang diperoleh sebesar 1,15 yang berarti waktu pengembalian investasi yang telah dilakukan akan kembali dalam waktu 1 tahun 2 bulan atau 14 bulan. Dengan kata lain, secara financial performance analysis untuk kegiatan usaha perikanan dengan alat tangkap purse seine memberikan nilai yang positif (menguntungkan).

(3) Alat tangkap rawai tuna

Investasi awal usaha penangkapan dengan alat tangkap rawai tuna ini adalah sebesar Rp. 141.350.000,00 yang terdiri dari pembelian kapal penangkapan sebesar Rp. 25.000.000,00, mesin sebesar Rp. 64.000.000,00, alat tangkap sebesar Rp. 45.000.000,00, kompas sebesar Rp. 350.000,00, radio HT sebesar Rp. 1.500.000,00, dan jerigen sebesar 500.000,00. Umur teknis kapal penangkapan, mesin, dan alat tangkap, masing-masing 5 tahun, sedangkan umur teknis ranjang ikan radio HT, jerigen, dan lampu pertomaks adalah masing-masing 6 tahun dan kompas 3 tahun. Jenis dan nilai investasi serta umur teknis sarana perikanan tangkap dengan alat tangkap rawai tuna dapat dilihat pada Tabel 49 dan Lampiran 11.
Tabel 49 Jenis investasi dan nilai investasi, serta umur teknis investasi pada usaha perikanan rawai tuna di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis investasi</th>
<th>Rata-rata nilai investasi (Rp.)</th>
<th>Umur teknis (tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kapal penangkapan</td>
<td>25.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Mesin (12 GT)</td>
<td>64.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Alat tangkap</td>
<td>45.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Kompas</td>
<td>350.000,00</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Radio HT</td>
<td>1.500.000,00</td>
<td>6</td>
</tr>
<tr>
<td>6.</td>
<td>Jerigen</td>
<td>500.000,00</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>141.350.000,00</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Diolah dari data primer/responden.

Biaya tetap terdiri dari biaya perawatan dan penyusutan. Biaya perawatan meliputi perawatan kapal penangkapan, perawatan mesin, dan perawatan alat tangkap. Adapun biaya penyusutan meliputi pengusutan kapal penangkapan, penyusutan mesin, penyusutan alat tangkap, penyusutan kompas, penyusutan penyusutan radio HT, dan penyusutan jerigen. Total biaya tetap yang dikeluarkan setiap tahun sebesar Rp. 84.810.000,00. Rata-rata biaya tetap per tahun usaha perikanan tangkap dengan alat tangkap rawai tuna dapat dilihat pada Tabel 50.

Tabel 50 Rata-rata biaya tetap per tahun usaha perikanan rawai tuna di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis biaya tetap</th>
<th>Rata-rata biaya tetap (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Perawatan dan penyusutan kapal penangkapan</td>
<td>17.000.000,00</td>
</tr>
<tr>
<td>2.</td>
<td>Perawatan dan penyusutan mesin</td>
<td>28.900.000,00</td>
</tr>
<tr>
<td>3.</td>
<td>Perawatan dan penyusutan alat tangkap</td>
<td>38.500.000,00</td>
</tr>
<tr>
<td>4.</td>
<td>Penyusutan kompas</td>
<td>60.000,00</td>
</tr>
<tr>
<td>5.</td>
<td>Penyusutan radio HT</td>
<td>300.000,00</td>
</tr>
<tr>
<td>6.</td>
<td>Penyusutan jerigen</td>
<td>50.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>84.810.000,00</td>
</tr>
</tbody>
</table>

Sumber: Diolah dari data primer/responden.
Rata-rata biaya variabel usaha perikanan dengan alat tangkap rawai tuna dapat dilihat pada Tabel 51 dan Lampiran 11.

Tabel 51 Rata-rata biaya tidak tetap usaha perikanan rawai tuna setiap tahun di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis biaya tidak tetap</th>
<th>Rata-rata biaya tidak tetap (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Minyak tanah</td>
<td>28.800.000,00</td>
</tr>
<tr>
<td>2.</td>
<td>Bensin</td>
<td>10.800.000,00</td>
</tr>
<tr>
<td>3.</td>
<td>Oli</td>
<td>1.680.000,00</td>
</tr>
<tr>
<td>4.</td>
<td>Umpan</td>
<td>7.200.000,00</td>
</tr>
<tr>
<td>5.</td>
<td>Perbekalan konsumsi</td>
<td>14.400.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>62.880.000,00</td>
</tr>
</tbody>
</table>

Keterangan : harga BBM dan biaya perbekalan adalah nilai pada saat penelitian. Sumber : Diolah dari data primer/responden.

Jenis ikan yang tertangkap dengan menggunakan alat tangkap rawai tuna adalah tuna (Thunnus albacares). Rata-rata hasil tangkapan ikan dan rata-rata harga setiap tahun sebanyak 24.000 kg (Rp. 17.500,00). Rata-rata total pendapatan tahun untuk armada yang beroperasi dengan alat tangkap rawai tuna di Ternate sebesar Rp. 420.000.000,00.

Sistem bagi hasil yang digunakan untuk rawai tuna dalam setiap trip adalah 4 bagian besar sebelum dikurangi biaya tidak tetap (operasional). Sistem bagi hasil ini terdiri dari pemilik (perawatan kapal, mesin, dan alat tangkap) sebesar 42,5%, ABK/nelayan sebesar 42,5%, dan biaya operasional sebesar 15%.

Dalam satu armada rawai tuna mempunyai 4 orang ABK/nelayan sehingga setiap ABK/nelayan memperoleh 9,88%. Secara tabulasi, sistem bagi hasil usaha perikanan rawai tuna di Ternate diperlihatkan dalam Tabel 52.

Tabel 52 Sistem bagi hasil pada usaha perikanan rawai tuna di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Peruntukan</th>
<th>Bagi hasil yang diterima</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pemilik (kapal, mesin, dan alat tangkap)</td>
<td>42,5%</td>
</tr>
<tr>
<td>2.</td>
<td>ABK/nelayan (4 orang)</td>
<td>42,5%</td>
</tr>
<tr>
<td>3.</td>
<td>Operasional</td>
<td>15%</td>
</tr>
</tbody>
</table>

Sumber : Diolah dari data primer/responden.

Pendapatan pemilik armada rawai tuna per bulan sebesar Rp. 14.880.000,00, atau dalam setahun memperoleh Rp. 178.560.000,00, sedangkan rata-rata per satu ABK armada rawai tuna per bulan sebesar Rp.
3.457.000,00 atau dalam setahun memperoleh Rp. 41.490.000,00. Secara lengkap kinerja usaha perikanan rawai tuna di Ternate disajikan dalam Tabel 53.

Tabel 53 Kinerja usaha perikanan rawai tuna di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter kinerja usaha perikanan</th>
<th>Nilai (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>NPV</td>
<td>736.384.373,00</td>
</tr>
<tr>
<td>2.</td>
<td>Pendapatan rata-rata pemilik perbulan</td>
<td>14.880.000,00</td>
</tr>
<tr>
<td>3.</td>
<td>Pendapatan rata-rata pemilik pertahun</td>
<td>178.560.000,00</td>
</tr>
<tr>
<td>4.</td>
<td>Pendapatan rata-rata 1 ABK perbulan</td>
<td>3.570.000,00</td>
</tr>
<tr>
<td>5.</td>
<td>Pendapatan rata-rata 1 ABK pertahun</td>
<td>41.490.000,00</td>
</tr>
<tr>
<td>6.</td>
<td>ROI</td>
<td>1,26</td>
</tr>
<tr>
<td>7.</td>
<td>PP</td>
<td>0,79</td>
</tr>
</tbody>
</table>

Berdasarkan hasil perhitungan dan interest rate sebesar 12% diperoleh hasil NPV dari usaha perikanan rawai tuna sebesar Rp. 736.384.373,00. Angka ini menunjukkan bahwa hasil bersih yang diperoleh selama kurun waktu 10 tahun ke depan jika dinilai sekarang adalah sebesar Rp. 736.384.373,00 sebagaimana dilihat pada Tabel 53 di atas dan Lampiran 12. Selanjutnya tingkat pengembalian investasi (return of investment atau ROI) untuk perikanan rawai tuna sebesar 1,26. Hal ini berarti benefit yang diterima pemilik selama 1 tahun sebesar 126% dari investasi.

Payback period (PP) yang diperoleh sebesar 0,79 yang berarti waktu pengembalian investasi yang telah dilakukan akan kembali dalam waktu 9,5 bulan. Dengan kata lain, secara financial performance analysis untuk kegiatan usaha perikanan dengan alat tangkap rawai tuna memberikan nilai yang positif (cukup menguntungkan).

(4) Alat tangkap pancing tonda

Investasi awal usaha penangkapan dengan alat tangkap pancing tonda ini adalah sebesar Rp. 8.120.000,00 yang terdiri dari pembelian perahu penangkapan sebesar Rp. 5.000.000,00, mesin sebesar Rp. 2.500.000,00, alat tangkap sebesar Rp. 500.000,00, keranjang ikan sebesar Rp. 100.000,00, dan jerigen sebesar Rp. 20.000,00. Umur teknis perahu penangkapan, mesin, dan alat tangkap masing-masing 5 tahun, sedangkan umur teknis keranjang ikan, dan jerigen adalah masing-masing 6 tahun. Jenis dan nilai investasi serta umur teknis sarana perikanan tangkap dengan alat tangkap pancing tonda dapat dilihat pada Tabel 54 dan Lampiran 13.
Tabel 54 Jenis investasi dan nilai investasi, serta umur teknis investasi pada usaha perikanan pancing tonda di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis investasi</th>
<th>Rata-rata nilai investasi (Rp.)</th>
<th>Umur teknis (tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Perahu penangkapan</td>
<td>5.000.000,00</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Mesin (Katinting)</td>
<td>2.500.000,00</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Alat tangkap</td>
<td>500.000,00</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Keranjang ikan</td>
<td>100.000,00</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>Jerigen</td>
<td>20.000,00</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>8.120.000,00</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Diolah dari data primer/responden.

Biaya tetap terdiri dari biaya perawatan dan penyusutan. Biaya perawatan meliputi perawatan perahu penangkapan, perawatan mesin, dan perawatan alat tangkap. Adapun biaya penyusutan meliputi pengusutan perahu penangkapan, penyusutan mesin, penyusutan alat tangkap, penyusutan keranjang ikan, dan penyusutan jerigen. Total biaya tetap yang dikeluarkan setiap tahun sebesar Rp. 2.815.000,00. Rata-rata biaya tetap per tahun usaha perikanan tangkap dengan alat tangkap pancing tonda dapat dilihat pada Tabel 55 (Lampiran 13).

Tabel 55 Rata-rata biaya tetap per tahun usaha perikanan pancing tonda di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis biaya tetap</th>
<th>Rata-rata biaya tetap (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Perawatan dan penyusutan perahu penangkapan</td>
<td>1.700.000,00</td>
</tr>
<tr>
<td>2.</td>
<td>Perawatan dan penyusutan mesin</td>
<td>800.000,00</td>
</tr>
<tr>
<td>3.</td>
<td>Perawatan dan penyusutan alat tangkap</td>
<td>300.000,00</td>
</tr>
<tr>
<td>4.</td>
<td>Penyusutan keranjang ikan</td>
<td>10.000,00</td>
</tr>
<tr>
<td>5.</td>
<td>Penyusutan jerigen</td>
<td>5.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>2.815.000,00</td>
</tr>
</tbody>
</table>

Sumber: Diolah dari data primer/responden.

Sementara itu total rata-rata biaya tidak tetap yang dikeluarkan setiap tahun sebesar Rp. 17.670.000,00. Biaya tidak tetap terdiri dari bensin sebesar Rp. 750.000,00, oli sebesar Rp. 420.000,00, umpan sebesar Rp. 3.500.000,00, bekalan konsumsi (makan dan rokok) sebesar Rp.25.000,00 per trip atau dalam setahun sebesar Rp. 7.500.000,00. Rata-rata biaya variabel usaha perikanan pancing tonda dapat dilihat pada Tabel 56 dan Lampiran 14.
Tabel 56 Rata-rata biaya tidak tetap usaha perikanan pancing tonda setiap tahun di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis biaya tidak tetap</th>
<th>Rata-rata biaya tidak tetap (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bensin</td>
<td>6.750.000,00</td>
</tr>
<tr>
<td>2.</td>
<td>Oli</td>
<td>420.000,00</td>
</tr>
<tr>
<td>3.</td>
<td>Umpan</td>
<td>3.500.000,00</td>
</tr>
<tr>
<td>4.</td>
<td>Perbekalan konsumsi</td>
<td>7.500.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>17.670.000,00</td>
</tr>
</tbody>
</table>

Keterangan: harga BBM dan biaya perbekalan adalah nilai pada saat penelitian.
Sumber: Diolah dari data primer/responden.

Jenis ikan dominan yang tertangkap dengan menggunakan alat tangkap pancing tonda antara lain layang, tongkol, kembung, dan selar. Rata-rata hasil tangkapan ikan dan rata-rata harga setiap tahun untuk ikan layang sebanyak 1.500 kg (Rp. 4.000,00), kembung sebanyak 2.400 kg (Rp. 5.000,00), tongkol sebanyak 3.300 kg (Rp. 3.500,00), dan selar sebanyak 2.100 kg ekor (Rp. 7.000,00). Rata-rata total pendapatan setiap tahun untuk armada yang beroperasi dengan alat tangkap pancing tonda di Ternate sebesar Rp. 44.250.000,00. Jenis ikan, rata-rata jumlah tangkapan, harga rata-rata dan nilai rata-rata setiap tahun disajikan dalam Tabel 57.

Tabel 57 Jenis ikan, rata-rata jumlah tangkapan, harga rata-rata dan nilai rata-rata setiap tahun untuk usaha perikanan pancing tonda di Ternate

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis ikan tertangkap</th>
<th>Rata-rata jumlah tangkapan (kg)</th>
<th>Harga rata-rata (Rp.)</th>
<th>Nilai rata-rata (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Layang</td>
<td>1.500</td>
<td>4.000,00</td>
<td>6.000.000,00</td>
</tr>
<tr>
<td>2.</td>
<td>Kembung</td>
<td>2.400</td>
<td>5.000,00</td>
<td>12.000.000,00</td>
</tr>
<tr>
<td>3.</td>
<td>Tongkol</td>
<td>3.300</td>
<td>3.500,00</td>
<td>11.550.000,00</td>
</tr>
<tr>
<td>4.</td>
<td>Selar</td>
<td>2.100</td>
<td>7.000,00</td>
<td>14.700.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td></td>
<td></td>
<td>44.250.000,00</td>
</tr>
</tbody>
</table>

Rata-rata total pendapatan per tahun

Sumber: Diolah dari data primer/responden.

Sistem bagi hasil yang digunakan untuk pancing tonda dalam setiap trip adalah sebagai berikut: sebelum dikurangi biaya tidak tetap (operasional). Sistem bagi hasil ini terdiri dari pemilik (perawatan kapal/perahu, mesin, dan alat tangkap) sebesar 36%, ABK sebesar 24%, dan biaya operasional sebesar 40%. Dalam satu armada pancing tonda memiliki 1 orang ABK. Secara tabulasi, sistem bagi hasil usaha perikanan pancing tonda di Ternate diperlihatkan dalam Tabel 58.
Tabel 58 Sistem bagi hasil pada usaha perikanan pancing tonda di Ternate

<table>
<thead>
<tr>
<th>No.</th>
<th>Peruntukan</th>
<th>Bagi hasil yang diterima</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pemilik (perahu, mesin, dan alat tangkap)</td>
<td>36%</td>
</tr>
<tr>
<td>2.</td>
<td>ABK (1 orang)</td>
<td>24%</td>
</tr>
<tr>
<td>3.</td>
<td>Operasional</td>
<td>40%</td>
</tr>
</tbody>
</table>

Sumber : Diolah dari data primer/responden

Pendapatan pemilik armada pancing tonda per bulan sebesar Rp. 1.329.000,00, atau dalam setahun memperoleh Rp. 15.498.000,00, sedangkan pendapatan rata-rata per satu ABK armada pancing tonda per bulan sebesar Rp. 886.000,00 atau dalam setahun memperoleh Rp. 10.632.000,00. Secara kinerja usaha perikanan pancing tonda di Ternate disajikan dalam Tabel 59.

Tabel 59 Kinerja usaha perikanan pancing tonda di Ternate

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter kinerja usaha perikanan</th>
<th>Nilai (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>NPV</td>
<td>67.442.512,00</td>
</tr>
<tr>
<td>2.</td>
<td>Pendapatan rata-rata pemilik perbulan</td>
<td>1.329.000,00</td>
</tr>
<tr>
<td>3.</td>
<td>Pendapatan rata-rata pemilik pertahun</td>
<td>15.498.000,00</td>
</tr>
<tr>
<td>4.</td>
<td>Pendapatan rata-rata 1 ABK perbulan</td>
<td>886.000,00</td>
</tr>
<tr>
<td>5.</td>
<td>Pendapatan rata-rata 1 ABK pertahun</td>
<td>10.632.000,00</td>
</tr>
<tr>
<td>6.</td>
<td>ROI</td>
<td>1,91</td>
</tr>
<tr>
<td>7.</td>
<td>PP</td>
<td>0,52</td>
</tr>
</tbody>
</table>

Berdasarkan hasil perhitungan pada interest rate sebesar 12% diperoleh hasil NPV dari usaha perikanan pancing tonda sebesar Rp. 67.442.500,00. Angka ini menunjukkan bahwa hasil bersih yang diperoleh selama kurun waktu 10 tahun ke depan jika dinilai sekarang adalah sebesar Rp. 67.442.500,00 sebagaimana dihath pada Tabel 59 di atas dan Lampiran 14. Selanjutnya tingkat pengembalian investasi (return of investment atau ROI) untuk perikanan pancing tonda sebesar 1,91. Hal ini berarti benefit yang diterima pemilik selama 1 tahun sebesar 191% dari investasi. Payback period (PP) yang diperoleh sebesar 0,52 yang berarti waktu pengembalian investasi yang telah dilakukan akan kembali dalam waktu 6 bulan. Dengan kata lain, secara financial performance analysis untuk kegiatan usaha perikanan dengan alat tangkap pancing tonda memberikan nilai yang positif (cukup menguntungkan).
6.3.2 Kondisi masing-masing atribut keberlanjutan ekonomi

Pada bagian ini diuraikan kondisi aktual dari atribut keberlanjutan dari dimensi ekonomi sekaligus dengan pemberian skor yang berkaitan dengan sumberdaya perikanan di Ternate dari keempat jenis kegiatan perikanan. Atribut-atribut tersebut adalah keuntungan, kontribusi pada PDRB, gaji/upah rata-rata, pembatasan masuk, sifat pemasaran, pendapatan lain, ketenagakerjaan, kepemilikan, pasar utama, dan subsidi. Kesepuluh atribut tersebut secara berurutan diuraikan sebagai berikut.

1) Keuntungan

Keuntungan dalam usaha perikanan adalah faktor yang penting dalam keberlanjutan atau tidaknya usaha perikanan itu dilakukan. Keuntungan yang akan menentukan apakah usaha ini berlanjut atau berhenti. Dalam usaha perikanan pelagis ini, keuntungan dapat dilihat dari dua sisi yaitu keuntungan yang diperoleh pemilik dan keuntungan yang diperoleh ABK atau nelayan.

Dalam analisis kinerja usaha, keuntungan yang diperoleh pemilik dapat dilihat dari nilai NPV, net benefit dan pendapatan (net revenue), sedangkan keuntungan yang diperoleh dari ABK atau nelayan yang dilihat adalah besarnya pendapatan dan keberlanjutan untuk memenuhi kebutuhan hidup atau rumah tangganya.

Berdasarkan analisis dari empat usaha perikanan pelagis yang ada di Ternate yaitu pole and line, purse seine, rawai tuna, dan pancing tonda menunjukkan hasil yang positif dan menguntungkan. Faktor ekonomi yang masih positif dan menguntungkan inilah yang menyebabkan pemilik armada perikanan masih bertahan sampai saat ini. Positifnya nilai NPV dan net revenue (pendapatan) disebabkan oleh sistem bagi hasil yang cenderung saling menguntungkan, dimana biaya variabel (operasional) sebagai faktor pengurang terbesar dari penerimaan ditanggung bersama antara pemilik dan nelayan/ABK.

Secara keseluruhan, perbandingan nilai-nilai yang diperoleh melalui analisis kinerja usaha menunjukan bahwa usaha perikanan pelagis yang menggunakan pole and line dan purse seine lebih menguntungkan dibandingkan dengan usaha perikanan pelagis yang menggunakan rawai tuna dan pancing tonda. Tabel 60 memperlihatkan perbandingan nilai keuntungan atau pendapatan dari
masing-masing kegiatan perikanan Ternate, baik yang diperoleh oleh pemilik maupun oleh ABK atau nelayan.

Tabel 60 Perbandingan kinerja usaha perikanan pelagis pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate.

<table>
<thead>
<tr>
<th>Jenis usaha Perikanan</th>
<th>NPV (Rp.)</th>
<th>ROI (%)</th>
<th>PP (thn)</th>
<th>Pendapatan pemilik (Rp.) per tahun</th>
<th>Pendapatan ABK (Rp.) per tahun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole and line</td>
<td>2.097.250.404</td>
<td>0,50</td>
<td>1,99</td>
<td>172.440.000</td>
<td>14.385.000</td>
</tr>
<tr>
<td>Purse seine</td>
<td>1.092.893.786</td>
<td>0,84</td>
<td>1,19</td>
<td>217.280.000</td>
<td>13.500.000</td>
</tr>
<tr>
<td>Rawai tuna</td>
<td>736.384.373</td>
<td>1,26</td>
<td>0,79</td>
<td>178.560.000</td>
<td>41.490.000</td>
</tr>
<tr>
<td>Pancing tonda</td>
<td>67.442.500</td>
<td>1,91</td>
<td>0,52</td>
<td>15.498.000</td>
<td>10.632.000</td>
</tr>
</tbody>
</table>

Berdasarkan Tabel 60 juga terlihat bahwa pemilik dari usaha perikanan purse seine memiliki pendapatan yang lebih tinggi dibandingkan pemilik dari usaha perikanan pole and line, rawai tuna dan pancing tonda. Dengan demikian berdasarkan pemberian skor untuk atribut ini, usaha perikanan purse seine adalah satu (sangat menguntungkan), sedangkan usaha perikanan pole and line dan usaha perikanan rawai tuna adalah satu (menguntungkan). Sementara, usaha perikanan pancing tonda adalah tiga (kurang menguntungkan).

Kontribusi pada PDRB

Pertumbuhan PDRB merupakan suatu pendekatan indikator ekonomi makro yang menggambarkan tingkat pertumbuhan ekonomi. Indikator ini biasanya digunakan untuk menilai sampai seberapa jauh keberhasilan pembangunan suatu daerah dalam periode waktu tertentu. Untuk itu, prestasi ekonomi suatu daerah adalah ukurnya adalah PDRB yang merupakan dasar pengukuran atas nilai tambah yang mampu diciptakan akibat timbulnya berbagai kegiatan ekonomi dalam suatu daerah.

(Nilai dalam jutaan rupiah)

<table>
<thead>
<tr>
<th>No</th>
<th>Subsektor/Sektor</th>
<th>Tahun</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Pertanian</td>
<td></td>
<td>62.289,94</td>
<td>68.656,49</td>
<td>79.333,36</td>
<td>108.284,3</td>
<td>120.257,1</td>
</tr>
<tr>
<td></td>
<td>Total PDRB</td>
<td></td>
<td>470.650,3</td>
<td>517.921,1</td>
<td>585.659,7</td>
<td>694.884,3</td>
<td>833.848,2</td>
</tr>
<tr>
<td>1</td>
<td>% Perikanan</td>
<td></td>
<td>1,90</td>
<td>1,91</td>
<td>2,89</td>
<td>3,40</td>
<td>3,10</td>
</tr>
<tr>
<td>2</td>
<td>% Rata-rata perikanan terhadap total PDRB per tahun</td>
<td></td>
<td>2,64 (17.042,96)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>% Rata-rata perikanan terhadap Pertanian per tahun</td>
<td></td>
<td>18,68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sumber: BPS Kota Ternate, Ternate dalam Angka (2010)

Sumbangan PDRB atas dasar harga berlaku subsektor perikanan terhadap sektor pertanian rata-rata 18,68%. Kontribusi subsektor ini jika dibandingkan dengan semua lapangan usaha yang tercakup subsektor pertanian lainnya, maka subsektor perikanan berkontribusi nomor ketiga selama periode waktu tersebut setelah subsektor perkebunan dan subsektor tanaman bahan makanan. Kontribusinya mencapai rata-rata 2,64% per tahun atau sekitar Rp. 17.042.960.000,00, dan cenderung menampilkan trend meningkat dari tahun ke tahun rata-rata 32,74%.

Sumbangan PDRB atas dasar harga konstan subsektor perikanan terhadap sektor pertanian rata-rata 16,29% (Tabel 62 dan Lampiran 15). Kontribusi subsektor ini juga jika dibandingkan dengan semua lapangan usaha yang tercakup subsektor pertanian lainnya serupa dengan PDRB atas dasar harga berlaku yaitu berada pada posisi nomor ketiga setelah subsektor perkebunan dan subsektor tanaman bahan makanan. Selama periode waktu 2005-2009 kontribusinya cenderung menampilkan trend meningkat dari tahun ke tahun rata-rata 6,40%. Namun, kontribusi subsektor perikanan terhadap total PDRB atas dasar harga konstan Kota Ternate hanya mencapai rata-rata 1,99% per tahun atau sekitar Rp. 9.589.600.000,00.

(Nilai dalam jutaan rupiah)

<table>
<thead>
<tr>
<th>No</th>
<th>Subsektor/ Sektor</th>
<th>Tahun</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Pertanian</td>
<td></td>
<td>54.616,66</td>
<td>55.447,66</td>
<td>58.205,11</td>
<td>61.141,61</td>
<td>64.528,73</td>
</tr>
<tr>
<td></td>
<td>Total PDRB</td>
<td></td>
<td>415.085,4</td>
<td>443.824,2</td>
<td>478.658,5</td>
<td>516.574,9</td>
<td>557.573,2</td>
</tr>
<tr>
<td></td>
<td>Rata-rata perikanan terhadap total PDRB per tahun</td>
<td></td>
<td>1.99</td>
<td>2.04</td>
<td>2.07</td>
<td>1.96</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>Rata-rata perikanan terhadap Pertanian per tahun</td>
<td></td>
<td>1.99 (9.589,5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sumber: BPS Kota Ternate, Ternate dalam Angka (2010)

Berdasarkan Tabel 61 dan Tabel 62, dapat disimpulkan bahwa dengan kontribusi sebesar 2,64% (PDRB harga berlaku) dan 1,99% (PDRB harga konstan) terhadap total PDRB Kota Ternate maka sesuai kriteria pemberian skor pada RAPFISH, atribut ini dinilai nol (masih rendah).

3) Upah rata-rata

Walaupun nelayan pada umumnya dikenal sebagai kelompok masyarakat yang berpenghasilan rendah, namun nelayan *pole and line*, *purse seine*, rawai tuna dan pancing tonda di Ternate berpenghasilan cukup tinggi. Pendapatan rata-rata nelayan *pole and line* yaitu sebesar Rp. 1.199.000,00, nelayan *purse seine* Rp. 1.125.000,00, nelayan rawai tuna Rp. 3.720.000,00, dan nelayan pancing tonda sebesar Rp. 886.000,00 (Tabel 60). Hal ini menunjukkan bahwa nelayan rawai tuna yang memperoleh penghasilan yang lebih tinggi dibandingkan dengan nelayan *pole dan line*, *purse seine*, dan pancing tonda di Ternate. Upah Minimum Regional (UMR) atau pada saat ini dikenal Upah Minimum Propinsi (UMP) yang berlaku di Kota Ternate adalah Rp.750.000,00 perbulan. Selanjutnya, jika dibandingkan dengan pendapatan nelayan dari keempat usaha perikanan pelagis sebut, seluruhnya berada di atas UMR Kota Ternate.

Jika dibandingkan dengan upah atau gaji pekerja lainnya, secara umum pendapatan nelayan dari keempat usaha perikanan ini lebih baik dibanding upah dari para pelayan toko di sejumlah pusat perdagangan di Kota...
Hok Cinta Dilunung Undem–Undem
1. Difereniasi cabang-cabang usaha perikanan
2. Pengaruh perbedaan pemasaran terhadap usaha perikanan

1) Upah pekerja

Pegawai negeri sipil di Ternate yang memperoleh upah sebesar Rp 750.000,00 perbulan. Bahkan untuk pegawai negeri sipil tamatan SMA atau sarjana pada tahun-tahun pertama, besaran upah nelayan pole and line tersebut nampaknya dapat tergolong relatif sama. Perbandingan ini jika dihadapkan dengan pendapatan nelayan dari masing-masing usaha perikanan pelagis terhadap pekerja lain tersebut, maka gaji/upah yang diperoleh nelayan yang mengoperasikan rawai tuna jauh lebih tinggi (skor empat), selanjutnya nelayan pole and line dan purse seine sedikit dikategorikan lebih tinggi (skor tiga), dan nelayan pancing tonda relatif sama dengan pekerja lainnya (skor dua).

4) Pembatasan masuk

5) Sifat pemasaran

Pada umumnya pemasaran dari hasil tangkapan yang didaratkan pada perikanan pole and line, purse seine, dan pancing tonda tidak melalui proses pelelangan, namun pemasaran hasil tangkapan dari rawai tuna yaitu ikan tuna, dilakukan melalui proses pelelangan. Pembongkaran hasil penangkapan dilakukan di pelabuhan, dan selanjutnya langsung dipasarkan melalui pembeli (dibo-dibo)
kemudian dipasarkan kembali di pasar-pasar ikan yang ada di Kota Ternate dan sebagian lagi di perusahaan-perusahaan ikan yang ada di Bitung. Adapun hasil tangkapan yang diperjualikan, jumlahnya sesuai besaran yang didaratkan pada suatu waktu.

Dalam hal ini, pemasaran atau penjualan hasil tangkapan yang lazim berlaku dari perikanan *pole and line, purse seine*, dan pancing tonda, tidak berdasarkan kuota, namun untuk rawai tuna dilakukan berdasarkan kuota. Menurut wawancara dengan salah satu nelayan rawai tuna, pemasaran dilakukan dengan melihat harga pembelian. Jika harga di Kota Ternate lebih rendah dari harga di Kota Bitung, maka sebagian besar tangkapan ikan tuna yang ditangkap terjual di Kota Bitung. Dengan demikian, skor atribut untuk perikanan *pole and line, purse seine*, dan pancing tonda adalah dua, sedangkan untuk perikanan rawai tuna adalah nol.

Pendapatan lain

Pada umumnya nelayan yang melakukan penangkapan ikan dengan *pole and line, purse seine*, rawai tuna dan pancing tonda masih memperoleh pendapatan dari berkegiatan lain, baik yang dilakukan sendiri maupun oleh anggota keluarganya. Berdasarkan wawancara dari nelayan *pole and line* dan *purse seine*, dari 15 orang ABK/nelayan dalam satu kapal penangkapan, terdapat rata-rata 5 orang ABK/nelayan yang memiliki pekerjaan lain selain sebagai ABK atau nelayan, sedangkan sisanya adalah secara *fulltime* bekerja sebagai ABK penangkapan ikan. Adapun nelayan rawai tuna, semua nelayan bekerja *fulltime* sebagai nelayan. Untuk nelayan pancing tonda, umumnya ABK yang ikut penangkap ikan mempunyai pekerjaan sampingan sehingga kadang-kadang ABK yang turut menangkap berganti-ganti, dan juga waktu penangkapannya sesuai dengan waktu siang atau malam. Artinya, siang hari mereka melakukan pekerjaan lain, sedangkan pada malam hari mereka menangkap ikan. Selanjutnya, operasi penangkapan ikan umumnya dilakukan tidak setiap hari, tapi gantung antara lain pada kondisi laut dan keberadaan ikan sebagaimana informasikan oleh penjaga rumpon (khusus bagi nelayan *pole and line, purse seine*, dan rawai tuna). Pekerjaan lain yang digeluti oleh nelayan-nelayan keempat...
kegiatan nelayan tersebut jika kondisi tidak memungkinkan untuk melaut teridentifikasi yaitu sebagai kuli bangunan/tukang, berkebun, dagang “warung nasi/kios rokok”, dan penyewaan perahu milik pribadi untuk wisata pemancingan.

Berdasarkan uraian diatas, dari pilihan kategori dalam atribut keberlanjutan perikanan ini, maka pendapatan yang diperoleh dalam perikanan pole and line, purse seine, dan rawai tuna secara keseluruhan merupakan hasil dari usaha penangkapan yang bersifat fulltime (skor tiga), sedangkan perikanan pancing tonda merupakan hasil dari usaha penangkapan yang bersifat partime (skor satu).

7) Ketenagakerjaan (Proporsi pekerjaan)

Prosentase jumlah nelayan yang menggunakan alat tangkap pole and line, purse seine, rawai tuna dan pancing tonda, dibandingkan dengan pekerjaan perikanan/ alat tangkap lainnya di Ternate antara lain dapat dilihat dari jumlah alat tangkap yang digunakan oleh nelayan dalam mengeksploitasi sumberdaya perikanan. Berdasarkan data dari Dinas Kelautan dan Perikanan Kota Ternate (Tabel 12), terdapat total 228 buah alat tangkap yang digunakan untuk nelayan di Ternate, dimana pole and line berjumlah 40, purse seine berjumlah 39 buah, rawai tuna berjumlah 12 buah, dan pancing tonda berjumlah 22. Dengan demikian, perbandingan terhadap total alat tangkap lainnya untuk pole and line adalah 17,09%, purse seine adalah 11,97%, rawai tuna adalah 6,41%, dan pancing tonda adalah 9,40%.

Pekerjaan berkenaan dengan penangkapan ikan menggunakan pole and line, purse seine dan rawai tuna pada dasarnya merupakan kegiatan perikanan yang mengalami penurunan yang mulai diminati di wilayah Ternate, terutama oleh nelayan-nelayan yang masih tradisional. Hal ini disebabkan karena pendapatan yang diperoleh lebih tinggi dan atau menyedap tenaga kerja yang lebih banyak daripada pekerjaan perikanan atau alat tangkap lainnya. Diperhatikan dengan keterbatasan modal usaha dan semakin banyaknya pemintah kegiatan ketiga kegiatan perikanan ini, maka banyak kelompok nelayan yang mengajukan permohonan bantuan fasilitas penangkapan ikan pole and line, purse seine dan rawai tuna
kepada pemerintah daerah atau Dinas Kelautan dan Perikanan Kota Ternate dan Dinas Perikanan dan Kelautan Provinsi Maluku Utara.

Dengan demikian, pekerjaan dalam perikanan ini (dalam penangkapan ikan), bila diperhitungkan pada keseluruhan unit pekerjaan perikanan dan kaitannya di daerah ini, maka proporsinya menurut penskoran dalam RAPFISH untuk pole and line dan purse seine adalah 10 – 20% (skor satu), sedangkan untuk rawai tuna dan pancing tonda adalah < 10% (skor nol).

Kepemilikan

Aktivitas penangkapan ikan dengan menggunakan pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate, tidak dilakukan dengan dukungan modal dari pihak asing. Selama ini, permodalan untuk perikanan disediakan dari penduduk lokal, baik oleh kemampuan sendiri maupun bersumber dari bantuan dari pemerintah daerah. Dengan demikian, profit perikanan ini terutama untuk lokal berdasarkan kepemilikan peralatan usaha yang dioperasikan. Keadaan ini nilail sesuai kriteria diberi skor nol.

Pasar utama

Menurut pengamatan, hasil tangkapan dari kegiatan penangkapan ikan dengan menggunakan pole and line, purse seine, dan pancing tonda sebagian besar didaratkan di pelabuhan umum Dufa-dufa dan PPN Bastiong, bukan di PPI Dufa-dufa yang telah disediakan oleh Dinas Kelautan dan Perikanan Kota Ternate. Setelah melalui proses negosiasi harga antara petugas di kapal dan pembeli di pelabuhan (dibo-dibo), hasil tangkapan langsung dibongkar dan dipasarkan secara lokal. Hasil tangkapan purse seine ada sebagian kecil yang dijual di luar Provinsi Maluku Utara. Namun, khusus untuk hasil tangkapan rawai tuna (ikan tuna), karena melihat harga yang lebih tinggi dibandingkan dengan di Ternate, maka pasarannya dilakukan secara antar daerah yaitu ke Bitung, Sulawesi Utara. Laporan untuk hasil tangkapan dari pole and line dan pancing tonda, pasar imannya adalah lokal yaitu di Kota Ternate. Dengan demikian, pasar utama untuk pole and line, purse seine, dan pancing tonda adalah lokal (skor nol), dan untuk rawai tuna adalah nasional (skor satu).
10) Subsidi

Namun, dari keempat alat tangkap diatas, terkesan bahwa subsidii lebih banyak diberikan pada aktivitas usaha *pole and line*, *purse seine*, dan rawai tuna. Sedangkan aktivitas usaha pancing tonda sebagian besar belum mendapat bantuan kapal dan alat tangkap. Selain itu, fasilitas penunjang di PPI tidak dimanfaatkan sepenuhnya. Kenyataan ini menunjukkan bahwa aktivitas perikanan *pole and line*, *purse seine*, dan rawai tuna dapat digolongkan telah banyak menerima subsidi (skor dua), sedangkan aktivitas perikanan pancing tonda tidak sepenuhnya tanpa subsidii (skor satu).

6.3.3 Status keberlanjutan perikanan pelagis dimensi ekonomi

Nilai skor yang terdapat pada dimensi ekonomi selanjutnya dianalisis menggunakan metode RAPFISH. Output yang diperoleh dengan metode RAPFISH pada dimensi ekonomi menunjukkan nilai indeks keberlanjutan perikanan pelagis secara ekonomi sebagaimana disajikan pada Tabel 63 dan Lampiran 6. Nilai ini yang akan menentukan posisi relatif dari setiap kegiatan perikanan terhadap ordinasi yang berada pada kisaran baik (*good*) dengan nilai 100, buruk (*bad*) dengan nilai nol.
Tabel 63 Nilai indeks dan status keberlanjutan setiap perikanan pelagis pada dimensi ekonomi di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Kegiatan Perikanan Pelagis</th>
<th>Indeks Keberlanjutan Perikanan</th>
<th>Status Keberlanjutan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pole and line</td>
<td>52,29</td>
<td>Cukup</td>
</tr>
<tr>
<td>2.</td>
<td>Purse seine</td>
<td>53,22</td>
<td>Cukup</td>
</tr>
<tr>
<td>3.</td>
<td>Rawai tuna</td>
<td>43,87</td>
<td>Kurang</td>
</tr>
<tr>
<td>4.</td>
<td>Pancing tonda</td>
<td>63,87</td>
<td>Cukup</td>
</tr>
<tr>
<td></td>
<td>Rata-rata indeks</td>
<td>53,31</td>
<td>Cukup</td>
</tr>
</tbody>
</table>

Rata-rata indeks 53,31 Cukup

Tabel 64 Nilai statistik yang diperoleh dari hasil analisis RAPFISH pada dimensi ekonomi.

<table>
<thead>
<tr>
<th>Atribut Statistik</th>
<th>Nilai Statistik</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress</td>
<td>0,1325</td>
<td>13,25</td>
</tr>
<tr>
<td>R^2</td>
<td>0,9389</td>
<td>93,89</td>
</tr>
<tr>
<td>Jumlah iterasi</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Gambar 14 Posisi status keberlanjutan perikanan pelagis di Ternate pada dimensi ekonomi.
(Keterangan: PL= pole and line, PS= purse seine, RT= rawai tuna, PT= pancing tonda)

Selanjutnya berdasarkan Tabel 64 mengungkapkan koefisien determinasi (nilai kepercayaan) atau R² untuk dimensi ekonomi bernilai lebih besar 0,90. Hasil estimasi nilai proporsi ragam data masukan yang dapat dijelaskan teknik analisis ini, terindikasi memadai. Sementara analisis yang ditujukan untuk melihat tingkat kestabilan hasil analisis *ordinasi*, dilakukan dengan simulasi *Monte Carlo*. Simulasi ini pada hakekatnya ditujukan untuk melihat tingkat gangguan (*perturbation*) terhadap nilai *ordinasi* sehingga dapat diketahui seberapa jauh hasil analisis dapat dipercaya (Spence and Young, 1978 *yang dikutip dalam Purnomo et al.*, 2002), dan dilakukan dengan iterasi sebanyak 30 kali. Hasil simulasi *Monte Carlo* untuk dimensi ekonomi dapat dilihat pada Gambar 15. Hal ini menunjukkan bahwa kegiatan perikanan pelagis di Ternate pada setiap jenis alat tenun banyak mengalami gangguan (*perturbation*) yang ditunjukkan oleh plot yang menyebbar.
Gambar 15 Kestabilan nilai ordinasi hasil RAPFISH dengan Monte Carlo pada dimensi ekonomi. (Ket.: biru = pole and line, merah muda = purse seine, kuning = rawai tuna, biru muda = pancing tonda)

Analisis sensitivitas pada dimensi ekonomi dengan metode analisis leverage pada RAPFISH memperlihatkan bahwa atribut limited entry (pembatasan masuk), marketable right (sifat pemasaran), dan other income (pendapatan lain) merupakan atribut yang sangat berpengaruh terhadap keberlanjutan perikanan pelagis di Ternate. Hal ini dapat dilihat dari nilai root mean square change sebagaimana terlihat pada Gambar 16 dimana ketiga atribut tersebut nampak lebih tinggi dibandingkan dengan atribut-atribut lainnya.
Leverage of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Root Mean Square Change in Ordination when Selected Attribute Removed (on Sustainability scale 0 to 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>subsidy</td>
<td>2.52</td>
</tr>
<tr>
<td>market</td>
<td>4.04</td>
</tr>
<tr>
<td>ownership/ transfer</td>
<td>5.84</td>
</tr>
<tr>
<td>sector employment</td>
<td>5.05</td>
</tr>
<tr>
<td>other income</td>
<td>7.17</td>
</tr>
<tr>
<td>marketable right</td>
<td>7.15</td>
</tr>
<tr>
<td>limited entry</td>
<td>7.16</td>
</tr>
<tr>
<td>average wage</td>
<td>3.72</td>
</tr>
<tr>
<td>GDP</td>
<td>4.27</td>
</tr>
<tr>
<td>profitability</td>
<td>2.49</td>
</tr>
</tbody>
</table>

Gambar 16 Hasil analisis Leverage dari atribut pada dimensi ekonomi

6.4 Pembahasan

Dalam mengetahui sampai sejauh mana kegiatan perikanan pelagis yang dianalisis masih memberikan keuntungan dan bertahan, maka perhitungan dengan menggunakan analisis kinerja usaha telah dilakukan pada empat jenis usaha perikanan pelagis di Ternate yaitu pole and line, purse seine, rawai tuna, dan pancing tonda. Hasil perhitungan pada discount rate sebesar 12% diperoleh hasil NPV dari keempat kegiatan perikanan di Ternate menunjukan nilai yang positif. Nilai ini mengartikan bahwa usaha perikanan dari jenis perikanan pole and line, purse seine, rawai tuna, dan pancing tonda layak untuk dijalankan karena memberikan keuntungan.

Menurut Yacob (2008), NPV adalah kriteria investasi yang banyak digunakan dalam mengukur apakah suatu usaha layak (feasible) atau tidak. Jika nilai positif menunjukan bahwa usaha itu layak dan jika negatif menunjukan hal sebaliknya. Berkenaan dengan nilai NPV tersebut, usaha perikanan pelagis yang menggunakan alat tangkap pole and line jauh lebih besar dari ketiga usaha perikanan pelagis lainnya. Hasil bersih yang diperoleh usaha perikanan pole and

Di sisi lain, perhitungan (Return to Owner) dari usaha perikanan pelagis di Ternate menunjukkan bahwa usaha perikanan pelagis yang menggunakan alat tangkap pole and line, purse seine dan rawai tuna lebih menguntungkan dibandingkan dengan usaha perikanan pelagis yang menggunakan pancing tonda. Keadaan ini menunjukkan bahwa net benefit yang diterima oleh pemilik pada usaha perikanan pole and line, purse seine dan rawai tuna lebih besar dibandingkan dengan usaha perikanan yang menggunakan pancing tonda.

Namun sebaliknya perhitungan tingkat pengembalian investasi (return of investment atau ROI) menunjukkan bahwa usaha perikanan untuk perikanan pancing tonda memiliki tingkat pengembalian investasi yang lebih baik dibandingkan dengan ketiga usaha perikanan lainnya. Keadaan ini disebabkan karena biaya investasi yang digunakan dalam usaha perikanan Pancing tonda jauh lebih rendah dibandingkan dengan nilai investasi ketiga usaha perikanan lainnya. Demikian juga dengan perhitungan Payback period (PP) menunjukkan bahwa usaha perikanan pancing tonda memiliki waktu yang lebih cepat dalam pengembalian investasi yang telah dilakukan.

Nilai indeks keberlanjutan dari keempat alat tangkap yang dihasilkan dari analisis ordinasi status keberlanjutan dengan iterasi atau pengulangan perhitungan sebanyak 2 (dua) kali ini diuji kembali stabilitasnya dengan simulasi Monte Carlo. Walaupun hasil stabilitasnya sedikit mengalami gangguan (perturbation) sehingga menggambarkan pancaran plot yang menyebar, namun penyebaran plot-plot tersebut berada pada jarak yang tidak jauh dan saling berimpit dengan plot nilai indeks keberlanjutan. Dengan demikian dapat dikatakan berada pada posisi yang stabil (Gambar 15). Status perikanan pole and line terordinasi sekitar 52, sedangkan untuk purse seine, rawai tuna, dan pancing tonda, masing-masing berada pada nilai 53, nilai 43, dan sekitar nilai 63. Posisi yang relatif sama ini menunjukkan bahwa dalam kesalahan dalam pembuatan skor pada setiap atribut dan kesalahan prosedur metode analisis sangat kecil dimana hasil analisis Monte Carlo ini mendukung akurasi penentuan ordinasi status keberlanjutan yang ditelaah.

Perhitungan nilai kuadrat korelasi (R^2) lebih besar dari 90% dan nilai stress (S) lebih kecil dari 20% (Tabel 64). Nilai R^2 yang dihasilkan menunjukkan bahwa secara ilmiah, nilai ini sudah termasuk tinggi yang mana berarti tingkat kepercayaan (koefisien determinasi) terhadap analisis multi dimensional ini dapat dipercaya dan dipertanggungjawabkan. Selanjutnya nilai stress (S) yang dihasilkan ini tergolong rendah menunjukkan bahwa hasil pengukuran konfigurasi dari setiap titik secara tepat dapat mencerminkan data aslinya. Dalam model RAPFISH, nilai stress yang diinginkan adalah lebih kecil 25 persen (Fauzi dan Anna 2005).

Penentuan ordinasi status keberlanjutan diperoleh berdasarkan penilaian atas setiap atribut yang digunakan. Sebagaimana terlihat pada Gambar 16, tingkat sensitivitas dari kesepuluh atribut dimensi ekonomi bervariasi antara 2,49% dan 7,17% kontribusinya pada ordinasi status keberlanjutan. Kisaran ini...
menurut Kavanagh dan Pitcher (2004), dapat menjadi indikator yang menunjukan situasi multivariate yang sesungguhnya, karena nilai pengungkit atribut ini masih berada antara 0,27 sampai 7,18%.

Hasil keluaran dari analisis sensitifitas ini juga menunjukan bahwa atribut limited entry (pembatasan masuk), marketable right (sifat pemasaran), dan other income (pendapatan lain) merupakan atribut yang sangat berpengaruh terhadap keberlanjutan perikanan pelagis dimensi ekonomi di Ternate. Perubahan sedikit pada atribut-atribut ini dapat berdampak besar terhadap nilai indeks keberlanjutan pada dimensi ekonomi ini.

Dengan demikian, kebijakan perikanan perlu ditetapkan dalam suatu program dan kegiatan menyangkut pengembangan status keberlanjutan perikanan pelagis dimensi ekonomi di Ternate. Hal ini sangat beralasan karena dengan melihat hasil rata-rata indeks keberlanjutan dimensi ekonomi, keempat alat tangkap yang telah berada pada kisaran yang dekat dengan status kurang dari 50% (< 50%). Kebijakan yang diperlukan ini menyangkut pembatasan masuk atau akses bagi nelayan-nelayan lain dalam menangkap ikan di perairan Ternate. Pembatasan akses/peluang yang dikombinasikan dengan pengelolaan yang baik dapat mengurangi tekanan terhadap stok ikan jenis-jenis tertentu terutama ikan tuna dengan mengurangi jumlah nelayan yang menangkap jenis-jenis ikan tersebut dengan alat tangkap rawai tuna. Selanjutnya kebijakan yang perlu dirumuskan yaitu menangkap kemudahan-kemudahan dalam memasarkan hasil usaha perikanan. Dengan semakin mudah hak pemilikan terhadap pengusahaan perikanan dipindahkan atau dijual maka akan menciptakan suatu insentif keuangan untuk memelihara kelestarian sumberdayanya (menumbuhkan rasa memiliki terhadap sumberdaya).

Kebijakan lain yang juga penting yaitu dalam mencari alternatif pendapatan lain bagi nelayan diluar dari perolehan penangkapan ikan. Dengan semakin sedikit masyarakat perikanan yang melakukan kegiatan di sektor perikanan sebagai pekerjaan utama, maka risiko/ancaman terhadap keberlanjutan perikanan yaitu terjadinya ekspoitasi sumberdaya perikanan yang lebih mencapai semakin rendah.
178

6.5 Kesimpulan

(2) Usaha perikanan pelagis yang memberikan keuntungan paling besar bagi pemilik di perairan Ternate adalah purse seine yaitu Rp. 18.106.700 per bulan atau sama dengan Rp. 217.280.000 per tahun. Sementara, keuntungan pemilik keuntungan lainnya masing yaitu pole and line sebesar Rp. 14.370.000 per bulan atau Rp. 172.440.000 per tahun, rawai tuna sebesar Rp. 14.880.000 per bulan atau Rp. 178.560.000 per tahun, dan pancing tonda sebesar Rp. 1.329.000 atau Rp. 15.498.000 per tahun. Di sisi lain usaha perikanan pelagis yang menghasilkan pendapatan nelayan/ABK yang lebih tinggi di Ternate adalah rawai tuna yaitu Rp. 3.457.000 per bulan atau sama dengan Rp. 41.490.000 per tahun. Sementara, pendapatan nelayan/ABK ketiga perikanan lainnya masing yaitu pole and line sebesar Rp. 1.199.000 per bulan atau Rp. 14.385.000 per tahun, purse seine sebesar Rp. 1.125.000 per bulan atau Rp. 13.500.000 per tahun, dan pancing tonda sebesar Rp. 886.000 atau Rp. 10.632.000 per tahun.

(3) Usaha perikanan pelagis di Ternate yang memiliki tingkat pengembalian investasi (return of investment atau ROI) lebih baik adalah usaha perikanan pancing tonda dibandingkan dengan usaha perikanan lainnya (ROI = 1,91). Hal itu juga diikuti dengan hasil payback period (PP) yang menunjukkan bahwa usaha perikanan pancing tonda memiliki waktu yang lebih cepat dalam pengembalian investasinya dibandingkan dengan usaha perikanan lainnya (PP 2).

(4) Secara umum, status keberlanjutan dimensi ekonomi terhadap keempat usaha perikanan pelagis yang dikaji mempunyai rata-rata nilai indeks keberlanjutan 53,31 (cukup berkelanjutan). Namun, dari keempat usaha perikanan tersebut, usaha perikanan rawai tuna memiliki status kurang berkelanjutan. Pengembangan yang berpeluang dilakukan melalui suatu kebijakan yang diharapkan untuk perbaikan nilai atribut-atribut keberlanjutan perikanan pelagis...
pada dimensi ekonomi terutama pada atribut *limited entry* (pembatasan masuk), *marketable right* (sifat pemasaran), dan *other income* (pendapatan lain) dengan tidak mengecilkan pengembangan dari atribut lainnya.
1. Dilihat gambar komunikasi dan memperhatikan sebagian atau seluruh karya lukis di dalam bentuk opakes pada lembar.
2. Dilihat gambar komunikasi dan memperhatikan sebagian atau seluruh karya lukis di dalam bentuk opakes pada lembar.
3. Dilihat gambar komunikasi dan memperhatikan sebagian atau seluruh karya lukis di dalam bentuk opakes pada lembar.
4. Dilihat gambar komunikasi dan memperhatikan sebagian atau seluruh karya lukis di dalam bentuk opakes pada lembar.
5. Dilihat gambar komunikasi dan memperhatikan sebagian atau seluruh karya lukis di dalam bentuk opakes pada lembar.
6. Dilihat gambar komunikasi dan memperhatikan sebagian atau seluruh karya lukis di dalam bentuk opakes pada lembar.
7. Dilihat gambar komunikasi dan memperhatikan sebagian atau seluruh karya lukis di dalam bentuk opakes pada lembar.
8. Dilihat gambar komunikasi dan memperhatikan sebagian atau seluruh karya lukis di dalam bentuk opakes pada lembar.
9. Dilihat gambar komunikasi dan memperhatikan sebagian atau seluruh karya lukis di dalam bentuk opakes pada lembar.
10. Dilihat gambar komunikasi dan memperhatikan sebagian atau seluruh karya lukis di dalam bentuk opakes pada lembar.
7 KEBERLANJUTAN PERIKANAN PELAGIS DI TERNATE PADA DIMENSI SOSIAL

7.1 Pendahuluan

Pendekatan geografi-budaya lingkungan sosial pesisir secara umum mencakup kesatuan-kesatuan hidup manusia yang berdiam dan mengembangkan kehidupan sosialnya di daerah yang relatif berdekatan dengan laut. Artinya, yang termasuk ke dalam kategori lingkungan sosial pesisir adalah komunitas masyarakat yang berdiam di daratan dekat dengan laut dan masyarakat yang secara khas menghabiskan sebagian besar masa hidupnya diatas perairan laut, mana ketergantungan hidup mereka kepada sumberdaya alam daratan juga sama dengan ketergantungan mereka kepada sumberdaya perairan. Komunitas dapat di bagi menjadi tiga kategori yaitu masyarakat perairan, masyarakat daratan, dan masyarakat pesisir tradisional. Dari ketiga kategori tersebut, masyarakat nelayan dianggap sebagai kelompok masyarakat pesisir yang paling banyak memanfaatkan hasil laut dan potensi lingkungan perairan dan pesisir untuk kelangsungan hidupnya.

Kajian keberlanjutan perikanan pelagis pada dimensi sosial dilakukan untuk menggambarkan kehidupan nelayan sebagai manusia, yang harus beradaptasi dengan lingkungan sosial dan sumberdaya perikanan sebagai sumber kehidupannya. Aspek sosial yang selama ini terabaikan perlu mendapatkan perhatian serius dalam upaya mengelola sumberdaya perikanan laut, sehingga upaya pencapaian distribusi, pemerataan pendapatan, dan penanganan konflik yang proporsional diantara berbagai kelompok pengguna sumberdaya perikanan dapat tercapai.

Tujuan penelitian ini adalah untuk mengukur status keberlanjutan perikanan pelagis dalam perspektif keberlanjutan menurut aspek sosial di Ternate.
Adapun tujuan spesifik dari penelitian ini adalah menentukan status keberlanjutan perikanan pelagis Kota Ternate berdasarkan dimensi sosial.

Manfaat yang diharapkan dari hasil penelitian ini adalah untuk mendapatkan gambaran dan informasi yang berkaitan dengan status perikanan pelagis pada dimensi sosial, untuk dijadikan salah satu dasar didalam analisis dan pembahasan selanjutnya (Bab 11), khususnya dalam hal pengambilan keputusan bijakan daerah untuk menjaga keberlanjutan perikanan pelagis dari aspek sosial.

7.2 Metode

Metode yang digunakan dalam penelitian ini sama seperti yang telah dibahas pada Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi), yaitu metode deskriptif melalui observasi langsung di lapangan. Pengumpulan data untuk melakukan penskoran terhadap atribut-atribut ekonomi dalam pendekatan RAPFISH diperoleh melalui pengamatan langsung di lokasi perikanan dan wawancara lewat alat bantu kuisioner. Pemilihan nelayan sebagai contoh responden dilakukan secara aksidensial (accidental sampling) berdasarkan pengelompokan jenis kegiatan perikanan pelagis atau alat tangkap yang digunakan untuk menangkap ikan, yaitu huhat (pole and line), soma pajeko (purse seine), rawai tuna, dan pancing tonda. Jumlah responden untuk wawancara juga sama seperti yang telah diuraikan pada Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi).

Data yang diperoleh melalui pengamatan di lapangan digunakan untuk mengisi kolom skor bagi atribut sosialisasi penangkapan, pengetahuan lingkungan, tingkat pendidikan, status konflik, pengaruh nelayan, pendapatan, tangan kangan, dan pastisipasi keluarga. Sementara data yang digunakan untuk mengisi kolom skor bagi atribut pendatang baru dan sektor penangkapan diperoleh berdasarkan penelusuran pustaka yang antara lain berasal dari laporan Perikanan dan Kelautan Provinsi Maluku Utara dan Dinas Kelautan dan Perikanan Kota Ternate.

Penentuan indeks keberlanjutan ekonomi perikanan pelagis dengan pendekatan RAPFISH dilakukan melalui sistimatisa yang telah ditentukan seperti yang diuraikan pada Bab 3 dan Bab 5. Penentuan nilai indeks keberlanjutan sosial
1. Peralatan
2. Perangkat
3. Pelatihan
4. Petunjuk
5. Marak
6. Pengetahuan
7. Pendidikan
8. Konflik
9. Pengaruh
10. Pendapatan
11. Pastisipasi

Perikanan dimulai dengan pembuatan skor setiap atribut pada dimensi sosial berdasarkan kedua sumber data tersebut di atas. Secara terpisah, atribut-atribut dalam dimensi sosial beserta kriteria pemberian skor dapat dilihat pada Tabel 65.

<table>
<thead>
<tr>
<th>No.</th>
<th>Atribut keberlanjutan perikanan dimensi sosial dan kriteria pemberian skor dalam analisis RAPFISH untuk perikanan pelagis di Ternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sosialisasi penangkapan</td>
</tr>
<tr>
<td></td>
<td>0; 1; 2 Nelayan bekerja: individu pada suatu perusahaan (0); keluarga (1); kelompok (2)</td>
</tr>
<tr>
<td>2.</td>
<td>Pendatang baru</td>
</tr>
<tr>
<td></td>
<td>0; 1; 2 Selama 5 tahun terakhir:< 10% (0); 10 - 20% (1); 20 - 30% (2); > 30% (3)</td>
</tr>
<tr>
<td>3.</td>
<td>Sektor penangkapan</td>
</tr>
<tr>
<td></td>
<td>0; 1; 2 RTP dalam komunitas: < 10% (0); 10 - 30% (1); >30 (2)</td>
</tr>
<tr>
<td>4.</td>
<td>Pengetahuan lingkungan</td>
</tr>
<tr>
<td></td>
<td>0; 1; 2 Terhadap sumberdaya ikan & lingkungan: kosong (0); beberapa (1); banyak (2)</td>
</tr>
<tr>
<td>5.</td>
<td>Tingkat pendidikan</td>
</tr>
<tr>
<td></td>
<td>0; 1; 2 Terhadap rata-rata tingkat pendidikan penduduk: rendah (0); sama (1); diatas (2)</td>
</tr>
<tr>
<td>6.</td>
<td>Stress konflik</td>
</tr>
<tr>
<td></td>
<td>0; 1; 2 Konflik dengan perikanan/sektor lain: tidak (0); beberapa (1); banyak (2)</td>
</tr>
<tr>
<td>7.</td>
<td>Pengaruh nelayan</td>
</tr>
<tr>
<td></td>
<td>0; 1; 2 Terhadap regulasi aktual: hampir tidak (0); beberapa (1); banyak (2)</td>
</tr>
<tr>
<td>8.</td>
<td>Pendapatan penangkapan</td>
</tr>
<tr>
<td></td>
<td>0; 1; 2 Terhadap total pendapatan keluarga: < 50% (0); 50 - 80% (1); > 80% (2)</td>
</tr>
<tr>
<td>9.</td>
<td>Pastisipasi keluarga</td>
</tr>
<tr>
<td></td>
<td>0; 1; 2; 3; 4 Anggota keluarga menjual/memproses hasil tangkapan: tidak (0); sangat sedikit (1); sedikit (2); beberapa (3); banyak (4)</td>
</tr>
</tbody>
</table>

Sumber: RAPFISH Group UBC (2005)

Dalam memudahkan penentuan skor dari masing-masing atribut di atas, Tabel 66 memberikan pengertian atau definisi dari masing-masing atribut sosial. Sementara dalam kaitannya dengan kondisi keberlanjutan, penggunaan atribut-atribut dalam dimensi sosial ini mengandung suatu maksud dan deskripsi tertentu dalam kaitannya dengan mengevaluasi status keberlanjutan. Atribut sosialisasi penangkapan mengartikan bahwa untuk pengelolaan usaha perikanan yang semakin terikat secara emosional hubungan sosial, dan berskala luas (satu komunitas masyarakat sampai dengan negara) akan semakin mempermudah melaksanakan pengelolaan usaha perikanan di wilayah/unit analisis terkait dengan berjalannya fungsi kelembagaan (skor baik = 2; buruk = 0).

Dalam memudahkan penentuan skor dari masing-masing atribut di atas, Tabel 66 memberikan pengertian atau definisi dari masing-masing atribut sosial. Sementara dalam kaitannya dengan kondisi keberlanjutan, penggunaan atribut-atribut dalam dimensi sosial ini mengandung suatu maksud dan deskripsi tertentu dalam kaitannya dengan mengevaluasi status keberlanjutan. Atribut sosialisasi penangkapan mengartikan bahwa untuk pengelolaan usaha perikanan yang semakin terikat secara emosional hubungan sosial, dan berskala luas (satu komunitas masyarakat sampai dengan negara) akan semakin mempermudah melaksanakan pengelolaan usaha perikanan di wilayah/unit analisis terkait dengan berjalannya fungsi kelembagaan (skor baik = 2; buruk = 0).
Tabel 66 Definisi sembilan atribut sosial dalam analisis RAPFISH untuk perikanan pelagis di Ternate

<table>
<thead>
<tr>
<th>No.</th>
<th>Atribut</th>
<th>Definisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sosialisasi Penangkapan:</td>
<td>Sosialisasi pelaksanaan penangkapan ikan dalam kaitannya dengan proses operasi peralatan penangkapan ikan di atas kapal</td>
</tr>
<tr>
<td></td>
<td>Pendatang baru:</td>
<td>Penambahan jumlah nelayan (termasuk kapal baru) yang berkecimpung pada penangkapan ikan menurut waktu tertentu.</td>
</tr>
<tr>
<td></td>
<td>Sektor penangkapan:</td>
<td>Proporsi jumlah nelayan (berdasarkan kegiatan perikanan) di wilayah administratif terhadap jumlah penduduk di wilayah administratif tersebut</td>
</tr>
<tr>
<td></td>
<td>Pengetahuan lingkungan:</td>
<td>Derajat pengetahuan nelayan mengenai isu-isu lingkungan seperti illegal fishing, pencemaran laut, kerusakan terumbu karang</td>
</tr>
<tr>
<td></td>
<td>Tingkat pendidikan:</td>
<td>Proporsi nelayan yang mengikuti/menyelakukan pendidikan formal</td>
</tr>
<tr>
<td></td>
<td>Status konflik:</td>
<td>Ada tidaknya frekuensi terjadinya konflik pemanfaatan ruang laut dan atau perebutan DPI baik antar nelayan atau yang berkaitan dengan kepentingan sektor lain (perhubungan laut)</td>
</tr>
<tr>
<td></td>
<td>Pengaruh nelayan:</td>
<td>Keterkaitan nelayan dalam proses penyusunan regulasi pengelolaan perikanan baik langsung maupun tidak langsung</td>
</tr>
<tr>
<td>8.</td>
<td>Pendapatan penangkapan:</td>
<td>Kontribusi pendapatan yang bersumber dari usaha penangkapan ikan terhadap keseluruhan pendapatan yang diperoleh keluarga</td>
</tr>
<tr>
<td>9.</td>
<td>Pastisipasi keluarga:</td>
<td>Ada tidaknya peran anggota keluarga dalam memasarkan hasil tangkapan dan atau melakukan penelolalan ikan hasil tangkapan</td>
</tr>
</tbody>
</table>

Sumber: Pitcher and Preikshot (2001)

Atribut pendatang baru menunjukkan semakin kecil tingkat pertumbuhan masyarakat yang bergerak di bidang perikanan maka semakin kecil jumlah nelayan yang berkecimpung pada penangkapan ikan. Hal ini dapat memperkecil risiko atau ancaman terhadap keberlanjutan usaha perikanan di layah yang ditelaah (skor baik = 0; buruk = 3). Sementara atribut sektor penangkapan menggambarkan semakin kecil proporsi jumlah rumah tangga yang menunjukkan semakin kecil ketergantungan komunitas tersebut terhadap sumberdaya perikanan (risiko/ancaman terhadap keberlanjutan usaha perikanan semakin kecil). Namun, jika presentasinya terlalu kecil, maka secara...
operasional akan mengakibatkan pemanfaatan sumbedaya ikan tidak optimal (skor baik = 0; buruk = 2).

Atribut pengetahuan lingkungan mencerminkan bahwa pengetahuan atau pemahaman tentang lingkungan hidup, secara tidak langsung mengindikasikan tingkat kepedulian nelayan (traditional knowledge) terhadap keberlanjutan usaha perikanan di wilayah yang dikaji (skor baik = 2; buruk = 0). Adapun atribut pendidikan menunjukkan bahwa semakin tinggi tingkat pendidikan rata-rata masyarakat perikanan maka cenderung akan semakin meningkatkan kepedulian masyarakat (public awareness) terhadap keberlanjutan usaha perikanan di wilayah yang diaudit (skor baik = 2; buruk = 0).

Atribut status konflik menggambarkan bahwa umumnya keberlanjutan usaha perikanan di wilayah/unit analisis akan lebih terjamin jika tidak pernah terjadi konflik, baik konflik antar stakeholder usaha perikanan maupun konflik antara stakeholder usaha perikanan dengan masyarakat diluar usaha perikanan (skor baik = 0; buruk = 2). Sementara atribut pengaruh nelayan mencerminkan bahwa semakin besar tingkat partisipasi (dalam berdemokrasi) masyarakat nelayan dengan pengetahuan tradisionalnya dalam penyusunan regulasi di bidang pengelolaan sumberdaya perikanan maka akan mendukung kelestarian sumberdaya perikanan di wilayah yang diteliti (skor baik = 2; buruk = 0).

Atribut pendapatan penangkapan menunjukkan bahwa semakin besar persentase/bagian pendapatan nelayan dari total pendapatan keluarga berasal dari usaha perikanan maka semakin tinggi tingkat kepedulianannya terhadap upaya pelestarian atau keberlanjutan pengelolaan sumberdaya perikanan (skor baik = 2; buruk = 0). Sedangkan, atribut partisipasi keluarga menunjukkan bahwa semakin banyak anggota keluarga yang terlibat dalam usaha perikanan, maka semakin tinggi perhatian akan diberikan kepada keberlanjutan pengelolaan sumberdaya perikanan (skor baik = 4; buruk = 0).

Penyusunan skor di atas dilakukan berdasarkan acuan-acuan yang telah dibuat melalui literatur maupun judgment dari penulis dengan asumsi-asumsi dan dasar-dasar ilmiah. Skor yang diperoleh kemudian dimasukkan ke dalam
program MS-excel dengan template sosial yang telah dipersiapkan sebelumnya, kemudian di-running sehingga diperoleh nilai multidimensional scaling dari RAPFISH yang lebih dikenal dengan indeks keberlanjutan. Pengukuran nilai indeks keberlanjutan perikanan pada metode RAPFISH untuk dimensi sosial ini adalah sama seperti yang telah disajikan pada bab sebelumnya yaitu dengan menggunakan reference dari bad (buruk) sampai good (baik) dalam selang 0-100.

Selang indeks keberlanjutan tersebut yaitu selang 0-25 dalam status buruk, selang 26-50 dalam status kurang, selang 51-75 dalam status cukup dan selang 76-100 dalam status baik.

Dalam aplikasi RAPFISH pada penelitian ini, pendekatan diatas mengikuti tiga tahapan yang dilakukan oleh Purnomo et al. (2002) sebagaimana diuraikan pada Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi). Selanjutnya atribut-atribut yang sensitif atau yang paling berpengaruh terhadap kinerja baik buruknya kinerja pada dimensi sosial ini, yang akan ditunjukkan melalui hasil analisis leverage dalam software RAPFISH. Hasil ini kemudian diuji kembali melalui catatan lapang atau data yang relevan lainnya, untuk mempertajam akurasi hasil running program RAPFISH.

7.3 Hasil

7.3.1 Kondisi masing-masing atribut keberlanjutan sosial

Pada bagian ini diuraikan kondisi aktual dari atribut keberlanjutan dari dimensi sosial sekaligus dengan pemberian skor yang berkaitan dengan sumberdaya perikanan di Ternate dari keempat jenis perikanan pelagis terpilih. Atribut-atribut tersebut adalah sosialisasi penangkapan, sektor penangkapan, pengetahuan lingkungan, pendatang baru, tingkat pendidikan, status konflik, pengaruh nelayan, pendapatan penangkapan, dan pastisipasi keluarga. Sebelumnya atribut tersebut secara berurutan diuraikan sebagai berikut.

Sosialisasi penangkapan

Aktivitas perikanan pole and line, purse seine, rawai tuna, dan pancing tambang yang ada di Ternate, melibatkan sejumlah orang dalam melakukan penangkapan ikan. Orang-orang yang dilibatkan ini antara lain adalah nakhoda, juru mesin, dan ABK/nelayan. Dalam operasi penangkapan ikan khususnya yang
berhubungan dengan peralatan hanya sebagian kecil saja yang dilakukan sendiri oleh pemilik peralatan atau kapal, khususnya dalam pekerjaan teknis operasi penangkapan.

Pada perikanan pole and line, dan purse seine di Ternate terdapat sebagian nelayan yang mengoperasikan peralatan penangkapan ikan secara bersama atau kelompok. Namun, nelayan pada dua aktivitas perikanan ini bekerja secara individual sesuai dengan tugas masing-masing dalam usaha yang digerakkan oleh pemilik kapal/alat (skor dua). Sementara pada perikanan rawai tuna dan pancing tonda, nelayan bekerja baik dalam hal pengoperasian alat penangkapan maupun dalam hal teknis penangkapan, sebagian besar dilakukan secara kekeluargaan antara nelayan dan pemilik kapal/alat (skor satu).

2) Pendatang baru dalam perikanan

Data penambahan jumlah nelayan yang berkecimpung pada penangkapan ikan di dasarkan pengelompokkan berdasarkan alat tangkap di Ternate dalam 5 tahun terakhir belum sempurna. Secara spesifik penambahan jumlah nelayan menurut jenis alat tangkap dalam setiap tahun belum tersajikan, sehingga penulis menggunakan data jumlah RTP dan jumlah kapal untuk mengetahui penambahan pendatang baru dalam perikanan ini. Dalam hal ini, untuk memenuhi kriteria dalam atribut pendatang baru dalam RAPFISH ini, penulis menggunakan data 5 tahun terakhir yang dinilai memenuhi syarat keakuratan yaitu dari tahun 2005 sampai tahun 2009.

Secara umum, perkembangan jumlah RTP dan jumlah kapal di Ternate nampak bervariasi menurut waktu dan jenis atau bobot (GT). Berdasarkan Tabel 10 pada Bab 4 (Keragaan pembangunan perikanan tangkap di Ternate), jumlah RTP rata-rata per tahun di Ternate mengalami sedikit penurunan sebesar 2,67%. Penurunan RTP ini disebabkan oleh adanya beberapa RTP yang mengalihkan pekerjaannya menjadi tenaga kuli bangunan akibat kapal/perahu dan alat tangkap yang mereka gunakan telah mengalami kerusakan sehingga tidak dapat berproduksi lagi. Selanjutnya, berdasarkan Tabel 11 pada bagian yang sama, secara umum jumlah jenis kapal penangkap ikan rata-rata pertahun menurun sebesar 4,26%. Namun, jika dilihat menurut jenis atau bobot, peningkatan jumlah

Dengan demikian, sesuai hasil perhitungan perkembangan pendatang baru (akibat penambahan jumlah kapal) menurut atribut keberlanjutan yang dianalisis maka untuk perikanan pole and line dan purse seine diberi skor tiga (> 30%), dan untuk rawai tuna dan pancing tonda diberi skor nol (< 10%).

Sektor penangkapan

Dalam atribut ini, proporsi jumlah nelayan terhadap jumlah penduduk pilih menurut wilayah administratif setingkat kota dimana mereka bermukim. Hal ini disebabkan karena nelayan yang melakukan penangkapan dengan keempat jenis perikanan pelagis ini tersebar hampir merata di seluruh wilayah pesisir Kota Ternate. Selain itu menurut data yang ada, perbandingan tersebut berlaku keseluruhan untuk semua jenis kegiatan perikanan yang terlibat dalam sektor penangkapan.

Dalam Tabel 10, menunjukkan perbandingan jumlah nelayan/RTP dengan jumlah penduduk Kota Ternate dalam lima tahun terakhir berkisar rata-rata 0,27%. Untuk itu, sesuai kualifikasi dalam analisis RAPFISH, proporsi nelayan tuk semua kegiatan perikanan yang dianalisis dikenakan skor nol (< 10%).

Pengetahuan lingkungan

Berdasarkan beberapa dialog dengan nelayan pole and line, purse seine, rawai tuna, dan pancing tonda, tersirat bahwa secara informal nelayan sudah memiliki pengetahuan secara umum menyangkut masalah-masalah perikanan, berapa aspek yang berkenaan dengan sumberdaya ikan dimana mereka melakukan operasi penangkapan ikan, dan ekosistem lingkungan laut.
Pengetahuan tersebut antara lain adalah hal-hal yang berkenaan dengan bagaimana menjaga sumberdaya ikan agar dapat terus menangkap ikan, dan hal-hal apa yang dapat merusak lingkungan seperti **illegal fishing**, pencemaran, buangan sampah, kerusakan terumbu karang, dan alat tangkap ikan yang merusak (bom dan racun), namun hanya garis-garis besarnya saja. Dengan demikian, tingkat pengetahuan lingkungan dari nelayan ini belum bisa dikategorikan banyak, sehingga skor pengetahuan lingkungan untuk para nelayan **pole and line**, **purse seine**, rawai tuna, dan pancing tonda adalah beberapa (skor satu).

5) **Tingkat pendidikan**

Pendidikan formal para nelayan umumnya merupakan salah satu cara untuk mengetahui seberapa jauh mereka dapat menyerap informasi-informasi yang berhubungan dengan pekerjaan yang digeluti. Selain itu, tingkat pendidikan ini sangat penting dalam hal menerima teknologi-teknologi yang berkaitan dengan akibat kemajuan ilmu pengetahuan perikanan dan kelautan.

Berasal dari responden 72 orang nelayan **pole and line**, 78 orang nelayan **purse seine**, 18 orang nelayan rawai tuna, dan 24 orang nelayan pancing tonda menunjukkan bahwa tingkat pendidikan yang dimilikinya masih tergolong rata-rata relatif rendah. Dalam wawancara dengan responden, nelayan dari keempat jenis perikanan ini dominan hanya mengalami pendidikan dasar dalam tingkat SD dan SLTP yaitu untuk **pole and line** sebesar 70,97%, **purse seine** sebesar 83,19%, rawai tuna sebesar 90,63%, dan pancing tonda sebesar 96,08% atau secara keseluruhan untuk keempat jenis perikanan ini sebesar 85,21% (Tabel 67).

Tabel 67
Klasifikasi tingkat pendidikan formal nelayan **pole and line**, **purse seine**, rawai tuna, dan pancing tonda di Ternate.

<table>
<thead>
<tr>
<th>Tingkat pendidikan</th>
<th>Responden nelayan per alat tangkap (%)</th>
<th>Komposisi pendidikan responden (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pole and line</td>
<td>Purse seine</td>
</tr>
<tr>
<td>SD</td>
<td>44,09</td>
<td>45,13</td>
</tr>
<tr>
<td>SLTP sederajat</td>
<td>26,88</td>
<td>38,05</td>
</tr>
<tr>
<td>SLTA sederajat</td>
<td>24,73</td>
<td>10,62</td>
</tr>
<tr>
<td>Akademi/S1 +</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Dengan demikian, tingkat pendidikan nelayan yang ditunjukan oleh responden kegiatan perikanan **pole and line**, **purse seine**, rawai tuna, dan pancing tonda di
Ternate tergolong relatif rendah yaitu dominan tingkat pendidikan SD dan SLTP.

Jumlah penduduk Kota Ternate berdasarkan tamatan tingkat pendidikan formal tertinggi sebanyak 46.000 orang. Penduduk yang terbesar menamatkan pendidikan adalah SD sebesar 19.867 orang atau 43,19% dari keseluruhan jumlah penduduk yang menamatkan pendidikan di semua tingkat pendidikan formal. Kemudian disusul oleh sarjana/akademi (9.788 orang atau 21,28%), SLTA (8.181 orang atau 17,78%), dan SLTP sebanyak 8.164 atau 17,75%. (BPS Kota Ternate 2009). Dengan demikian, tingkat pendidikan formal penduduk di Kota Ternate juga tergolong relatif rendah yaitu masih didominasi oleh tingkat pendidikan SD dan SLTP (60,94%).

Berdasarkan kedua perbandingan tingkat pendidikan tersebut dapat dikatakan bahwa proporsi nelayan yang mengikuti/menyelesaikan pendidikan formal sama dengan proporsi penduduk yang menyelesaikan pendidikan formal di tingkat didomisional oleh tingkat pendidikan SD dan SLTP (skor 1).

Status konflik

Konflik kepentingan pemanfaatan sumberdaya perikanan merupakan bagian dari dinamika kehidupan nelayan. Hal ini dapat terjadi karena kepemilikan sumber daya ikan di laut, dipahami selama ini bersifat common property (milik bersama). Berdasarkan wawancara, konflik antar nelayan terjadi pada nelayan pole and line, dan purse seine. Secara khusus, penyebab konflik yang terjadi di kedua nelayan perikanan ini yaitu dalam hal perebutan daerah penangkapan ikan (rumpon), dimana nelayan pole and line dan purse seine terkadang menangkap di daerah sekitar rumpon milik nelayan gillnet. Demikian punya konflik antara nelayan purse seine dan pihak syahbandar pelabuhan Ahmad Yani Ternate, dan nelayan dengan pihak transportasi antar pulau Ternate ke Jailolo. Namun, untuk nelayan rawai tuna diinformasikan belum pernah terjadi. Dengan demikian, untuk status konflik nelayan pole and line, purse seine dan pancing tonda dinilai dengan skor satu dan untuk nelayan rawai tuna dinilai dengan skor nol.

Pengaruh nelayan

Pengaruh nelayan pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate dalam proses berdemokrasi dalam rangka penyusunan regulasi,
secara umum diamati hampir tidak ada baik menyangkut usaha perikanan, produktivitas kapal ikan, maupun yang berhubungan dengan prinsip-prinsip dan arahan kebijakan pengelolaan perikanan di daerah dan nasional. Ini terjadi baik karena sistem yang berlaku dalam penyusunan dan penetapan regulasi, ataupun karena berbagai keterbatasan nelayan. Untuk itu, dapat dikatakan bahwa pengaruh nelayan secara langsung terhadap kehadiran regulasi-regulasi yang menyangkut kebijakan pengelolaan perikanan langsung maupun tidak langsung, hampir dapat dikatakan tidak ada. Dengan demikian, atribut pengaruh nelayan pada perikanan *pole and line*, *purse seine*, rawai tuna, dan pancing tonda di Ternate ini dikenakan skor nol.

8) Pendapatan penangkapan

Menurut wawancara, terdapat sebagian nelayan *pole and line*, *purse seine*, rawai tuna, dan pancing tonda di Ternate yang memperoleh sumber pendapatan lain yang dikategorikan sebagai pendapatan tambahan keluarga nelayan, selain pendapatan yang bersumber dari pendapatan yang diperoleh sistem bagi hasil sebagai ABK kapal ikan. Jika kedua sumber pendapatan ini dipadukan maka dapat diartikan sebagai keseluruhan pendapatan yang diperoleh keluarga.

Sebagaimana diuraikan dalam Bab 6 (Keberlanjutan perikanan pelagis pada dimensi ekonomi), pendapatan yang diperoleh dari sistem bagi hasil untuk nelayan *pole and line* adalah rata-rata sebesar Rp. 1.198.717,00, nelayan *purse seine* rata-rata sebesar Rp. 1.125.000,00, nelayan rawai tuna rata-rata sebesar Rp. 3.720.000,00, dan nelayan pancing tonda rata-rata sebesar Rp. 886.000,00.

Sumber pendapatan tambahan lain dari keluarga nelayan dimaksud, berasal dari pendapatan ibu-ibu nelayan (istri) yang bekerja sebagai penjual ikan biasa (modal kecil) dan ibu-ibu pedagang dan atau *dibo-dibo* yang bermodal besar (Munaf 2004). Untuk ibu-ibu pedagang ikan, ikan yang dijual adalah ikan jatahan suami mereka yang diperoleh dari kapal yang sebenarnya diperuntukan untuk ikan konsumsi keluarga. Dalam hal ini, sebagian ikan dikonsumsi oleh keluarga dan sebagian lain dijual untuk mendapat pendapatan tambahan. Informasi yang diperoleh menyatakan bahwa pendapatan dari ibu-ibu pedagang ikan yang berasal dari jatahan suaminya yang bekerja sebagai ABK kapal yaitu rata-rata sekitar Rp.
193

50.000,00 per hari penjualan, dimana pendapatan ini digunakan cukup untuk membeli kebutuhan makan harian, misalnya sayur dan bumbu rempah-rempah. Pendapatan ini tidak merata setiap hari, tergantung dari banyaknya jatah yang diperoleh oleh suami mereka setiap selesai pendaratan ikan di pelabuhan.

Untuk ibu-ibu atau istri nelayan yang berprofesi sebagai dibo-dibo (yang mempunyai modal besar), mereka membeli ikan dari kapal ikan dan kemudian menjual kembali ikan tersebut kepada pedagang-pedagang ikan di pasar ikan. Jumlah pendapatan ibu-ibu (dibo-dibo) yang beraktivitas di PPN Ternate di Bastiong dan PPI Dufa-dufa bervariasi antara Rp. 50.000,00 sampai Rp. 200.000,00 per hari atau berkisar rata-rata Rp. 2.500.000 per bulan. Pendapatan ini tergantung dari banyaknya jatah yang diperoleh, pendapatan mereka akan bertambah, namun jika sedikit maka pendapatan mereka berkurang.

Selain itu, sumber pendapatan lain yang dikategorikan sebagai pendapatan tambahan juga adalah bersumber dari pekerjaan sampingan nelayan sebagai kuli bangunan/tukang harian, berkebun, dagang “warung nasi/kios rokok”, dan menyewa perahu milik pribadi untuk wisata pemancingan, jika kondisi tidak memungkinkan untuk melaut.

Kontribusi pendapatan yang bersumber dari usaha penangkapan ikan (sistem bagi hasil) jika diperhadapkan dengan keseluruhan pendapatan yang diperoleh keluarga maka kontribusi pendapatan yang bersumber dari pendapatan tambahan dinilai cukup merata atau malah lebih besar dibandingkan dengan pendapatan yang diperoleh dari usaha penangkapan ikan yaitu yang berasal dari pekerjaan suami. Keadaan ini berlaku pada sebagian nelayan sebagai kuli bangunan/tukang harian, berkebun, dagang “warung nasi/kios rokok”, dan menyewa perahu milik pribadi untuk wisata pemancingan, jika kondisi tidak memungkinkan untuk melaut.

Partisipasi keluarga

Partisipasi keluarga dalam mendukung usaha perikanan memang sangat penting untuk mendukung pendapatan suami sebagai kepala keluarga. Dalam
beraktivitas penangkapan ikan pada umumnya di Ternate, sebagaimana diuraikan sebelumnya terkadang ditemukan adanya peran anggota keluarga, khususnya untuk memasarkan hasil tangkapan (Munaf 2004).

Nelayan pole and line, purse seine, dan rawai tuna, yang berperan dalam proses penangkapan ikan, umumnya bukanlah pemilik kapal dan alat penangkapan ikan, sehingga penjualan dan/atau pemasaran ikan hasil tangkapan tidak dilangani oleh nelayan. Sebagian besar penjualan dan pemasaran hasil tangkapan dari hasil usaha kapal pole and line, purse seine, dan rawai tuna, dilakukan oleh pemilik kapal atau yang ditugaskannya, baik anggota keluarga maupun orang lain yang bekerjaJakannya. Pemasaran hasil tangkapan dari hasil usaha kapal pancing tonda dilakukan sendiri oleh keluarga yang juga berperan sebagai pemilik kapal.

Selain itu, hasil penangkapan ikan dipasarkan tidak melalui proses pengolahan, melainkan sebagian besar langsung dipasarkan dalam bentuk mentah (Tabel 20). Dengan demikian, pada kriteria dalam teknik RAFFISH, atribut partisipasi keluarga untuk nelayan pole and line, purse seine, dan rawai tuna dikenakan skor satu (sangat sedikit), sedangkan partisipasi keluarga untuk nelayan pancing tonda dikenakan skor empat (banyak).

7.3.2 Status keberlanjutan perikanan pelagis dimensi sosial

Nilai skor yang terdapat pada dimensi sosial selanjutnya dianalisis menggunakan metode RAPFISH. Output yang diperoleh dengan metode RAPFISH pada dimensi sosial menunjukkan nilai indeks keberlanjutan perikanan pelagis secara sosial sebagaimana disajikan pada Tabel 68 dan Lampiran 6.

Nilai ini yang akan menentukan posisi relatif dari setiap kegiatan perikanan terhadap ordinasi yang berada pada kisaran baik (good) dengan nilai 100, buruk (bad) dengan nilai nol. Selanjutnya jika nilai dimensi sosial pada Tabel 68 tersebut di plotkan dalam gambar ordinasi, maka akan nampak seperti yang dapat dilihat sebagaimana Gambar 17.
Tabel 68 Nilai indeks dan status keberlanjutan setiap perikanan pelagis pada dimensi sosial di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Kegiatan Perikanan Pelagis</th>
<th>Indeks Keberlanjutan Perikanan</th>
<th>Status Keberlanjutan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pole and line</td>
<td>47,99</td>
<td>Kurang</td>
</tr>
<tr>
<td>2.</td>
<td>Purse seine</td>
<td>46,12</td>
<td>Kurang</td>
</tr>
<tr>
<td>3.</td>
<td>Rawai tuna</td>
<td>50,32</td>
<td>Cukup</td>
</tr>
<tr>
<td>4.</td>
<td>Pancing tonda</td>
<td>60,23</td>
<td>Cukup</td>
</tr>
<tr>
<td></td>
<td>Rata-rata indeks</td>
<td>51,17</td>
<td>Cukup</td>
</tr>
</tbody>
</table>

Gambar 17 Posisi status keberlanjutan perikanan pelagis di Ternate pada dimensi sosial.
(Keterangan: PL= pole and line, PS= purse seine, RT= rawai tuna, PT= pancing tonda)

Analisis ordinasi dalam dimensi sosial dengan jumlah iterasi sebanyak (dua) kali, menghasilkan nilai kuadrat korelasi (R^2) dan nilai stress (S). Nilai stress mencerminkan ketepatan (goodness of fit) dalam multi-dimensional scaling (MDS), yang menunjukkan ukuran seberapa tepat konfigurasi dari satu titik dapat mencerminkan data aslinya. Nilai stress yang rendah menunjukkan goodness fit berkategori sempurna (perfect), sementara nilai stress yang tinggi menunjukkan kondisi sebaliknya. Dengan demikian, analisis dimensi...
soial dalam penelitian ini menunjukkan kondisi goodness of fit, mengingat nilai stress yang diperoleh adalah sebesar 14,72 persen (< 25 %). Beberapa nilai statistik yang diperoleh dari MDS dalam RAPFISH pada dimensi sosial dapat dilihat pada Tabel 69.

Tabel 69 Nilai statistik yang diperoleh dari hasil analisis RAPFISH pada dimensi sosial

<table>
<thead>
<tr>
<th>Atribut Statistik</th>
<th>Nilai Statistik</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress</td>
<td>0,1472</td>
<td>14,72</td>
</tr>
<tr>
<td>R^2</td>
<td>0,9432</td>
<td>94,32</td>
</tr>
<tr>
<td>Jumlah iterasi</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Berdasarkan Tabel 69, koefisien determinasi (nilai kepercayaan) atau R^2 untuk dimensi sosial bernilai lebih besar 0,90. Hasil estimasi nilai proporsi ragam data yang dapat dijelaskan oleh teknik analisis ini, terindikasi memadai.

Sementara analisis yang dituju untuk melihat tingkat kestabilan hasil analisis ordinasi dilakukan dengan simulasi Monte Carlo. Simulasi ini pada hakekatnya dilakukan untuk melihat tingkat gangguan (perturbation) terhadap nilai ordinasi sehingga dapat diketahui seberapa jauh hasil analisis dapat dipercaya (Spence and Yang 1978 yang dikutip dalam Purnomo et al., 2002), dan dilakukan dengan iterasi sebanyak 30 kali. Hasil simulasi Monte Carlo untuk dimensi sosial dapat dilihat pada Gambar 18.

Analisis sensitivitas pada dimensi sosial dengan metode analisis leverage pada RAPFISH memperlihatkan bahwa atribut fisher influence (pengaruh nelayan), fishing sector (sektor penangkapan), dan conflict status (status konflik) merupakan atribut yang sangat berpengaruh terhadap keberlanjutan perikanan pelagis di Ternate (Gambar 19). Gambar ini menunjukkan bahwa ketiga atribut tersebut nampak lebih tinggi dibandingkan dengan atribut-atribut lainnya.
1. **Leverage of Attributes**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Root Mean Square Change in Ordination when Selected Attribute Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>fishing income</td>
<td>3.00</td>
</tr>
<tr>
<td>conflict status</td>
<td>3.83</td>
</tr>
<tr>
<td>environmental knowledge</td>
<td>4.54</td>
</tr>
<tr>
<td>new entrants into the fishery</td>
<td>4.63</td>
</tr>
<tr>
<td>socialisation of fishing</td>
<td>4.87</td>
</tr>
</tbody>
</table>

Gambar 18 Kestabilan nilai ordinasi hasil RAPFISH dengan Monte Carlo pada dimensi sosial. (Ket.: biru= pole and line, merah muda= purse seine, kuning= rawai tuna, biru muda= pancing tonda)

Gambar 19 Hasil analisis Leverage dari atribut pada dimensi sosial
7.4 Pembahasan

Dengan iterasi atau pengulangan perhitungan sebanyak 2 (dua) kali, perolehan nilai indeks keberlanjutan dari keempat jenis kegiatan perikanan ini diplot dalam peta ordinasi status keberlanjutan 0–100 sebagaimana terlihat pada Gambar 17. Pengujian kestabilan nilai ordinasi dari RAPFISH dengan simulasi Monte Carlo menunjukan bahwa walaupun kestabilannya secara sosial telah sedikit mengalami gangguan (perturbation), namun pancaran plot yang melebar berada pada jarak yang tidak jauh dan saling berimpit dengan plot nilai ordinasi indeks keberlanjutan.

Untuk itu dapat dikatakan berada pada posisi yang stabil (Gambar 18). Status perikanan pole and line terordinasi sekitar 48, sedangkan untuk purse seine, rawai tuna, dan pancing tonda, masing-masing berada pada nilai 46, nilai 50, dan sekitar nilai 62. Posisi yang relatif sama ini menunjukkan bahwa dalam kesalahan dalam pembuatan skor pada setiap atribut dan kesalahan prosedur
metode analisis sangat kecil dimana hasil analisis *Monte Carlo* ini mendukung akurasi penentuan ordinasi status keberlanjutan yang ditelai.

Perhitungan nilai kuadrat korelasi (R^2) lebih besar dari 90% dan nilai stress (S) lebih kecil dari 20% (Tabel 69) menunjukkan bahwa secara ilmiah, disatu sisi nilai R^2 ini sudah termasuk tinggi dan di sisi lain nilai stress (S) yang tergolong rendah menunjukkan analisis multi dimensional ini dapat dipercaya dan bertanggungjawabkan karena hasil pengukuran konfigurasi dari suatu titik secara tepat dapat mencerminkan data aslinya. Sesuai dengan Tabel 8, nilai stress ini berarti analisis keberlanjutan dimensi ekonomi dalam penelitian ini menunjukkan kondisi *goodness of fit* dengan kualifikasi *fair* atau cukup. Dalam model RAPFISH, nilai stress yang diinginkan adalah lebih kecil 25 persen (Fauzi dan Anna 2005).

Penentuan ordinasi status keberlanjutan diperoleh berdasarkan penilaian atribut-atribut yang digunakan. Melalui perhitungan dengan analisis *Leverage*, menghasilkan tingkat sensitivitas dari setiap atribut dan sekaligus menunjukkan atribut yang paling sensitif dalam mempengaruhi atau berkontribusi pada tingkat keberlanjutan perikanan pelagis menurut dimensi sosial. Sebagaimana terlihat pada Gambar 19, standard *error* dari kesepuluh atribut dimensi sosial bervariasi antara 1,28% dan 4,63% kontribusinya pada ordinasi status keberlanjutan. Kisaran nilai pengungkitan atribut ini berada antara 0,27% sampai 7,18% dimana menurut Kavanagh dan Pitcher (2004), atribut yang mempengaruhi ordinasi lebih dari 8% tidak dapat lagi menjadi indikator yang menunjukkan situasi multivariate yang sesungguhnya.

Hasil keluaran dari analisis sensitivitas ini juga menunjukkan bahwa atribut *fisher influence* (pengaruh nelayan), *fishing sector* (sektor penangkapan), dan *conflict status* (status konflik) merupakan atribut yang sangat berpengaruh hadap keberlanjutan perikanan pelagis dari sisi sosial di Ternate. Perubahan dikit saja pada atribut-atribut ini dapat berdampak besar terhadap nilai indeks keberlanjutan pada dimensi sosial ini.

Dengan melihat hasil rata-rata indeks keberlanjutan dimensi sosial, ke-
pat jenis perikanan pelagis yang telaah sudah berada pada kisaran yang dekat
Hok Cipta Dilindungi Undang-Undang
2. Hak Cipta Dilindungi Undang-Undang
3. Hak Cipta Dilindungi Undang-Undang

Sejalan dengan kebijakan lain yang diperlukan menyangkut aspek sosial ini, yaitu dengan meningkatkan keterlibatan nelayan dengan pengetahuan tradisionalnya dalam berdemokrasi untuk merumuskan suatu kebijakan pengelolaan perikanan. Di sisi lain, diperlukan suatu strategi dalam meningkatkan kualitas sumberdaya manusia (masyarakat nelayan) melalui seminar, lokakarya dan pertemuan-pertemuan ilmiah sehingga dalam proses perumusan regulasi daerah baik menyangkut usaha perikanan, produktivitas kapal ikan, maupun yang berkaitan dengan prinsip-prinsip dan arahan kebijakan pengelolaan perikanan di daerah dapat dilibatkan. Dalam kebijakan peningkatan sumberdaya manusia ini sebaiknya diikuti dengan kebijakan sosialisasi informasi-informasi yang berkaitan dengan batas-batas wilayah pemanfaatan menurut daerah dan etika dalam pemanfaatan sumberdaya secara bersama sehingga dapat memperkecil terjadinya konflik antar nelayan dalam memanfaatkan sumberdaya perikanan tersebut.

7.5 Kesimpulan

(1) Indeks keberlanjutan pada dimensi sosial kegiatan perikanan pancing tonda dan rawai tuna yang dioperasikan di perairan Ternate memiliki nilai yang terkategorisasi status cukup berkelanjutan, sedangkan perikanan purse seine dan pole and line yang memiliki nilai indeks yang terkategorisasi kurang berkelanjutan.

(2) Secara umum, status keberlanjutan dimensi sosial terhadap keempat jenis perikanan pelagis yang dikaji mempunyai rata-rata nilai indeks keberlanjutan status 5 (cukup berkelanjutan), namun dalam pengembangannya diperlukan...
suatu perbaikan dalam peningkatan status keberlanjutan menuju yang lebih baik lagi. Hal ini disebabkan karena nilai indeks keberlanjutan keempat jenis perikanan pelagis di sisi sosial ini telah mendekati batasan menuju status kurang berkelanjutan. Pengembangan yang berpeluang dilakukan melalui suatu kebijakan yang diarahkan untuk perbaikan nilai atribut-atribut keberlanjutan perikanan pelagis pada dimensi sosial terutama pada atribut fisher influence (pengaruh nelayan), fishing sector (sektor penangkapan), dan conflict status (status konflik).
1. Hak Cipta Dilihat Sebagai hak yang dapat dilakukan tanpa syarat dan kewajiban tambahan.
2. Hak cipta ini meliputi hak untuk mendapatkan pembahagian paten, penciptaan kerja ilmiah, penyusunan laporan, perubahan konten atau tradisi pada buku.

Bogor Agricultural University

Hak cipta milik IPB (Institut Pertanian Bogor)
8 KEBERLANJUTAN PERIKANAN PELAGIS DI TERNATE PADA DIMENSI TEKNOLOGI

8.1 Pendahuluan

Dalam perkembangan eksploitasi sumberdaya ikan, terindikasi telah jadi perubahan dramatis sejak beberapa tahun terakhir sebagai akibat kemajuan bidang teknologi. Pengembangan teknologi dibidang penangkapan pada umumnya bertujuan untuk meningkatkan produktivitas penangkapan untuk memenuhi permintaan konsumsi yang terus meningkat baik kebutuhan pasar lokal maupun internasional.

Selain itu, pengembangan ini terjadi dengan tujuan untuk meningkatkan saingan nelayan karena semakin terbatasnya sumberdaya ikan seperti pada beberapa daerah di Indonesia yang pada akhirnya berdampak hadap menurunnya ketersediaan sumberdaya ikan. Persaingan dalam teknologi penangkapan biasanya ditandai dengan dioperasikannya alat penangkapan ikan yang makin produktif namun kurang ramah lingkungan bahkan bersifat destruktif, dan dampak lebih jauh biasanya menimbulkan konflik antar nelayan apabila hal ini dilakukan di wilayah penangkapan yang sama.

Teknologi penangkapan ikan yang ramah lingkungan (TPIRL) memiliki beberapa kriteria sebagaimana telah dijelaskan oleh Bengen (2000), yaitu selektivitas tinggi, tidak destruktif terhadap habitat, tidak membahayakan nelayan (operator), menghasilkan ikan bermutu baik, produk tidak membahayakan sehatan konsumen, minimum hasil tangkapan yang terbuang, dampak minimum terhadap keanekaragaman sumberdaya hayati, tidak menangkap species yang dimudahi atau terancam punah, dan diterima secara sosial. Oleh karena lebih jauh dijelaskannya bahwa kriteria untuk kegiatan penangkapan ikan kelanjutan harus menerapkan TPIRL dan pertimbangan lain yang dapat endukung berbagai aspek keberlanjutan perikanan tangkap.

Untuk itu, kajian keberlanjutan perikanan pelagis pada dimensi teknologi sangat penting karena aplikasi teknologi dapat menggambarkan strata serapan
teknologi oleh masyarakat penggunanya. Pada sektor perikanan tangkap, aplikasi teknologi dapat juga menggambarkan skala usaha atau klaster perikanan tangkap disamping secara sosial dapat mengindikasikan etika operator perikanan dalam memanfaatkan sumberdaya ikan dan pada akhirnya, aplikasi teknologi yang tidak tepat dapat memicu terjadinya kerusakan lingkungan bahkan dapat menyebabkan konflik sosial antara nelayan. Ketentuan-ketentuan yang berkaitan dengan aplikasi teknologi dalam pemanfaatan sumberdaya ikan perikanan telah banyak dijelaskan dalam kode etik/penatalaksanaan perikanan yang bertanggungjawab (FAO 1995).

Tujuan penelitian ini adalah untuk mengukur status keberlanjutan perikanan pelagis dalam perspektif keberlanjutan menurut aspek teknologi di Ternate. Adapun tujuan spesifik dari penelitian ini adalah menentukan status keberlanjutan perikanan pelagis berdasarkan dimensi teknologi.

Manfaat yang diharapkan dari hasil penelitian ini adalah untuk mendapatkan gambaran dan informasi yang berkaitan dengan status perikanan pelagis pada dimensi teknologi, untuk dijadikan salah satu dasar didalam analisis dan pembahasan selanjutnya yaitu Bab 11, khususnya dalam hal pengambilan keputusan kebijakan daerah untuk memperbaiki keberlanjutan perikanan pelagis aspek teknologi.
8.2 Metode

Metode survei atau pengamatan langsung di lapangan adalah metode yang dipergunakan dalam penelitian ini. Dengan menggunakan daftar pertanyaan sebagai alat bantu, pengamatan dilakukan dalam rangka untuk mengumpulkan data. Survei lapangan dilakukan untuk mengumpulkan data/informasi dalam rangka pemberian skor pada atribut lama trip, tempat pendaratan, pengolahan pra-jual, penanganan di kapal, selektivitas alat tangkap, penggunaan FAD's, ukuran kapal, dan efek samping alat tangkap melalui wawancara langsung dengan nelayan alat bantu kuisioner dan pengamatan langsung di lokasi penelitian. Sementara pemberian skor pada atribut perubahan daya tangkap diperoleh melalui pelusuran pustaka. Pemilihan nelayan sebagai contoh (responden) dilakukan secara aksidensial (accidental sampling) berdasarkan pengelompokkan jenisgiatan perikanan pelagis atau alat tangkap yang dipergunakan untuk menangkap ikan, yaitu huate (pole and line), soma pajeko (purse seine), rawai tuna, dan pencing tonda. Jumlah responden untuk wawancara langsung dilakukan sama seperti pada Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi).

Penentuan indeks keberlanjutan teknologi perikanan pelagis dengan pendekatan RAPFISH dilakukan melalui sistematika yang telah ditentukan seperti telah diuraikan pada Bab 3 (Metode umum penelitian) dan Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi). Penentuan nilai indeks keberlanjutan teknologi pada perikanan pelagis di Ternate dimulai dengan pembuatan skor setiap atribut dimensi teknologi berdasarkan kondisi realita data di kedua sumber data di atas. Secara terpisah, atribut-atribut dalam dimensi teknologi beserta kriteria pemberian skor dapat dilihat pada Tabel 70 (RAPFISH Group UBC 2005).

<table>
<thead>
<tr>
<th>No.</th>
<th>Atribut</th>
<th>Skor</th>
<th>Kriteria pemberian skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lama trip</td>
<td>0; 1; 2; 3</td>
<td>Rata-rata hari setiap trip: < 1 hari (0); 2 – 4 (1); 5 - 7 (2); 8-10 (3); >10 hari (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Tempat pendaratan</td>
<td>0; 1; 2; 3</td>
<td>Tersebar (0); agak terpusat (1); terpusat (2); sedikit/tanpa mendarat (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Pengolahan pra-jual</td>
<td>0; 1; 2</td>
<td>Tidak (0); beberapa (1); banyak (2)</td>
</tr>
</tbody>
</table>

Tabel 70 Atribut keberlanjutan perikanan dimensi teknologi dan kriteria pemberian skor dalam analisis RAPFISH untuk perikanan pelagis di Ternate
<table>
<thead>
<tr>
<th>No.</th>
<th>Atribut</th>
<th>Skor</th>
<th>Kriteria pemberian skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Penanganan di kapal</td>
<td>0; 1; 2; 3</td>
<td>Tidak (0); beberapa (1); canggih (2); tangki hidup (3)</td>
</tr>
<tr>
<td>5.</td>
<td>Selektivitas alat tangkap</td>
<td>0; 2</td>
<td>Sedikit (0); beberapa (1); banyak (2) upaya yang dilakukan untuk meningkatkan</td>
</tr>
<tr>
<td>6.</td>
<td>Penggunaan FADs</td>
<td>0; 0,5; 1</td>
<td>Tidak (0); ada (1)</td>
</tr>
<tr>
<td>7.</td>
<td>Ukuran kapal</td>
<td>0; 1; 2; 3; 4</td>
<td>Rata-rata panjang kapal: < 5m (0); 5 – 10 m (1); 10 - 15m (2); 15 -20m (3); > 20m (4)</td>
</tr>
<tr>
<td>8.</td>
<td>Perubahan daya tangkap</td>
<td>0; 1; 2; 3</td>
<td>Dalam 5 tahun terakhir meningkat: tidak (0); sangat sedikit (1); sedikit (2); beberapa (3); banyak/cepat (4)</td>
</tr>
<tr>
<td>9.</td>
<td>Efek samping alat tangkap</td>
<td>0; 1; 2; 3</td>
<td>Tidak ada (0); beberapa (1); banyak (2); destruktif seperti dinamit, sianida, dan trawl (3)</td>
</tr>
</tbody>
</table>

Sumber: RAPFISH Group UBC (2005)

Dalam memudahkan penentuan skor dari masing-masing atribut di atas, Tabel 71 memberikan pengertian atau definisi dari masing-masing atribut teknologi.

<table>
<thead>
<tr>
<th>No.</th>
<th>Atribut</th>
<th>Definisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Waktu (hari)</td>
<td>Waktu (hari) yang dipakai untuk melakukan kegiatan operasi penangkapan ikan di laut</td>
</tr>
<tr>
<td>2.</td>
<td>Lokasi dimana</td>
<td>Lokasi dimana atau kemana nelayan mendaratkan hasil operasi penangkapan ikan.</td>
</tr>
<tr>
<td>3.</td>
<td>Pengolahan pra-jual</td>
<td>Ada tidaknya dilakukannya pengelolaan ikan seperti penggaraman dan pengeringan sebelum dilakukan penjualan</td>
</tr>
<tr>
<td>4.</td>
<td>Penanganan di kapal</td>
<td>Ada tidaknya dilakukannya penanganan terhadap ikan hasil tangkapan di atas kapal sebelum di daratkan</td>
</tr>
<tr>
<td>5.</td>
<td>Banyaknya peningkatan selektivitas alat tangkap</td>
<td>Banyaknya peningkatan selektivitas alat tangkap yang diupayakan, baik dari komponen-komponen alat maupun dalam penanganan operasional peralatan tangkap</td>
</tr>
<tr>
<td>6.</td>
<td>Ada tidaknya penggunaan FAD’s untuk membantu dalam penangkapan ikan</td>
<td>Ada tidaknya penggunaan FAD’s untuk membantu dalam penangkapan ikan</td>
</tr>
<tr>
<td>7.</td>
<td>Ukuran kapal</td>
<td>Ukuran secara kuantitatif besarnya ukuran kapal yang digunakan dalam penangkapan ikan</td>
</tr>
<tr>
<td>8.</td>
<td>Besaran perkembangan kemampuan menangkap ikan dilihat dari banyaknya penambahan kapal dan trip penangkapan dalam periode waktu tertentu</td>
<td>Besaran perkembangan kemampuan menangkap ikan dilihat dari banyaknya penambahan kapal dan trip penangkapan dalam periode waktu tertentu</td>
</tr>
<tr>
<td>9.</td>
<td>Ada tidaknya efek samping dalam pengoperasian alat penangkapan ikan</td>
<td>Ada tidaknya efek samping dalam pengoperasian alat penangkapan ikan</td>
</tr>
</tbody>
</table>
Sumber: Pitcher and Preikshot (2001)

Sementara dalam kaitannya dengan kondisi keberlanjutan, penggunaan atribut-atribut dalam dimensi teknologi ini mengandung suatu maksud dan penjelasan tertentu dalam mengevaluasi status keberlanjutan. Atribut lama trip menggambarkan bahwa kemampuan lama melaut secara tidak langsung menunjukkan kemampuan mengeksploitasi sumberdaya perikanan. Semakin singkat waktu melaut berarti semakin kecil kemampuan mengeksploitasi sumberdaya perikanan (skor baik = 0; buruk = 4).

Atribut tempat pendaratan menunjukkan bahwa tempat pendaratan yang menyebar atau berjumlah banyak secara langsung mempercepat waktu penurunanikan, dan dengan demikian meningkatkan keuntungan nelayan (skor baik = 0; buruk = 3). Sementara atribut pengolahan pra-jual mengartikan bahwa semakin baik penanganan ikan sebelum dijual maka semakin meningkatkan keuntungan nelayan (skor baik = 2; buruk = 0).

Atribut penanganan di kapal menggambarkan bahwa semakin baik penanganan ikan di atas kapal, maka semakin memperkecil terjadinya penurunan kualitas ikan pada saat akan didaratkan/dijual. Keadaan ini dapat meningkatkan keuntungan nelayan (skor baik = 3; buruk = 0). Adapun atribut selektivitas alat tangkap menunjukan bahwa peningkatan selektivitas penangkapan sangat terkait dengan efisiensi penggunaan sumberdaya perikanan (mengurangi tertangkapnya ikan non-target). Atribut ini ditujukan untuk mengidentifikasi banyaknya peningkatan selektivitas alat tangkap yang diupayakan, baik dari komponen-komponen alat maupun dalam penanganan operasional peralatan tangkap. Semakin banyak upaya yang dilakukan maka keberlanjutannya akan semakin baik (skor baik = 2; buruk = 0).

Atribut penggunaan FAD’s mengartikan bahwa penggunaan alat bantu penangkapan akan meningkatkan kemampuan mengeksploitasi sumberdaya perikanan. Hal ini berarti dapat meningkatnya risiko/ancaman terhadap keberlanjutan usaha perikanan (skor baik = 0; buruk = 1). Sementara atribut ukuran kapal menunjukan bahwa semakin besar ukuran kapal maka semakin ggi kemampuan eksploitasi sumberdaya perikanan dan sebaliknya jika semakin...
pendek ukuran kapal maka tingkat keberlanjutan akan semakin baik (skor baik = 0; buruk = 4).

Atribut perubahan daya tangkap menunjukkan bahwa semakin meningkatnya kemampuan alat tangkap yang digunakan oleh nelayan untuk menangkap ikan berarti semakin tinggi upaya eksploitasi sumberdaya perikanan sehingga dapat mengancam keberlanjutan pengelolaan sumberdaya perikanan (skor baik = 0; buruk = 4). Selanjutnya atribut efek samping alat tangkap mencerminkan bahwa dampak dari penggunaan alat-alat yang merusak ekosistem adalah meningkatnya risiko/ancaman terhadap keberlanjutan usaha perikanan (skor baik = 0; buruk = 3).

Penyusunan skor ini dilakukan berdasarkan acuan-acuan yang telah dibuat baik melalui litatur maupun judgment dari penulis dengan asumsi-asumsi dan dasar ilmiah. Skor yang diperoleh kemudian dimasukkan ke dalam program MS-Excel dengan template teknologi yang telah dipersiapkan sebelumnya, kemudian di-run sehingga diperoleh nilai multidimensional scaling dari RAPFISH yang dikenal dengan indeks keberlanjutan. Hasil interpretasi awal dari RAPFISH ini, kemudian dikaji kembali berdasarkan catatan lapang atau data yang relevan lainnya, untuk mempertajam akurasi hasil running program RAPFISH.

Kriteria nilai indeks keberlanjutan perikanan pelagis pada metode RAPFISH untuk dimensi teknologi ini adalah sama seperti yang telah disajikan pada Bab 5 sampai Bab 7 sebelumnya yaitu dengan menggunakan reference dari bad (buruk) sampai good (baik) dalam selang 0-100. Selang indeks keberlanjutan tersebut yaitu selang 0-25 dalam status buruk, selang 26-50 dalam status kurang, selang 51-75 dalam status cukup dan selang 76-100 dalam status baik.

Dalam aplikasi RAPFISH pada penelitian ini, pendekatannya dilakukan dengan mengikuti tahapan-tahapan yang dilakukan oleh Purnomo et al. (2002) sebagai bahan diuraikan pada Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi). Selanjutnya atribut-atribut yang sensitif atau yang paling berpengaruh terhadap tingkatan baik buruknya kinerja pengelolaan perikanan pada dimensi teknologi, nantinya ditunjukkan melalui hasil analisis leverage.
8.3 Hasil

8.3.1 Kondisi masing-masing atribut keberlanjutan teknologi

Pada bagian ini diuraikan kondisi aktual dari atribut keberlanjutan dari dimensi teknologi sekaligus dengan pemberian skor yang berkaitan dengan sumberdaya perikanan di Ternate dari ke-empat jenis perikanan pelagis terpilih. Atribut-atribut tersebut adalah lama trip, tempat pendaratan, pengolahan pra-jual, penanganan di kapal, selektivitas alat tangkap, penggunaan FAD’s, ukuran kapal, perubahan daya tangkap, dan efek samping alat tangkap. Kesembilan atribut tersebut secara berurutan diuraikan sebagai berikut.

Lama trip

Berdasarkan hasil pengamatan di lokasi, waktu (hari)/trip yang dipakai untuk semua alat tangkap untuk melakukan kegiatan operasi penangkapan ikan di laut berkurang satu sampai lima hari. Hal ini disebabkan karena lokasi daerah penangkapan ikan bagi nelayan-nelayan ini berada di laut sekitar Pulau Ternate, Maluku dan di selatan Ternate (di perairan sebelah barat Halmahera Selatan), jarak laut menuju arena tangkap di mana berlokasi di sekitar rumpon memerlukan waktu rata-rata 1-2 jam dan waktu ini tergantung rumpon mana yang akan dituju (ada istilah rumpon jauh dan rumpon dekat).

Umumnya operasi penangkapan ikan dengan pole and line kadang-kadang berlangsung lebih dari satu rumpon sehingga mulai dari keberangkatan sampai kembali untuk membongkar hasil penangkapan memerlukan waktu rata-rata 2 hari. Sementara operasi dengan menggunakan purse seine memerlukan waktu rata-rata 28 jam (>1 hari) dan memerlukan waktu kurang lebih 1 jam untuk menuju rumpon (Karman 2008). Adapun untuk rawai tuna (berasal dari Pulau Hiri) melakukan operasi penangkapan ikan rata-rata selama 5 hari, dengan waktu yang dibutuhkan untuk menuju lokasi penangkapan ikan selama 1 hari. Dengan waktu operasi penangkapan ikan dengan menggunakan pancing tonda adalah rata-rata 5 jam.

Dengan demikian skor untuk atribut ini pada perikanan pole and line dan purse seine adalah satu (2–4 hari), untuk alat tangkap rawai tuna adalah dua (5–7 hari), dan sementara untuk alat tangkap pancing tonda adalah nol (< 1 hari).
2) Tempat pendaratan

3) Pengolahan pra-jual

Hasil penangkapan ikan dikenal sebagai produk yang mudah rusak, bila tidak ditangani misalnya dengan menggunakan es. Produk ikan ini juga dapat ditransformasi melalui sejumlah teknik pengolahan, seperti penggaraman, pemindangan, pengasapan, dan pengeringan. Sesuai keadaan pemasaran produk yang hasilkan perikanan pole and line, purse seine, rawai tuna, dan pancing tonda di daerah ini, sebagian besar pengolahan pra-jual tidak dilakukan (Tabel 20). Ini berarti untuk atribut ini, keberlanjutannya digolongkan dalam skor nol.

4) Penanganan di kapal

5) Selektivitas alat tangkap

Peningkatan selektivitas penangkapan sangat terkait dengan efisiensi penggunaan sumberdaya perikanan (mengurangi tertangkapnya ikan non-target).
Alat tangkap *pole and line*, dan rawai tuna dioperasikan untuk menangkap jenis ikan tertentu saja. Jadi, keadaan selektivitasnya sudah terkait dengan teknik penangkapannya atau memiliki selektivitas yang tinggi dimana tergolong dapat dikatakan memiliki banyak upaya dalam meningkatkan selektivitas dalam penangkapan ikan (skor dua).

6) Penggunaan FADs (*Fish Aggregating Device’s*)

Operasi penangkapan ikan dengan menggunakan *pole and line*, *purse seine*, dan rawai tuna, umumnya didukung dengan ketersediaan peralatan untuk membantu baik dalam menemukan maupun dalam mengumpulkan kelompok ikan sarar tongkat. Selama ini, proses penangkapan ikan yang dilakukan menggunakan rumpon dan umpan. Sesuai hasil wawancara, setiap kapal yang melakukan operasi penangkapan ikan dengan *pole and line*, dan *purse seine* di beri, rata-rata memiliki 2 buah rumpon yang ditempatkan di kawasan air laut hingga di sekitar Pulau Batang Dua di Laut Maluku, dan di laut sebelah barat Pulau Halmahera. Adapun umpan diperoleh dari nelayan pengumpul ikan yang berada di Jailolo, Kabupaten Halmahera Barat (Karman 2008).
Berdasarkan pengamatan di lapangan, rumpon yang tersebar di Laut Maluku atau di sekitar Pulau Batang Dua sebagian besar bukan hanya milik nelayan yang berasal dari Ternate, melainkan justru dimiliki oleh nelayan Philipina dan nelayan dari Bitung Sulawesi Utara. Namun, dalam penggunaannya, rumpon-rumpon milik nelayan Philipina dapat dimanfaatkan secara bersama-sama dengan nelayan pole and line, purse seine, dan rawai tuna dari Ternate dan sekitarnya. Adapun nelayan pancing tonda, dalam menemukan maupun dalam mengumpulkan kelompok ikan sasaran tangkap tidak menggunakan alat bantu rumpon.

Dengan demikian, operasi penangkapan ikan dengan pole and line, purse seine, dan rawai tuna di Ternate pada dasarnya dibantu dengan rumpon dan umpan sebagai suatu FAD’s (skor 1), sedangkan operasi penangkapan ikan pancing tonda tidak dibantu dengan ketersediaan peralatan untuk membantu baik dalam menemukan maupun dalam mengumpulkan kelompok ikan sasaran tangkap (skor 0).

7) Ukuran kapal

Berdasarkan observasi di pelabuhan perikanan Dufa-dufa dan Bastiong, secara rata-rata kapal pole and line yang dioperasikan di Ternate mirip dengan ukuran kapal yang dioperasikan di Tidore yaitu berukuran panjang 12,7 dan lebar 2,7 m (Muksin 2006). Sementara rata-rata ukuran panjang dan lebar kapal purse seine di Ternate bervariasi. Menurut Karman (2008), rata-rata ukuran panjang kapal mini purse seine yang ada di Pulau Mayau berkisar antara panjang 12,90 m, dan lebar 2,50 m. Selanjutnya Irham (2008), mengatakan bahwa kapal mini purse seine (soma pajeko) yang beroperasi di perairan Provinsi Maluku Utara umumnya memiliki panjang 12,80–13,90 m, lebar 3,15–3,30 m. Pada jenis kapal rawai tuna, ukuran yang teridentifikasi pada nelayan di Pulau Hiri (sebelah utara Ternate) mempunyai panjang rata-rata sebesar 12,00-13,00 m dan lebar rata-rata 2,5–3,00 m. Untuk kapal pancing tonda berukuran panjang rata-rata 5,0 m dan lebar rata-rata 1,0 m. Dengan demikian skor untuk kapal pole and line, purse seine, dan rawai tuna adalah dua, sedangkan pancing tonda adalah satu.
8) Perubahan daya tangkap

Atribut kemampuan menangkap ini untuk melihat seberapa besar perkembangan kemampuan menangkap ikan dilihat dari banyaknya penambahan kapal dan trip penangkapan dalam periode waktu tertentu. Berdasarkan data yang ada baik di Dinas Kelautan dan Perikanan Kota Ternate maupun di Dinas Perikanan dan Kelautan Provinsi Maluku Utara, secara khusus tidak terakomodir penambahan kapal menurut jenis alat tangkap yang beroperasi di Ternate. Untuk itu, untuk memenuhi kriteria dalam atribut ini, maka digunakan data perkembangan banyaknya alat tangkap yang beroperasi di Ternate dengan asumsi bahwa perkembangan jumlah alat tangkap berkorelasi dengan penambahan kapal dan trip penangkapan, yang pada akhirnya dapat mengukur atribut perubahan daya tangkap ini.

Merangkum dari Tabel 12 dan Tabel 13 dalam Bab 4 (Keragaan pembangunan perikanan tangkap di Ternate), Tabel 72 menunjukkan perkembangan alat tangkap dan trip penangkapan dari alat tangkap *pole and line*, *purse seine*, rawai tuna, dan pancing tonda di Ternate. Jika dilihat dari alat tangkap, penambahan untuk *pole and line* sebanyak 1 unit alat tangkap per tahun, *purse seine* berkisar 4 unit per tahun, sedangkan untuk pancing tonda dalam empat tahun hanya ketambahan masing-masing 2 unit alat tangkap. Adapun untuk alat tangkap rawai tuna dalam lima tahun terakhir berkurang sebanyak 2 unit. Selanjutnya dari perkembangan trip penangkapan, untuk alat tangkap *pole and line* dalam lima tahun terakhir bertambah sebanyak 2.040 trip, *purse seine* sebanyak 3.822 trip, rawai tuna sebanyak 624 trip, dan pancing tonda sebanyak 600 trip.

<table>
<thead>
<tr>
<th>No</th>
<th>Alat Tangkap</th>
<th>Unit 2005</th>
<th>Unit 2009</th>
<th>Trip penangkapan 2005</th>
<th>Trip penangkapan 2009</th>
<th>Jumlah</th>
<th>Jumlah Trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pole and line</td>
<td>35</td>
<td>40</td>
<td>7.560</td>
<td>9.600</td>
<td>5</td>
<td>2.040</td>
</tr>
<tr>
<td>3.</td>
<td>Rawai tuna</td>
<td>14</td>
<td>12</td>
<td>1.680</td>
<td>2.304</td>
<td>(2)</td>
<td>624</td>
</tr>
<tr>
<td>4.</td>
<td>Pancing tonda</td>
<td>20</td>
<td>22</td>
<td>3.360</td>
<td>3.960</td>
<td>2</td>
<td>600</td>
</tr>
</tbody>
</table>

Berdasarkan Tabel 72 terlihat bahwa dari keempat jenis perikanan pelagis yang diukur, secara umum semuanya terjadi perubahan daya tangkap. Khusus data perkembangan trip penangkapan pada alat tangkap rawai tuna jika diperhadapkan dengan perkembangan jumlah alat tangkap, tetap terkesan bahwa telah terjadi peningkatan daya tangkap, walaupun terjadi penurunan jumlah alat tangkap dalam lima tahun terakhir.

Dengan demikian, sesuai kriteria skoring dalam teknik RAPFISH maka perkembangan perubahan daya tangkap yang terjadi untuk alat tangkap pole and line (skor dua), purse seine digolongkan beberapa (skor tiga), untuk alat tangkap rawai tuna dan pancing tonda digolongkan sangat sedikit (skor satu).

9) Efek samping alat tangkap

Sejauh ini, operasi penangkapan ikan dengan menggunakan pole and line, purse seine, rawai tuna, dan pancing tonda secara umum dipandang tidak menimbulkan efek samping, sebagaimana penangkapan ikan dengan peralatan seperti pukat trawl dan dengan cara membom atau menggunakan sianida. Penggunaan trawl atau bahan lainnya tersebut diketahui memiliki efek samping yang tidak diharapkan, antara lain seperti kerusakan habitat, pencemaran dan kelangsungan hidup populasi ikan.

Khusus pada operasi penangkapan ikan dengan menggunakan purse seine yang dipahami menangkap ikan yang bergerombol dan menghasilkan tangkapan ikan pelagis yang multi-species, terkadang juga menghasilkan tangkapan jenis ikan tuna dan cakalang yang berumur muda walaupun tidak diharapkan demikian. Dengan demikian, operasi penangkapan ikan dengan menggunakan purse seine mempunyai efek samping, walaupun sedikit dan tidak sepenuhnya merusak.

Untuk itu, sesuai dengan kriteria skoring dalam teknik RAPFISH maka alat tangkap pole and line, rawai tuna, dan pancing tonda digolongkan tidak memiliki efek samping (skor nol), sedangkan alat tangkap purse seine mengikisikan efek samping yang tergolong sedikit, jika dibandingkan dengan efek samping dari peralatan pukat trawl, pemboman ikan dan penggunaan sianida (skor satu).
8.3.2 Status keberlanjutan perikanan pelagis dimensi teknologi

Nilai skor yang terdapat pada dimensi teknologi selanjutnya dianalisis menggunakan metode RAPFISH. Output yang diperoleh dengan metode RAPFISH pada dimensi teknologi menunjukkan nilai indeks keberlanjutan perikanan pelagis secara teknologi sebagaimana disajikan pada Tabel 73 dan Lampiran 6. Nilai ini yang akan menentukan posisi relatif dari setiap kegiatan perikanan terhadap ordinasi yang berada pada kisaran baik (good) dengan nilai 100, dan buruk (bad) dengan nilai 0.

Tabel 73 Nilai indeks dan status keberlanjutan setiap perikanan pelagis pada dimensi teknologi di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Kegiatan Perikanan Pelagis</th>
<th>Indeks Keberlanjutan perikanan</th>
<th>Status Keberlanjutan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pole and line</td>
<td>45,28</td>
<td>Kurang</td>
</tr>
<tr>
<td>2.</td>
<td>Purse seine</td>
<td>29,91</td>
<td>Kurang</td>
</tr>
<tr>
<td>3.</td>
<td>Rawai tuna</td>
<td>43,50</td>
<td>Kurang</td>
</tr>
<tr>
<td>4.</td>
<td>Pancing tonda</td>
<td>51,03</td>
<td>Cukup</td>
</tr>
<tr>
<td></td>
<td>Rata-rata indeks</td>
<td>42,43</td>
<td>Kurang</td>
</tr>
</tbody>
</table>

Gambar 20 Posisi status keberlanjutan perikanan pelagis di Ternate pada dimensi teknologi. (Keterangan: PL= pole and line, PS= purse seine, RT= rawai tuna, PT= pancing tonda)

Tabel 74 Nilai statistik yang diperoleh dari hasil analisis RAPFISH pada dimensi teknologi.

<table>
<thead>
<tr>
<th>Atribut Statistik</th>
<th>Nilai Statistik</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress</td>
<td>0,1454</td>
<td>14,54</td>
</tr>
<tr>
<td>R^2</td>
<td>0,9436</td>
<td>94,36</td>
</tr>
<tr>
<td>Jumlah iterasi</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Selanjutnya berdasarkan Tabel 74 mengungkapkan koefisien determinasi (nilai kepercayaan) atau R^2 untuk dimensi teknologi bernilai lebih besar 0,90. Hasil estimasi nilai proporsi ragam data masukan yang dapat dijelaskan teknik analisis ini, terindikasi memadai. Sementara analisis yang ditujukan untuk melihat tingkat kestabilan hasil analisis ordination, dilakukan dengan simulasi Monte Carlo. Simulasi ini pada hakekatnya ditujukan untuk melihat tingkat gangguan (pertubation) terhadap nilai ordination sehingga dapat diketahui seberapa jauh hasil analisis dapat dipercaya (Spence and Young 1978 yang dikutip dalam Purnomo et al. 2002), dan dilakukan dengan iterasi sebanyak 30 kali. Hasil simulasi Monte Carlo untuk dimensi teknologi dapat dilihat pada Gambar 21. Hasil simulasi tersebut menunjukkan bahwa kegiatan perikanan pelagis di
Ternate pada setiap jenis alat telah banyak mengalami gangguan (*perturbation*) yang ditunjukkan oleh *plot* yang menyebar.

Gambar 21 Kestabilan nilai ordinasi hasil RAPFISH dengan *Monte Carlo* pada dimensi teknologi. *(Ket.: biru= *pole and line*, merah muda= *purse seine*, kuning= rawai tuna, biru muda= pancing tonda)*

Analisis sensitivitas pada dimensi teknologi dengan metode analisis *leverage* pada RAPFISH memperlihatkan bahwa atribut FAD’S (penggunaan FAD’S), *gear selectivitas* (selektifitas alat tangkap), dan *pre-sale processing* (pengolahan pra-jual) merupakan atribut yang sangat berpengaruh terhadap keberlanjutan perikanan pelagis di Ternate (Gambar 22).
Pembahasan

Nilai indeks keberlanjutan dari keempat jenis perikanan pelagis yang dihasilkan dari analisis ordinasi status keberlanjutan dengan iterasi atau pengulangan perhitungan sebanyak 2 (dua) kali ini diuji kembali stabilitasnya dengan simulasi Monte Carlo. Walaupun hasil stabilitasnya sedikit mengalami gangguan (perturbation) sehingga menggambarkan pancaran plot yang menyebar,
namun penyebaran plot-plot tersebut berada pada jarak yang tidak jauh dan saling berimpit dengan plot nilai ordinasi indeks keberlanjutan. Dengan demikian dapat dikatakan berada pada posisi yang stabil (Gambar 20).

Namun, dibandingkan dengan Gambar 20, penyebaran plot-plot tersebut berada pada jarak yang tidak jauh dan saling berimpit dengan posisi ordinasi indeks keberlanjutan atau dapat dikatakan berada pada posisi yang relatif sama. Status perikanan *pole and line* terordinasi sekitar 45, sedangkan untuk *purse seine*, rawai tuna, dan pancing tonda, masing-masing berada pada nilai 29, nilai 43, dan sekitar nilai 51. Hal ini menunjukkan bahwa kesalahan dalam pembuatan skor pada setiap atribut dan kesalahan prosedur metode analisis sangat kecil mana hasil analisis *Monte Carlo* ini mendukung akurasi penentuan ordinasi status keberlanjutan yang ditelaah.

Kekuratan penentuan ordinasi ini diperkuat oleh hasil iterasi yang menghasilkan nilai kuadrat korelasi (R^2) lebih besar dari 90% (Tabel 74). Secara numerik, nilai R^2 ini sudah termasuk tinggi yang mana berarti tingkat kepercayaan (efisien determinasi) terhadap analisis multi dimensional dapat dipercaya dan bertanggungjawabkan. Selanjutnya hasil pengukuran untuk melihat seberapa tepat konfigurasi dari suatu titik dapat mencerminkan data aslinya, nilai *stress* (S) menunjukan hasil yang rendah yaitu lebih kecil dari 20%. Berdasarkan kriteria yang terdapat Tabel 8, menunjukan bahwa analisis keberlanjutan dimensi teknologi dalam penelitian ini, berada pada kondisi *goodness of fit* dengan kualifikasi *fair* atau cukup. Dalam model RAPFISH, nilai *stress* yang diinginkan adalah lebih kecil 25 persen (Fauzi dan Anna 2005).

Penentuan ordinasi status keberlanjutan perikanan pelagis diperoleh berdasarkan penilaian atas atribut-atributnya yang keakuratannya dipenuhi dengan hasil simulasi *Monte Carlo* ini, menghasilkan nilai sensitifitas dari setiap atribut-atributnya. Keselamatan atribut tersebut bervariasi antara 1,62% dan 5,77% kontribusinya pada ordinasi status keberlanjutan dimensi teknologi. Kisaran nilai pengungkit atribut ini berada antara 0,27% sampai 7,18% dimana menurut Kavanagh dan Pitcher (2004), atribut yang mempengaruhi ordinasi lebih dari 8%
tidak dapat lagi menjadi indikator yang menunjukkan situasi multivariate yang sesungguhnya.

Dari hasil keluaran dari analisis sensitivitas atau analisis leverage (pengungkitan) ini, terlihat bahwa atribut FAD’s (penggunaan FAD’s), gear selectivity (selektivitas alat tangkap), dan pre-sale processing (pengolahan pra-jual) merupakan atribut yang sangat berpengaruh terhadap keberlanjutan perikanan pelagis pada aspek teknologi di Ternate. Hal tersebut dapat dilihat dari nilai root mean square change yang ditampilkan melalui Gambar 22 dimana ketiga atribut tersebut tampak lebih tinggi dibandingkan dengan atribut-atribut lainnya. Perubahan sedikit saja pada atribut-atribut ini dapat berdampak besar terhadap status keberlanjutan pada dimensi teknologi.

Diperhadapkan dengan hasil rata-rata ordinasi status keberlanjutan dimensi teknologi yang sudah tergolong pada kurang berkelanjutan, maka dalam pengembangan dan pengelolaan sampul dan pengelolaannya sangat diperlukan suatu kebijakan di bidang teknologi yang mengarah pada perbaikan ketiga atribut sensitif di atas, yaitu kebijakan menyangkut pengontrolan terhadap penggunaan alat bantu dalam mengumpulkan ikan (rumpon), karena semakin banyaknya rumpon akan meningkatkan kemampuan mengeksploitasi sumberdaya perikanan, sehingga dapat meningkatnya risiko/ancaman terhadap kelestarian sumberdaya perikanan. Sementara kebijakan lain yang menyangkut aspek teknologi hendaknya diarahkan untuk memperbaiki tingkat selektivitas alat tangkap, sehingga catch pre-matueary dapat berkurang dan terganggunya proses penambahan stok melalui pembiakan (recruitment) terminalisir. Begitu juga kebijakan dalam perbaikan proses penanganan ikan sebelum dijual sangat diperlukan, dalam rangka perbaikan kualitas hasil tangkapan yang dapat meningkatkan keuntungan nelayan.

8.5 Kesimpulan

(1) Secara teknologi, kegiatan perikanan pancing tonda yang dioperasikan di perairan Ternate mempunyai nilai indeks keberlanjutan yang terkategorikan cukup sehingga tergolong dalam status cukup berkela jutan (51-75). Sementara, kegiatan perikanan purse seine, rawai tuna, dan pole and line yang
memiliki nilai indeks yang rendah (25-50) sehingga tergolong dalam status kurang berkelanjutan.

Secara keseluruhan, status keberlanjutan dimensi teknologi terhadap kegiatan perikanan pelagis yang dikaji berada dalam nilai indeks keberlanjutan rata-rata antara 25-50 (kurang berkelanjutan). Atribut yang sangat berpengaruh dalam penentuan nilai indeks keberlanjutan tersebut adalah atribut FAD’s (penggunaan FAD’s), gear selectivity (selektivitas alat tangkap), dan pre-sale processing (pengolahan pra-jual). Untuk itu pengembangan yang berpeluang dilakukan melalui suatu kebijakan yang diarahkan untuk perbaikan kualitas atribut-atribut keberlanjutan perikanan pelagis tersebut tanpa mengecilkan perbaikan kebijakan atribut-atribut lain dalam dimensi teknologi.
a. Pendudukan hortikultura yang berbasis penelitian perkebunan karet.

b. Pendudukan hortikultura yang berbasis penelitian perkebunan karet.

c. Pendudukan hortikultura yang berbasis penelitian perkebunan karet.

1. Dilihat dari menelekar kebun hortikultura yang berbasis penelitian perkebunan karet.
2. Dilihat dari menelekar kebun hortikultura yang berbasis penelitian perkebunan karet.
9 KEBERLANJUTAN PERIKANAN PELAGIS DI TERNATE
PADA DIMENSI HUKUM DAN KELEMBAGAAN

9.1 Pendahuluan

Pemanfaatan sumberdaya perikanan, khususnya usaha pemanfaatan dalam ang perikanan tangkap membutuhkan tata kelembagaan yang kuat sebagai rujukan dari pengelolaan sumberdaya perikanan tersebut. Penataan kelembagaan dalam pengelolaan itu sendiri, diarahkan bukan hanya kepada sumberdaya ikan sebagai tujuan pemanfaatan tetapi juga pada para pelaku pemanfaatan itu sendiri, itu sumberdaya manusia.

Keadaan ini telah mendorong badan dunia dalam hal ini FAO untuk membuat aturan main tentang pemanfaatan sumberdaya perikanan, baik perikanan tangkap maupun perikanan budidaya yang dikenal dengan Code of Conduct for Responsible Fisheries (CCRF) yang tujuannya adalah bagaimana membuat kode etik pembangunan perikanan yang bertanggung jawab pada tahun 1995. Samping itu juga telah dilakukan berbagai kesepakatan tentang kegiatan perikanan tangkap yang berkelanjutan, seperti UN Agreement on Straddling Stocks and Highly Migratory Stocks yang tujuannya adalah mengatur kegiatan penangkapan untuk ikan-ikan yang bermigrasi jarak jauh.

Selama ini pengelolaan sumberdaya perikanan lebih dicirikan oleh adanya bentuk pengelolaan yang didasarkan pada doktrin “milik bersama” (common property), sentralistik, dan mengabaikan pluralisme masyarakat. Ketiga bentuk pengelolaan tersebut dalam banyak hal telah menimbulkan beberapa bidakseimbangan, antara lain adalah pertama, menyebabkan wilayah laut profesional menjadi arena pertarungan di bawah kekuasaan “hukum rimba”. Libatnya adalah banyak terjadi kegagalan dalam memberikan perlindungan hukum dan selanjutnya pengelolaan sumberdaya kelautan ini menjadi sangat risiko tinggi bagi para pengusaha. Samping itu juga memporakporandakan agenda konservasi, dimana merupakan suatu agenda yang telah menjadi tuntutan masyarakat bangsa-bangsa sebagaimana yang tercantum dalam Code of conduct

2. Selanjutnya, dikatakan bahwa keberlanjutan kelembagaan adalah sebagai prasyarat untuk ketiga komponen keberlanjutan lainnya yaitu keberlanjutan ekologi, ekonomi, dan sosial-budaya, yang melibatkan pengurusan keuangan yang sesuai serta kemampuan organisasi dan administrasi berjangka panjang. Secara khusus, keberlanjutan institusional menunjuk pada perangkat hukum/kaidah-kaidah pengelolaan yang mengatur perikanan beserta perangkat organisasi yang memodifikasi kebijakan dan peraturan. Untuk mencapai keberlanjutan kelembagaan, diperlukan mekanisme yang memungkinkan kebijakan dan peraturan untuk tetap relevan dan efektif dalam jangka panjang.

Tujuan penelitian ini adalah untuk mengukur status keberlanjutan perikanan pelagis dalam perspektif keberlanjutan menurut aspek hukum dan kelembagaan di Ternate. Sedangkan tujuan spesifik dari penelitian ini adalah menentukan status keberlanjutan perikanan pelagis berdasarkan dimensi hukum dan kelembagaan.

Manfaat yang diharapkan dari hasil penelitian ini adalah untuk mendapatkan gambaran dan informasi yang berkaitan dengan status keberlanjutan perikanan pelagis pada dimensi hukum dan kelembagaan, yang dapat dijadikan sebagai dasar didalam analisis dan pembahasan selanjutnya, khususnya dalam pengambilan keputusan kebijakan daerah untuk menjaga keberlanjutan perikanan pelagis dari dimensi hukum dan kelembagaan.

Metode

Metode yang digunakan dalam penelitian ini sama seperti yang telah dibahas pada Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi), yaitu hubungan antara penelitian deskriptif dengan melakukan survei langsung di
lapangan (pengamatan dan wawancara). Data tentang keadilan dalam hukum, ketersediaan personil penegak hukum, keterlibatan nelayan dalam penentuan kebijakan, *illegal fishing*, kepatuhan nelayan terhadap peraturan perikanan, peranan kelembagaan formal yang mendukung pengelolaan sumberdaya perikanan, dan manfaat aturan formal bagi nelayan, diperoleh berdasarkan wawancara langsung dengan nelayan dan pengamatan langsung di lokasi penelitian. Sedangkan data ketersediaan peraturan formal pengelolaan perikanan diperoleh berdasarkan penelusuran pustaka yaitu antara lain laporan dinas perikanan, dan lembaga-lembaga terkait yang berwenang mengeluarkan data-data tersebut.

Pemilihan nelayan sebagai contoh (responden) dilakukan secara aksidensial (accidental sampling) berdasarkan pengelompokkan jenis kegiatan perikanan pelagis atau alat tangkap yang dipergunakan untuk menangkap ikan, yaitu *huate* (*pole and line*), *soma pajeko* (*purse seine*), rawai tuna, dan pancing tonda. Jumlah responden untuk wawancara juga sama seperti yang telah diuraikan pada Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi).

Penentuan indeks keberlanjutan hukum dan kelembagaan perikanan pelagis dengan pendekatan RAPFISH dilakukan melalui sistimatis yang telah ditentukan seperti telah diuraikan pada Bab 3 (Metode umum penelitian) dan Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi). Indeks status keberlanjutan hukum dan kelembagaan perikanan pelagis dimulai dengan pembuatan skor setiap atribut pada dimensi hukum dan kelembagaan berdasarkan kondisi realita data di lapangan yang diperoleh baik dengan wawancara dan pengamatan maupun dipertajam dengan menggunakan penelusuran pustaka. Seperti dilakukan dalam menganalisis keberlanjutan pada dimensi ekonomi (Bab 6), dalam analisis dengan model pendekatan RAPFISH penulis juga melakukan modifikasi berupa menggantikan nama dimensi keberlanjutan yang sebelumnya bernama dimensi etika menjadi dimensi hukum dan kelembagaan. Atribut-atribut yang dapat pada dimensi ini, sebagian besar mengacu pada Susilo (2003), kecuali atribut kepatuhan nelayan terhadap peraturan perikanan yang mengacu pada Suyasa (2007), dan *illegal fishing* yang tetap mengacu pada RAPFISH Group UBC 2005. Atribut-atribut tersebut dan kriteria pemberian skor dapat dilihat pada Tabel 75. Selanjutnya untuk memudahkan penentuan skor dari masing-masing
atribut, Tabel 76 memberikan pengertian atau definisi dari masing-masing atribut hukum dan kelembagaan.

Tabel 75 Atribut keberlanjutan perikanan dimensi hukum dan kelembagaan dan kriteria pemberian skor dalam analisis RAPFISH untuk perikanan pelagis di Ternate

<table>
<thead>
<tr>
<th>No.</th>
<th>Atribut</th>
<th>Skor</th>
<th>Kriteria pemberian skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ketersediaan peraturan formal tentang pengelolaan perikanan</td>
<td>0; 1; 2</td>
<td>Tidak tersedia (0); beberapa (1); banyak (2)</td>
</tr>
<tr>
<td>2.</td>
<td>Keadilan dalam hukum</td>
<td>0; 1; 2</td>
<td>Tidak adil (0); kadang-kadang tidak adil (1); adil (2)</td>
</tr>
<tr>
<td>3.</td>
<td>Ketersediaan personil penegak hukum</td>
<td>0; 1; 2</td>
<td>Tidak ada (0); sedikit/jarang dilokasi (1); banyak/sering dilokasi (2)</td>
</tr>
<tr>
<td>4.</td>
<td>Keterlibatan/demokrasi nelayan dalam penentuan kebijakan</td>
<td>0; 1; 2</td>
<td>Tidak terlibat (0); kadang-kadang terlibat (1); terlibat (2)</td>
</tr>
<tr>
<td>5.</td>
<td>Illegal Fishing</td>
<td>0; 1; 2</td>
<td>Tidak pernah terjadi (0); kadang-kadang terjadi (1); sering terjadi (2)</td>
</tr>
<tr>
<td>6.</td>
<td>Peranan kelembagaan formal yang mendukung pengelolaan sumberdaya perikanan</td>
<td>0; 1; 2; 3</td>
<td>Tidak berperan (0); sedikit berperan (1); cukup berperan (2); sangat berperan (3)</td>
</tr>
<tr>
<td>7.</td>
<td>Kepatuhan nelayan terhadap peraturan perikanan</td>
<td>0; 1; 2</td>
<td>Tidak patuh (0); kadang-kadang tidak patuh (1); patuh (2)</td>
</tr>
<tr>
<td>8.</td>
<td>Manfaat aturan formal bagi nelayan</td>
<td>0; 1; 2</td>
<td>Tidak ada (0); sedikit (1); banyak (2)</td>
</tr>
</tbody>
</table>

Tabel 76 Definisi delapan atribut hukum dan kelembagaan dalam analisis RAPFISH untuk perikanan pelagis di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Atribut</th>
<th>Definisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ketersediaan peraturan formal pengelolaan perikanan</td>
<td>Tersedia atau tidaknya peraturan formal yang dikeluarkan oleh pemerintah pusat/daerah dalam pengelolaan perikanan</td>
</tr>
<tr>
<td>2.</td>
<td>Keadilan dalam hukum</td>
<td>Keadilan hukum yang dikeluarkan oleh penegak hukum dalam kasus-kasus pelanggaran pengelolaan perikanan</td>
</tr>
<tr>
<td>3.</td>
<td>Ketersediaan personil penegak hukum</td>
<td>Ada atau tidaknya personil penegak hukum dan kehadiran mereka di wilayah perairan tempat mereka bertugas</td>
</tr>
<tr>
<td>4.</td>
<td>Keterlibatan nelayan dalam penentuan kebijakan</td>
<td>Ada atau tidaknya keterlibatan nelayan dalam penentuan kebijakan pengelolaan perikanan</td>
</tr>
<tr>
<td>5.</td>
<td>Illegal Fishing</td>
<td>Kegiatan penangkapan ilegal yang terjadi di perairan</td>
</tr>
<tr>
<td>6.</td>
<td>Peranan kelembagaan formal yang mendukung pengelolaan sumberdaya perikanan</td>
<td>Peranan lembaga-lembaga formal perikanan dalam mengorganisir sistem pengawasan wilayah penangkapan, pencegahan terjadinya konflik, dan pengawasan penerapan regulasi.</td>
</tr>
<tr>
<td>No.</td>
<td>Atribut</td>
<td>Definisi</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>Kepatuhan nelayan terhadap peraturan perikanan</td>
<td>Tingkat kepatuhan yang dimiliki nelayan terhadap peraturan-peraturan perikanan yang dikeluarkan oleh pemerintah</td>
</tr>
<tr>
<td>8</td>
<td>Manfaat aturan formal bagi nelayan</td>
<td>Tingkat manfaat yang dirasakan oleh nelayan atas kehadiran aturan perikanan yang dikeluarkan oleh pemerintah</td>
</tr>
</tbody>
</table>

Sumber: Pitcher and Preikshot (2001); Susilo (2003), Suyasa (2007)

Sementara dalam kaitannya dengan kondisi keberlanjutan, penggunaan atribut dalam dimensi hukum dan kelembagaan ini mengandung suatu maksud dan deskripsi tertentu dalam mengevaluasi status keberlanjutan. Atribut ketersediaan aturan formal pengelolaan perikanan, menunjukkan bahwa keberadaan aturan formal dalam bentuk regulasi pengelolaan perikanan yang dikeluarkan oleh pemerintah pusat atau daerah, maka itu menunjukkan adanya perhatian pemerintah dalam mengatur sistem sumberdaya perikanan sehingga permasalahan pengelolaan sumberdaya perikanan dapat diminimalisir. Keberadaan peraturan pengelolaan sumberdaya kelautan memfasilitasi pelestarian sumberdaya tersebut (skor baik = 2; buruk = 0).

Atribut keadilan dalam hukum, menggambarkan bahwa ketidak-adilan dalam memutuskan suatu kasus pelanggaran dapat berakibat munculnya konflik antar nelayan atau antar stakeholder yang akhirnya mempengaruhi keberlanjutan sumberdaya perikanan (skor baik = 2; buruk = 0). Adapun atribut ketersediaan personil penegak hukum mengidikasikan bahwa semakin banyak kehadiran personil penegak hukum maka semakin terkontrol pelanggaran-pelanggaran pengelolaan perikanan yang dapat mengakibatkan kerusakan sumberdaya perikanan (skor baik = 2; buruk = 0).

Atribut keterlibatan nelayan dalam penentuan kebijakan, menunjukkan adanya rasa tanggungjawab terhadap pelaksanaan suatu kebijakan pengelolaan perikanan. Keterlibatan nelayan dalam pengambilan keputusan suatu kebijakan pengelolaan berakibat semakin tinggi kepatuhan terhadap kebijakan tersebut tersebut dalam hal pengawasan dan sistem usaha perikanan untuk menunjang pelestarian sumberdaya perikanan (skor baik = 2; buruk = 0). Atribut ini mirip...
dengan atribut pengaruh nelayan yang terdapat pada dimensi sosial, namun yang membedakannya adalah atribut ini lebih menitikberatkan pada pengambilan keputusan (demokrasi) dan tidak hanya pada keterlibatan/kehadiran dalam perumusan suatu kebijakan pengelolaan.

Atribut illegal fishing, menunjukkan bahwa semakin banyaknya penangkapan ikan secara illegal maka semakin tinggi tingkat pemanfaatan yang merusak dimana dapat mengakibatkan terganggunya kelestarian sumberdaya perikanan, dan keberlanjutan ekonomi perikanan (skor baik = 0; buruk = 2).

Atribut peranan kelembagaan formal yang mendukung pengelolaan sumberdaya perikanan mencerminkan bahwa semakin baik pelaksanaan tugas kok, dan fungsi (tupoksi) lembaga formal tersebut dalam pengelolaan sumberdaya perikanan, maka kegiatan perikanan dapat berkelanjutan. Peranan lembaga ini antara lain meliputi mengorganisir pengawasan penerapan regulasi dan sistem kelembagaan keuangan/permodalan usaha perikanan (skor baik = 3; buruk = 0).

Atribut kepatuhan nelayan terhadap peraturan perikanan menggambarkan bahwa peraturan perundangan yang telah ditetapkan, harus dilaksanakan dan dipatuhi agar pengelolaan sumberdaya perikanan yang berkelanjutan dapat terwujud. Pengguna sumberdaya perikanan akan lebih patuh pada aturan pengelolaan sumberdaya perikanan pada saat kepedulian masyarakat terhadap pentingnya suatu regulasi itu dibuat. Ketidak-patuhannya dapat menambah risiko terhadap kelestarian sumberdaya (skor baik = 2; buruk = 0).

Sementara atribut manfaat aturan formal bagi nelayan, menggambarkan kepuasan manfaat yang diterima terhadap aturan perikanan akan mendorong individu yang bersangkutan termotivasi untuk melestarikan sumberdaya perikanan (skor baik = 2; buruk = 0).

Penyusunan skor pada masing-masing atribut ini didasarkan pada acuan yang telah dibuat baik melalui keputusan maupun judgment dari penulis dengan asumsi-asumsi dan dasar-dasar yang ilmiah. Skor yang diperoleh kemudian dimasukkan ke dalam program MS-Excel dengan template hukum dan kelembagaan yang telah dipersiapkan sebelumnya kemudian di-run sehingga
diperoleh nilai *multidimensional scaling* dari RAPFISH yang lebih dikenal dengan indeks keberlanjutan. Kriteria nilai indeks keberlanjutan perikanan pelagis pada metode RAPFISH untuk dimensi hukum dan kelembagaan ini adalah sama seperti yang telah disajikan pada kriteria dimensi keberlanjutan lainnya yaitu dengan menggunakan *reference* dari *bad* (buruk) sampai *good* (baik) dalam selang 0-100. Selang indeks keberlanjutan tersebut yaitu selang 0-25 dalam status buruk, selang 26-50 dalam status kurang, selang 51-75 dalam status cukup dan selang 76-100 dalam status baik.

Dalam aplikasi RAPFISH pada penelitian ini, pendekatan diatas mengikuti tahapan yang dilakukan oleh Purnomo *et al.* (2002) sebagaimana diuraikan pada Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi). Selanjutnya atribut-atribut yang sensitif atau yang paling berpengaruh terhadap tingkat baik buruknya kinerja pada dimensi hukum dan kelembagaan ini, nantinya ditunjukkan melalui hasil analisis *leverage*. Hasil interpretasi awal dari RAPFISH ini kemudian dikembalikan berdasarkan catatan lapangan atau data yang relevan lainnya, untuk mempertajam akurasi hasil *running* program RAPFISH.

9.3 Hasil

9.3.1 Kondisi masing-masing atribut keberlanjutan hukum dan kelembagaan

1. Ketersediaan peraturan formal pengelolaan perikanan

Dalam pengelolaan perikanan, terdapat tiga sumber peraturan formal yang secara umum berlaku dalam mengatur pengelolaan dan pemanfaatan sumberdaya perikanan di wilayah Indonesia, yaitu:

Kedua, peraturan yang berlaku secara nasional yaitu peraturan formal pengelolaan dan pemanfaatan sumberdaya perikanan dan kelautan baik dalam bentuk undang-undang, Keputusan Menteri, maupun Kesepakatan Bersama. Peraturan-peraturan dimaksud antara lain dapat dilihat pada Lampiran 16.

Ketiga, peraturan daerah (PERDA) baik yang dikeluarkan oleh Pemerintah Provinsi maupun oleh Pemerintah Kota/Kabupaten yang berkaitan dengan pengelolaan dan pemanfaatan sumberdaya laut. Peraturan-peraturan tersebut dapat dihafir pada Tabel 77.

Dengan melihat berbagai aturan formal sebagaimana tersebut pada Lampiran 16 dan Tabel 77, maka menurut kriteria atribut ini dalam RAPFISH diberi skor dua.
Tabel 77 Beberapa peraturan perundangan yang dikeluarkan PEMDA Kota Ternate berkaitan dengan sumberdaya perikanan.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Peraturan</th>
<th>Tentang</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Perda Kota Ternate No. 14 Tahun</td>
<td>Usaha Perikanan</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>Usaha Perikanan</td>
</tr>
<tr>
<td>2.</td>
<td>Perda Kota Ternate No. 15 Tahun</td>
<td>Retribusi Penyelenggaraan</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>Pelelangan Ikan di Kota Ternate</td>
</tr>
<tr>
<td>3.</td>
<td>Perda Propinsi Maluku Utara</td>
<td>Retribusi Ijin Usaha Perikanan</td>
</tr>
<tr>
<td></td>
<td>No.9</td>
<td>Tahun 2004</td>
</tr>
</tbody>
</table>

2) Keadilan dalam hukum

Pada kehadiran rumpon sebenarnya sudah ada sebelum beroperasinya pelayaan kapal Pelni di Kota Ternate. Kasus yang sama juga terjadi antara nelayan pancing tonda dan nelayan Gillnet dengan pihak pelayaran kapal/speed boat Pelni di Kota Ternate ke Sidangoli di Selat Halmahera.

Berdasarkan informasi tersebut terkesan bahwa keadilan dalam menyelesaikan masalah hukum pengelolaan perikanan oleh di Kota Ternate belum sepenuhnya dapat dikatakan adil dan juga tidak adil. Dengan demikian, skor yang diberikan untuk atribut ini pada semua jenis kegiatan perikanan adalah satu.
3) Ketersediaan personil penegak hukum

Menurut wawancara, kasus saling lempar melempar batu antara nelayan Ternate dengan nelayan yang berasal dari Jailolo (Halmahera Barat), dapat dikatakan bahwa kejadian itu disebabkan karena personil penegak hukum tidak berada ditempat. Awalnya, nelayan *purse seine* Ternate yang merasa rumponnya digunakan secara diam-diam oleh nelayan Jailolo, sudah melaporkan kepada personil penegak hukum. Namun, setelah ditunggu sekitar lama, petugas polairud tidak datang, maka terjadilah lempar-lemparan batu. Setelah nelayan Jailolo merasa sudah terdesak, maka mereka langsung melarikan diri dari rumpon tersebut.

Kasus ini menunjukkan bahwa peranan petugas Polairud Ternate dalam posisinya sebagai aparat penegak hukum belum optimal mengawasi proses pelanggaran dan pengawasan di laut. Namun sejak kejadian tersebut aparat penegak hukum (Polairud) sudah mulai lagi mengadakan kontrol terhadap wilayah perairan Ternate dengan jadwal seminggu sekali.

Hal lain yang menyebabkan belum optimalnya proses pengawasan di laut, karena kurangnya personil penegak hukum adalah masih maraknya terjadi *illegal fishing* di perairan Ternate. Menurut wawancara, kapal-kapal asing yang tertangkap (karena tidak memiliki izin) adalah hanya sebagian kecil dari keseluruhan kapal asing yang tidak memiliki izin menangkap ikan di perairan Laut Maluku. Dengan demikian skor dalam atribut ketersediaan personil penegak hukum dari semua jenis kegiatan perikanan yang dikaji digolongkan sedikit atau jarang di lokasi atau wilayah pengawasannya (skor satu).

4) Keterlibatan nelayan dalam penentuan kebijakan

Menurut wawancara dengan kepada Dinas Kelautan dan Perikanan Kota Ternate, penentuan kebijakan kadangkala dikonsultasikan dengan beberapa ahli perikanan yang berasal dari Fakultas Perikanan dan Ilmu Kelautan Universitas...
Khairun Ternate. Kadangkala juga dalam beberapa kesempatan, Dinas Perikanan Kota Ternate mengundang nelayan untuk mengadakan pertemuan dalam membahas suatu kebijakan, namun nelayan yang hadir terbilang sedikit. Menurut informasi, salah satu penyebab ketidak-hadiran mereka adalah karena dalam beberapa kesempatan (penganalan sebelumnya), pendapat mereka jarang diperhatikan sehingga menimbulkan rasa malas untuk memenuhi undangan tersebut.

Hal tersebut sangat menjelaskan bahwa keterlibatan langsung nelayan baik dalam penentuan kebijakan, pengelolaan, pemberian bantuan dan lainnya di Kota Ternate tidak ada (skor nol).

5) Illegal Fishing

Kasus yang sama juga terjadi pada bulan November 2008, dimana pihak keamanan menangkap dua buah kapal yang berasal dari Halmahera Selatan dan

Dari berbagai kasus yang terjadi seperti diterangkan di atas, illegal fishing perairan Ternate dapat dikategorikan sering terjadi (skor dua) untuk perikanan pole and line, purse seine, dan rawai tuna, sedangkan digolongkan tidak pernah terjadi (skor nol) untuk perikanan pancing tonda.

Peranan kelembagaan formal yang mendukung pengelolaan sumberdaya perikanan

Kelembagaan formal perikanan yang ada di Ternate, selain lembaga pemerintah yaitu Dinas Kelautan dan perikanan adalah lembaga pengusaha perikanan, koperasi perikanan, lembaga Ekonomi Pengembangan Pesisir Mikro Mitra Mina (LEPP-M3) dan lembaga sosial budaya. Lembaga pengusaha perikanan yang ada di Kota Ternate berjumlah 3 buah (Tabel 78), sedangkan koperasi perikanan yang ada di Ternate berjumlah 7 buah (Tabel 79). Kelembagaan sosial budaya perikanan yang berkembang di Ternate yaitu Lembaga Swadaya Masyarakat (LSM) yang bergerak di bidang perikanan dan Himpunan Nelayan Seluruh Indonesia (HNSI) Kota Ternate.
<table>
<thead>
<tr>
<th>No</th>
<th>Nama perusahaan</th>
<th>Alamat</th>
<th>Jenis usaha</th>
<th>Jenis komoditi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PT. Sibela Bunga Cengkeh</td>
<td>Jl. Seroja Kayu Merah Ternate</td>
<td>Penangkapan dan pengumpul ikan</td>
<td>Cakalang, tuna, dan layang</td>
</tr>
<tr>
<td>2</td>
<td>PT. Maters Adi Jaya</td>
<td>Kel. Kota Baru Ternate</td>
<td>Penangkapan dan pengumpul ikan</td>
<td>Pelagis dan Demersal</td>
</tr>
<tr>
<td>3</td>
<td>PT. Adi Bahari Satari</td>
<td>Kel. Maliaro Ternate</td>
<td>Penangkapan dan pengumpul ikan</td>
<td>Ikan Pelagis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Nama koperasi</th>
<th>Desa/Kelurahan</th>
<th>Kecamatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kop. Masigarolaha</td>
<td>Kel. Dufa-Dufa</td>
<td>Ternate utara</td>
</tr>
<tr>
<td>2</td>
<td>Kop. Mina Bahari</td>
<td>Kel. Makasar Timur</td>
<td>Ternate utara</td>
</tr>
<tr>
<td>3</td>
<td>Kop. Serba usaha</td>
<td>Kel. Dufa-Dufa</td>
<td>Ternate utara</td>
</tr>
<tr>
<td>4</td>
<td>Kop. Soninga</td>
<td>Kel. Hiri</td>
<td>Pulau Ternate</td>
</tr>
<tr>
<td>5</td>
<td>Kop. Bina Bahari</td>
<td>Kel. Toboko</td>
<td>Ternate Selatan</td>
</tr>
<tr>
<td>6</td>
<td>Kop. Mina Hiri</td>
<td>Kel. Hiri</td>
<td>Pulau Ternate</td>
</tr>
<tr>
<td>7</td>
<td>Kop. Cipta Bahari</td>
<td>Desa Mayau</td>
<td>Pulau Ternate</td>
</tr>
</tbody>
</table>

Berdasarkan informasi hasil wawancara dengan nelayan responden bahwa keberadaan lembaga tersebut belum banyak berperan dalam pengelolaan sumberdaya perikanan di wilayahnya. Peranan yang terlihat dari lembaga pemerintah (Dinas Kelautan dan Perikanan) lebih cenderung pada pemberian bantuan sarana prasarana penangkapan, dan pemasaran ikan seperti penyediaan fasilitas fungsional pelabuhan perikanan dan beberapa pengadaan cool box di pasar. Namun, peranan tersebut belum maksimal, walaupun sebagian kelompok nelayan dan keluarga nelayan sudah dirasakan perannya.

Peranan lembaga pengusaha perikanan, koperasi perikanan, dan LEPP-M3 yang berbentuk badan hukum berniat dapat membantu nelayan dalam hal menjalankan usaha maupun memperoleh hasil usaha serta mengurus kebutuhan kredit nelayan, namun kenyataannya kehadiran lembaga-lembaga ini belum memberikan kontribusi yang sangat berarti untuk usaha perikanan yang ada di Kota Ternate. Hal ini disebabkan oleh kurangnya hasil tangkapan nelayan Ternate setelah pembongkaran di pelabuhan
langsung dijual ke *dibo-dibo* yang sudah siap menampung hasil tangkapan mereka. Selain itu, dalam hal kebutuhan bahan untuk memperbaiki kapal (bengkel), dan alat tangkap juga belum bisa diakomodir oleh lembaga-lembaga tersebut.

Peranan HNSI Kota Ternate hingga saat ini belum memberikan kontribusi yang sangat berarti bagi usaha perikanan tangkap di Kota Ternate, karena aktivitas HNSI Kota Ternate masih terbatas sebagai mediasi permasalahan nelayan seperti penyelesaian kelangkaan BBM, mediasi pemenuhan sarana penangkapan ikan bagi nelayan, dan sebagai advokasi menyelesaikan permasalahan *illegal fishing* bagi nelayan.

Sebenarnya lembaga formal tersebut sangat diharapkan peranannya dalam berbagai hal misalnya pengaturan wilayah penangkapan dan pengawasannya, pencegahan munculnya konflik antar nelayan atau pengguna sumberdaya, pengawasan penerapan regulasi, penguatan modal usaha yang berarti, pengawasan penerapan regulasi, dan hal-hal yang berkaitan dengan kegiatan illegal fishing bagi nelayan. Dengan demikian pada semua kegiatan perikanan yang dikaji, atribut ini digolongkan masih belum maksimal atau peranannya masih sedikit (skor satu).

7) Kepatuhan nelayan terhadap peraturan perikanan

Sejauh ini dalam pengelolaan sumberdaya perikanan, peraturan yang dikeluarkan oleh lembaga formal baik dari pemerintah pusat maupun dari pemerintah Kota Ternate bertujuan agar kegiatan perikanan dapat berkelanjutan. Namun dalam implementasinya di lapangan, kadangkala tidak dilakukan penguatan dalam penerapannya sehingga terabaikan.

Menurut wawancara dengan salah satu nelayan *pole and line* di Ternate, dapat kapal *purse seine* yang masih menggunakan alat tangkap yang mata jaringnya berukuran lebih kecil dari aturan mata jaring yang seharusnya. Selain itu nelayan yang dikeluarkan oleh Dinas Kelautan dan Perikanan Kota Ternate untuk membongkar hasil tangkapan di TPI sering diabaikan. Hanya beberapa kapal perikanan saja yang mematuhi aturan tersebut karena fasilitas penyediaan
air di TPI masih terbatas. Kapal pole and line lebih sering membongkar hasil tangkapan di pelabuhan umum di Kelurahan Dufa-dufa Ternate.

Pada kapal rawai tuna, sebagian besar sering membongkar hasil tangkapannya di PPN Bitung Sulawesi Utara dan perahu pancing tonda membongkar hasil tangkapannya di pasar ikan Gamalama. Dengan demikian skor untuk atribut ini digolongkan pada kriteria kadang-kadang tidak patuh (skor satu) untuk segiatan perikanan pole and line, purse seine, rawai tuna, dan pancing tonda.

8) Manfaat aturan formal bagi nelayan

Berdasarkan wawancara menyatakan bahwa aturan-aturan formal yang dibuat oleh pemerintah kadang-kadang dinilai menyulitkan nelayan untuk dilaksanakan. Sebagai contoh, aturan yang mengharuskan pembongkaran hasil tangkapan di TPI. Selain itu, aturan-aturan formal yang berhubungan dengan retribusi atau pungutan-pungutan yang dapat menurunkan tingkat pendapatan mereka. Disisi lain, aturan-aturan formal juga diperlukan dan dirasakan ada manfaatnya yaitu pada saat munculnya kejadian yang berkenaan dengan pemangkatan atau pengelolaan perikanan seperti ketika terjadi konflik antar nelayan atau antar stakeholders.

Secara keseluruhan dari pendapat nelayan yang berdomisili di Kota Ternate menyatakan bahwa aturan-aturan formal yang ada saat ini dikhawatirkan lebih mengarah pada pungutan-pungutan yang memberatkan mereka. Oleh karena itu dapat dikatakan bahwa aturan formal yang dikeluarkan oleh pemerintah dirasakan manfaatnya bagi nelayan walaupun masih sedikit (skor satu).

9.3.2 Status keberlanjutan perikanan pelagis dimensi hukum dan kelembagaan

Nilai skor yang terdapat pada dimensi hukum dan kelembagaan selanjutnya dianalisis menggunakan metode RAPFISH. Output yang diperoleh dengan menggunakan metode RAPFISH pada dimensi hukum dan kelembagaan menunjukkan nilai rata-rata keberlanjutan perikanan pelagis secara hukum dan kelembagaan sebagaimana disajikan pada Tabel 80 dan Lampiran 6. Nilai ini yang akan
menentukan posisi relatif dari setiap kegiatan perikanan terhadap ordinasi yang berada pada kisaran baik (good) dengan nilai 100, dan buruk (bad) dengan nilai nol.

Tabel 80 Nilai indeks dan status keberlanjutan setiap perikanan pelagis pada dimensi hukum dan kelembagaan di Ternate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Kegiatan Perikanan Pelagis</th>
<th>Indeks Keberlanjutan Perikanan</th>
<th>Status Keberlanjutan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pole and line</td>
<td>32,02</td>
<td>Kurang</td>
</tr>
<tr>
<td>2.</td>
<td>Purse seine</td>
<td>37,42</td>
<td>Kurang</td>
</tr>
<tr>
<td>3.</td>
<td>Rawai tuna</td>
<td>32,02</td>
<td>Kurang</td>
</tr>
<tr>
<td>4.</td>
<td>Pancing tonda</td>
<td>43,75</td>
<td>Kurang</td>
</tr>
</tbody>
</table>

Rata-rata indeks 36,30 Kurang

Selanjutnya jika nilai indeks keberlanjutan dimensi hukum dan kelembagaan pada Tabel 80 tersebut diplotkan dalam gambar ordinasi, maka tampak seperti dilihat pada Gambar 23.

Gambar 23 Posisi status keberlanjutan perikanan pelagis di Ternate pada dimensi hukum dan kelembagaan.

(Keterangan: PL= pole and line, PS= purse seine, RT= rawai tuna, PT= pancing tonda)

Analisis ordinasi dalam dimensi hukum dan kelembagaan dengan nilai iterasi sebanyak 3 (tiga) kali, menghasilkan nilai kuadrat korelasi (R^2)

<table>
<thead>
<tr>
<th>Atribut Statistik</th>
<th>Nilai Statistik</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress</td>
<td>0,1523</td>
<td>15,23</td>
</tr>
<tr>
<td>R²</td>
<td>0,9472</td>
<td>94,72</td>
</tr>
<tr>
<td>Jumlah iterasi</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Selanjutnya, Tabel 81 mengungkapkan bahwa koefisien determinasi (nilai kepercayaan) atau R² untuk dimensi hukum dan kelembagaan perikanan bernilai lebih besar 0,90. Hasil estimasi nilai proporsi ragam data masukan yang dapat dijelaskan teknik analisis ini terindikasi memadai, walaupun simulasi Monte Carlo untuk dimensi hukum dan kelembagaan menunjukkan bahwa kegiatan perikanan pelagis di Ternate pada setiap jenis alat telah banyak mengalami gangguan (perturbation) yang ditunjukkan oleh plot yang menyebar (Gambar 24).
Gambar 24 Kestabilan nilai ordinasi hasil RAPFISH dengan Monte Carlo pada dimensi hukum dan kelembagaan. (Ket.: biru= pole and line, merah muda= purse seine, kuning= rawai tuna, biru muda= pancing tonda)

Analisis sensitivitas pada dimensi hukum dan kelembagaan dengan metode analisis leverage pada RAPFISH memperlihatkan bahwa atribut Illegal fishing (penangkapan ilegal), dan involvement fisherman in policy determination (keterlibatan nelayan dalam pengambilan kebijakan) merupakan atribut yang sangat berpengaruh terhadap keberlanjutan perikanan pelagis di Ternate. Hal ini dapat dilihat dari nilai root mean square change sebagaimana dilihat pada Gambar 25 dimana kedua atribut tersebut nampak lebih tinggi bandingkan dengan atribut-atribut lainnya.
Gambar 25 Hasil analisis Leverage dari atribut pada dimensi hukum dan kelembagaan

9.4 Pembahasan

Nilai indeks keberlanjutan dari ke-empat jenis kegiatan perikanan pelagis yang hasil dari analisis ordinasi status keberlanjutan dengan iterasi atau pengulangan perhitungan sebanyak 3 (tiga) kali ini, diuji kembali stabilitasnya dengan simulasi Monte Carlo. Walaupun hasil stabilitasnya sedikit mengalami gangguan (perturbation) sehingga menggambarkan pancaran plot yang menyebar, namun penyebaran plot-plot tersebut berada pada jarak yang tidak jauh dan saling...
berimpor dengan plot nilai ordinasi indeks keberlanjutan. Dengan demikian dapat dikatakan berada pada posisi yang stabil (Gambar 24). Status perikanan pole and line terordinasi sekitar 32, sedangkan untuk purse seine, rawai tuna, dan pancing tonda, masing-masing berada pada nilai 37, nilai 32, dan sekitar nilai 43. Posisi yang relatif sama ini menunjukan bahwa dalam kesalahan dalam pembuatan skor pada setiap atribut dan kesalahan prosedur metode analisis sangat kecil dimana hasil analisis Monte Carlo ini mendukung akurasi penentuan ordinasi status keberlanjutan yang ditelah.

Perhitungan nilai kuadrat korelasi \(R^2\) lebih besar dari 90% dan nilai stress (S) lebih kecil dari 20% (Tabel 81) menunjukan bahwa secara ilmiah disatui nilai R\(^2\) ini sudah termasuk tinggi yang mana berarti tingkat kepercayaan (efisiensi determinasi) terhadap analisis multi dimensional ini dapat dipercaya dan dipertanggungjawabkan. Sedangkan disisi lain nilai stress (S) ini golong rendah menunjukan bahwa hasil pengukuran konfigurasi dari suatu titik cara tepat dapat mencerminkan data aslinya. Dalam model RAPFISH, nilai stress yang diinginkan adalah lebih kecil 25 persen (Fauzi dan Anna 2005).

Penentuan ordinasi status keberlanjutan diperoleh berdasarkan penilaian atas atribut-attribut yang digunakan. Melalui perhitungan dengan analisis Leverage, menghasilkan tingkat sensitivitas dari ke-sepuluh atribut dimensi hukum dan kelembagaan bervariasi antara 1,12% dan 5,33% kontribusinya pada ordinasi status keberlanjutan. Kisaran nilai pengungkitan atribut ini berada antara 0,27 sampai 7,18% dimana menurut Kavanagh dan Pitcher (2004), atribut yang mempengaruhi ordinasi lebih dari 8% tidak dapat lagi menjadi indikator yang menunjukan situasi multivariate yang sesungguhnya.

Hasil keluaran dari analisis sensitifitas ini juga menunjukan bahwa atribut illegal fishing (penangkapan ilegal), dan involvement fisherman in policy determination (keterlibatan nelayan dalam penentuan kebijakan) terlihat sangat ikut untuk status keberlanjutan perikanan pelagis dimensi hukum dan kelembagaan di Ternate. Dengan demikian, kebijakan perikanan perlu ditetapkan dalam suatu program dan kegiatan menyangkut pengembangan status keberlanjutan perikanan pelagis dimensi hukum dan kelembagaan di Ternate yaitu
2. Kebijakan dalam menanggulangi kegiatan-kegiatan yang berkaitan dengan illegal fishing yang semakin marak terjadi di perairan Ternate, dan kebijakan yang berhubungan dengan perhatian lembaga formal perikanan seperti Dinas Kelautan dan Perikanan Kota Ternate dalam melibatkan stakeholder (termasuk nelayan) untuk memutuskan suatu kebijakan pengelolaan sumberdaya perikanan.

9.5 Kesimpulan

(1) Status keberlanjutan dimensi hukum dan kelambangan terhadap perikanan pelagis yang dikaji memiliki nilai indeks keberlanjutan baik berdasarkan masing-masing jenis kegiatan perikanan maupun dilihat berdasarkan nilai rata-rata, menunjukkan nilai antara 25-50 (status kurang berkelanjutan).

(2) Atribut yang sangat berpengaruh dalam penentuan nilai indeks keberlanjutan tersebut adalah atribut illegal fishing (penangkapan illegal), dan involvement fisherman in policy determination (keterlibatan nelayan dalam penentuan kebijakan). Untuk itu pengembangan yang berpeluang dilakukan melalui suatu kebijakan yang diarahkan untuk perbaikan kualitas atribut-atribut keberlanjutan perikanan pelagis tersebut tanpa mengelihkan perbaikan atribut-atribut lain yang berada dalam dimensi hukum dan kelambangan.
10 STATUS KEBERLANJUTAN PERIKANAN PELAGIS
DI TERNATE BERDASARKAN ALAT TANGKAP

10.1 Pendahuluan

Dalam pengelolaan perikanan pelagis, ketimpangan dan ketidakberlanjutan sumberdaya dapat terjadi apabila pemanfaatannya melampaui kapasitas atau karena kegiatan perikanan yang hanya mengutamakan salah satu aspek dan mengabaikan aspek lainnya. Permasalahan yang muncul antara lain adalah rendahnya tingkat kesejahteraan nelayan dan adanya indikasi tangkap lebih (overfishing) di beberapa perairan di Indonesia.

Penentuan status keberlanjutan perikanan merupakan hal penting yang diperlukan dalam penentuan berbagai kebijakan perikanan ke depan. Keberlanjutan perikanan, penting diketahui dan dipahami oleh semua stakeholder utama oleh para pengambil kebijakan. Hal ini disebabkan karena keberlanjutan perikanan merupakan tantangan mengingat di satu sisi kelestarian sumberdaya
ikan harus tetap terjaga dan disisi lain tingkat pemanfaatan akan terus meningkat sejalan dengan tingkat kebutuhan konsumsi lokal dan global.

Bab 10 ini merupakan agregat hasil kajian status keberlanjutan perikanan dalam dimensi ekologi (Bab 5), ekonomi (Bab 6), sosial (Bab 7), teknologi (Bab 8), dan hukum/kelembagaan (Bab 9). Dalam perspektif multi-dimensi, telah terungkap bahwa pada dimensi ekologi, ekonomi, dan sosial, perikanan pelagis di Ternate memiliki status cukup berkelanjutan, sedangkan pada dimensi teknologi dan hukum/kelembagaan memiliki status kurang berkelanjutan.

Tujuan penelitian ini adalah untuk mengukur dan menentukan status keberlanjutan perikanan pelagis dalam perspektif keberlanjutan menurut alat tangkap pada kegiatan perikanan tangkap di Kota Ternate. Manfaat yang diharapkan dari hasil penelitian ini adalah untuk mendapatkan gambaran dan
informasi yang berkaitan dengan status keberlanjutan perikanan pelagis pada alat tangkap pole and line, purse seine, rawai tuna, dan pancing tonda.

10.2 Metode

Metode penelitian yang dipergunakan dalam penentuan status keberlanjutan perikanan pelagis berdasarkan alat tangkap ini didahului dengan penelitian dan analisis secara multi-dimensi sebagaimana dibahas pada Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi), Bab 6 (Keberlanjutan perikanan pelagis pada dimensi ekonomi), Bab 7 (Keberlanjutan perikanan pelagis pada dimensi sosial), Bab 8 (Keberlanjutan perikanan pelagis pada dimensi teknologi), dan Bab 9 (Keberlanjutan perikanan pelagis pada dimensi hukum dan kelembagaan). Metode analisis, pemilihan dan penentuan responden serta pengumpulan data telah dibahas secara sistematis dalam bab-bab tersebut. Metode penelitian dan analisis yang digunakan dalam bab ini sepenuhnya mengacu pada teknik RAPFISH (Rapid Appraisal for Fisheries) yang menurut Fauzi dan Anna (2005) merupakan analisis untuk mengevaluasi sustainability dari perikanan secara multi-dimensi berdasarkan dimensi yang telah dibahas sebelumnya. Dalam aplikasinya, pendekatan di atas mengikuti tahapan-tahapan yang dilakukan oleh Purnomo et al. (2002).

Pengelompokan nilai indeks keberlanjutan yang digunakan dalam penelitian ini mengacu pada Soesilo (2003), Hermawan (2006), Hamdan et al. (2006), dan Suyasa (2007) yang membagi status keberlanjutan dalam 4 kategori, yaitu (1) tidak berkelanjutan, (2) kurang berkelanjutan, (3) cukup berkelanjutan dan (4) berkelanjutan, sebagaimana tercantum pada Tabel 23 dalam Bab 5 (Keberlanjutan perikanan pelagis pada dimensi ekologi). Dengan menggunakan daftar pertanyaan sebagai alat bantu, pengamatan dilakukan dalam rangka untuk mengumpulkan data/informasi dalam rangka pemberian skor pada 45 atribut RAPFISH menurut dimensi ekologi, ekonomi, sosial, teknologi, dan hukum dan kelembagaan pada alat tangkap pole and line, purse seine, rawai tuna, dan pancing tonda.
10.3 Hasil

Nilai indeks keberlanjutan merupakan informasi penting untuk menentukan status keberlanjutan perikanan. Nilai indeks keberlanjutan keempat alat tangkap yang ditelaah dipelihatkan melalui Tabel 82 dan posisi perbandingan setiap alat tangkap pada kelima dimensi diilustrasikan dalam diagram layang sebagaimana ditunjukkan pada Gambar 26. Pada diagram layang, nilai indeks semakin keluar (mendekati angka 100) menunjukkan status keberlanjutan yang baik, demikian juga sebaliknya jika semakin ke dalam (mendekati titik 0) menunjukkan status keberlanjutan yang semakin buruk.

Tabel 82 Nilai indeks keberlanjutan berdasarkan alat tangkap pada dimensi ekologi, ekonomi, sosial, teknologi dan hukum dan kelembagaan di Ternate

<table>
<thead>
<tr>
<th>Dimensi</th>
<th>Pole and line</th>
<th>Purse seine</th>
<th>Rawai tuna</th>
<th>Pancing tonda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekologi</td>
<td>60,66</td>
<td>55,38</td>
<td>49,18</td>
<td>67,22</td>
</tr>
<tr>
<td>Ekonomi</td>
<td>52,29</td>
<td>53,22</td>
<td>43,87</td>
<td>63,87</td>
</tr>
<tr>
<td>Sosial</td>
<td>47,99</td>
<td>46,12</td>
<td>50,32</td>
<td>60,23</td>
</tr>
<tr>
<td>Teknologi</td>
<td>45,29</td>
<td>29,91</td>
<td>51,03</td>
<td>51,03</td>
</tr>
<tr>
<td>Hukum dan kelembagaan</td>
<td>32,02</td>
<td>37,42</td>
<td>43,75</td>
<td>43,75</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>47,65</td>
<td>44,41</td>
<td>43,78</td>
<td>57,22</td>
</tr>
</tbody>
</table>

Nilai indeks keberlanjutan keempat alat tangkap yang ditelaah menunjukkan bahwa alat tangkap pole and line, purse seine, dan rawai tuna tergolong dalam kategori kurang berkelanjutan, sedangkan alat tangkap pancing tonda tergolong dalam kategori cukup berkelanjutan (Tabel 82). Nilai indeks keberlanjutan perikanan pole and line pada kelima dimensi memperlihatkan bahwa dimensi hukum dan kelembagaan yang paling kecil nilai indeks keberlanjutannya dimana nilai indeksnya jauh lebih kecil dari nilai 50 yaitu 32,02. Keadaan yang serupa juga ditunjukan pada dimensi sosial dan teknologi yang masih masing-masing memiliki nilai indeks keberlanjutan 47,99 dan 45,29. Sementara dimensi ekologi dan ekonomi, indeks keberlanjutannya masih tergolong cukup berkelanjutan (> 50). Berdasarkan perhitungan statistik deskriptif diperoleh bahwa secara keseluruhan nilai indeks untuk kelima dimensi keberlanjutan...
perikanan *pole and line* di Ternate cenderung menunjukan tergolong ke dalam status kurang berkelanjutan, dengan nilai indek rata-rata sebesar 47,65 (Lampiran 17).

Selanjutnya nilai indeks keberlanjutan alat tangkap *purse seine* pada setiap dimensi memperlihatkan bahwa di antara kelima dimensi dalam penelitian ini ternyata menunjukan dimensi teknologi yang paling kecil nilai indeks keberlanjutannya dimana nilai indeksnya jauh lebih kecil dari nilai 50 yaitu 29,91. Keadaan yang menunjukan kurang berkelanjutan juga dialami pada dimensi sosial dan dimensi hukum dan kelembagaan yang masing-masing memiliki nilai indeks keberlanjutannya 46,12 dan 37,42. Sementara pada dimensi ekologi dan ekonomi, indeks keberlanjutannya masih tergolong cukup berkelanjutan (> 50). Jika dilihat secara keseluruhan, nilai rata-rata kelima dimensi keberlanjutan alat tangkap *purse seine* di Ternate menunjukan sudah tergolong status kurang berkelanjutan dengan nilai 44,41 (Tabel 82 dan Lampiran 17).

Pada alat tangkap rawai tuna di Ternate, nilai indeks keberlanjutan pada tiap dimensi memperlihatkan kondisi yang berbeda dengan kedua perikanan yang terlihat pada Tabel 82 dan Lampiran 17, nilai indeks rata-rata keberlanjutan kelima dimensi keberlanjutan alat tangkap rawai tuna di Ternate menunjuk menunjukkan masih tergolong status kurang berkelanjutan (43,78). Di antara kelima dimensi yang dianalisis pada alat tangkap rawai tuna tersebut menunjukan bahwa hanya dimensi sosial yang menunjukan indeks keberlanjutannya masih tergolong cukup berkelanjutan (50,32). Keempat dimensi lainnya yaitu dimensi ekologi, dimensi ekonomi, dimensi teknologi, dan dimensi hukum dan kelembagaan memiliki nilai indeks yang tergolong kurang berkelanjutan dengan nilai indeks masing masing sebesar 49,18, 43,87, 43,50, dan 32,02.

Diantara keempat alat tangkap yang diteliti ternyata pancing tonda yang memiliki status keberlanjutan terbaik (Tabel 82). Nilai indeks keberlanjutan alat tangkap pancing tonda pada setiap dimensi menunjukan nilai yang lebih baik. Nilai indeks rata-rata dari kelima dimensi keberlanjutan alat tangkap pancing tonda di Ternate menunjukkan angka 57,22 dan tergolong status cukup berkelanjutan (Lampiran 17). Diantara kelima dimensi menunjukan bahwa nilai
indeks keberlanjutan paling rendah yaitu pada dimensi hukum dan kelembagaan yaitu 43,75. Sementara pada dimensi ekologi, ekonomi, sosial, dan teknologi, indeks keberlanjutannya masih tergolong cukup berkelanjutan (> 50).

Secara komprehensif, terlihat bahwa dari keempat alat tangkap yang diteliti ternyata berdasarkan dimensi ekologi, ekonomi, sosial, teknologi, dan hukum dan kelembagaan, kegiatan perikanan rawai tuna yang memiliki paling kurang nilai indeks keberlanjutannya selain nilai indeks kegiatan perikanan pole and line dan kegiatan perikanan purse seine. Meskipun demikian, ketiga kegiatan perikanan ini tergolong dalam status kurang keberlanjutan, sementara kegiatan perikanan pancing tonda tergolong dalam status cukup keberlanjutan.

Selanjutnya dimensi yang mempunyai pengaruh besar terhadap status keberlanjutan alat tangkap pole and line, purse seine, rawai tuna, dan pancing tonda di Ternate adalah dimensi hukum dan kelembagaan. Keadaan ini dilustrasikan lebih jelas melalui Gambar 26.

![Gambar 26. Diagram layang perbandingan nilai indeks keberlanjutan perikanan pelagis berdasarkan alat tangkap di Ternate. Berdasarkan gambar ini, terlihat bahwa alat tangkap pole and line, purse seine, rawai tuna dan pancing tonda memiliki nilai indeks keberlanjutan yang...](image-url)
paling ke dalam (mendekati titik 0) adalah dimensi hukum dan kelembagaan. Sementara nilai indeks keberlanjutan yang terlihat paling keluar pada diagram layang ini (mendekati angka 100) adalah dimensi ekologi.

10.4 Pembahasan

Rendahnya nilai indeks keberlanjutan alat tangkap *pole and line*, *purse seine*, rawai tuna dan pancing tonda pada dimensi hukum dan kelembagaan, sosial dan teknologi tercermin dari kurangnya hasil penilaian (nilai skor) yang terdapat pada masing-masing atribut dimensi hukum dan kelembagaan, dimensi sosial, dan dimensi teknologi. Atribut yang tergolong kurang penilaiannya (skor buruk) pada dimensi hukum dan kelembagaan adalah atribut keadilan dalam hukum, tersediaan personil penegak hukum, *illegal fishing*, dan peranan kelembagaan formal yang mendukung pengelolaan sumberdaya perikanan.

Pada sisi lain, peranan sebagian lembaga formal yang ada di Kota Ternate seperti HNSI hingga saat ini belum memberikan kontribusi yang sangat berarti bagi usaha perikanan tangkap di Kota Ternate. Aktivitas HNSI Kota Ternate masih terbatas sebagai mediasi permasalahan nelayan seperti penyelesaian kelangkaan BBM, mediasi pemenuhan sarana penangkapan ikan bagi nelayan, dan sebagai advokasi menyelesaikan permasalahan *illegal fishing* bagi nelayan. Sebenarnya lembaga formal tersebut sangat diharapkan peranannya dalam berbagai hal misalnya pengaturan wilayah penangkapan dan pengawasannya, pencegahan munculnya konflik antar nelayan atau pengguna sumberdaya, penanganan penerapan regulasi, penguatan modal usaha yang berarti, penguatan keakuratan data statistik perikanan, dan hal-hal yang berkaitan dengan kegiatan yang berdampak terpeliharanya sumberdaya perikanan. Dengan demikian, pada dimensi hukum dan kelembagaan, keempat alat tangkap menghasilkan nilai indeks keberlanjutan perikanan yang rendah (Lampiran 18).

Pada proses penanganan di atas kapal dan pengolahan pra-jual guna mempertahankan kesegaran ikan hasil tangkapan sebelum didaratkan, biasanya menggunakan balok es yang sudah dihancurkan, sedangkan pada alat tangkap pancing tonda tidak ada perlakukan di atas kapal. Sebagaimana terangkum dalam Tabel 20, produk yang dihasilkan perikanan pole and line, rawai tuna, dan pancing tonda di Ternate, sebagian besar pengolahan pra-jual tidak dilakukan (dijual mentah). Keadaan ini diperburuk dengan tempat pendaratan yang tidak menyebar di wilayah Kota Ternate. Tempat pendaratan yang menyebar atau berjumlah banyak secara langsung mempercepat waktu penurunan ikan, dan dengan demikian meningkatkan keuntungan nelayan.

Berdasarkan Tabel 82 dan Lampiran 17 juga terlihat bahwa alat tangkap rawa tuna mempunyai nilai indeks keberlanjutan yang tergolong kurang pada dimensi ekologi dan ekonomi. Pada dimensi ekologi, skor buruk yang identifikasi mempengaruhi nilai indeks ini adalah pada atribut jarak migrasi dan
atribut tangkapan pra-maturity, sedangkan pada dimensi ekonomi terlihat pada
atribut sifat pemasaran dan atribut pasar utama. Sesuai dengan peruntukannya,
nelayan rawai tuna di Ternate melakukan penangkapan dengan species sasaran
tangkap adalah tuna (Tunnus sp). Ikan sasaran tangkap ini diketahui selama dawar
hidupnya merupakan spesies yang beruaya jarak jauh, yaitu antar kawasan di
Samudra Pasifik (Monintja et al. 2001). Sesuai dengan kriteria RAPFISH,
sementara kecil atau sempit ruaya dari ikan-ikan yang ditangkap maka semakin
efektif usaha pengelolaannya, sehingga seiring dengan itu risiko atau ancaman
terhadap keberlanjutan usaha perikanan di wilayah analisis semakin kecil pula
(Hartono et al. 2005). Selanjutnya sesuai dengan pengamatan di lapangan, hasil
tangkapan dari jenis perikanan ini sebagian besar merupakan jenis ikan yang
beruaya jarak jauh. Jenis tuna yang ditangkap nelayan Ternate sekitar lima tahun lalu
berat 100-110 kg per ekor, namun sekarang yang ditangkap adalah tuna dengan
berat kurang lebih 70-80 kg per ekor. Atribut ini menggambarkan bahwa
sumberdaya perikanan termasuk kategori sumberdaya dapat pulih (renewable
resources). Apabila tingkat kemampuan pulihnya secara alami semakin terjamin
dimana sumberdaya ikan yang dieksploitasi memiliki kesempatan untuk matang
atau bereproduksi minimal satu kali sebelum tertangkap, maka secara langsung
risiko atau ancaman terhadap keberlanjutan usaha perikanan di wilayah analisis
akan semakin kecil (Hartono et al. 2005).

Sifat pemasaran atau penjualan hasil tangkapan yang lazim berlaku dari
perikanan rawai tuna dilakukan berdasarkan kuota. Pemasaran hasil tangkapan
perikanan ini dilakukan dengan melihat harga pembelian. Jika harga di Ternate
lebih rendah dari harga di Bitung, maka sebagian besar tangkapan ikan tuna yang
ditangkap dijual di Bitung. Sifat pemasaran yang sebagian besar di jual di luar
daerah ini, menjadikan Bitung sebagai pasar utama menyebabkan skor buruk pada
perikanan tuna di Ternate. Menurut Hartono et al. (2005), pasar atau pengguna
lokal tending akan lebih peduli/bersahabat (concern/friendship) atas
sumbdaya perikanan di wilayah yang analisis jika pengguna lokal dapat lebih
menikmati keuntungan usaha perikanan yang ada.

Sementara itu, sifat pemasaran perikanan rawai tuna terkesan sulit untuk
dipindahkan (dijual). Keadaan ini tidak akan menciptakan suatu insentif
keuangan untuk memelihara kelestarian dan meningkatkan kualitas sumberdaya perikanan (penjualan semakin tinggi jika kualitas perikanan tinggi maka dapat menghasilkan banyak keuntungan). Berdasarkan pengaruh penskoran dari keempat atribut ini sehingga perikanan rawai tuna di Tenate memiliki nilai indeks keberlanjutan terendah dibandingkan dengan perikanan pelagis lainnya yang dialalisis dalam kajian ini.

5 Kesimpulan

Dalam perspektif keberlanjutan menurut alat tangkap, maka berdasarkan dimensi ekologi, ekonomi, sosial, teknologi, dan hukum dan kelembagaan, kegiatan perikanan rawai tuna memiliki nilai indeks keberlanjutannya paling rendah selain nilai indeks kegiatan perikanan pole and line, dan kegiatan perikanan purse seine. Meskipun demikian ketiga kegiatan perikanan tersebut tergolong dalam status kurang keberlanjutan (<50), sementara kegiatan perikanan pancing tonda tergolong dalam status cukup keberlanjutan (>50).

Kurangnya nilai indeks keberlanjutan alat tangkap pole and line, purse seine, rawai tuna dan pancing tonda pada dimensi hukum dan kelembagaan, sosial dan teknologi tercermin dari buruknya hasil penilaian (nilai skor) yang terdapat pada masing-masing atribut tersebut. Atribut yang tergolong kurang penilaianannya (skor butuk) pada dimensi hukum dan kelembagaan adalah atribut keadilan dalam hukum, ketersediaan personil penegak hukum, illegal fishing, dan peranan kelembagaan formal yang mendukung pengelolaan sumberdaya perikanan. Atribut yang tergolong buruk penilaianannya pada dimensi sosial adalah atribut pengetahuan lingkungan, tingkat pendidikan, status konflik, pengaruh nelayan, pendapatan penangkapan, dan partisipasi keluarga. Atribut yang tergolong buruk penilaianannya pada dimensi teknologi adalah tempat pendaratan, pengolahan pra-jual, penanganan di kapal, penggunaan FAD’s.
11 KEBIJAKAN PENGEMBANGAN PERIKANAN PELAGIS
KEBERLANJUTAN KOTA TERNATE

11.1 Pendahuluan

Perikanan tangkap merupakan salah satu aktivitas ekonomi yang sangat kompleks, sehingga tantangan untuk memelihara sumberdaya menjadi tetap sehat menjadi issue yang cukup kompleks dalam pembangunan perikanan. Sesuai dengan konstitusi sebagaimana tertuang pada Pasal 3 Undang-Undang Nomor 9 tahun 1985, yang disempurnakan dengan UU No. 45 Tahun 2009 jo UU No. 31 tahun 2004 tentang Perikanan, pembangunan perikanan tangkap ditujukan untuk meningkatkan kesejahteraan masyarakat, khususnya nelayan, dan sekaligus untuk menjaga kelestarian sumberdaya ikan serta lingkungannya.

Tujuan tersebut diperluas cakupannya, sehingga tidak hanya untuk meningkatkan kesejahteraan masyarakat dan menjaga kelestarian sumberdaya ikan, tetapi juga untuk meningkatkan kontribusi sub sektor perikanan tangkap terhadap pembangunan perekonomian nasional, baik dalam bentuk penyediaan lapangan kerja, penerimaan devisa melalui ekspor, maupun Penerimaan Negara Bukan Pajak (PNBP).

Dalam mencapai tujuan tersebut, pemerintah berusaha untuk menerapkan manajemen perikanan tangkap secara terpadu dan terarah, agar pemanfaatan sumberdaya ikan dapat dilakukan secara berkelanjutan dari generasi ke generasi. Hal ini karena sumberdaya ikan dapat mengalami degradasi bahkan kemusnahan apabila dieksploitasi secara tidak terkendali, meskipun dikatakan bahwa sumberdaya ikan merupakan sumberdaya yang dapat diperbaharui (renewable sources). Disamping itu, penerapan manajemen perikanan yang baik, juga merupakan wujud dari implementasi komitmen pemerintah Indonesia terhadap pengelolaan perikanan yang bertanggungjawab sebagaimana dituang dalam FAO-Code of Conduct for Responsible Fisheries (FAO 1995), yang diperluas ini bergaung di dunia internasional.

Berdasarkan uraian pada Bab 5 sampai dengan Bab 9, assessment terhadap status keberlanjutan perikanan pelagis di Ternate melalui pendekatan RAPFISH secara luas telah diketahui (Gambar 26). Hasil diagnosis terhadap keberlanjutan dari keempat jenis perikanan pelagis yang diteliti menunjukkan bahwa kegiatan perikanan pelagis di Kota Ternate pada dimensi ekologi, ekonomi, dan sosial, memiliki status cukup berkelanjutan dengan rata-rata nilai indeks keberlanjutan masing-masing sebesar 58,11, 53,31, dan 51,17. Pada dimensi teknologi, dan hukum/kelembagaan memiliki status kurang berkelanjutan dengan nilai indeks masing-masing sebesar 42,43 dan 36,30 (Gambar 26 dan Tabel 80).

Berdasarkan statusnya (kurang berkelanjutan), diketahui juga atribut mana yang menjadi prioritas (focus) dalam pembangunan perikanan secara multi-dimensi di Kota Ternate. Atribut-atribut tersebut adalah jarak migrasi, tingkatan kolap dan tangkapan belum dewasa untuk dimensi ekologi; pembatasan masuk, sifat masaran, dan pendapatan lain untuk dimensi ekonomi; sektor penangkapan, pengaruh nelayan, dan status konflik untuk dimensi sosial; penanganan pra-jual, selektivitas alat tangkap, dan penggunaan FADs untuk dimensi teknologi; keterlibatan nelayan dalam penentuan kebijakan dan Illegal Fishing untuk dimensi hukum dan kelembagaan. Atribut-atribut sensitif inilah yang menurut analisis RAPFISH merupakan permasalahan yang menyebabkan
keberlanjutan perikanan pelagis di Ternate teridentifikasi kurang berkelanjutan. Untuk itu, diperlukan suatu alternatif-alternatif kebijakan yang dapat memperbaiki pengelolaan perikanan yang ada, sebagaimana tercermin pada atribut-atribut sensitif yang teridentifikasi tersebut.

Perumusan kebijakan yang diinginkan berisikan upaya-upaya atau strategi-strategi yang dapat ditempuh dalam pengembangan perikanan yang berkelanjutan di Kota Ternate, sehingga kebijakan tersebut akan lebih mampu untuk memecahkan permasalahan di bidang ekologi, ekonomi, sosial, teknologi dan hukum dan kelembagaan, agar pengelolaan perikanan yang bertanggung jawab dapat diwujudkan. Dalam alternatif-alternatif kebijakan pengelolaan perikanan pelagis yang ada, selanjutnya dibuat suatu kegiatan yang terencana (implementasi) dari suatu kebijakan dalam pengembangan pengelolaan perikanan yang tepat sehingga berguna bagi para pengambil keputusan di sektor kelautan dan perikanan daerah.

Tujuan penelitian ini adalah untuk menindaklanjuti hasil kajian RAPFISH pada perikanan pelagis Kota Ternate. Sedangkan tujuan spesifik dari penelitian ini adalah merumuskan alternatif kebijakan yang tepat dalam rangka mendukung keberlanjutan perikanan pelagis menurut dimensi ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan di Kota Ternate sebagaimana ditunjukan pada atribut-atribut sensitif dari hasil kajian RAPFISH. Manfaat yang diharapkan dari hasil penelitian ini adalah untuk mendapatkan gambaran mengenai prioritas kebijakan perikanan pelagis guna merencanakan pengembangan usaha perikanan di Ternate, sehingga berguna bagi para pengambil keputusan di sektor kelautan dan perikanan di daerah ini.

1.2 Metode

Metode yang dipergunakan dalam penelitian ini adalah metode survei, dengan menjadikan seluruh pihak terkait (stakeholder) dalam kegiatan pembangunan perikanan pelagis di Kota Ternate sebagai obyek penelitian. Pihak terkait dimaksud meliputi nelayan yang terlibat dalam kegiatan perikanan, pimpinan pelabuhan perikanan, dan pimpinan otoritas pembangunan perikanan (Dinas Kelautan dan Perikanan), baik di tingkat kota maupun provinsi.
Data yang dipergunakan dalam penelitian ini adalah data primer dan data sekunder, dimana data primer berasal dari lembaga atau pejabat yang bertanggung jawab terhadap kegiatan perikanan di lokasi penelitian. Pengumpulan data diperoleh melalui wawancara langsung dengan menggunakan kuisioner terhadap responden yang terpilih. Pemilihan responden sebagai contoh dilakukan secara purposive sampling, dengan pertimbangan bahwa responden adalah pelaku (individu atau lembaga) yang terlibat atau mengerti dalam kegiatan perikanan tangkap di lokasi penelitian (key person). Jumlah responden yang terpilih dan dipergunakan dalam penelitian ini adalah sebanyak 10 orang, yang terdiri dari 2 orang pejabat di lingkungan Dinas Kelautan dan Perikanan Kota Ternate (Kepala Dinas Kelautan dan Kepala Seksi Perijinan), 1 orang pejabat di lingkungan Dinas Perikanan dan Kelautan Provinsi Maluku Utara (mantan Kepala Dinas), 1 pejabat di lingkungan PPN Bastiong, 1 pejabat di lingkungan PPI Dufa-dufa, 2 orang tokoh masyarakat nelayan, 2 orang staf pengajar di FPIK Universitas Khairun Ternate, dan 1 orang peneliti perikanan tangkap. Disamping itu, dalam penelitian ini juga dilakukan diskusi bersama para pakar untuk mendapatkan klarifikasi dari data/informasi yang diperoleh.

Analisis kebijakan prioritas pengembangan perikanan bertujuan untuk mendapatkan gambaran mengenai prioritas kebijakan perikanan pelagis yang meliputi kebijakan di bidang ekologi, bidang ekonomi, bidang sosial, bidang teknologi dan bidang hukum dan kelembagaan guna pengembangan perikanan pelagis yang berkelanjutan di Kota Ternate. Analisis ini merupakan lanjutan dari analisis RAPFISH sebagaimana tertuang dalam Bab 5 (Keberlanjutan ekologi), Bab 6 (Keberlanjutan ekonomi), Bab 7 (Keberlanjutan sosial), Bab 8 (Keberlanjutan teknologi), dan Bab 9 (Keberlanjutan hukum dan kelembagaan).

Dengan demikian, alat analisis yang digunakan adalah RAPFISH dan AHP (Analytical Hierarchy Process). Melalui analisis RAPFISH, dari berbagai dimensi diperoleh permasalahan/kelemahan pengelolaan perikanan di Kota Ternate yang dikeluarkan sebagai atribut sensitif sehingga menyebabkan rendahnya nilai indeks keberlanjutannya. Dengan demikian pengambilan keputusan dan atau kebijakan untuk peningkatan atau mengembangkan status keberlanjutan dimaksud dapat dilakukan secara objektif dan ditetapkan berdasarkan
proses hierarki analisis. Berdasarkan kedua analisis tersebut tersusun suatu hierarki dan hierarki tersebut dituangkan ke dalam kuesioner dan dilakukan penilaian prioritas oleh responden dengan selanjutnya dilakukan sintesis untuk menghasilkan bilangan yang menunjukan prioritas setiap elemen. Langkah-langkah perhitungan analisis ini terlihat dalam Bab 3 (Metodologi umum penelitian).

Diperhadapkan dengan kondisi umum perikanan pelagis Kota Ternate dan ibut-atribut sensitif yang menunjukan kelemahan dalam pengelolaannya, maka bagi alternatif kebijakan pengembangan perikanan pelagis yang berkelanjutan selih 5 alternatif yang mungkin diterapkan berdasarkan dimensi ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan adalah (1) peningkatan produktifitas dan efisiensi usaha penangkapan lestari, (2) peningkatan perluasan masar produksi perikanan pelagis (3) peningkatan kesejahteraan pelaku penangkapan, (4) pengembangan teknologi penangkapan ikan yang ramah lingkungan, dan (5) pengembangan kapasitas hukum dan kelembagaan usaha perikanan pelagis. Pilihan alternatif kebijakan tersebut diletakkan pada struktur hierarki pada tingkat paling bawah, sedangkan sebagai sasaran utama adalah kebijakan pengembangan perikanan pelagis yang berkelanjutan di Kota Ternate diletakkan pada tingkat pertama dalam struktur hierarki. Pihak-pihak yang berkepentingan/berpengaruh (aktor atau pelaku) dengan kegiatan perikanan di Kota Ternate merupakan faktor yang cukup penting untuk dipertimbangkan dalam kebijakan pengembangan (sasaran utama), sehingga pihak-pihak yang berkepentingan tersebut dimasukkan pada tingkat kedua dari struktur hierarki. Pihak-pihak tersebut teridentifikasi adalah pemerintah daerah, PPN/PPI, perbankan, nelayan/ABK, perusahaan perikanan, industri pengolahan, pelaku masaran, dan penegak hukum.

Kriteria untuk pemilihan alternatif kebijakan adalah kelima dimensi yang digunakan dalam analisis RAPFISH untuk melihat keberlanjutan perikanan pelagis di lokasi penelitian yaitu ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan. Dalam mencapai sasaran utama, dimensi-dimensi ini yang ingin dapat dijadikan pertimbangan dalam melihat secara komprehensif dalam pemilihan alternatif kebijakan dalam keberlanjutan perikanan pelagis di lokasi...
penelitian, sehingga kriteria ini diletakkan pada tingkat ketiga dari struktur hierarki. Sub kriteria digunakan sebagai pertimbangan yang lebih spesifik dari kriteria-kriteria yang ada, sehingga diletakkan pada tingkat keempat dari struktur hierarki. Sub kriteria tersebut meliputi kondisi terbalik dari keadaan yang ditunjukkan dari evaluasi keberlanjutan perikanan pelagis melalui atribut-atribut sensitif dalam analisis RAPFISH yaitu lokasi penangkapan ikan bertambah (atribut jarak migrasi), ikan sasaran tangkap semakin dekat (atribut tingkatan kolaps), dan tangkapan belum dewasa menurun (atribut tangkapan belum dewasa) untuk kriteria ekologi; persaingan pemanfaatan SDI tertentu berkurang (atribut pembatasan masuk), pemasaran ikan lebih luas (atribut sifat pemasaran), dan terciptanya alternatif pendapatan lain bagi nelayan (atribut pendapatan lain) untuk kriteria ekonomi; pengaktifan kembali nelayan pasif (atribut sektor penangkapan), keterlibatan nelayan dalam pertemuan meningkat (atribut pengaruh nelayan), dan frekuensi konflik nelayan menurun (atribut status konflik) untuk kriteria sosial; perbaikan proses produksi sebelum dijual (atribut pengolahan pra-jual), perbaikan selektivitas alat tangkap (atribut selektivitas alat tangkap), dan penggunaan FAD’s (attribut penggunaan FAD’s) untuk kriteria teknologi; adanya keterlibatan nelayan dalam pengambilan kebijakan (atribut keterlibatan nelayan dalam penentuan kebijakan), dan Illegal Fishing menurun (atribut Illegal Fishing) untuk kriteria hukum dan kelembagaan.

Matriks perbandingan berpasang dibuat dari tingkat pertama hierarki untuk mengetahui siapa yang lebih berperan dari pihak-pihak yang berkepentingan terhadap penentuan kebijakan pengembangan perikanan pelagis yang berkelanjutan di Kota Ternate. Selanjutnya matriks banding berpasang dibuat untuk masing-masing tingkat berikutnya, untuk mengetahui peranan, dominasi, kontribusi dan pertimbangan lain dari setiap elemen terhadap sifat pada satu tingkat diatasnya.

11.3 Hasil

Hasil analisis dengan menggunakan metode PHA pada tingkat pertama diperoleh vektor prioritas dari pihak-pihak yang berkepentingan terhadap pengembangan perikanan pelagis yang berkelanjutan di Kota Ternate adalah...
pemerintah daerah (0,339), PPN/PPI (0,154), perusahaan perikanan (0,113), penegak hukum (0,085), industri pengolahan (0,083), nelayan/ABK (0,044), pelaku pemasaran (0,035), dan perbankan (0,023).

Vektor prioritas pada masing-masing kriteria diperoleh nilai ekologi: 0,156; ekonomi: 0,288; Sosial: 0,086; teknologi: 0,223; dan hukum/kelembagaan: 0,246. Vektor prioritas pada kriteria ini diperoleh dari pendapat pihak-pihak yang berkepentingan pada tingkat 2 struktur hierarki. Berdasarkan hasil penilaian sebut dapat digambarkan bahwa, kriteria yang paling penting untuk pertimbangan pada pengembangan kegiatan perikanan di Kota Ternate adalah kriteria ekonomi diikuti dengan pertimbangan hukum dan kelembagaan.

Pada pertimbangan kriteria ekologi diperoleh vektor prioritas dari sub kriteria lokasi penangkapan ikan bertambah (0,047), ikan sasaran tangkap semakin jauh (0,038), dan tangkapan belum dewasa menurun (0,071). Pada kriteria ekonomi, hasil analisis diperoleh vektor prioritas dari sub kriteria persaingan manfaatan SDI tertentu berkurang (0,040), pemasaran ikan lebih luas (0,091), dan terciptanya alternatif pendapatan lain bagi nelayan (0,157). Pada kriteria sosial, dari ketiga sub kriteria yang merupakan faktor dimana perlu pertimbangan dalam pengembangan perikanan yang berkelaanjutan di Kota Ternate menghasilkan pengaktifan kembali nelayan pasif sebesar 0,029, pengaruh nelayan dalam pengambilan keputusan meningkat sebesar 0,039, dan frekuensi konflik nelayan menurun sebesar 0,018. Pada kriteria teknologi, nilai vektor prioritas dari ketiga sub kriteria yaitu perbaikan proses produksi sebelum dijual, perbaikan selektivitas alat tangkap, dan penggunaan FAD’s terkontrol menghasilkan masing-masing sebesar 0,089, 0,069, dan 0,066. Pada kriteria hukum dan kelembagaan menghasilkan nilai vektor prioritas sub kriteria keterlibatan nelayan dalam penentuan kebijakan perikanan sedikit lebih prioritas daripada dan sub kriteria Illegal Fishing menurun.

Penentuan alternatif kebijakan dihitung berdasarkan hasil dari pertimbangan yang telah dilakukan pada tingkatan dari keseluruhan hierarki. Berdasarkan pertimbangan secara keseluruhan, diperoleh vektor prioritas untuk alternatif kebijakan yaitu pengembangan kapasitas hukum dan kelembagaan usaha.
Perikanan pelagis sebesar 0,359, perbaikan sistem pemasaran produksi perikanan pelagis sebesar 0,235, peningkatan produktifitas dan efisiensi usaha penangkapan lestari sebesar 0,218, peningkatan kesejahteraan pelaku penangkapan sebesar 0,152, dan pengembangan teknologi penangkapan ikan yang ramah lingkungan sebesar 0,036. Dengan demikian, prioritas kebijakan terpilih untuk pengembangan perikanan pelagis yaitu pengembangan kapasitas hukum dan kelembagaan usaha perikanan pelagis dan perbaikan sistem pemasaran produksi perikanan pelagis. Secara keseluruhan, nilai vektor prioritas hasil dari analisis AHP disajikan dalam Gambar 25 dan hasil olahannya dapat dilihat pada Lampiran 19.
Gambar 25. Hierarki kebijakan pengembangan perikanan pelagis yang berkelanjutan di Kota Ternate
Pembahasan

Berdasarkan hasil analisis PHA, dari delapan pihak yang berkepentingan, pihak pemerintah daerah merupakan pihak yang berperan penting dalam menentukan kebijakan pengembangan perikanan pelagis yang berkelanjutan di Kota Ternate, sedangkan perbankan yang merupakan pelaku utama kegiatan perikanan memiliki peranan yang paling rendah. Selanjutnya, dari lima kriteria yang dianalisis, kriteria ekonomi, dan hukum kelembagaan yang dinilai sangat berkontribusi dalam pengembangan perikanan pelagis yang berkelanjutan di wilayah penelitian. Hal ini dapat dimengerti karena wilayah perairan Ternate merupakan wilayah yang menjadi salah satu sasaran tempat pencurian ikan bagi nelayan asing, sehingga berkurangnya peluang terjadinya pencurian ikan merupakan faktor utama supaya kegiatan perikanan pelagis dapat berkembang. Kriteria ekonomi juga merupakan aspek yang penting untuk dipertimbangkan dalam kebijakan pengembangan kegiatan perikanan pelagis di Kota Ternate, yaitu hendaknya dapat memberikan manfaat bagi peningkatan pendapatan nelayan dan masyarakat setempat pada umumnya.

Hasil penilaian kriteria ekologi menggambarkan bahwa sub kriteria menunjukkan hasil tangkapan ikan yang belum dewasa adalah sub kriteria yang perlu mendapat diperhatikan dalam pengelolaan kegiatan perikanan pelagis yang berkelanjutan di Ternate dibandingkan dengan kedua sub kriteria lainnya. Hal ini dapat dipahami karena sebagian hasil tangkapan yang di daratkan masih diwarnai dengan ukuran ikan yang tergolong belum matang gonad. Sebagai contoh adalah pada jenis layang biru, hasil tangkapan yang belum matang gonad mendominasi sebesar 55% dari keseluruhan hasil tangkapan nelayan Maluku Utara (Irham 2009).

Di sisi ekonomi, sub kriteria alternatif pendapatan lain bagi nelayan di wilayah Ternate memiliki kontribusi yang lebih penting untuk dipertimbangkan dari pada sub kriteria pembatasan masuk dan sifat pemasaran. Persaingan pemanfaatan SDI akan semakin berkurang jika telah terciptanya alternatif pendapatan lain bagi nelayan dan proses pemasaran hasil tangkapan lebih mudah.
dan memiliki harga yang sesuai. Hal ini dapat bermuara pada keuntungan dan peningkatan pendapatan nelayan ditengah-tengah kesulitan dalam berinvestasi dalam bidang perikanan tangkap. Untuk itu dapat dipahami kalau keuntungan dan peningkatan pendapatan nelayan lebih diprioritaskan dalam pertimbangan pengembangan kegiatan perikanan pelagis yang berkelanjutan di Kota Ternate.

Sementara dari kriteria sosial, sub kriteria pengaruh nelayan merupakan faktor yang memiliki kontribusi lebih penting dibandingkan dengan faktor lainnya bagi pengembangan keberlanjutan kegiatan perikanan pelagis yaitu sub kriteria tangkapan dan status konflik. Hal ini dapat dipahami karena dengan adanya pengaruh nelayan dalam pengambilan keputusan kebijakan perikanan akan timbul rasa tanggungjawab terhadap pelaksanaan suatu kebijakan pengelolaan perikanan. Pengaruh dalam bentuk partisipasi yang didasari atas pengetahuan tradisionalnya tentang pengelolaan sumberdaya perikanan maka akan mendukung kelestarian sumberdaya perikanan. Kegiatan ini dapat dilakukan dalam berbagai pertemuan formal dan informal yang dilaksanakan oleh pemerintah daerah atau institusi akademis akan semakin meningkatkan kualitas sumberdaya manusia (khususnya nelayan).

Pertemuan itu antara lain melalui seminar, lokakarya dan pertemuan-ilmiah sehingga dalam proses penyusunan regulasi daerah baik menyangkut usaha perikanan, produktivitas kapal ikan, serta yang berhubungan dengan prinsip-prinsip dan arahan kebijakan pengelolaan perikanan di daerah. Selain itu, pengaruh nelayan dalam pengambilan keputusan kebijakan perikanan akan menurunkan frekuensi konflik nelayan dan merangsang bagi nelayan-nelayan pasif untuk bisa aktif kembali.

Dalam pengembangan perikanan pelagis yang berkelanjutan di Ternate, menurut kriteria teknologi menggambarkan bahwa sub kriteria pengolahan pra-jual memiliki pengaruh yang lebih besar dibandingkan dengan 2 sub kriteria lainnya. Hal ini sesuai dengan jenis hasil tangkapan dan fasilitas yang ada. Jenis hasil tangkapan sebagian besar dikenal sebagai produk yang mudah rusak jika tidak diangani dan diolah. Untuk itu proses penanganan ikan sebelum dijual sangat diperlukan agar kualitas hasil tangkapan akan semakin baik dan dapat
mengingkatkan keuntungan nelayan. Sesuai keadaan pemasaran produk yang dihasilkan di daerah ini, sebagian besar pengolahan pra-jual tidak dilakukan. Fasilitas yang ada juga belum memungkinkan untuk lebih memprioritaskan pada pasar ekspor.

Selanjutnya tingginya nilai vektor sub kriteria keterlibatan nelayan dalam penentuan kebijakan (demokrasi dalam perumusan kebijakan) dibandingkan dengan sub kriteria menurunnya frekuensi terjadinya illegal fishing, dapat dipahami karena dengan kehadiran nelayan dalam kegiatan penentuan suatu kebijakan dalam pengelolaan tersebut antara lain berakibat semakin tinggi fungsi pengawasan kebijakan tersebut terutama dalam hal yang berhubungan dengan sumberdaya perikanan. Fungsi pengawasan yang melibatkan nelayan ini juga dapat mencegah dan menanggulangi kegiatan-kegiatan yang berkaitan dengan illegal fishing yang marak terjadi di perairan Kota Ternate.

Dengan produktivitas dan efisiensi usaha yang masih belum optimal, pemasaran hasil tangkap yang masih terbatas, keuntungan nelayan yang masih kecil, alat tangkap yang masih belum sepenuhnya selektif, serta masalah yang sering terjadi pencurian ikan di wilayah perairan Kota Ternate, maka untuk dapat mengembangkan kegiatan perikanan pelagis yang berkelanjutan di wilayah Kota Ternate dapat dilakukan dengan peningkatan produktivitas dan efisiensi usaha penangkapan lestari, perbaikan sistem pemasaran produksi perikanan pelagis, peningkatan kesejahteraan pelaku penangkapan, pengembangan teknologi penangkapan ikan yang ramah lingkungan, dan pengembangan kapasitas hukum dan kelembagaan usaha perikanan pelagis.

11.5 Kesimpulan

(1) Menurut tingkat prioritas, kebijakan yang tepat dalam rangka mendukung perikanan pelagis yang keberlanjutan di Ternate berturut-turut diarahkan pada Pengembangan kapasitas hukum dan kelembagaan usaha perikanan pelagis, (2) Perbaikan sistem pemasaran produksi perikanan pelagis, (3) peningkatan produktivitas dan efisiensi usaha penangkapan lestari, (4) peningkatan kesejahteraan pelaku penangkapan, dan (5) Pengembangan teknologi penangkapan ikan yang ramah lingkungan.
Berdasarkan lima dimensi hasil keluaran dengan menggunakan pendekatan RAPFISH yang kemudian dijadikan kriteria pada analisis PHA menunjukan bahwa dimensi hukum kelembagaan dan dimensi ekonomi yang paling menentukan terhadap pengembangan perikanan pelagis yang berkelanjutan di Ternate secara keseluruhan. Adapun sub kriteria yang paling menjadi prioritas adalah terciptanya alternatif pekerjaan lain bagi nelayan, melibatkan nelayan dalam pengambilan keputusan kebijakan pengelolaan SDI, dan pencegahan terjadinya illegal fishing. Sementara pihak yang berkepentingan terhadap pengembangan perikanan pelagis yang berkelanjutan di Ternate adalah Pemerintah Daerah Kota Ternate.
2. Dilihat melalui pengukuran dan memeriksa fungsi ekosistem dan keanekaragaman hayati dalam kurun waktu 10 tahun.
3. Dilihat melalui pengukuran dan memperhitungkan fungsi ekosistem dan keanekaragaman hayati dalam kurun waktu 10 tahun.
4. Dilihat melalui pengukuran dan memperhitungkan fungsi ekosistem dan keanekaragaman hayati dalam kurun waktu 10 tahun.
5. Dilihat melalui pengukuran dan memperhitungkan fungsi ekosistem dan keanekaragaman hayati dalam kurun waktu 10 tahun.

Hak Cipta Dilindungi Undang-Undang
12 PEMBAHASAN UMUM

Keberadaan kondisi sumberdaya perikanan tangkap Kota Ternate, secara singkat dapat dikatakan bahwa Kota Ternate merupakan wilayah kepulauan dan memiliki luas lautan yang sangat besar (95,2%), dimana didalamnya terkandung intensi sumberdaya perikanan pelagis yang sangat besar. Pengembangan sumberdaya perikanan ini mempunyai prospek yang menguntungkan di masa yang akan datang baik untuk peningkatan kesejahteraan dan taraf hidup masyarakat maupun berkontribusi terhadap perekonomian daerah.

Berdasarkan hal ini, perikanan pelagis seharusnya menjadi salah satu kegiatan ekonomi andalan dan menjadi salah satu prime mover pembangunan daerah ini. Pembangunan di bidang perikanan pelagis di Kota Ternate walaupun belum optimal namun telah memberikan kontribusi yang nyata dalam pembangunan sub-sektor kelautan dan perikanan daerah. Hal ini ditunjukkan dengan naiknya produksi penangkapan setiap tahun, jumlah perahu/kapal ikan dan alat tangkap yang beroperasi bertambah, nelayan/tenaga kerja yang terserap, dan berkontribusi pada Pendapatan Asli Daerah (PAD).

Kegiatan perikanan pelagis di Kota Ternate menghasilkan berbagai jenis hasil tangkapan berupa ikan konsumsi bernilai ekonomis penting diantaranya seperti cakalang (Katsuwonus pelamis), tuna (Thunnus albacares), tongkol (Euthynnus spp), dan jenis-jenis pelagis kecil lainnya seperti layang (Decapterus lajang), kembung (Rastralliger spp), dan selar (Selaroides spp) yang ditangkap oleh nelayan di wilayah perairan Kota Ternate. Nilai total produksi perikanan tangkap termasuk produksi perikanan pelagis di Ternate mencapai Rp 4,5 milyar.

Secara aktual, perikanan tangkap di Ternate sampai saat ini masih dominasi oleh perikanan tangkap skala kecil. Secara keseluruhan jenis kapal tangkap ikan di dominasi oleh perahu tanpa motor dan motor tempel (66%), dan armada tangkap bermotor nelayan masih didominasi oleh jenis kapal ukuran < 5 GT (50%). Dominannya kapal tanpa motor dan motor tempel ini

Sampai saat ini, pengelolaan perikanan tangkap di Kota Ternate masih terdapat beberapa permasalahan. Permasalahannya antara lain status pemanfaatan sumberdaya perikanan tangkap di Ternate (Laut Maluku) tergolong dalam gejala telah mengalami overfishing, pendapatan nelayan belum maksimal, keterbatasan modal usaha, masih adanya konflik pemanfaatan sumberdaya ikan, lemahnya sumber daya manusia (SDM) dalam menerapkan teknologi penangkapan dan memanfaatkan serta mengelola potensi sumber daya perikanan tangkap secara efisien dan berkelanjutan, demokrasi keterlibatan nelayan dalam pengambilan kebijakan masih rendah, dan penerapan aturan dan hukum yang belum efektif.

Permasalahan yang dihadapi oleh usaha perikanan tangkap Kota Ternate ini tidak jauh berbeda dengan permasalahan yang dihadapi oleh usaha perikanan tangkap nasional. Permasalahan utama dan sangat mendasar yang dihadapi dalam pengembangan usaha perikanan tangkap skala kecil bersumber dari rendahnya kualitas sumberdaya manusia, rendahnya akses terhadap permodalan dan prasarana serta faktor sosial budaya yang kurang kondusif bagi kemajuan usaha, yang nantinya berakibat pada rendahnya akses terhadap sumberdaya ikan, permodalan, teknologi, dan pasar. Permasalahan tersebut dapat dikelompokkan dalam sepuluh permasalahan dan diperinkingatkan yaitu produktivitas dan efisiensi usaha, pengawasan dan pengendalian SDI, SDI dan lingkungan, permodalan, SDM, sarana, sarana, dan pelayanan usaha, mutu dan nilai hasil tangkapan,
Pemasaran, kelembagaan nelayan, dan sosial-ekonomi nelayan (Dirjen Perikanan Tangkap 2006).

Pengembangan sektor perikanan dan kelautan di Kota Ternate, memerlukan dukungan dari pemerintah pusat dan pemerintah daerah serta pihak-pihak terkait. Pengembangan tersebut diarahkan pada status keberlanjutannya yaitu melalui keberlanjutan dari berbagai aspek yang meliputi ekologi, ekonomi, sosial, teknologi dan hukum kelembagaan. Selanjutnya, pengembangan tersebut idealnya terjabarkan ke dalam suatu kebijakan, strategi, dan program-program kerja yang dipersiapkan terutama dalam menghadapi tuntutan di era otonomi dan globalisasi masa kini dan masa mendatang, yang secara nyata memiliki tantangan yang cukup berat.

1. Status keberlanjutan perikanan pelagis Kota Ternate

Perikanan tangkap merupakan salah satu aktivitas ekonomi yang memberikan kontribusi terhadap kesejahteraan suatu bangsa. Hal ini disebabkan karena kegiatan perikanan tangkap merupakan salah satu sumber protein hewani bagi masyarakat dan sumber lapangan kerja yang dapat memberikan keuntungan ekonomi bagi pengelolanya termasuk pemerintah. Walaupun, kegiatan yang berbasis pada sumberdaya alam (biologi) ini bersifat dapat diperbaharui (renewable), namun dalam pengelolaannya tetap harus dilakukan secara berhati-hati dengan mempertimbangkan sifat-sifat biologis dari sumberdaya tersebut.

Berhasil atau tidaknya pengelolaan sumberdaya ikan menjadi faktor penting dalam memberikan jaminan pembangunan perikanan tangkap yang berkelanjutan. Pengelolaan keberlanjutan sumberdaya perikanan pada hakekatnya mencari kemungkinan tindakan pengelolaan yang tepat secara ekologi disatu sisi, dan kegiatan penangkapan ikan yang mampu memberikan keuntungan ekonomi di sisi lain. Dengan kata lain, bahwa pengelolaan sumberdaya perikanan yang berkelanjutan haruslah mampu mencegah terjadinya konflik antar kegiatan manfaatan sumberdaya ikan dalam mencapai tujuan ekonomi, termasuk adanya adilun hukum dalam distribusi pemanfaatan yang dihasilkan oleh sumberdaya perikanan tersebut, dan upaya konservasi sumberdaya ikan untuk kepentingan generasi mendatang.
274

Bertolak dari deskripsi umum dan hasil analisis setiap atribut keberlanjutan perikanan yang dikemukakan sebelumnya, diperoleh status keberlanjutan perikanan pelagis di Ternate berdasarkan dimensi ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan. Berdasarkan diagnosis terhadap keberlanjutan kegiatan perikanan pelagis tersebut menunjukan bahwa kegiatan perikanan pelagis di Kota Ternate pada dimensi ekologi, ekonomi, dan sosial, memiliki nilai indeks keberlanjutan antara 50-75 (status cukup berkelanjutan), sedangkan pada dimensi teknologi, dan hukum/kelembagaan menghasilkan nilai indeks antara 25-50 (status kurang berkelanjutan).

Sebagaimana dilaporkan dalam studi-studi sebelumnya, hasil nilai indeks keberlanjutan yang terkriteria kurang pada dimensi hukum dan kelembagaan ini, juga dialami oleh perikanan tangkap di daerah lain yang ada di Indonesia. Indeks keberlanjutan perikanan tangkap di Kabupaten Indramayu dilaporkan pada dimensi hukum dan kelembagaan berada nilai sekitar 37,0 (Hamdan 2007) dan pada perikanan gillnet di Pekalongan dengan nilai indeks 49,77 (Suyasa 2007). Demikian juga dengan perikanan jaring rampus, bundes, dan payang gempo di Kabupaten Tegal yang memiliki indeks keberlanjutan 40,87 (Hermawan 2006).

Menurut Charles (2001), keadaan yang menunjukan rendahnya nilai indeks keberlanjutan pada dimensi hukum dan kelembagaan ini menunjukan bahwa pengelolaan/kegiatan perencanaan yang diterapkan belum sepenuhnya mempertimbangkan dan menerapkan faktor sosial kultural lokal yang meliputi...
tradisi, pengambilan keputusan yang melibatkan masyarakat nelayan, dan pengetahuan ekologi.

Di sisi lain, organisasi pengelola (Dinas Kelautan dan Perikanan Kota Ternate) mengalami kekurangan dalam hal dukungan keuangan jangka panjang (dalam hal ini APBD) atau dukungan politik. Charles (2001) mengemukakan bahwa salah satu indikator pengelolaan perikanan tangkap yang tidak berkelanjutan dari aspek kelembagaan adalah organisasi pengelola kekurangan keuangan finansial jangka panjang atau politik pendukung struktur. Sebagai asas untuk komponen keberlanjutan ekologi, ekonomi, dan sosial, keberlanjutan kelembagaan melibatkan pengurusan keuangan yang sesuai serta mampu organisasi dan administrasi berjalan panjang. Secara khusus, keberlanjutan kelembagaan menunjuk pada perangkat hukum atau kaidah-kaidah pengelolaan yang mengatur perikanan beserta organisasi yang mengimplementasikannya.

Selain itu dikatakan bahwa buruknya keberlanjutan hukum dan kelembagaan mengindikasikan lemahnya penegakan hukum atau kaidah-kaidah pengelolaan yang mengatur perikanan beserta organisasi yang mengimplementasikannya. Hal ini dapat berakibat kerugian bagi semua pihak termasuk sumberdaya alam perikanan dalam tataan pemanfaatan yang berkelanjutan.

Jawa (Subang, Indramayu, Pemalang, Pekalongan, Rembang, Tuban, Lamongan dan Gresik) dengan nilai rata-rata sebesar 46,70 (Suyasa 2007)

Hal ini menggambarkan bahwa teknologi penangkapan ikan yang dipergunakan dalam perikanan tangkap Kota Ternate dan beberapa perikanan tangkap lain di Indonesia tersebut sebelumnya, belum memenuhi syarat sebagai teknologi penangkapan ikan yang ramah lingkungan (TPIRL). TPIRL memiliki beberapa kriteria sebagaimana telah dijelaskan oleh Bengen (2002), yaitu memiliki selektivitas tinggi, tidak destruktif terhadap habitat, tidak membahayakan nelayan (operator), menghasilkan ikan bermutu baik, produk tidak membahayakan kesehatan konsumen, minimum hasil tangkapan yang terbuang, dampak minimum terhadap keanekaragaman sumberdaya hayati, tidak menangkap spesies yang dilindungi atau terancam punah, dan diterima secara sosial.

Rendahnya status keberlanjutan pada dimensi teknologi pada beberapa daerah di Indonesia ini, mungkin disebabkan oleh keberadaan atribut penggunaan FAD’s dalam dimensi teknologi. Maksud dari atribut ini adalah ada atau tidaknya penggunaan FAD’s untuk membantu dalam penangkapan ikan, dengan kriteria pembagian skor, tidak (0) dan ada (1). Kenyataannya, para nelayan di Indonesia umumnya menggunakan alat bantu penangkapan dalam mengumpulkan ikan (FAD’s) seperti rumpon dan umpan (skor 1). Jika tidak demikian, maka nelayan akan mengalami kesulitan dalam menemukan atau menangkap gerombolan ikan. Padahal menurut kriteria RAPFISH, penggunaan alat bantu penangkapan ini akan meningkatkan kemampuan mengeksplotasi sumberdaya perikanan. Hal ini berarti dapat meningkatnya risiko atau ancaman terhadap keberlanjutan usaha perikanan. Di sini terkesan bahwa dalam mengeksplotasi sumberdaya perikanan tangkap di perairan Indonesia diperlukan suatu pengontrolan dalam penggunaan FAD’s.

Berdasarkan kuat atau lemahnya perhatian pengelolaan perikanan tangkap (Fauzi dan Anna 2002a), dapat dikatakan bahwa bersumber dari kelima dimensi yang dilukuk dan ditentukan keberlanjutannya di Kota Ternate, dimensi ekonomi dan sosial tergolong cukup kuat dalam pengelolannya (rata-rata nilai indeks 53,31 dan 51,17). Sementara yang kuat pengelolaannya adalah dimensi ekologi (rata-rata indeks 58,11). Adapun dimensi hukum dan kelembagaan, dan dimensi
teknologi merupakan dimensi yang paling lemah pengelolaannya (rata-rata nilai indeks 36,30 dan 42,43).

Dilihat dari perspektif alat tangkap, perikanan tangkap pole and line, purse seine, rawai tuna dan pancing tonda tergolong alat tangkap yang lemah pengelolaannya, dengan nilai indeks rata-rata masing-masing sebesar 47,65, 44,07, dan 43,78. Perikanan tangkap pancing tonda tergolong alat tangkap yang kuat pengelolaannya dengan rata-rata nilai indeks keberlanjutan sebesar 57,22. Alat tangkap rawai tuna memiliki nilai indeks yang tergolong kurang berkelanjutan pada dimensi ekologi, ekonomi, teknologi dan hukum kelembagaan. Alat tangkap pole and line dan purse seine memiliki nilai indeks keberlanjutan yang tergolong kurang berkelanjutan terdapat pada dimensi sosial, teknologi, dan hukum kelembagaan. Sementara alat tangkap pancing tonda memiliki nilai indeks yang tergolong kurang berkelanjutan yaitu pada dimensi hukum dan kelembagaan.

Nilai indeks yang terkategorisasi kurang berkelanjutan ini (pengelolaannya masih lemah), maka menurut Pitcher (1999) perlu mendapatkan perhatian serius pada pengembangan dan pengelolaan nanti dalam rangka memperbaiki status keberlanjutannya. Sedangkan nilai indeks yang terkategorisasi cukup berkelanjutan perlu dipertahankan atau malah ditingkatkan dalam pengelolaannya.

Penentuan nilai indeks keberlanjutan yang diperoleh baik dari dimensi hukum dan kelembagaan maupun dimensi lainnya tercermin berdasarkan penilaian atas 45 atribut yang digunakan oleh masing-masing dimensi tersebut yang terdiri dari 9 atribut dimensi ekologi, 10 atribut dimensi ekonomi, 9 atribut sosial, 9 atribut teknologi, dan 8 atribut hukum dan kelembagaan. Melalui perhitungan dengan analisis leverage, menghasilkan tingkatan sensitifitas dari setiap atribut. Di sini akan diketahui atribut mana yang paling dominan mempengaruhi atau berkontribusi pada tingkat keberlanjutan perikanan pelagis dalam dimensi pada setiap kegiatan perikanan yang ditelah. Berdasarkan Gambar 13, 16, 19, 22, dan 25, diperoleh 14 atribut yang paling berpengaruh (sensitif) terhadap status keberlanjutan perikanan pelagis berdasarkan lima dimensi di Kota Ternate. Atribut-atribut tersebut adalah jarak migrasi, tingkatan
kolaps, dan tangkapan belum dewasa (ekologi), pembatasan masuk, sifat pemasaran, dan pendapatan lain (ekonomi), sektor penangkapan, pengaruh nelayan, dan status konflik (sosial), pengolahan pra-jual, selektivitas alat tangkap, dan penggunaan FAD’s (teknologi), dan keterlibatan nelayan dalam penentuan kebijakan, dan Illegal Fishing (hukum dan kelembagaan).

Uraian selanjutnya berturut-turut akan dibahas mengenai keberadaan atribut-atribut sensitif ini yang dimulai dari atribut sensitif dimensi ekologi, ekonomi, sosial, teknologi, dan hukum/kelembagaan.

Sesuai informasi terbatas tersebut dapat dikatakan bahwa jarak migrasi dari jenis ikan sasaran tangkap nelayan Kota Ternate, selama dawur hidupnya, diperkirakan mencakup perairan laut juridiksi nasional, ZEEI, dan perairan di sekitar bibir tenggara Samudera Pasifik. Hal serupa juga digambarkan oleh jenis ikan yang menjadi sasaran tangkap oleh nelayan Manado (Mamuaya 2007), dan beberapa nelayan lain Indonesia seperti di Subang, Pemalang, Pekalongan, Lamongan dan Gresik (Suyasa 2007), sehingga atribut jarak migrasi ini menjadi atribut yang paling sensitif dari dimensi ekologi yang dianalisis. Hal ini menunjukkan bahwa secara geografis, ruaya dari ikan-ikan yang ditangkap oleh nelayan Kota Ternate sangat jauh, sehingga sangat mempengaruhi
keberlanjutannya (semakin jauh maka semakin tidak efektif dalam usaha pengelolaannya).

Hasil pengamatan menunjukan sebagian aktivitas perikanan pelagis di Ternate telah terjadi beberapa pengurangan lokasi penangkapan ikan, sehingga nelayan sudah mulai kesulitan dalam menemukan gerombolan ikan sasaran tangkap. Jika tidak menggunakan alat bantu, maka jumlah tangkap akan menurun. Keadaan ini tidak berbeda atau juga dialami oleh nelayan purse seine Manado, dimana aktivitas perikanan ini cenderung semakin jauh dari pangkalan pendaratan ikan dan mengalami kesulitan dalam menemukan gerombolan ikan (Mamuaya 2007).

Gejala penurunan jumlah ikan dalam cakupan area tertentu (range collapse) menunjukkan indikasi adanya ancaman terhadap keberlanjutan usaha perikanan yang ada (Hartono et al. 2005). Di Kota Ternate, indikasi tersebut berlihatkan melalui ukuran ikan yang tertangkap (size of fish caught) dari tahun tahun di Kota Ternate yang semakin menurun. Ukuran berat rata-rata ikan tuk semua jenis ikan yang tertangkap, telah mengalami perubahan secara adual selama lima tahun terakhir ini.

Sebagai contoh, jenis cakalang yang dulunya tertangkap dengan pole and
berukuran berat rata-rata sebesar 2,0–2,5 kg per ekor, saat ini yang tertangkap rata-rata sebesar 1,5 kg per ekor. Begitu juga dengan jenis tuna yang ditangkap sekitar beberapa tahun lalu, mempunyai berat berkisar 40-60 kg per ekor, namun sekarang yang ditangkap adalah tuna dengan berat kurang lebih 25-30 kg per ekor (gejala catch pra-maturity). Pada jenis layang biru, hasil tangkapan yang belum matang gonad mendominasi sebesar 55% dari keseluruhan hasil tangkapan nelayan Maluku Utara (Irham 2009).

Selain pada nelayan di Kota Ternate, gejala menangkap ikan yang belum sampai umur tangkap merupakan masalah ekologi bagi perikanan lain di beberapa tempat di Nusantara. Alat tangkap yang dioperasikan nelayan di luar Teluk Jakarta teridentifikasi cenderung menangkap ikan yang belum dewasa (Fauzy dan Anna 2002a). Selain itu nelayan perikanan pelagis kecil di pantai Utara Jawa juga menghasilkan jenis ikan yang tergolong belum dewasa (Suyasa 2007).

Di Kota Ternate umumnya pemasaran dari hasil tangkapan yang didapat oleh perikanan tangkap tidak melalui proses pelelangan (berdasarkan kuota), namun pemasaran hasil tangkapan dari rawai tuna yaitu ikan tuna, dilakukan melalui proses pelelangan. Pembongkaran hasil penangkapan dilakukan di pelabuhan, dan selanjutnya langsung dipasarkan melalui pembeli (dibo-dibo) kemudian dipasarkan kembali di pasar-pasar ikan yang ada di Kota Ternate dan
sebagian lagi di perusahaan-perusahaan ikan yang ada di Kota Bitung karena di Kota Ternate juga belum memiliki perusahaan-perusahaan ikan skala sedang atau besar yang dapat membeli dan mengolah hasil tangkapan nelayan. Proporsi ikan tuna yang pasarkan oleh nelayan Ternate ke perusahaan ikan yang berada di Kota Bitung berkisar 60-70% sedangkan sisanya dipasarkan di Kota Ternate. Sifat pemasaran yang dipasarkan melalui dibo-dibo dapat lebih menguntungkan dibo-dibo, karena harga pembelian diatur oleh mereka. Pemasaran atau penjualan hasil tangkapan seperti ini atau yang tidak berdasarkan pada pembatasan kuota pada umumnya akan dijual, menunjukkan semakin sulitnya perpindahan hak pemilikan dan berakibat semakin kecil keuntungan yang diperoleh oleh nelayan.

Atribut pendapatan lain adalah pendapatan lain di luar dari perolehan penangkapan ikan atau pekerjaan utamanya sebagai nelayan atau ABK. Hal tersebut hanya terdapat hanya beberapa nelayan pole and line dan purse seine di Kota Ternate saja, dimana selain melakukan penangkapan ikan juga memperoleh pendapatan dari berkegiatkan lain baik yang dilakukan sendiri maupun oleh anggota keluarganya. Artinya nelayan di Kota Ternate yang mempunyai pekerjaan selain sebagai nelayan jumlahnya masih sedikit. Jumlah yang sedikit ini mengindikasikan bahwa sebagian besar nelayan Kota Ternate sangat tergantung dari pekerjaannya dalam mengeksploitatasi sumberdaya laut yang tersedia. Perbandingan dengan nelayan di beberapa daerah lain di Indonesia, ternyata hal ini tidak jauh berbeda. Nelayan yang beroperasi di Teluk Jakarta, di Kabupaten

Hartono et al. (2005) mengatakan bahwa keadaan ini dalam jangka panjang dapat mengganggu keberlanjutan perikanan tangkap karena semakin sedikit masyarakat perikanan (nelayan) melakukan kegiatan lain selain menangkap ikan sebagai pekerjaan utama, maka bisa menimbulkan risiko atau ancaman terhadap kelestarian sumberdaya dan keberlanjutan usaha perikanan tangkap di daerah tersebut. Nelayan akan sangat ketergantungan terhadap sumberdaya perikanan dalam rangka memenuhi kebutuhan ekonomi keluarga, sehingga dapat memungkinkan terjadinya eksploitasi sumberdaya perikanan yang berlebihan.

Pengaruh nelayan Kota Ternate dalam proses penyusunan regulasi secara umum diamati tidak ada, baik menyangkut usaha perikanan, produktivitas kapal maupun yang berhubungan dengan prinsip-prinsip dan arahan kebijakan pengelolaan perikanan di Indonesia. Ini terjadi baik karena sistem yang berlaku dalam penyusunan dan penetapan regulasi ataupun karena berbagai keterbatasan yang dimiliki oleh nelayan, misalnya dalam hal kesempatan dan tingkat pendidikan. Untuk itu, dapat dikatakan bahwa tidak ada pengaruh nelayan secara langsung terhadap kehadiran regulasi-regulasi yang menyangkut kebijakan pengelolaan perikanan langsung maupun tidak langsung. Pengaruh nelayan dalam kehadiran regulasi-regulasi yang menyangkut kebijakan pengelolaan perikanan sangat penting karena semakin besar tingkat partisipasi masyarakat nelayan dalam pengetahuan tradisionalnya dalam pengelolaan sumberdaya perikanan maka akan mendukung kelestarian sumberdaya perikanan. Artinya risiko atau ancaman terhadap keberlanjutan pengelolaan sumberdaya perikanan akan semakin semakin kecil.

Sebagaimana diuraikan pada Bab 4, perbandingan jumlah nelayan/RTP dengan jumlah penduduk Kota Ternate hanya berkisar rata-rata 0,25–0,30%. Nilai ini terkesan sangat sedikit jika dibandingkan dengan luas wilayah perairan
Kota Ternate dibandingkan dengan daratan yang begitu besar (95,2%). Perbandingan jumlah nelayan yang terlihat sedikit ini ditunjukkan juga oleh nelayan pukat cincin di Kota Manado yaitu proporsinya tidak lebih dari 10% (Mamuaya 2007). Secara sosial menunjukkan semakin kecil persentase jumlah rumah tangga nelayan maka ketergantungan komunitas tersebut terhadap sumberdaya perikanan semakin kecil. Namun dari sisi ekologi dan ekonomi, akan terdampak pula tidak optimalnya pemanfaatan sumberdaya perikanan yang ada.

Konflik kepentingan pemanfaatan sumberdaya perikanan merupakan bagian dari dinamika kehidupan nelayan. Menurut Budiono (2005), hal ini dapat jadi karena kepemilikan sumber daya ikan di laut, dipahami selama ini bersifat *common property*. Fakta di lapangan menunjukan konflik antar nelayan terjadi dalam hal perebutan daerah penangkapan ikan (rumpon) dan konflik antar sektor perikanan dan sektor perhubungan laut. Konflik perebutan daerah penangkapan ikan antar nelayan di Kota Ternate terjadi ini mungkin disebabkan karena dalam menangkap ikan di lokasi-lokasi tertentu secara formal atau informal tidak diberlakukan pembatasan masuk (*limited entry*). Hal ini pengaruh dalam keberlanjutan perikanan yang ada, dimana keberlanjutan usaha perikanan di wilayah analisis akan lebih terjamin jika tidak pernah terjadi konflik, baik konflik antar sesama nelayan maupun konflik antara *stakeholder* usaha perikanan dengan masyarakat di luar usaha perikanan tangkap (Hartono *et al.* 2005).

Sebagian besar operasi penangkapan ikan yang dilakukan oleh nelayan Ternate didukung dengan ketersediaan peralatan untuk membantu baik dalam menemukan maupun dalam mengumpulkan kelompok ikan sasaran tangkap. Lama ini, proses penangkapan ikan yang dilakukan adalah dengan rumpon, yang a-rata 2 buah per kapal. Sebagaaimana diuraikan sebelumnya, rumpon yang sebar di Laut Maluku atau di sekitar Pulau Batang Dua sebagian besar bukan milik nelayan yang berasal dari Kota Ternate, melainkan justru dimiliki oleh nelayan Philipina dan nelayan dari Bitung Sulawesi Utara. Fakta yang ada mengatakan bahwa rumpon-rumpon tersebut, tidak terdaftar di Dinas Kelautan dan Perikanan Kota Ternate. Keadaan ini dapat mengakibatkan tidak kontrolnya penggunaan rumpon yang dioperasikan di perairan Kota Ternate,

Atribut lain dari dimensi teknologi yang pengaruhnya sangat dominan terhadap keberlanjutan perikanan pelagis di lokasi penelitian adalah pre-sale processing (pengolahan pra-jual). Sebagaimana diketahui bahwa hasil penangkapan ikan dikenal sebagai produk yang mudah rusak, bila tidak ditangani misalnya dengan menggunakan balok es. Selain itu, produk ikan ini juga dapat ditransformasi melalui sejumlah teknik pengolahan, seperti penggaraman, dan
pengeringan. Sesuai keadaan pemasaran produk yang dihasilkan perikanan di daerah Kota Ternate, sebagian besar pengolahan pra-jual tidak dilakukan. Pengolahan pra-jual sangat dianjurkan karena semakin baik penanganan ikan sebelum dijual maka semakin meningkatkan keuntungan nelayan.

Wilayah perairan Kota Ternate (Laut Maluku) yang memiliki potensi perikanan yang begitu besar, maka sudah pasti menjadi target praktik illegal fishing. Hal ini ditandai dengan ditangkapnya sejumlah kapal dan nelayan asing oleh aparat Angkatan Laut dan laporan nelayan lokal tentang keberadaan nelayan asing yang sering beroperasi di wilayah perairan sekitar Maluku Utara dan khususnya wilayah Kota Ternate yaitu di sekitar Pulau Batang Dua.

Menurut Sutisna et al. (2010), perairan Indonesia merupakan korban IUU Fishing terbesar dunia oleh kapal penangkap ikan dari seluruh negara. Terdapat dikitnya 1.000 kapal asing terlibat dalam IUU Fishing di Zona Ekonomi Eksklusif Indonesia setiap tahun. Perairan Natuna, Sulawesi Utara, Maluku Utara dan Arafuru merupakan beberapa area perairan Indonesia di mana IUU Fishing terjadi. IUU Fishing melemahkan pengelolaan sumber daya perikanan di perairan Indonesia dan menyebabkan beberapa sumber daya perikanan di beberapa Wilayah Pengelolaan Perikanan (WPP) Indonesia over fishing.

Secara ekonomi, kerugian negara cukup besar akibat illegal fishing ini yaitu antara Rp 27 triliun sampai Rp 54 triliun per tahun (Nikijuluw 2008). Selain itu juga dikatakan bahwa setiap tahun lebih dari 3.000 kapal ikan asing melakukan kegiatan illegal fishing di kawasan laut Indonesia. Akibat kegiatan tersebut, Indonesia kehilangan pendapatan sekitar 3 miliar sampai 6 miliar dollar AS per tahun. Akumulasi selama 30 tahun terakhir kerugian yang dialami Indonesia sekitar 209 miliar dollar AS.

Selanjutnya menurut laporan dari Pangkalan PSDKP Bitung (Mukhtar 2008), uang negara yang diselamatkan dari penanganan kasus Illegal Fishing hadap 12 kapal yang ditangkap di perairan Laut Maluku dan Laut Halmahera (Provinsi Maluku Utara) oleh kapal pengawas perikanan periode Januari sampai dengan April 2008 sebesar Rp. 882.921.738,00. yang terdiri dari denda Rp. 1.000.000,00, hasil lelang ikan Rp. 51.921.738,01, dan 5 unit kapal pumpboat
yang dilelang ditaksir senilai Rp. 300.000.000,00. Dari ke 12 kasus tersebut, 7 kasus merupakan pelanggaran perikanan (Pelanggaran pasal 7 ayat (2) huruf d UU No. 31 tahun 2004) dan 5 kasus kapal perikanan merupakan kejahatan perikanan (penggunaan dokumen yang tidak absyah/palsu) melanggar pasal 26 jo pasal 92 jo pasal 27 ayat (1) jo pasal 93 ayat (1) jo pasal 104 UU No. 31 tahun 2004 tentang Perikanan). Dengan semakin banyaknya penangkapan ikan secara illegal ini maka semakin tinggi tingkat pemanfaatan sehingga terindikasi yang menyebabkan di wilayah perairan Kota Ternate (Laut Maluku) mengalami overfishing. Untuk itu, apabila tidak dicegah maka dapat mengakibatkan terganggunya kelestarian sumberdaya perikanan, dan keberlanjutan ekonomi perikanan khususnya di Kota Ternate.

Hal yang terjadi adalah tidak adanya rasa tanggungjawab dari stakeholder khususnya nelayan terhadap pelaksanaan suatu kebijakan pengelolaan perikanan. Keterlibatan nelayan dalam penentuan suatu kebijakan pengelolaan berakibat semakin tinggi fungsi pengawasan dan kepatuhan/compliance nelayan terhadap kebijakan tersebut terutama kebijakan yang berhubungan dengan keberlanjutan sumberdaya perikanan. Menurut Budiono (2005) salah satu faktor yang menyebabkan pengaturan dan kebijakan pengelolaan perikanan tangkap belum efektif adalah pengaturan yang belum dibuat berdasarkan kebutuhan bersama, yaitu merintah, swasta, dan masyarakat nelayan.
12.2 Pengembangan perikanan pelagis keberlanjutan Kota Ternate

Berdasarkan uraian sebelumnya, telah tercermin suatu assessment terhadap status keberlanjutan perikanan pelagis di Ternate pada suatu periode waktu tertentu. Berdasarkan statusnya yang kurang berkelanjutan (nilai indeks < 50), atribut yang menjadi prioritas (focus) dalam pembangunan sumberdaya perikanan secara multi-dimensi di Kota Ternate adalah atribut sensitif pada masing-masing dimensi sebagaimana dibahas pada bagian sebelumnya. Untuk itu, dalam pengembangan perikanan pelagis yang berkelanjutan diperlukan suatu alternatif kebijakan yang dapat memperbaiki pengelolaan perikanan pelagis yang ada, sebagaimana tercermin pada atribut-atribut sensitif yang teridentifikasi tersebut.

Melalui pendekatan/analisis PHA diperoleh beberapa alternatif kebijakan yang menjadi prioritas pengelolaan perikanan pelagis di Kota Ternate menurut masing-masing dimensi. Dalam analisis RAPFISH, berdasarkan atribut-atribut sensitif tersebut menghasilkan dimensi hukum kelembagaan dan dimensi teknologi yang memiliki status kurang berkelanjutan, sedangkan dimensi ekonomi, sosial, dan ekologi termasuk dalam golongan status cukup berkelanjutan. Hal ini berarti yang menjadi prioritas dalam pengambilan kebijakan pengelolaan perikanan pelagis yang berkelanjutan berturut-turut adalah dimensi hukum dan kelembagaan, teknologi, sosial, ekonomi dan ekologi. Sementara menurut pandangan stakeholders yang terangkum dalam analisis PHA menghasilkan bahwa yang menjadi prioritas berturut-turut adalah dimensi hukum dan kelembagaan, ekonomi, ekologi, sosial, dan teknologi.

Penilaian keluaran RAPFISH ini berbeda terkait dengan urutan kebijakan yang menjadi prioritas dalam analisis PHA pada setiap dimensi. Perbedaannya adalah dimensi teknologi yang menjadi prioritas kedua (karena berstatus kurang berkelanjutan) dalam analisis RAPFISH, menjadi prioritas terakhir dalam analisis PHA. Penyebab perbedaan ini adalah masalah perbedaan persepsi dalam menilai atribut penggunaan FAD’s (umpan dan rumpon) pada dimensi ini. Menurut APFISH, penggunaan FAD’s akan meningkatkan kemampuan mengeksploitasi sumberdaya perikanan sehingga dapat meningkatnya ancaman terhadap berkelanjutan usaha perikanan dapat mengakibatkan ketidak-berlanjutan
perikanan tangkap (Pitcher and Preikshot 2001). Sementara menurut analisis PHA, penggunaan FAD’s bukan menjadi permasalahan karena jika tidak menggunakan FAD’s maka dapat mengakibatkan hasil tangkapan akan menurun dan mengakibatkan keuntungan yang diperoleh nelayan semakin kecil dengan adanya biaya operasional yang semakin besar dalam operasional mencari lokasi gerombolan ikan, sehingga dapat mengakibatkan ketidakberlanjutan pada dimensi ekonomi.

Perbedaan berikutnya adalah pada dimensi ekologi yang menjadi prioritas terakhir (karena masih berstatus cukup berkelanjutan) dalam analisis RAPFISH, menjadinya prioritas ketiga dalam alternatif kebijakan menurut analisis PHA. Hal ini mungkin disebabkan pada penilaian pada atribut status eksploitasi. Pada analisis RAPFISH, atribut ini dianggap kurang berkontribusi pada penentuan status keberlanjutan dimensi ekologi dibandingkan dengan atribut lain seperti jarak migrasi, tingkat kolaps, dan penangkapan pra-maturity. Hal ini tercermin pada nilai root mean square dari atribut status eksploitasi berada jauh di bawah nilai root mean square ketiga atribut di atas. Menurut analisis PHA, terdapat kecenderungan bagi penilaian stakeholder bahwa atribut ini sangat menentukan keberlanjutan perikanan pelagis dan harus mendapatkan perhatian dalam pengelolaan perikanan tangkap, mengingat keberadaan status pemanfaatan sumberdaya perikanan di Kota Ternate yang sudah memasuki fase overfishing.

Perbedaan lainnya adalah pada dimensi ekonomi, dimana pada analisis RAPFISH menempatkan dimensi ini pada prioritas keempat yang harus mendapat perhatian dari kelima dimensi yang dianalisis karena statusnya yang cukup berkelanjutan. Pandangan dimensi ekonomi ini menurut analisis PHA terkesan sangat penting terutama dalam hal pemasaran hasil perikanan pelagis di Ternate dan peningkatan margin keuntungan nelayan di Kota Ternate. Selama ini nelayan Kota Ternate tidak dapat melakukan perluasan distribusi hasil produksi perikanan disebabkan oleh masih kurangnya pembeli lokal untuk menampung hasil produksi. Untuk itu sangat diperlukan peningkatan akses nelayan terhadap pasar dan peningkatan kelancaran pemasaran hasil perikanan.
Dengan mempertimbangkan bahwa secara multi-dimensional perikanan pelagis di Ternate memiliki status kurang berkelanjutan, maka kebijakan pengembangan perikanan pelagis yang harus dijalankan adalah kebijakan yang bertujuan untuk mengatasi permasalahan yang bersifat komprehensif yaitu lemahnya perhatian dalam pengelolaan yang mengakibatkan ketidakberlanjutan perikanan pelagis di Kota Ternate sebagaimana terungkap lewat analisis APFISH dan PHA. Adapun kebijakan dimaksud dikelompokkan dan prioritaskan sebagai berikut:

1. Pengembangan kapasitas hukum dan kelembagaan usaha perikanan pelagis (hukum dan kelembagaan).
2. Perbaikan sistem pemasaran produksi perikanan pelagis (ekonomi).
3. Peningkatan produktivitas, dan efisiensi penangkapan lestari (ekologi).
4. Peningkatan kesejahteraan pelaku penangkapan (sosial).
5. Pengembangan teknologi penangkapan ikan yang ramah lingkungan (teknologi).

Kebijakan pengembangan kapasitas hukum dan kelembagaan usaha perikanan pelagis diharapkan dapat meningkatkan keterlibatan nelayan dalam pengambilan keputusan (berdemokrasi) perikanan melalui wadah kelembagaan perikanan formal, dan dapat meningkatkan penegakan hukum di laut dengan menekan frekuensi terjadinya illegal fishing. Sementara kebijakan perbaikan sistem pemasaran produksi perikanan pelagis mempunyai tujuan untuk pemasaran ikan lebih luas, berkurangnya pesaingan pemanfaatan sumberdaya ikan tertentu dengan adanya pembatasan masuk (limited entry), dan terciptanya alternatif pendapatan lain bagi nelayan sehingga pendapatan nelayan meningkat.

Kebijakan peningkatan produktivitas dan efisiensi penangkapan lestari mempunyai tujuan yaitu bertambahnya daerah penangkapan ikan, semakin kekatnya ikan sasaran tangkap, dan menurunnya tangkapan ikan yang belum wasa. Sementara kebijakan peningkatan kesejahteraan pelaku penangkapan apayakan untuk dapat meningkatkan kualitas SDM nelayan dan bertujuan untuk mengaktifkan kembali nelayan pasif sehingga memperkuat sektor penangkapan,
meningkatnya keterlibatan nelayan dalam pertemuan formal, dan menurunnya frekuensi konflik nelayan.

Adapun kebijakan pengembangan teknologi penangkapan ikan yang ramah lingkungan diharapkan mempunyai tujuan untuk perbaikan selektivitas alat tangkap, terkontrolnya penggunaan FAD’s, dan perbaikan proses penanganan produksi sebelum dijual. Penerapan teknologi penangkapan yang memperhatikan kelestarian sumberdaya diupayakan dapat mengelola potensi sumberdaya perikanan pelagis secara efisien dan berkelanjutan.

12.3 Implementasi kebijakan pengembangan keberlanjutan perikanan pelagis di Ternate

Melihat permasalahan dan arah kebijakan di atas, maka diperlukan berbagai upaya atau pendekatan untuk pengembangan pengelolaan usaha perikanan pelagis secara berkelanjutan yang mampu mengoptimalkan pemanfaatan potensi sumberdaya melalui pendekatan yang bersifat menyeluruh dan terpadu (multi-dimensional). Pendekatan ini dilakukan melalui perencanaan strategi kebijakan yang dapat memenuhi kepentingan: (1) nelayan, (2) perekonomian daerah, (3) kelestarian sumberdaya perikanan, dan (4) pengawasan dan perlindungan terhadap SDI.

Berdasarkan atribut sensitif keluaran dari analisis RAPFISH, secara garis besar strategi pengembangan yang akan diterapkan diupayakan dapat meningkatkan pendapatan/kesejahteraan nelayan dan PAD, melestarikan SDI sehingga pengelolaannya dilakukan secara bertanggung jawab, meningkatkan kemampuan nelayan (SDM) untuk mengakses teknologi yang diarahkan untuk
meningkatkan produktivitas dan efisiensi usahanya, dan memperkuat kapasitas hukum dan kelembagaan. Strategi pengembangan ini perlu disertai dengan dukungan baik dari pemerintah pusat dan daerah maupun dari pihak swasta dalam peningkatan ketersediaan dan kecukupan sarana dan prasarana pendukung, baik langsung maupun tidak langsung, seperti pengadaan sarana produksi dan pemasaran hasil.

Strategi ini selanjutnya disusun dengan mengacu pada visi pengembangan usaha perikanan tangkap skala kecil (DKP 2005), yaitu “Terwujudnya usaha perikanan tangkap skala kecil yang mandiri, kokoh, dan sejahtera pada tahun 2020”. Sementara misi pengembangan usaha perikanan tangkap skala kecil adalah:

1. Meningkatkan kualitas kelembagaan dan sumberdaya manusia perikanan tangkap.
2. Meningkatkan peran usaha perikanan tangkap skala kecil dalam pengembangan industri perikanan tangkap.
3. Meningkatkan pendapatan dan kesejahteraan pelaku usaha perikanan tangkap skala kecil.

Adapun tujuan pengembangan usaha perikanan tangkap skala kecil ditetapkan berdasarkan misi pengembangan usaha perikanan tangkap skala kecil, yaitu:

1. Meningkatnya kualitas kelembagaan dan sumberdaya manusia perikanan tangkap.
2. Meningkatnya peran usaha perikanan tangkap skala kecil dalam pengembangan industri perikanan tangkap.
3. Meningkatnya pendapatan dan kesejahteraan pelaku usaha perikanan tangkap skala kecil.

Berangkat dari kebijakan yang diperoleh melalui pendekatan analisis PHA permasalahan yang dikeluarkan oleh analisis RAPFISH, serta berpedoman dari arahan kebijakan perikanan tangkap nasional (DJPT 2005) dan rencana dak pengembangan minapolitan Kota Ternate (DKP 2010), maka diperoleh 24 strategi yang dianggap sesuai untuk pengembangan usaha perikanan pelagis
di Ternate. Sebagaimana dapat dilihat pada Lampiran 20, uraian kebijakan dan strategi berdasarkan pendekatan dan analisis tersebut dijabarkan sebagai berikut:

Kebijakan 1. Pengembangan kapasitas hukum dan kelembagaan usaha perikanan pelagis.

Fokus dari kebijakan ini adalah meningkatkan keterlibatan nelayan dalam pengambilan keputusan (berdemokrasi) perikanan melalui wadah kelembagaan perikanan formal, dan dapat meningkatkan penegakan hukum di laut dengan menekan frekuensi terjadinya illegal fishing agar nelayan mendapatkan jaminan rasa aman dalam menjalankan usahanya. Dalam rangka lebih meningkatkan ketertiban, ketaatan, dan tanggung jawab dalam pemanfaatan sumberdaya perikanan, perlu ditingkatkan pengawasan dan penegakan hukum yang lebih tegas dan berwibawa untuk mencegah dan menanggulangi berbagai bentuk pelanggaran pemanfaatan sumberdaya perikanan.

Artinya peningkatan pengawasan dan penegakan hukum terhadap berbagai ketentuan yang mengatur pemanfaatan sumberdaya ikan dapat memberikan jaminan terhadap produksi yang diperoleh nelayan skala kecil dan bahkan dapat mengurangi terjadinya kegiatan illegal fishing yang semakin marak terjadi di perairan Kota Ternate. Upaya tersebut perlu disertai dengan penegakan hukum yang tegas. Untuk itu, pengelolaan sumberdaya ikan harus memiliki unsur tata kelembagaan yang didalamnya sudah termasuk perangkat hukum, sehingga dapat menguntungkan semua pihak termasuk sumberdaya alam perikanan dalam tatanan pemanfaatan yang berkelanjutan.

Dalam implementasinya, kebijakan pengendalian penangkapan dalam rangka mengoptimalkan pemanfaatan sumberdaya perikanan dan pencegahan illegal fishing tidak dapat dilakukan oleh pemerintah saja. Oleh karena itu, perlu disertai dengan upaya peningkatan pengawasan dan pengendalian sumberdaya perikanan melalui penerapan sistem pengawasan oleh masyarakat. Namun demikian tetap diperlukan komitmen yang tinggi oleh pemerintah daerah dalam rangka pengembangan usaha perikanan pelagis, berupa keamanan dan jaminan usaha.
Selain kebijakan kapasitas hukum, kebijakan pengembangan kelembagaanusaha perikanan diperlukan untuk memperkuat dukungan finasial jangka panjang atau politik pendukung struktur yang selama ini kurang mendapat perhatian dalam pengelolaan perikanan pelagis di Ternate. Selain itu kebijakan ini dapat melatih para nelayan dan pengusaha perikanan Kota Ternate dalam pengurusan keuangan (modal) yang sesuai serta kemampuan organisasi dan administrasi jangka panjang. Tingginya produktivitas, efisiensi dan kuantitas permodalan akan mendukung keberlanjutan usaha jika nelayan mempunyai kemampuan usaha dan kelembagaan yang baik. Sementara disisi lain, dengan kebijakan ini diharapkan dapat meningkatkan kemampuan dan memperluas wawasan pada para nelayan dan pengusaha perikanan Kota Ternate sehingga bisa ikut serta dalam terlibat dalam memutuskan suatu kebijakan yang mengarah pada keberlanjutan perikanan pelagis itu sendiri. Berdasarkan uraian tersebut, kebijakan ini terdiri dari enam Strategi.

Strategi 1. Pembentukan lembaga keuangan mikro (LKM) milik masyarakat sebagai salah satu lembaga permodalan bagi nelayan

Pengembangan usaha perikanan pelagis di Kota Ternate antara lain kendala oleh keterbatasan kemampuan nelayan dalam memperoleh modal, yang menyebabkan terbatasnya akses nelayan terhadap penentu mata pencarainnya, yaitu sumberdaya, teknologi, dan pasar. Oleh karena itu, pemerintah daerah perlu mengeluarkan berbagai kebijakan untuk meningkatkan kemampuan permodalan nelayan, terutama nelayan kecil, sehingga usaha perikanan pelagis dapat berkembang secara baik.

Modal ini dapat berupa modal yang difasilitasi pemerintah daerah, melibatkan pihak swasta maupun oleh masyarakat sendiri. Salah satu upaya untuk mendukung permodalan usaha adalah pembentukan lembaga keuangan mikro (LKM). Fungsi utama LKM ini adalah menjembatani keperluan permodalan masyarakat nelayan dengan lembaga pembiayaan/perbankan.

Strategi 2. Pengembangan unit bisnis perikanan terpadu (UBPT) di pelabuhan perikanan (PP) dan pangkalan pendaratan ikan (PPI)

Prinsip dasar dari strategi ini adalah memadukan keragaman jenis maupun usaha yang terkait dengan perikanan pelagis dalam satu kesatuan lokasi dan
ikatan kemitraan untuk menciptakan sinergi guna meningkatkan pendapatan nelayan. Untuk mendukung suksesnya pelaksanaan strategi tersebut maka diperlukan peningkatan keberpihakan dari berbagai pihak, antara lain: (a) intervensi Pemerintah, dalam bentuk peningkatan pembangunan fasilitas pendukung di lingkungan pelabuhan perikanan dan menciptakan iklim usaha yang kondusif, (b) partisipasi pihak swasta, dalam bentuk investasi untuk pengembangan usaha penyediaan sarana produksi, permodalan usaha maupun usaha pasca panen/pemasaran, serta (c) partisipasi masyarakat nelayan, dalam bentuk peningkatan kegiatan proses produksi dan peningkatan mutu hasil.

Program-program yang dapat menarik investor perlu dikembangkan, dengan berangsur seperti pembebasan pajak dan perizinan cepat. Adanya strategi ini diharapkan dapat memperpendek rantai niaga sarana produksi dari produsen ke nelayan dan rantai niaga pemasaran hasil dari nelayan ke konsumen sehingga nelayan dapat memperoleh harga yang wajar dan pada akhirnya dapat meningkatkan marjin keuntungan usahanya.

Strategi 3. Pemberdayaan KUB/ koperasi

Dalam tahap awal, kelembagaan yang perlu lebih dikembangkan adalah kelompok nelayan, yang diharapkan dapat menjadi wadah bagi nelayan untuk mengoptimalkan dan mengaktualisasikan dirinya. Dengan jumlah nelayan skala kecil yang sangat banyak dan dominan serta tergabung dalam suatu organisasi akan dapat meningkatkan posisi tawar terhadap nelayan yang
bersangkutan. Tahap berikutnya, kelompok nelayan tersebut secara bertahap dapat dikembangkan lebih lanjut menjadi Kelompok Usaha Bersama maupun koperasi untuk mendukung pengembangan usaha anggota kelompok yang bersangkutan.

Strategi 4. Pembentukan dan pemberdayaan kelompok masyarakat pengawas (Pokmaswas) kelestarian SDI

Kelembagaan masyarakat yang bersifat non-ekonomi ini, dikembangkan dengan tujuan untuk meningkatkan kepedulian dan peran masyarakat akan kelestarian sumberdaya ikan yang menjadi sumber mata pencahariannya. Hal ini dapat ditempuh antara lain melalui penyatuan lembaga-lembaga masyarakat dan pemerintah serta pihak-pihak terkait lainnya dalam setiap proses pengelolaan sumberdaya ikan dari perencanaan, pelaksanaan, pemanfaatan, dan pengawasan.

Strategi 5. Pembinaan dan penegakan hukum terhadap pelanggaran secara konsekuen dan tegas

Dalam rangka meningkatkan ketertiban, ketaatan, dan tanggung jawab pemanfaatan sumberdaya kelautan dan perikanan, perlu ditingkatkan binaan dan penegakan hukum yang lebih tegas dan berwibawa sehingga dalam pelaksanaannya lebih maksimal. Sampai sekarang ini berbagai masalah akibat sembahan dalam penegakan hukum perikanan laut masih dirasakan, seperti dalam hal keterpaduan kerjasama antar lembaga terkait. Untuk itu, dirasakan sangat mendesak untuk menyusun pembuatan peraturan dan pencapaian kesepakatan mengenai pembagian tanggung jawab sedemikian rupa sehingga hukum dapat diberlakukan secara konsisten dan efektif.

Strategi 6. Pengendalian praktik penangkapan ikan yang melanggar ketentuan

Terlalu longgarnya terhadap pemanfaatan sumberdaya perikanan (common property) telah berakibat pada terancamnya sumberdaya tersebut. Oleh karena itu, perlu peningkatan pengendalian pengawasan pemanfaatan SDI, disebabkan karena SDI yang dimiliki perairan Kota Ternate sudah dalam fase overfishing. Strategi ini dapat diterapkan melalui pengaturan atau penataan perizinan. Pengawasan pemanfaatan SDI ini terutama dilakukan di perairan yang banyak dilakukan pencurian ikan (Illegal fishing).

Beberapa kendala dalam upaya mengefektifkan pelaksanaan pengawasan adalah keterbatasan jumlah, kemampuan/keterampilan, dan kelembagaan
pengawas sumberdaya ikan serta keterbatasan landasan hukum bidang pengawasan. Oleh karenanya, perlu diutamakan peningkatan jumlah dan kemampuan/keterampilan petugas pengawas, baik dalam bidang teknis perikanan (termasuk kapal dan jenis alat tangkap), penataan kembali kelembagaan pengawas maupun pengembangan dalam bidang hukum (peraturan perundang-undangan). Selain itu, perlu disediakan kantor di pelabuhan bagi petugas pengawas sebagai prasarana yang menunjang kinerja pengawasan.

Praktik penangkapan yang melanggar ketentuan dapat mengancam keberlangsungan ekologi dan ekonomi perikanan pelagis sehingga perlu perhatian yang sungguh-sungguh. Pada kenyataannya, praktek ini tidak hanya dilakukan oleh nelayan besar, namun juga oleh nelayan kecil. Sebagai contoh beberapa nelayan purse seine di Kota Ternate yang masih menggunakan jaring yang ukuran mata jaring yang melanggar. Salah satu alasannya praktek penangkapan yang melanggar ini adalah untuk meningkatkan produksi dan tingginya persaingan di antara mereka sehingga untuk mendapatkan ikan yang tersisa dan agar tidak ditangkap oleh pesaingnya. Praktik penangkapan yang merusak lingkungan ini merupakan salah satu masalah utama perikanan.

Strategi ini harus dijalankan dalam kesatuan dengan organisasi-organisasi pengawasan dan pengendalian lainnya maupun para pemangku kepentingan yang terlibat dalam perikanan tangkap. Strategi ini harus diiringi dengan peningkatan pengawasan dan penegakan hukum serta dengan upaya penertiban perizinan usaha perikanan. Selain itu, pemberikan pemahaman kepada nelayan bahwa lebih baik mematuhi aturan daripada ditangkap atau dihukum merupakan pilihan dalam pengendaliannya.

Oleh karena itu, perlu dikembangkan suatu bentuk hukuman yang disesuaikan untuk menangani pelanggaran tertentu dalam perikanan tangkap yang dapat ditangani oleh petugas perikanan yang telah dilatih dan diberi wewenang. Cara untuk itu, perlu dijalankan dalam kesatuan pembinaan, yaitu semua pelanggaran yang ditemukan menimbulkan diberikan jawaban tertulis, peringatan tertulis, atau hukuman yang telah disesuaikan atau perintah untuk menghadap ke pengadilan Perikanan. Langkah tegas perlu dilanjutkan untuk menjamin agar cara ini dipatuhi.
dan tidak disalahgunakan. Oleh karena itu, perlu didukung dengan pengawasan dan penegakan hukum yang konsekuens dan tegas.

Kebijakan 2. Perbaikan sistem pemasaran produksi perikanan pelagis.

Fokus dari kebijakan ini adalah terciptanya alternatif pendapatan lain bagi nelayan untuk meningkatkan pendapatan nelayan. Dengan adanya usaha alternatif sebut, diharapkan nelayan akan memperoleh penghasilan tambahan, sehingga tergantungan terhadap hasil tangkapan ikan dapat dikurangi dan keinginan nelayan untuk menangkap ikan sebanyak-banyaknya juga dapat ditekan. Selain itu, nelayan membutuhkan pelatihan teknis (termasuk kepada kaum perempuan), sumberan kemudahan memperoleh modal usaha, dan pemasaran. Selain itu, kebijakan ini juga dimaksudkan untuk memperpendek rantai nilai pemasaran hasil dari nelayan ke konsumen, sehingga nelayan dapat memperoleh harga yang lebih baik dan pada akhirnya dapat meningkatkan margin keuntungan usaha.

Dalam hubungannya dengan sifat pemasaran perikanan pelagis di Ternate bagaimana diuraikan pada Bab 5, usaha perikanan pelagis di Ternate terkendala oleh sulitnya akses nelayan terhadap pemasaran yang lebih luas. Sebagai contoh, nelayan Kota Ternate tidak dapat melakukan perluasan distribusi hasil perikanan disebabkan oleh masih kurangnya pembeli lokal untuk menampung hasil produksi.

Peningkatan akses nelayan terhadap pemasaran melalui perluasan pasar dan peningkatan kelancaran pemasaran hasil perikanan, antara lain dapat ditempuh melalui pengembangan informasi dan jaringan pemasaran ikan maupun dukungan sarana distribusi hasil perikanan. Kebijakan ini dijabarkan kedalam tiga buah strategi yaitu sebagai berikut:

Strategi 1. Penyediaan mata pencarian sampingan ataupun pengganti kepada nelayan

Upaya lain yang dapat dilakukan untuk meningkatkan pendapatan nelayan adalah dengan mengembangkan usaha alternatif (diversifikasi usaha) yang dapat meningkatkan pendapatan nelayan secara nyata, antara lain dengan mengembangkan usaha pengolahan hasil perikanan, budidaya perikanan maupun pengembangan usaha pendukung kegiatan perikanan pelagis.
Strategi 2. Pembinaan wanita nelayan dan generasi muda nelayan mengenai peluang peningkatan pendapatan

Peningkatan pendapatan nelayan dapat dilakukan dengan pemberdayaan anggota rumah tangga nelayan (istri dan generasi muda nelayan) untuk mengembangkan usaha ekonomi produktif dalam rangka memanfaatkan waktu luang yang ada. Alternatif kegiatan yang dapat dilakukan antara lain adalah pengadaan dan distribusi sarana penangkapan ikan (alat tangkap, suku cadang), usaha pengolahan dan pemasaran hasil perikanan, usaha budidaya perikanan, serta mengembangkan berbagai usaha pendukung kegiatan perikanan. Strategi ini sudah dilaksanakan dan perlu terus dikembangkan.

Strategi 3. Pemberian kemudahan kepada usaha perikanan pelagis untuk memperluas pemasaran hasil

Strategi ini tidak terlepas dari kebijakan peningkatan kemampuan usaha dan kelembagaan perikanan pelagis, yaitu strategi pendampingan kepada masyarakat nelayan dan strategi pemberdayaan KUB/koperasi; maupun kebijakan peningkatan mutu dan nilai hasil tangkapan, yaitu strategi peningkatan teknik penanaman ikan, termasuk pemakaian sistem rantai dingin, sejak penangkapan hingga pendaratan.

Strategi 4. Pengembangan industri pengolahan hasil perikanan

Salah satu pemicu suplai produk perikanan adalah berkembangnya industri pengolahan (DKP 2010). Ada hubungan saling ketergantungan dan saling mempengaruhi antara aktivitas produksi perikanan penangkapan

Investasi baru dari pihak swasta dalam pembelian dan pengolahan sangat diperlukan untuk menghindari ketergantungan nelayan kepada dibo-dibo. Ketergantungan ini dapat mengakibatkan harga yang ada tidak dapat terkontrol, sehingga kadang-kadang jika hasil panen yang diperoleh melimpah, harga yang diperoleh oleh nelayan cenderung sedikit. Untuk itu salah satu langkah strategis dalam pengembangan usaha perikanan adalah menarik investor baik PMDN maupun PMA untuk memangun pabrik pengolahan ikan di Kota Ternate. Hal ini dapat meningkatkan kesejahteraan nelayan dan menyediakan lapangan kerja bagi perikanan.

Berkembangnya industri pengolahan ikan skala menengah dan besar akan meningkatkan jumlah ikan yang dibutuhkan sehingga dapat menampung produksi hasil tangkapan nelayan baik dari Kota Ternate maupun nelayan dari daerah sekitarnya di Provinsi Maluku Utara. Strategi ini penting karena dalam jangka panjang, pengurangan jumlah nelayan dan kemungkinan sulitnya peningkatan jumlah produksi karena SDI yang semakin berkurang, maka salah satu cara untuk meningkatkan pendapatan adalah dengan meningkatkan nilai tambah melalui pengolahan.

Dukungan yang baik bagi industri pengolahan perlu disertai dengan persyaratan, misalnya kapal-kapal yang menangkap ikan di perairan Kota Ternate kewajiban mendaratkan dan mengolah produknya di Kota Ternate. Industri pengolahan yang akan dikembangkan harus betul-betul dianalisis dalam kaitannya dengan suplai bahan mentah untuk kapasitas pengolahannya pada saat ini dan yang diproyeksikan, agar tidak terjadi kapasitas berlebih dalam industri tersebut.

Diversifikasi produk dan produk-produk yang bernilai tambah juga perlu dikembangkan. Pengolah akan diuntungkan jika tersedia bimbingan dan konseling yang memadai dalam pengembangan produk, cara-cara produksi yang
bagus, perlengkapan pengolahan dan penyaluran kredit. Bagi usaha pengolahan ikan skala kecil, upaya pengembangan pengolahan ikan disertai dengan peningkatan mutu melalui peningkatan sanitasi unit pengolahan dan penerapan teknologi tepat guna.

Strategi 5. Perbaikan upaya penyebarluasan informasi pasar

Informasi tentang data harga dan kebutuhan ikan di pelabuhan perlu dikuatikasikan dengan cepat dari pelabuhan ke kapal di laut, agar kapal akan masuk lagi ke pelabuhan dan membongkar hasil tangkapannya serta dapat segera menjualnya. Diperlukan kehati-hatian yang tinggi dalam menjabarkan strategi ini, karena jika tidak, maka akan terjadi kecenderungan pengurasan sumberdaya. Oleh karena itu strategi ini perlu diimbangi dengan pengendalian pemanfaatan SDI.

Strategi 6. Peningkatan mutu pelayanan perizinan dan administrasi usaha

Optimasilisasi pelayanan perizinan dan administrasi usaha dimaksudkan untuk memberi kemudahan bagi pelaku usaha dalam melakukan perizinan usahanya (DKP 2010). Hal ini dapat dicapai dengan mengadopsi sistem administrasi perizinan terpadu. Seluruh kebutuhan administrasi usaha diharapkan dapat dipenuhi oleh investor tanpa berpindah ke tempat lain, sehingga dengan implementasi sistem ini diharapkan proses perizinan dapat berlangsung cepat.

Strategi 7. Pembatasan jumlah armada penangkapan ikan tertentu di DPI sesuai dengan potensi SDI

Persaingan dalam penangkapan ikan yang terjadi di wilayah Kota Ternate perairan Laut Maluku karena terlalu banyaknya kapal yang dioperasikan untuk menangkap cadangan ikan yang makin berkurang seperti ikan tuna. Hal ini antara lain mendorong nelayan untuk melakukan penangkapan yang melanggar kelembagaan jenis ikan tersebut (penangkapan belum dewasa). Atas dasar kenyataan tersebut diperlukan pembatasan jumlah armada di tiap DPI sesuai dengan potensi sumberdaya ikannya. Oleh karena itu, strategi ini sangat berkaitan dengan strategi relokasi usaha penangkapan. Pelaksanaan strategi ini sekaligus akan mendukung tercapainya tujuan penyeimbangan struktur armada.

Guna mendukung terlaksananya strategi ini, diperlukan adanya sistem pengendalian perizinan secara baik nasional maupun daerah untuk kapal kecil maupun besar. Pemerintah pusat mengatur batas pengeluaran izin usaha
penangkapan bagi tiap daerah, namun izin penangkapan skala kecil tetap dikeluarkan oleh pemerintah daerah. Pengendalian perizinan bagi daerah perlu didukung dengan penerapan sistem kuota penangkapan, yang juga berkaitan dengan adanya kenyataan kapasitas berlebih dan penurunan potensi SDI. Penentuan kuota tersebut didasarkan pada perkiraan potensi SDI di DPI tersebut, lalu dilakukan pengalokasian kuota berdasarkan hasil perkiraan tersebut dari DPI setiap kabupaten/kota dalam provinsi Maluku utara.

Pelaksanaan strategi ini diawali dengan pendaftaran ulang usaha penangkapan di daerah, lalu dilakukan pemetaan unit penangkap ikan di tiap DPI sesuai dengan daya dukung dan daya tampungnya (jumlah, jenis, dan kapasitas). Strategi ini dapat terlaksana, perlu didukung dengan penegakan hukum yang ketat dan pembatasan izin baru untuk penangkapan.

Kebijakan ini juga bertujuan agar nelayan dapat meningkatkan produksi penangkapan sebesar-besarnya tanpa merusak sumberdaya ikan. Artinya Dalam rangka peningkatan produktivitas pemanfaatan sumberdaya perikanan pelagis harus memperhatikan kesinambungan fungsi ekologi pendukung keberlanjutan sumberdaya, dengan tetap memelihara dan meningkatkan kualitas nilai dan keanekaragaman sumberdaya ikan. Kebijakan ini dijabarkan kedalam 3 buah strategi yaitu sebagai berikut:
Strategi 1. Penetapan aturan larangan menangkap ikan selama musim tertentu

Pelarangan penangkapan ikan pada waktu tertentu bertujuan melindungi sumberdaya ikan dengan memberi kesempatan bagi stok ikan untuk tumbuh dan berkembang biak sebelum tertangkap. Semua upaya yang dilakukan untuk peningkatan kesejahteraan nelayan melalui peningkatan hasil tangkap tetap harus memperhatikan kelestarian sumberdaya ikannya. Nelayan harus diberi pengertian bahwa perikanan pelagis di masa depan tergantung pada perikanan masa kini. Nelayan harus memahami akan pentingnya membatasi penangkapan, atau mengembalikan sebagian hasil tangkap jika yang ditemui belum dewasa.

Strategi ini merupakan bagian dari pengelolaan sumberdaya perikanan berkelanjutan secara keseluruhan untuk mempertahankan keberlanjutan biologi. Dalam pelaksanaannya perlu melibatkan pemangku kepentingan agar mereka memahami pengertian yang jelas tentang pelarangan tersebut demi memperoleh keuntungan yang lebih besar dari sumberdaya dalam jangka panjang, dalam hal ini perlu penyuflu menjadi sangat penting.

Perlu pula dikembangkan alternatif sumber pendapatan selama musim larangan, misalnya dengan memberikan keahlian kepada nelayan dan alternatif alat yang memungkinkan mereka untuk menangkap di luar zona terlarang, atau mereka dilatih membudidayakan rumput laut atau terlibat dalam kegiatan wisata. Hal ini menunjukkan semakin pentingnya kegiatan penyuflu.

Akan lebih baik jika dalam hal penetapan kebijakan larangan tersebut dilakukan secara kolaboratif yaitu memadukan unsur pemerintah dan nelayan dikarenakan kebijakan pelarangan yang hanya berdasarkan pemerintah seringkali tidak dapat dilaksanakan dengan baik.

Strategi 2. Pemanfaatan SDI secara optimal dan terkendali serta pemanfaatan armada daerah di wilayah penangkapan eks kapal ikan asing

Salah satu kebijakan yang telah ditetapkan DKP adalah tidak memperpanjang izin kepada perusahaan asing berpola lisensi (penanaman modal asing/PMA ataupun usaha patungan) untuk menangkap ikan di ZEEI pada akhir 2007. Kebijakan tersebut berlaku hingga lima tahun sesudahnya. Hal ini berarti adanya peluang bagi kapal penangkapan nasional untuk menggantikan kapal ikan
asing dalam memanfaatkan sumberdaya ikan di wilayah eks kapal asing yang masih berpotensi, yaitu perairan lepas pantai dan ZEEI.

Strategi ini sekaligus merupakan tindak lanjut rencana DJPT untuk menambah sejumlah 3.150 unit kapal dengan berbagai ukuran dan jenis alat tangkap selama 5 tahun sejak 2007 (Dirjen Perikanan Tangkap 2006) untuk meremajakan armada kapal kecil yang dinilai tidak efisien.

Strategi 3. Penyebarluasan informasi terbaru secara berkala kepada nelayan mengenai letak daerah yang berpotensi dan letak gerombolan ikan

Perikanan pelagis yang mempunyai ciri memburu hasil tangkapan harus memerlukan informasi yang tepat tentang potensi dan letak gerombolan ikan. Dengan diketahuinya letak gerombolan ikan, nelayan akan mendapatkan kepastian tentang letak daerah penangkapannya sehingga akan menghemat biaya operasional dan sekaligus dapat meningkatkan produktivitasnya.

Kebijakan 4. Peningkatan kesejahteraan pelaku penangkapan.

Fokus dari kebijakan ini adalah untuk meningkatkan pengaruh nelayan dalam berdemokrasi untuk menentukan suatu kebijakan perikanan melalui pertemuan formal. Pengaruh tersebut baik menyangkut usaha perikanan, produktivitas kapal ikan maupun yang berhubungan dengan prinsip-prinsip dan arahan kebijakan pengelolaan perikanan di daerah. Dengan keterbatasan yang dimiliki oleh nelayan (kesempatan dan tingkat pendidikan formal), namun dengan pengetahuan tradisionalnya dapat turut membantu dalam pengelolaan sumberdaya perikanan demi kelestarian sumberdaya perikanan. Pengaturan/kebijakan pengelolaan yang belum dibuat berdasarkan kebutuhan bersama, yaitu pemerintah, swasta, dan masyarakat nelayan dapat menjadi salah satu faktor yang menyebabkan pengaturan dan kebijakan pengelolaan perikanan ngkap belum efektif (Budiono 2005).

Selain itu peningkatan kesejahteraan nelayan dapat dilakukan dengan upaya meningkatkan ketersediaan prasarana pendukung usaha maupun prasarana sial secara memadai. Hal ini berkaitan dengan upaya untuk menekan biaya produksi maupun biaya hidup yang harus ditanggung oleh nelayan. Dengan upaya diharapkan dapat meningkatkan tingkat kesejahteraan masyarakat nelayan. Prasarana pendukung dimaksud antara lain berupa: permukiman, pelabuhan
perikanan yang dilengkapi dengan sarana penunjang seperti pengisian BBM, prasarana trasporsasi darat (jalan dan jembatan), listrik, penyediaan air bersih, pasar, fasilitas pendidikan dasar dan menengah serta prasarana sosial lainya.

Peranan ini sangat besar pengaruhnya dalam rangka pengembangan usaha perikanan pelagis. Pemerintah daerah Kota Ternate harus mampu menciptakan iklim usaha yang kondusif dan aman untuk menjamin kelangsungan usaha perikanan dan diharapkan dapat mencegah atau setidak-tidaknya mengurangi jumlah konflik. Diantaranya menciptakan keamanan usaha, memberikan kemudahan-kemudahan perizinan dan menghindari pengutan-pungutan yang memberatkan. Berkenaan dengan hal ini diharapkan akan semakin banyak nelayan-nelayan pasif untuk kembali menjadi nelayan aktif dalam memanfaatkan potensi sumberdaya perikanan yang ada di Kota Ternate. Kebijakan ini dijabarkan kedalam lima buah strategi yaitu sebagai berikut:

Strategi 1. Peningkatan pengetahuan, keterampilan dan sikap serta kompetensi nelayan dalam mengelola usaha perikanan.

Strategi ini bertujuan untuk mendapatkan meningkatkan kemampuan mengembangkan kepribadian nelayan, meingkatkan kemampuan penguasaan ilmu pengetahuan dan keterampilan nelayan, meningkatkan kemampuan berkarya nelayan, dan meningkatkan kemampuan nelayan dalam mensikapi dan berperilaku dalam berkerja sehingga dapat mandiri, menilai dan mengambil keputusan dalam mengolah usaha perikanan secara bertanggung jawab. Peningkatan penguasaan ilmu pengetahuan dan keterampilan nelayan dalam hal manajemen usaha dapat dilakukan melalui keikutsertaan dalam kegiatan-kegiatan seminar, lokakarya, dan pelatihan. Dengan dengan pengetahuan tradisionalnya dan pengembangan
pengetahuan secara berkala, nelayan nantinya dapat meningkatkan pengaruh nelayan dalam berdemokrasi untuk menentukan suatu kebijakan perikanan tangkap di Kota Ternate.

Strategi 2. Peningkatan kemampuan nelayan dalam hal teknik penangkapan dan pengelolaan usaha

Strategi 3. Peniadaan pungutan yang memberatkan di pelabuhan perikanan

Berbagai pungutan tidak resmi terhadap nelayan terjadi sejak pengurusan perizinan, penangkapan ikan hingga pemasaran hasil, baik di pelabuhan perikanan maupun di perairan laut sehingga menyebabkan biaya tinggi bagi nelayan. Oleh karenanya, perlu usaha keras dari pihak-pihak yang berwenang untuk meniadaan pungutan-pungutan tersebut guna meningkatkan efisiensi usaha nelayan, yang berarti meningkatkan keuntungan nelayan. Perlu peningkatan komitmen pemerintah daerah Kota Ternate dalam rangka pengembangan usaha perikanan lagis, berupa bebas pungutan yang tak bertanggung jawab.

Strategi 4. Pembangunan dan perbaikan prasarana pendaratan ikan

Peningkatan produktivitas penangkapan tidak akan banyak bermanfaat bagi nelayan jika tidak diimbangi dengan penanganan yang baik di pendaratan karena dapat mempertahankan mutu hasil tangkapan. Sifat mudah busuk hasil perikanan menghendaki pelayanan khusus berupa perlakuan penanganan, endistribusian hasil ikan secara cepat ataupun pengolahan secara tepat. Untuk
komoditas perikanan ini perlu tindakan bongkar muatan dengan segera dan cepat, bila perlu bongkar muatan ikan dilakukan berkali-kali dalam sehari. Fasilitas yang diperlukan untuk memenuhi fungsi khusus pelabuhan perikanan ini adalah tempat pendaratan yang memadai. Fasilitas pendaratan ikan yang memadai sangat penting bagi pemasaran ikan dan hasil perikanan, baik untuk pasar domestik maupun pasar ekspor nantinya.

Strategi 5. Pendampingan untuk menghasilkan kesepakatan antar kelompok nelayan guna mengatasi perselisihan berebut SDI

Berbagai kelompok nelayan yang ada di setiap pusat penangkapan ikan perlu disediakan pendampingan (misalnya oleh tenaga pendamping dari LSM) untuk memusyawarahkan guna menyepakati berbagai hal yang bersangkutan-paut dalam cara penangkapan ikan beserta sanksi apabila dilakukan pelanggaran atas kesepakatan. Kesepakatan-kesepakatan tersebut diharapkan dapat mencegah atau tidak-tidaknya mengurangi jumlah konflik ataupun pengusiran oleh masyarakat setempat yang merasa terganggu dengan tata nilai nelayan pendatang, dan bahkan perusakan kapal dan alat tangkap oleh kelompok nelayan lain yang merasa dirugikan.

Program-program pendampingan dan penyuluhan penting dan harus dilakukan secara terus menerus sampai tercapai kesadaran masyarakat bahwa segala yang dilakukan adalah untuk keberlanjutan usaha dan kesejahteraannya. Pada saat yang sama dilakukan kaderisasi pendampingan, sehingga pada akhirnya pendampingan dan penyuluhan dapat berbasis masyarakat. Dalam pelaksanaannya diperlukan dana yang cukup yang dapat disediakan oleh pemerintah daerah Kota Ternate.

Kebijakan 5. Pengembangan teknologi penangkapan ikan yang ramah lingkungan.

Fokus kebijakan ini adalah meningkatkan perbaikan proses penanganan produk sebelum dijual. Nelayan tidak akan mendapatkan keuntungan besar jika peningkatan produksi tidak diiringi dengan peningkatan nilai ekonomi hasil tangkapan. Peningkatan nilai ekonomi dapat diperoleh jika hasil tangkapan memiliki mutu yang baik, atau berupa jenis ikan yang mempunyai nilai ekonomis tinggi. Penangkapan yang hanya berorientasi pada produksi saja
dengan nilai ekonomi yang rendah, akan mempercepat terkurasnya SDI karena untuk mendapatkan nilai ekonomi yang tinggi berarti diperlukan hasil tangkapan dalam jumlah banyak yang berarti terjadi pemborosan pemanfaatan sumberdaya ikan. Selain itu hal ini dapat meningkatkan daya saing sesama nelayan karena semakin terbatasnya sumberdaya ikan seperti terjadi pada beberapa daerah di Indonesia yang pada akhirnya berdampak terhadap menurunnya ketersediaan sumberdaya ikan. Persaingan dalam teknologi penangkapan biasanya ditandai dengan dioperasikannya alat penangkapan ikan yang makin produktif namun kurang ramah lingkungan bahkan bersifat destruktif.

Hal ini akan membahayakan bagi kelestarian sumberdaya perikanan yang lebih jauh dapat mengancam keberlanjutan usaha perikanan pelagis itu sendiri. Dengan meningkatnya mutu maka diharapkan harga jual ikan akan mengalami kenaikan, dan pada gilirannya akan dapat meningkatkan pendapatan seseorang nelayan. Kebijakan ini dibalut kedalam dua buah strategi yaitu sebagai berikut:

Strategi 1. Peningkatan teknik penanganan ikan di atas kapal dan pendaratan

Produk perikanan merupakan salah satu produk yang cepat mengalami penurunan mutu yang dapat berimplikasi pada menurunnya harga jual produk tersebut. Penurunan mutu dapat diakibatkan baik karena penanganan yang salah selama di atas kapal misalnya akibat trip yang lama, maupun penanganan ketika berada di pelabuhan perikanan. Oleh karena itu, maka pelabuhan perikanan memberikan jasa pelayanan untuk dapat mempertahankan mutu tersebut yang berupa sarana ruang pendingin, ruang beku, dll. Selain untuk tujuan mempertahankan mutu, fasilitas-fasilitas di atas juga dapat digunakan untuk mempimpin hasil tangkapan pada saat ikan melimpah sehingga ikan dapat disimpan dalam waktu tertentu untuk menunggu membaiknya harga ikan di pasar atau sebagai tempat transit yang akan dipasarkan ke tempat lain. Strategi ini antara lain ditempuh melalui peningkatan penggunaan palka, penggunaan peti dingin dan perbaikan penanganan ikan sejak ditangkap hingga di pelabuhan.
Strategi 2. Penerapansistem rantai dingin pada kegiatan penangkapan dan pendaratan ikan

Produk perikanan merupakan salah satu produk yang cepat mengalami penurunan mutu yang dapat berimplikasi pada menurunnya harga jual produk tersebut. Penurunan mutu dapat diakibatkan baik karena penanganan yang salah selama di atas kapal misalnya akibat trip yang lama, maupun penanganan ketika berada di pelabuhan perikanan. Oleh karena itu, maka pelabuhan perikanan membutuhkan jasa pelayanan untuk dapat mempertahankan mutu tersebut yang berupa sarana ruang pendingin dan ruang beku. Selain untuk tujuan mempertahankan mutu, fasilitas-fasilitas di atas juga dapat digunakan untuk menampung hasil tangkapan pada saat ikan melimpah sehingga ikan dapat disimpan dalam waktu tertentu untuk menunggu membaiknya harga ikan di pasar atau sebagai tempat transit yang akan dipasarkan ke tempat lain. Strategi ini antara lain dimampu melalui peningkatan penggunaan palka, penggunaan peti dingin dan es, penanganan penanganan ikan sejak ditangkap hingga di pelabuhan.

Strategi 3. Mendorong pemanfaatan teknologi penangkapan yang efisien dan ramah lingkungan kepada nelayan

Penerapan teknologi tepat-guna tidak selalu mengadopsi teknologi yang berasal dari luar. Hal ini dapat dilakukan dengan cara mengadopsi teknologi yang telah berkembang di sebagian masyarakat yang sesuai dengan kriteria teknologi penangkapan ramah lingkungan. Sebagai contoh, modifikasi kapal tonda menjadi penangkap tuna yang dilakukan di Padang dan Pariaman. Penerapan teknologi tepat-guna yang mengadopsi dari luar perlu pula disertai dengan pengembangan pengetahuan nelayan tentang teknik perawatannya, baik alat tangkap maupun mesin yang digunakan agar penerapan teknologi ini berkelanjutan.

Setiap strategi pengembangan usaha perikanan pelagis yang berkelanjutan di Ternate diatas, selanjutnya dijabarkan dalam program-program kerja yang akan dijadikan sebagai acuan dalam mengimplementasikan kebijakan-kebijakan pengelolaannya. Kebijakan, strategi, dan program kerja yang diperoleh, nantinya dapat menjadi dasar penyusunan konsep rencana strategis jangka menengah lima tahunan berikut. Program-program tersebut, pelaksanaannya dibuat secara bertahap yaitu program jangka panjang (> 5 tahun), program jangka
menengah (5 tahun), dan program jangka pendek (1 tahun).

11.3.1 Program jangka panjang (> 5 tahun)

Untuk mencapai sasaran sesuai dengan strategi dan kebijakan yang telah dirumuskan, maka dirumuskan program-program jangka panjang dalam pengembangan perikanan pelagis di Ternate. Program-program ini dibuat berdasarkan atribut-atribut sensitif yang telah diuraikan dalam analisis RAPFISH, dan dirasakan sangat diperlukan untuk segera dilaksanakan dalam rangka memperbaiki pengelolaan sebelumnya. Penyusunan program jangka panjang pengembangan perikanan pelagis di Ternate ini nantinya yang akan mendasari program-program kerja menengah dan pendek. Program pengembangan perikanan pelagis jangka panjang ini dapat dilihat dalam Lampiran 21 dan secara garis besar lain sebagai berikut:

Dimensi Hukum Kelembagaan

Program:
1) Peningkatan keterlibatan para nelayan yang terlibat dalam LKM/Koperasi dalam pengambilan kebijakan perikanan daerah.
2) Pemberian dukungan fasilitas administrasi KUB/Koperasi.
3) Penerapan sanksi yang tegas terhadap pelanggaran sehingga menimbulkan rasa kepatuhan terhadap hukum yang berlaku.
4) Peningkatan prasarana dan sarana pengawasan.

(2) **Dimensi Ekonomi**

Program:
1) Menyelenggarakan pilot proyek pengembangan usaha ekonomi produktif bagi wanita nelayan di berbagai daerah lingkup Kota Ternate.
2) Mendorong swasta agar dapat menampung produksi nelayan untuk diolah dan atau dipasarkan, seperti temu bisnis antara swasta dan kelompok nelayan yang difasilitasi oleh Dinas Kelautan dan Perikanan Kota Ternate.
3) Perluas pasar dan peningkatan kelancaran pemasaran hasil perikanan melalui pengembangan informasi dan jaringan pemasaran ikan maupun dukungan sarana distribusi hasil perikanan.
(3) Dimensi Ekologi

Program:
1) Menyediakan informasi terbaru secara berkala kepada nelayan mengenai letak sumberdaya ikan yang berpotensi dan letak keberadaan gerombolan ikan.
2) Adopsi kelembagaan lokal yang sudah ada sebagai sarana sosialisasi dan pelaksanaan kebijakan pemerintah daerah
3) Identifikasi dan penetapan prioritas penutupan musim penangkapan.

(4) Dimensi Sosial

Program:
1) Menerapkan sistem pelayanan pelabuhan perikanan 24 jam.
2) Pelayanan informasi teknologi dan pelatihan teknis penangkapan ikan.
3) Adopsi teknologi, alat dan armada penangkapan dengan cara mendatangkan nelayan yang sudah ahli dari daerah lain.
4) Peningkatan pengetahuan dan keterampilan nelayan dalam hal manajemen saha melalui kehadiran dalam kegiatan-kegiatan seminar, lokakarya, dan pelatihan.

(5) Dimensi Teknologi

Program:
1) Pemantauan dan evaluasi pemanfaatan teknologi penangkapan yang efisien dan ramah lingkungan kepada nelayan.
2) Penerapan teknologi tepat guna untuk pengolahan hasil perikanan.
3) Pengembangan sarana dan prasarana penanganan maupun distribusi hasil perikanan.
4) Peningkatan pengembangan industri jaring dan alat tangkap, serta perlengkapan penangkapan yang produktif dan ramah lingkungan.

11.3.2 Program jangka menengah (5 tahun)

Bertolak dari strategi dan kebijakan yang telah dirumuskan, selain program kerja jangka panjang juga dirumuskan program-program kerja jangka menengah.

Program kerja jangka menengah ini, nantinya dapat menjadi dasar penyusunan...
konsep rencana strategis jangka menengah lima tahun berikutnya. Penyusunan program kerja jangka menengah ini bertujuan untuk melengkapi program jangka pendek yang dirasa sangat perlu dilanjutkan. Program jangka menengah ini lebih membutuhkan anggaran yang lebih banyak daripada program jangka pendek karena lebih mengarah pada pengembangan sarana dan prasarana fisik. Di samping itu, program kerja jangka menengah ini merupakan kelanjutan dari rencana strategis pengembangan perikanan tangkap lima tahun sebelumnya yang diajukan oleh Dinas Kelautan dan Perikanan Kota Ternate. Program-program pengembangan perikanan pelagis jangka menengah ini dapat dilihat dalam Lampiran 21 dan secara garis besar antara lain sebagai berikut:

(1) **Dimensi Hukum Kelembagaan**

Program:
1. Fasilitasi penguatan modal bagi pengembangan Koperasi/KUB.
2. Peningkatan keterlibatan para nelayan yang terlibat dalam LKM/Koperasi dalam pengambilan kebijakan perikanan daerah.
4. Peningkatan status LKM untuk memiliki badan hukum koperasi.

(2) **Dimensi Ekonomi**

Program:
1. Pengembangan usaha dan sumber pendapatan alternatif dengan mengembangkan usaha pengolahan hasil perikanan, budidaya perikanan maupun pengembangan usaha pendukung kegiatan perikanan pelagis.
2. Peningkatan kemampuan teknis dan manajerial wanita nelayan dan generasi muda nelayan untuk mengembangkan usaha ekonomi produktif berbasis sumberdaya perikanan yang ada di daerah yang bersangkutan.
3. Peningkatan pengetahuan dan keterampilan nelayan dalam hal mutu, diversifikasi produk, pengemasan dan pemasaran.
4. Pengembangan industri pengolahan hasil perikanan yang berorientasi kepada keterlibatan masyarakat setempat.
5. Pembangunan prasarana pendukung untuk mengembangkan industri pengolahan.
6) Peningkatan penyelenggaraan riset tentang diversifikasi produk dan produk bernilai tambah berdasarkan keinginan pasar.
7) Pengkajian kelayakan jenis produk perikanan yang berpotensi untuk ekspor
8) Peningkatan jumlah dan kualitas pasar-pasar ikan di wilayah Kota Ternate.

(3) Dimensi Ekologi
Program:
1) Pengaturan operasional waktu penangkapan.
2) Mengintensifikasi pemantauan dan evaluasi produktivitas dan efisiensi penangkapan ikan berkaitan dengan pemanfaatan informasi letak sumberdaya ikan yang berpotensi dan letak keberadaan gerombolan ikan yang telah disebarkan.
3) Pemantauan dan evaluasi upaya rasionalisasi armada penangkapan skala besar yang dibayai melalui permodalan nasional dan daerah.
4) Pemantauan dan evaluasi pemanfaatan sumberdaya ikan, terutama di wilayah penangkapan eks-kapal asing di Laut Maluku.

(4) Dimensi Sosial
Program:
1) Melengkapi segenap fasilitas seperti kios-kios peralatan, pusat informasi, waterda, restoran, bengkel, dan sebagainya yang dibutuhkan nelayan.
2) Pemantauan dan evaluasi atas penerapan kesepakatan nelayan dalam meredam konflik pemanfaatan sumberdaya ikan.
3) Pelayanan informasi teknologi dan pelatihan teknis penangkapan ikan.
4) Pengembangan pelabuhan perikanan di sebelah barat Pulau Ternate.

(5) Dimensi Teknologi
Program:
1) Pengembangan sarana dan prasarana penanganan hasil perikanan maupun distribusi hasil perikanan.
2) Penyediaan sarana dalam sistem rantai dingin (pabrik es, ruang pendingin, ruang dingin/chilling room, sistem air bersih) di tempat endaratan ikan.
3) Mendorong penggunaan teknik penangkapan dan penanganan ikan yang memadai dan didukung oleh ketrampilan nelayan.

11.3.3 Program jangka pendek (1 tahun)

Untuk mencapai sasaran sesuai dengan strategi dan kebijakan yang telah dirumuskan, maka dirumuskan program-program jangka pendek dalam pengembangan perikanan pelagis di Ternate. Program-program ini dibuat berdasarkan atribut-atribut sensitif yang telah diuraikan dalam analisis RAPFISH, dan dirasakan sangat diperlukan untuk segera dilaksanakan dalam rangka memperbaiki pengelolaan sebelumnya. Selain itu, program-program jangka pendek ini rumuskan dengan menitikberatkan pada beberapa pertimbangan yaitu, programnya sangat menyentuh kebutuhan langsung bagi nelayan (pro-nelayan) dalam rangka peningkatan kesejahteraannya, dan hemat anggaran (APBD). Di sisi lain, sebagian program jangka pendek ini merupakan lanjutan program-program jangka tahun sebelumnya. Program-program pengembangan perikanan pelagis jangka pendek ini dapat dilihat dalam Lampiran 21 dan secara garis besar antara lain adalah:

Dimensi Hukum Kelembagaan

Program:

1) Peningkatan keterlibatan para nelayan yang terlibat dalam LKM, LSM Perikanan dan koperasi nelayan serta kelompok nelayan dalam pengambilan kebijakan perikanan daerah.

2) Mendorong peningkatan status LKM untuk memiliki badan hukum koperasi

3) Pemberian dukungan fasilitas administrasi KUB/Koperasi.

4) Peningkatan pengawasan dan penegakan hukum.

5) Penerapan sanksi yang tegas terhadap pelanggaran sehingga menimbulkan rasa kepatuhan terhadap hukum yang berlaku.

6) Pembentukan Pokmaswas di 7 kecamatan yang tersebar di wilayah Kota Ternate yang berasal dari kelompok masyarakat nelayan yang sudah ada.
(2) Dimensi Ekonomi

Program:
1) Pengembangan usaha dan sumber pendapatan alternatif dengan mengembangkan usaha pengolahan hasil perikanan, budidaya perikanan maupun pengembangan usaha pendukung kegiatan perikanan pelagis.
2) Peningkatan daya serap pasar melalui promosi, kemitraan dengan usaha pengolahan, dan peningkatan akses ekspor hasil perikanan ke berbagai daerah di Indonesia
3) Koordinasi dengan DPRD Kota Ternate, Dinas perindustrian dan perdagangan Kota Ternate, BKPM mengenai potensi investasi PMDN dan PMA.
4) Pengembangan sistem informasi perikanan berbasis pelabuhan sebagai pusat pengembangan usaha perikanan terpadu.
5) Memberikan kemudahan pelayanan perizinan dan insentif bagi usaha perikanan yang mempunyai hubungan kemitraan dengan nelayan kecil.

(3) Dimensi Ekologi

Program:
1) Pembentukan kesadaran nelayan tentang kelestarian SDI melalui pembinaan dalam rangka menghindari tangkapan pra-maturity.
2) Menyediakan informasi terbaru secara berkala kepada nelayan mengenai letak sumberdaya ikan yang berpotensi dan letak keberadaan gerombolan ikan.
3) Pengaturan perizinan usaha perikanan melalui pelimpahan kewenangan memberikan izin dan pengoperasiannya untuk pengendalian jumlah usaha penangkapan di tiap lokasi penangkapan ikan
4) Meningkatkan ketepatan penyebaran informasi mengenai potensi sumberdaya ikan di pusat-pusat kegiatan nelayan (pelabuhan) dari waktu ke waktu.
5) Pemantauan dan evaluasi pemanfaatan SDI, terutama di wilayah penangkapan eks-kapal ikan asing
(4) **Dimensi Sosial**

Program:

1) Peningkatan pengetahuan dan keterampilan nelayan dalam hal manajemen usaha melalui keikutsertaan dalam kegiatan-kegiatan seminar, lokakarya, dan pelatihan dalam rangka ikut serta pada perumusan kebijakan-kebijakan pengelolaan perikanan pelagis.

2) Pelatihan peningkatan kemampuan teknis penangkapan dan manajerial nelayan;

3) Memberikan kemudahan usaha dan investasi di kompleks PPN Bastiong Ternate dan PPI Dufa-dufa.

4) Meningkatkan keamanan dan menekan pungutan-pungutan yang tidak resmi di PPN Bastiong Ternate dan PPI Dufa-dufa.

5) Rehabilitasi dan peningkatan kualitas pelabuhan perikanan untuk memberikan pelayanan sesuai kapasitas terpasang.

6) Temu masyarakat nelayan, yang diwakili oleh seluruh kelompok nelayan yang ada di Kota Ternate.

7) Kesepakatan masyarakat mengenai jalur penangkapan berdasar alat tangkap dan alat bantu penangkapan dengan sektor lainnya.

(5) **Dimensi Teknologi**

Program:

1) Pemantauan dan pembinaan mutu ikan di atas kapal maupun pada kegiatan distribusi dan pemasaran hasil perikanan.

2) Mendorong penggunaan alat pendingin yang memadai mulai dari penangkapan, penanganan hingga ke konsumen.

3) Peningkatan kebersihan lingkungan pada pusat pendaratan ikan maupun sentra penangkapan/pengolahan hasil perikanan.

4) Pengembangan rumpon (FAD’s) yang dimanfaatkan bersama-sama oleh kelompok nelayan secara terkontrol.

5) Mendorong pemanfaatan teknologi penangkapan yang efisien dan ramah lingkungan kepada nelayan.
Keberhasilan implementasi kebijakan, strategi, dan program kerja pengembangan keberlanjutan perikanan pelagis di Ternate tidak hanya ditentukan dengan adanya hasil kajian yang dituangkan dalam disertasi ini, melainkan diperlukan dukungan sektor terkait lainnya dan masyarakat Kota Ternate pada umumnya. Perhatian serius dari Pemerintah Daerah dan lembaga legislatif sangat diperlukan terutama dalam menjadikan kebijakan, strategi, dan program kerja pengembangan keberlanjutan perikanan pelagis di Ternate ini ke dalam kebijakan prioritas pembangunan daerah Kota Ternate untuk mewujudkan kesejahteraan nelayan, pengolahan hasil perikanan, dan masyarakat perikanan lainnya melalui pemanfaatan dan pengelolaan sumberdaya perikanan pelagis secara berkelanjutan.
317

13 KESIMPULAN UMUM DAN SARAN

Melalui serangkaian kajian dilakukan sesuai dengan metode yang diterapkan, maka status keberlanjutan perikanan pelagis di Ternate dan strategi-pengembangannya dapat ditelaah. Adapun kesimpulan dan saran yang diambil adalah sebagai berikut:

1.1 Kesimpulan

Total nilai produksi perikanan tangkap Kota Ternate mencapai Rp.244,5 Milyar atau mengalami kenaikan rata-rata sebesar 14,61% per tahun dengan penyumbang produksi terbesar adalah produksi jenis cakalang (*Katsuwonus pelamis*) dan jenis layang (*Decapterus lajang*). Analisis status sumberdaya perikanan pelagis menunjukkan bahwa Rata-rata *effort* aktual sudah melebihi dari kondisi optimal MEY dan MSY sehingga peningkatan rata-rata *effort* aktual ini pada akhirnya diduga telah mengalami *economic overfishing* sebesar 58,81% dan *biological overfishing* sebesar 49,12%. Hasil analisis kinerja usaha menunjukan dari keempat usaha perikanan yang ditelaah di Kota Ternate menghasilkan keuntungan baik bagi pemilik, maupun bagi nelayan/ABK. Usaha perikanan pelagis yang memberikan keuntungan paling besar bagi pemilik di perairan Kota Ternate adalah *purse seine* yaitu Rp. 18.106.700/bulan. Sementara, usaha perikanan pelagis yang menghasilkan pendapatan bagi nelayan/ABK yang lebih tinggi di Kota Ternate adalah rawai tuna yaitu Rp. 3.457.000/bulan.

Secara keseluruhan, pengelolaan kegiatan perikanan pelagis di Ternate ditinjau dari dimensi ekologi, ekonomi, dan sosial, teknologi dan hukum dan kelembagaan menunjukkan status kurang keberlanjutan (nilai indeks 48,26%). Dimensi ekologi, ekonomi, dan sosial memiliki status cukup berkelanjutan dengan nilai indeks keberlanjutan masing-masing 58,11%, 53,31% dan 51,17%, sedangkan dimensi teknologi dan hukum dan kelembagaan memiliki status kurang berkelanjutan dengan nilai indeks masing-masing 42,43% dan 36,30%. Atribut yang paling sensitif mempengaruhi atau berkontribusi pada tingkat keberlanjutan perikanan...
pelagis menurut dimensi adalah jarak migrasi, tingkatan kolaps, dan tangkapan belum dewasa (dimensi ekologi), pembatasan masuk, sifat pemasaran, dan pendapatan lain (dimensi ekonomi), sektor penangkapan, pengaruh nelayan, dan status konflik (dimensi sosial), pengolahan pra-jual, selektivitas alat tangkap, dan penggunaan FAD’s (dimensi teknologi), dan keterlibatan nelayan dalam penentuan kebijakan, dan Illegal Fishing (dimensi hukum dan kelembagaan).

Sejumlah kebijakan pengembangan perikanan pelagis diperoleh untuk mengatasi permasalahan yang ditujukan oleh atribut-atribut yang mengakibatkan ketidakberlanjutan perikanan pelagis di Ternate (atribut asistif). Kebijakan tersebut menurut prioritas meliputi pertama, kebijakan pengembangan kapasitas hukum dan kelembagaan usaha perikanan pelagis (dimensi hukum dan kelembagaan); kedua, kebijakan perbaikan sistem pemasaran produksi perikanan pelagis (dimensi ekonomi); ketiga, kebijakan peningkatan produktivitas, dan efisiensi penangkapan lestari (dimensi ekologi); keempat, kebijakan peningkatan kesejahteraan pelaku tangkapan (dimensi sosial); kelima, kebijakan pengembangan teknologi penangkapan ikan yang ramah lingkungan (dimensi teknologi). Berasal dari lima kebijakan ini terumuskan 24 strategi dan 134 program kerja yang berpeluang diimplementasikan dalam rangka pengembangan keberlanjutan perikanan pelagis di Ternate. Program kerja yang menjadi prioritas dalam keberlanjutan perikanan pelagis di Kota Ternate adalah pada dimensi hukum dan kelembagaan yaitu peningkatan keterlibatan pendapat para nelayan yang terlibat dalam LKM dan KUB/Koperasi dalam pengambilan kebijakan perikanan daerah. Program kerja yang menjadi prioritas dalam keberlanjutan perikanan pelagis Kota Ternate adalah pada dimensi ekonomi yaitu pengembangan usaha dan sumber pendapatan alternatif dengan pengembangan usaha pengolahan hasil perikanan, budidaya perikanan, dan upun pengembangan usaha pendukung kegiatan perikanan pelagis. Program kerja yang menjadi prioritas dalam keberlanjutan perikanan pelagis Ternate pada dimensi ekologi yaitu pembentukan kesadaran nelayan tentang kelestarian SDI melalui pembinaan oleh tenaga penyuluh perikanan...
dalam rangka menghindari tangkapan *pra-maturity*. Program kerja yang menjadi prioritas dalam keberlanjutan perikanan pelagis Kota Ternate pada dimensi sosial yaitu peningkatan pengetahuan dan keterampilan nelayan dalam hal manajemen usaha melalui kegiatan-kegiatan seminar, lokakarya, dan pelatihan sehingga dapat meningkatkan pengaruh nelayan dalam berdemokrasi untuk menentukan suatu kebijakan perikanan melalui pertemuan formal. Program kerja yang menjadi prioritas dalam keberlanjutan perikanan pelagis Kota Ternate pada dimensi teknologi yaitu pemantauan dan pembinaan mutu ikan di atas kapal maupun pada kegiatan distribusi dan pemasaran hasil perikanan.

1.2 Saran

Diperlukan komitmen yang kuat dari seluruh penanggung jawab pembangunan perikanan khususnya PEMDA Kota Ternate dalam mengimplementasikan kebijakan, strategi, dan program pengelolaan perikanan berkelanjutan mengingat secara umum status keberlanjutan perikanan pelagis di Ternate tergolong pada status kurang berkelanjutan.

Diperlukan reorientasi kebijakan pembangunan perikanan pelagis di Ternate yang selain menitikberatkan pada pengembangan kapasitas hukum dan kelembagaan usaha perikanan pelagis; perbaikan sistem pemasaran produksi perikanan pelagis; juga perhatian terhadap tekanan terhadap sumberdaya ikan yang telah mengalami *overfishing*, khususnya di Perairan Kota Ternate (Laut Maluku).

Setiap kebijakan dan strategi pembangunan perikanan di Kota Ternate hendaknya melibatkan partisipasi seluruh *stakeholders* khususnya masyarakat nelayan, baik dalam perumusan maupun implementasinya. Dengan demikian, masyarakat atau nelayan merasa ikut bertanggung jawab atas keberhasilan kebijakan tersebut.

Kebijakan dan strategi pengembangan usaha perikanan pelagis yang telah dijabarkan dalam program kerja, sangat perlu untuk dijadikan dasar penyusunan konsep rencana strategis pengelolaan perikanan tangkap di Kota Ternate. Pemantauan dan evaluasi terhadap keberhasilan program kerja diperlukan untuk terus dilakukan sehingga tidak menutup kemungkinan...
Diperlukan suatu standardisasi atribut-atribut keberlanjutan secara nasional dalam mengevaluasi keberlanjutan perikanan tangkap pada umumnya dan perikanan pelagis pada khususnya melalui suatu penelitian-penelitian sejenis terutama atribut penggunaan FAD’s pada dimensi teknologi.
DAFTAR PUSTAKA

Penelitian desas desaks sumberdaya perikanan sebagai bagian
pembangunan perikanan, portal Perikanan Bogor, 1 hal.

Analisis Kebijakan Pengolahan Tangkap Skala Kecil (Kasus
Monjira, Joko Purwanto, Sugeng Budiantoro, Ari
Putro, Menurut Analisis, Departemen Pelayaran Selat
Indonesia, 3 hal.

Fisheries Stock Assessment. Choice, Dynamics and
Overexploitation, New York: Chapman and Hall. 578 hal.

2009. Pemilihan lokasi unggas di Desa Malang, Desa
Panai, Kabupaten Malang, Kota Malang. (Desa).

1995. The Concept of Environmental Sustainability. Annual
Review. 24 hal.

2006, Keberlanjutan Perikanan Tangkap Skala Kecil
(Kasus Monjira, Joko Purwanto, Sugeng Budiantoro, Ari
Putro, Menurut Analisis, Departemen Pelayaran Selat
Indonesia, 3 hal.

Fisheries Stock Assessment. Choice, Dynamics and
Overexploitation, New York: Chapman and Hall. 578 hal.

2009. Pemilihan lokasi unggas di Desa Malang, Desa
Panai, Kabupaten Malang, Kota Malang. (Desa).

1995. The Concept of Environmental Sustainability. Annual
Review. 24 hal.

2006, Keberlanjutan Perikanan Tangkap Skala Kecil
(Kasus Monjira, Joko Purwanto, Sugeng Budiantoro, Ari
Putro, Menurut Analisis, Departemen Pelayaran Selat
Indonesia, 3 hal.

Fisheries Stock Assessment. Choice, Dynamics and
Overexploitation, New York: Chapman and Hall. 578 hal.

2009. Pemilihan lokasi unggas di Desa Malang, Desa
Panai, Kabupaten Malang, Kota Malang. (Desa).

1995. The Concept of Environmental Sustainability. Annual
Review. 24 hal.

2006, Keberlanjutan Perikanan Tangkap Skala Kecil
(Kasus Monjira, Joko Purwanto, Sugeng Budiantoro, Ari
Putro, Menurut Analisis, Departemen Pelayaran Selat
Indonesia, 3 hal.

Fisheries Stock Assessment. Choice, Dynamics and
Overexploitation, New York: Chapman and Hall. 578 hal.

2009. Pemilihan lokasi unggas di Desa Malang, Desa
Panai, Kabupaten Malang, Kota Malang. (Desa).

1995. The Concept of Environmental Sustainability. Annual
Review. 24 hal.

2006, Keberlanjutan Perikanan Tangkap Skala Kecil
(Kasus Monjira, Joko Purwanto, Sugeng Budiantoro, Ari
Putro, Menurut Analisis, Departemen Pelayaran Selat
Indonesia, 3 hal.

Fisheries Stock Assessment. Choice, Dynamics and
Overexploitation, New York: Chapman and Hall. 578 hal.

2009. Pemilihan lokasi unggas di Desa Malang, Desa
Panai, Kabupaten Malang, Kota Malang. (Desa).

1995. The Concept of Environmental Sustainability. Annual
Review. 24 hal.

2006, Keberlanjutan Perikanan Tangkap Skala Kecil
(Kasus Monjira, Joko Purwanto, Sugeng Budiantoro, Ari
Putro, Menurut Analisis, Departemen Pelayaran Selat
Indonesia, 3 hal.

1. Dilarang menyalin, menggubah, atau mengubah seluruh atau sebagian hasil publikasi dengan tujuan komersial tanpa persetujuan tertulis dari penerbit.

Bogor Agricultural University
Lampiran 1
Peta Lokasi Penelitian

Hak Cipta Dilindungi Undang-Undang
Peta cetak atau elektronik tidak boleh digunakan, diutip, diubah, diproduksi, dan/atau dikomersialkan tanpa izin. Untuk informasi lebih lanjut, silakan hubungi PIPI.

(Sumber Peta: 1. Peta Dasar Wilayah Indonesia, BAKOSURTANAL, 2008 2. PERMEN KP RI No. PER 01/MENTAN/2009)
Lampiran 2
Jenis-jenisikan yang ditangkap oleh nelayan di wilayah Kota Ternate (tahun 2009)

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Ikan/Nama Indonesia</th>
<th>Jenis Ikan/Nama Ilmiah</th>
<th>Produksi (ton)</th>
<th>Nilai (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cakalang</td>
<td>Katsuwonus pelamis</td>
<td>9.469,95</td>
<td>94.699.482.000,00</td>
</tr>
<tr>
<td>2.</td>
<td>Tongkol</td>
<td>Auxis thazard</td>
<td>1.948,39</td>
<td>18.509.705.000,00</td>
</tr>
<tr>
<td>3.</td>
<td>Sunglir</td>
<td>Stolephorus spp</td>
<td>2.205,60</td>
<td>24.261.650.000,00</td>
</tr>
<tr>
<td>4.</td>
<td>Teri</td>
<td>Decapterus lajang</td>
<td>5.579,26</td>
<td>47.423.679.000,00</td>
</tr>
<tr>
<td>5.</td>
<td>Layang</td>
<td>Rastrelliger sp.</td>
<td>395,49</td>
<td>3.559.366.000,00</td>
</tr>
<tr>
<td>6.</td>
<td>Kembung</td>
<td>Spenehelus sp</td>
<td>233,33</td>
<td>5.833.127.000,00</td>
</tr>
<tr>
<td>7.</td>
<td>Kerapu</td>
<td>Lutjanus spp</td>
<td>156,24</td>
<td>3.359.250.000,00</td>
</tr>
<tr>
<td>8.</td>
<td>Kakap</td>
<td>Caranx sexfesciatus</td>
<td>23,99</td>
<td>419.851.000,00</td>
</tr>
<tr>
<td>9.</td>
<td>Kakap-julung</td>
<td>Hemirhampus sp.</td>
<td>717,00</td>
<td>7.169.988.000,00</td>
</tr>
<tr>
<td>10.</td>
<td>Seler</td>
<td>Thunnus albacares</td>
<td>2.193,65</td>
<td>28.517.447.000,00</td>
</tr>
<tr>
<td>11.</td>
<td>Selar</td>
<td>Cypsilurus sp</td>
<td>132,97</td>
<td>1.178.278.000,00</td>
</tr>
<tr>
<td>12.</td>
<td>Bawal putih</td>
<td>Pampus argenteus</td>
<td>19,23</td>
<td>144.260.000,00</td>
</tr>
<tr>
<td>13.</td>
<td>Tenggiri</td>
<td>Scomberomorus spp</td>
<td>139,18</td>
<td>904.640.000,00</td>
</tr>
<tr>
<td>14.</td>
<td>Lolosi</td>
<td>Caesio sp</td>
<td>258,76</td>
<td>2.587.683.000,00</td>
</tr>
<tr>
<td>15.</td>
<td>Lencam</td>
<td>Lethrinus spp</td>
<td>20,91</td>
<td>471.040.000,00</td>
</tr>
<tr>
<td>16.</td>
<td>Biji Nangka</td>
<td>Upeneus sp</td>
<td>141,33</td>
<td>918.665.000,00</td>
</tr>
<tr>
<td>17.</td>
<td>Lemadang</td>
<td>Coryphaena spp</td>
<td>0,84</td>
<td>5.435.000,00</td>
</tr>
<tr>
<td>18.</td>
<td>Cumi-cumi</td>
<td>Loligo spp</td>
<td>54,88</td>
<td>768.306.000,00</td>
</tr>
<tr>
<td>19.</td>
<td>Sotong</td>
<td>Sepia spp</td>
<td>85,30</td>
<td>213.254.000,00</td>
</tr>
<tr>
<td>20.</td>
<td>Tembang</td>
<td>Sardinella sp</td>
<td>2,22</td>
<td>11.080.000,00</td>
</tr>
<tr>
<td>21.</td>
<td>Terubuk</td>
<td>Hilsa spp</td>
<td>16,73</td>
<td>58.540.000,00</td>
</tr>
<tr>
<td>22.</td>
<td>Kuri</td>
<td>Nemipterus spp</td>
<td>5,85</td>
<td>23.416.000,00</td>
</tr>
<tr>
<td>23.</td>
<td>Swangi</td>
<td>Priacanthus sp</td>
<td>2,01</td>
<td>10.035.000,00</td>
</tr>
</tbody>
</table>

Total | 24.311,41 | 244.521.290.000,00 |

Sumber: Diolah dari Data Dinas Perikanan dan Kelautan Provinsi Maluku Utara (2009)
Lampiran 3
Gambar alat tangkap yang di teliti dan species ikan dominan yang tertangkap di perairan Kota Ternate

A. Alat tangkap yang diteliti

Pole and line

Purse seine

Rawai tuna
(Bocahlaut.blogspot.com)

Pancing tonda
B. Species ikan yang dominan tertangkap

- Cakalang (*Katsuwonus pelamis*)
- Layang (*Decapterus lajang*)
- Tuna (*Thunnus albacares*)
- Tongkol (*Euthynnus spp*)
- Teri (*Stolephorus spp*)
Lampiran 4
Perhitungan Parameter Bioekonomi Perairan Ternate (Laut Maluku)

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Total Produksi</th>
<th>Total Effort</th>
<th>CPUE ton/trip</th>
<th>ln CPUE\text{t+1}</th>
<th>ln CPUE\text{t}</th>
<th>Et + Et+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>2821,57</td>
<td>4724,91</td>
<td>0,59717</td>
<td>-0,86183</td>
<td>-0,51556</td>
<td>13967,9673</td>
</tr>
<tr>
<td>2004</td>
<td>3904,16</td>
<td>9243,06</td>
<td>0,42239</td>
<td>-0,42718</td>
<td>-0,86183</td>
<td>25519,5284</td>
</tr>
<tr>
<td>2005</td>
<td>10617,87</td>
<td>16276,47</td>
<td>0,65234</td>
<td>-0,51963</td>
<td>-0,42718</td>
<td>33380,1941</td>
</tr>
<tr>
<td>2006</td>
<td>10172,30</td>
<td>17103,72</td>
<td>0,59474</td>
<td>-0,25097</td>
<td>-0,51963</td>
<td>34745,8815</td>
</tr>
<tr>
<td>2007</td>
<td>13726,44</td>
<td>17642,16</td>
<td>0,77805</td>
<td>-0,17351</td>
<td>-0,25097</td>
<td>36719,8509</td>
</tr>
<tr>
<td>2008</td>
<td>16038,76</td>
<td>19077,69</td>
<td>0,84071</td>
<td>-0,07539</td>
<td>-0,17351</td>
<td>43186,1473</td>
</tr>
<tr>
<td>2009</td>
<td>22357,68</td>
<td>24108,46</td>
<td>0,92738</td>
<td>-0,07539</td>
<td>35437,63</td>
<td>49235,012</td>
</tr>
</tbody>
</table>

SUMMARY OUTPUT

- **Regression Statistics**
 - Multiple R: 0,939087562
 - R Square: 0,881885449
 - Adjusted R: 0,803142415
 - Standard Er: 0,126402994

- **ANOVA**
 - df | SS | MS | F | Significance F |
 - Regression | 2 | 0,357886031 | 0,178943016 | 11,19953609 | 0,04059337 |
 - Total | 5 | 0,405819181 |

- **Coefficients**
 - Intercept: 1,376654074
 - ln CPUE\text{t+1}: -2,418139734
 - ln CPUE\text{t}: -0,335168414
 - Et + Et+1: -0,335168414

 - CPUE\text{t}: -1,963548282
 - CPUE\text{t+1}: -1,140747412
 - Et: 0,748037756
 - Et+1: 0,748037756

 - Lower 95%: -2,418139734
 - Upper 95%: -0,335168414
 - Lower 95.0%: -2,418139734
 - Upper 95.0%: -0,335168414

 - Lower 95%: -1,140747412
 - Upper 95%: 0,748037756
 - Lower 95.0%: -1,140747412
 - Upper 95.0%: 0,748037756
Lampiran 4 (lanjutan)

<table>
<thead>
<tr>
<th>Nama</th>
<th>Simbol</th>
<th>Rumus</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersept</td>
<td>α</td>
<td>Hasil regresi</td>
<td>1,376654074</td>
</tr>
<tr>
<td>ln CPUEt</td>
<td>β</td>
<td>Hasil regresi</td>
<td>-0,19635428</td>
</tr>
<tr>
<td>Et+1</td>
<td>γ</td>
<td>Hasil regresi</td>
<td>-2,88594E-05</td>
</tr>
<tr>
<td>Ks keberadaan</td>
<td>r</td>
<td>2(1-β)/(1+β)</td>
<td>2,977321009</td>
</tr>
<tr>
<td>Kap 2 punya tangkap</td>
<td>q</td>
<td>-γ*(2+r)</td>
<td>0,000143642</td>
</tr>
<tr>
<td>Dari dukungan lingk.</td>
<td>K</td>
<td>(exp(α*(2+r)/(2r)/q)</td>
<td>22002,05355</td>
</tr>
<tr>
<td>Effort Optimal</td>
<td>Eopt</td>
<td>r/2q</td>
<td>10363,65891</td>
</tr>
<tr>
<td>Biomass MSY</td>
<td>x</td>
<td>K/2</td>
<td>11001,02677</td>
</tr>
<tr>
<td>Produksi lestari/P.Opt</td>
<td>MSY</td>
<td>rK/4</td>
<td>16376,79406</td>
</tr>
<tr>
<td>Proy 2 produksi aktuel</td>
<td>x</td>
<td>(∑(p*n))/n</td>
<td>11376,96857</td>
</tr>
<tr>
<td>Proy 2 effort standar</td>
<td>x</td>
<td>(∑(E*n))/n</td>
<td>15453,78122</td>
</tr>
<tr>
<td>Presentasi overfishing</td>
<td>% over</td>
<td>(x-std-E_MSY)/E_MSY*100</td>
<td>49,11510852</td>
</tr>
<tr>
<td>Price rata-rata (Rp./ton)</td>
<td>p</td>
<td>70000000</td>
<td></td>
</tr>
<tr>
<td>Cost rata-rata (per trip)</td>
<td>c</td>
<td>1350000</td>
<td></td>
</tr>
</tbody>
</table>

Rumus tahap mencari Nilai K:

s = ((α*(2+r))/(2*r))

m = EXP(s)

pqK = 22122989,48

c/pqK = 0,06102249

Parameter MEY Sole owner OA

<table>
<thead>
<tr>
<th>Biomass</th>
<th>MEY</th>
<th>Sole owner</th>
<th>OA</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (ton)</td>
<td>11672,33687</td>
<td>11001,02677</td>
<td>1342,620188</td>
</tr>
<tr>
<td>punten opt h* (ton)</td>
<td>16315,81106</td>
<td>16376,79406</td>
<td>3753,479284</td>
</tr>
<tr>
<td>Port opt E* (trip)</td>
<td>9731,242589</td>
<td>10363,65891</td>
<td>19462,48518</td>
</tr>
<tr>
<td>K Ekt.</td>
<td>π (juta)</td>
<td>1,01073E+11</td>
<td>1,00647E+11</td>
</tr>
</tbody>
</table>

Produksi (ton) | Effort (trip) | Perbandingan produksi Akt vs Rezim | Perbandingan Effort Aktual vs Rezim

Initial	11376,96857	15453,78122	100%	100%
Y	16315,81106	9731,242589	70%	158,81%
Y	16376,79406	10363,65891	69%	149,12%
Y	3753,479284	19462,48518	303%	79%
Lampiran 5

Perhitungan keseimbangan bioekonomi Perairan Kota Ternate (Laut Maluku) dengan Software Maple 11

\[r := 2.977321009; \quad q := 0.00014364; \quad K := 22.002,05355; \quad p := 7000000; \quad c := 1350000 \]

\[t := 2.977321009 \]

\[0.00014364 \]

\[22.002,05355 \]

\[7000000 \]

\[1350000 \]

\[\text{pertumb} := r \cdot x \cdot \left(1 - \frac{x}{K}\right) \]

\[2.977321009 \cdot x \cdot (1 - 0.00004545030298 \cdot x) \]

\[n(t, \text{pertumb}, x = 0 .. 25000, \text{growth} = 0 .. 20000) \]

\[\text{growth} = 10000 \]

\[0 \]

\[25000 \]

\[0 \]

\[25000 \]

\[q \cdot x \cdot E \]

\[0.00014364 \cdot x \cdot E \]

\[q \cdot E \cdot \left(K \cdot \left(1 - \frac{q}{r} \cdot E\right)\right) \]

\[3.160374972 \cdot E \cdot (1 - 0.00004824471381 \cdot E) \]
Lampiran 5 (lanjutan)

Perhitungan MSY mengikuti solusi CYP (1992), yaitu:

\[
MSY := \frac{r \cdot K}{4}; \quad EMSY := \frac{\left(\frac{r}{2}\right)}{q}; \quad x_{MSY} := \frac{MSY}{EMSY}
\]

\[
16376.79407
\]

\[
10363.82974
\]

\[
11001.02678
\]

\[
\mu_{MSY} := (p \cdot MSY) - (c \cdot EMSY)
\]

\[
1.006463884 \times 10^{11}
\]

Perhitungan bioekonomi pada kondisi open access (OA) dan kondisi MSY (Sole Owner):

\[
\gamma := c \cdot E
\]

\[
1350000 \times E
\]

\[
\delta := p \cdot y
\]

\[
2.212262480 \times 10^{7} \times E \times (1 - 0.00004824471381 \times E)
\]
Lampiran 5 (lanjutan)

plot({TR}, E = 0 ..2500Q, R = 0 ..130000000000)

A := \frac{c}{p^q}

1342.642320
Lampiran 5 (lanjutan)

$$EOA := \text{solve} (TR - TC = 0, E)$$

$$hOA := q \cdot xOA \cdot EOA$$

$$R := \text{diff} (TR, E)$$

$$C := \text{diff} (TC, E)$$

$$O := \text{solve} (MR - MC = 0, E)$$

$$SO := p \cdot q \cdot ESO \cdot \left(K \cdot \left(1 - \frac{q}{r} \cdot ESO \right) \right)$$

$$SO := e \cdot ESO$$

$$RentSO := TRSO - TCSO$$

$$hSO := q \cdot ESO \cdot \left(K \cdot \left(1 - \frac{q}{r} \cdot ESO \right) \right)$$

$$O := \frac{hSO}{q}$$

$$1.42106634 \times 10^{11}$$

$$1.142106634 \times 10^{11}$$

$$11313737998 \times 10^{10}$$

$$16315.80905$$

$$1.010732834 \times 10^{11}$$

$$11672.34793$$
Lampiran 6

Hasil analisis Multi Dimensional dari keberlanjutan perikanan

<table>
<thead>
<tr>
<th>Dimensi Ekologi</th>
<th>2D MDS Results</th>
<th>Rotated</th>
<th>& Flipped & Scaled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole and line</td>
<td>-0.3241</td>
<td>-0.3626</td>
<td>0.2928</td>
</tr>
<tr>
<td>Ternate</td>
<td>-0.1424</td>
<td>-0.2364</td>
<td>0.1223</td>
</tr>
<tr>
<td>Purse seine</td>
<td>0.0687</td>
<td>-0.1116</td>
<td>-0.0778</td>
</tr>
<tr>
<td>Rawai Ternate</td>
<td>0.0545</td>
<td>-0.3051</td>
<td>0.5045</td>
</tr>
<tr>
<td>Pancing/Goda Ternate</td>
<td>-0.5317</td>
<td>-0.3883</td>
<td>-0.3483</td>
</tr>
<tr>
<td>GOOD</td>
<td>1.6614</td>
<td>-0.1088</td>
<td>-1.6647</td>
</tr>
<tr>
<td>BAD</td>
<td>-0.0888</td>
<td>1.5393</td>
<td>0.2165</td>
</tr>
<tr>
<td>UP</td>
<td>0.1780</td>
<td>-1.4617</td>
<td>-0.2989</td>
</tr>
<tr>
<td>DOWN</td>
<td>-1.5458</td>
<td>0.1569</td>
<td>1.5535</td>
</tr>
<tr>
<td>ANCHOR</td>
<td>-1.3767</td>
<td>0.6703</td>
<td>1.4277</td>
</tr>
<tr>
<td></td>
<td>-1.0774</td>
<td>1.1103</td>
<td>1.1660</td>
</tr>
<tr>
<td></td>
<td>-0.6419</td>
<td>1.4016</td>
<td>0.7562</td>
</tr>
<tr>
<td></td>
<td>0.4296</td>
<td>1.4785</td>
<td>-0.3051</td>
</tr>
<tr>
<td></td>
<td>0.8878</td>
<td>1.2965</td>
<td>-0.7770</td>
</tr>
<tr>
<td></td>
<td>1.2994</td>
<td>0.9892</td>
<td>-1.1216</td>
</tr>
<tr>
<td></td>
<td>1.5428</td>
<td>0.5179</td>
<td>-1.4943</td>
</tr>
<tr>
<td></td>
<td>1.6341</td>
<td>-0.0648</td>
<td>-1.6338</td>
</tr>
<tr>
<td></td>
<td>1.4555</td>
<td>-0.5777</td>
<td>-1.4985</td>
</tr>
<tr>
<td></td>
<td>1.1274</td>
<td>-0.9811</td>
<td>-1.2051</td>
</tr>
<tr>
<td></td>
<td>0.7171</td>
<td>-1.2689</td>
<td>-0.8201</td>
</tr>
<tr>
<td></td>
<td>-0.3439</td>
<td>-1.3926</td>
<td>0.2269</td>
</tr>
<tr>
<td></td>
<td>-0.7994</td>
<td>-1.2027</td>
<td>0.6966</td>
</tr>
<tr>
<td></td>
<td>-1.1651</td>
<td>-0.8483</td>
<td>1.0905</td>
</tr>
<tr>
<td></td>
<td>-1.4103</td>
<td>-0.3977</td>
<td>1.3724</td>
</tr>
</tbody>
</table>

Stress = 0.1515

Squared Correlation (RSQ) = 0.9284

Number of iterations = 1

Return value (error if > 0) = 0

Rotation angle (degrees) = 175,2301

<table>
<thead>
<tr>
<th>Dimensi Ekologi</th>
<th>Mean</th>
<th>Standard Error</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Sum</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58,11</td>
<td>3,84</td>
<td>7,68</td>
<td>49,18</td>
<td>67,22</td>
<td>232,45</td>
<td>4</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>58,11 ± (2 x 7.68)</td>
<td>(2 x 7.68) = 15,35421</td>
<td>Rata-rata</td>
<td>42,76</td>
<td>73,47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cukup Berkelanjutan
Dimensi Ekonomi

<table>
<thead>
<tr>
<th>Fishery Type</th>
<th>2D MDS Results</th>
<th>Rotated & Flipped & Scaled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole and the Ternate</td>
<td>0.2945</td>
<td>0.0233</td>
</tr>
<tr>
<td>Purse seine Ternate</td>
<td>0.2308</td>
<td>-0.0213</td>
</tr>
<tr>
<td>Rawai Tuna Ternate</td>
<td>0.1715</td>
<td>0.2596</td>
</tr>
<tr>
<td>Pancing Tonda Ternate</td>
<td>0.8492</td>
<td>-0.2090</td>
</tr>
<tr>
<td>GOOD</td>
<td>0.3007</td>
<td>-1.4828</td>
</tr>
<tr>
<td>BAD</td>
<td>-0.4192</td>
<td>1.5036</td>
</tr>
<tr>
<td>UP</td>
<td>-1.5818</td>
<td>-0.3283</td>
</tr>
<tr>
<td>DOWN</td>
<td>1.4566</td>
<td>0.3306</td>
</tr>
<tr>
<td>ANCHOR</td>
<td>-0.1200</td>
<td>1.9632</td>
</tr>
</tbody>
</table>

Stress = 0.9389
Squared Correlation (RSQ) = 0.9389
Number of iterations = 2
Memory needed (words) = 5414
Return value (error if > 0) = 0
Rotation angle (degrees) = -76,4471

RAPFISH PARAMETERS USED FOR THIS ANALYSIS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># fisheries</td>
<td>4</td>
</tr>
<tr>
<td># reference fisheries</td>
<td>4</td>
</tr>
<tr>
<td># anchor fisheries</td>
<td>16</td>
</tr>
<tr>
<td>Row# of 1st fishery</td>
<td>2</td>
</tr>
<tr>
<td>Row# of GOOD fishery</td>
<td>8</td>
</tr>
<tr>
<td>Row# of UP fishery</td>
<td>10</td>
</tr>
<tr>
<td>Row# of DOWN fishery</td>
<td>11</td>
</tr>
<tr>
<td>Column letter with fisheries names</td>
<td>A</td>
</tr>
<tr>
<td>Row# of 1st anchor fishery</td>
<td>12</td>
</tr>
<tr>
<td># attribute</td>
<td>10</td>
</tr>
<tr>
<td>Column letter of 1st attribute</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensi Ekonomi</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>53.31</td>
</tr>
<tr>
<td>Standard Error</td>
<td>4.10</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>8.20</td>
</tr>
<tr>
<td>Minimum</td>
<td>43.87</td>
</tr>
<tr>
<td>Maximum</td>
<td>63.87</td>
</tr>
<tr>
<td>Sum</td>
<td>213.25</td>
</tr>
<tr>
<td>Count</td>
<td>4</td>
</tr>
<tr>
<td>Rata-rata (2 x 8.20)</td>
<td>16,39714</td>
</tr>
</tbody>
</table>

Cukup Berkelanjutan
2D MDS Results, Rotated & Flipped & Scaled

<table>
<thead>
<tr>
<th>Term</th>
<th>2D MDS Results</th>
<th>Rotated</th>
<th>& Flipped & Scaled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole and Tether Ternate</td>
<td>0.0067 0.3280 0.0246 0.3271</td>
<td>47,9883</td>
<td>12,1955</td>
</tr>
<tr>
<td>Purse seine Ternate</td>
<td>-0.0507 0.2785 -0.0354 0.2809</td>
<td>46,1217</td>
<td>10,6821</td>
</tr>
<tr>
<td>Rawai Tuna Ternate</td>
<td>0.0974 0.0438 0.0996 0.0384</td>
<td>50,3203</td>
<td>2,7413</td>
</tr>
<tr>
<td>Pancing Tonda Ternate</td>
<td>0.4127 0.1105 0.4181 0.0878</td>
<td>60,2256</td>
<td>4,3593</td>
</tr>
<tr>
<td>GOOD</td>
<td>1.6969 0.0475 1.6970 -0.0453</td>
<td>100,0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>BAD</td>
<td>-1.5137 -0.1282 -1.5184 -0.0453</td>
<td>0.0000</td>
<td>0.3847</td>
</tr>
<tr>
<td>UP</td>
<td>0.2237 1.4841 0.3044 1.4697</td>
<td>56,6906</td>
<td>50,0000</td>
</tr>
<tr>
<td>DOWN</td>
<td>-0.1444 -1.5940 -0.2313 -1.5837</td>
<td>40,0286</td>
<td>-50,0000</td>
</tr>
<tr>
<td>ANCHORS</td>
<td>1.5174 0.5624 1.5458 0.4787</td>
<td>95,2988</td>
<td>17,5446</td>
</tr>
<tr>
<td></td>
<td>1.1604 1.0537 1.2163 0.9887</td>
<td>85,0490</td>
<td>34,2495</td>
</tr>
<tr>
<td></td>
<td>0.7270 1.3258 0.7984 1.2841</td>
<td>72,0523</td>
<td>43,9220</td>
</tr>
<tr>
<td></td>
<td>-0.3316 1.4338 -0.2527 1.4498</td>
<td>39,3630</td>
<td>49,3493</td>
</tr>
<tr>
<td></td>
<td>-0.8373 1.1989 -0.7705 1.2429</td>
<td>23,2599</td>
<td>42,5735</td>
</tr>
<tr>
<td></td>
<td>-1.2035 0.8815 -1.1355 0.9459</td>
<td>11,3489</td>
<td>32,8474</td>
</tr>
<tr>
<td></td>
<td>-1.4172 0.4346 -1.3913 0.5114</td>
<td>3.9526</td>
<td>18,6163</td>
</tr>
<tr>
<td></td>
<td>-1.4914 -0.0915 -1.4942 -0.0098</td>
<td>0.7541</td>
<td>1,5457</td>
</tr>
<tr>
<td></td>
<td>-1.3612 -0.6144 -1.3928 -0.5391</td>
<td>3.9067</td>
<td>-15,7899</td>
</tr>
<tr>
<td></td>
<td>-1.0386 -1.0911 -1.0967 -1.0327</td>
<td>13,1150</td>
<td>-31,9533</td>
</tr>
<tr>
<td></td>
<td>-0.6708 -1.4277 -0.7479 -1.3889</td>
<td>23,9642</td>
<td>-43,6197</td>
</tr>
<tr>
<td></td>
<td>0.4056 -1.5234 0.3217 -1.5433</td>
<td>57,2276</td>
<td>-48,6763</td>
</tr>
<tr>
<td></td>
<td>0.9452 -1.2979 0.8728 -1.3476</td>
<td>74,3673</td>
<td>-42,2690</td>
</tr>
<tr>
<td></td>
<td>1.2981 -0.9233 1.2457 0.9928</td>
<td>85,9653</td>
<td>-30,6491</td>
</tr>
<tr>
<td></td>
<td>1.5693 -0.4918 1.5401 -0.5768</td>
<td>95,1210</td>
<td>-17,0248</td>
</tr>
<tr>
<td>Stress = 0.1472</td>
<td>Iteration Stress Delta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1472</td>
<td>1 0.2263 9E+20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9432</td>
<td>2 0.2261 0.000145</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RAPFISH PARAMETERS USED FOR THIS ANALYSIS

# fisheries	4
# reference fisheries	4
# anchor fisheries	15
Row# of 1st fishery	2
Row# of DOD fishery	8
Row# of AD fishery	9
Row# of UP fishery	10
Row# of DOWN fishery	11
Column letter with fisheries names	A
Row# of 1st anchor fishery	12
# attributes	9
Column letter of 1st attribute	Y

Dimensi Sosial

Rata-rata	51,16
Standard Error	3,14
Standard Deviation	6,28
Minimum	46,12
Maximum	60,23
Sum	204,66
Count	4

Cukup Berkelanjutan
2D MDS Results Rotated & Flipped & Scaled

<table>
<thead>
<tr>
<th>Fishery</th>
<th>2D MDS Results</th>
<th>Rotated</th>
<th>Flipped & Scaled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole and line Ternate</td>
<td>0.1929</td>
<td>-0.1396</td>
<td>-0.1116</td>
</tr>
<tr>
<td>Purse seine Ternate</td>
<td>-0.1779</td>
<td>-0.5582</td>
<td>-0.5775</td>
</tr>
<tr>
<td>Rawai Tuna Ternate</td>
<td>0.3116</td>
<td>-0.2110</td>
<td>-0.1658</td>
</tr>
<tr>
<td>Pancing Tonda Ternate</td>
<td>0.5565</td>
<td>-0.0146</td>
<td>0.0625</td>
</tr>
<tr>
<td>GOOD BAD UP DOWN ANCHORS</td>
<td>0.1880</td>
<td>1.5349</td>
<td>1.5462</td>
</tr>
</tbody>
</table>

- **Rata-rata:** 42.43 ± (2 x 8.95)

<table>
<thead>
<tr>
<th>Dimensi Teknologi</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>42.43</td>
</tr>
<tr>
<td>Standard Error</td>
<td>4.47</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>8.95</td>
</tr>
<tr>
<td>Minimum</td>
<td>29.91</td>
</tr>
<tr>
<td>Maximum</td>
<td>51.03</td>
</tr>
<tr>
<td>Sum</td>
<td>169.72</td>
</tr>
<tr>
<td>Count</td>
<td>4</td>
</tr>
</tbody>
</table>

Kurang Berkelanjutan
<table>
<thead>
<tr>
<th>Dimensi Hukum dan Kelembagaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D MDS Results</td>
</tr>
<tr>
<td>Pole and line</td>
</tr>
<tr>
<td>Purse seine</td>
</tr>
<tr>
<td>Rawai Tuna</td>
</tr>
<tr>
<td>Pancing Tonda Ternate</td>
</tr>
<tr>
<td>GOOD</td>
</tr>
<tr>
<td>BAD</td>
</tr>
<tr>
<td>UP</td>
</tr>
<tr>
<td>DOWN</td>
</tr>
<tr>
<td>ANCHORS</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

RAPFISH PARAMETERS USED FOR THIS ANALYSIS

- # fisheries = 4
- # reference fisheries = 4
- # anchor fisheries = 14
- Row# of 1st fishery = 2
- Row# of GOOD fishery = 8
- Row# of BAD fishery = 9
- Row# of DOWN fishery = 11
- Column letter with fisheries names = A
- Row# of anchor fishery = 12
- # attribute = 8
- Column letter of 1st attribute = AS

Dimensi Hukum Kelembagaan

- Mean = 36.30
- Standard Error = 2.79
- Standard Deviation = 5.58
- Minimum = 32.02
- Maximum = 43.75
- Sum = 145.21
- Count = 4

Rata-rata = 36.30 ± (2 x 5.58) = 11,16422

Kurang Berkelanjutan
Lampiran 7
Analisis usaha perikanan pole and line di Ternate

<table>
<thead>
<tr>
<th>No</th>
<th>Uraian</th>
<th>Nilai (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Investasi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Kapal penangkap</td>
<td>225.000.000,00</td>
</tr>
<tr>
<td></td>
<td>1.2 Mesin</td>
<td>75.000.000,00</td>
</tr>
<tr>
<td></td>
<td>1.3 Perlengkapan Pancing</td>
<td>2.000.000,00</td>
</tr>
<tr>
<td></td>
<td>1.4 Rumpon laut dalam</td>
<td>30.000.000,00</td>
</tr>
<tr>
<td></td>
<td>1.5 GPS</td>
<td>4.000.000,00</td>
</tr>
<tr>
<td></td>
<td>1.6 Kompas</td>
<td>350.000,00</td>
</tr>
<tr>
<td></td>
<td>1.7 Radio HT</td>
<td>6.000.000,00</td>
</tr>
<tr>
<td></td>
<td>1.8 Drum BBM</td>
<td>1.000.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>343.350.000,00</td>
</tr>
<tr>
<td>2</td>
<td>Biaya Tetap</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Biaya penyusutan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.1 Penyusutan kapal penangkap</td>
<td>25.500.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Penyusutan mesin</td>
<td>7.500.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.3 Penyusutan Perlengkapan pancing</td>
<td>500.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.4 Penyusutan rumpon laut dalam</td>
<td>7.500.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.5 Penyusutan GPS</td>
<td>500.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.6 Penyusutan kompas</td>
<td>60.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.7 Penyusutan radio HT</td>
<td>1.300.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.8 Penyusutan Drum BBM</td>
<td>100.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>42.960.000,00</td>
</tr>
<tr>
<td>3</td>
<td>Biaya perawatan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.1 Minyak tanah</td>
<td>54.000.000,00</td>
</tr>
<tr>
<td></td>
<td>3.2 Bensin</td>
<td>81.000.000,00</td>
</tr>
<tr>
<td></td>
<td>3.3 Oli</td>
<td>32.400.000,00</td>
</tr>
<tr>
<td></td>
<td>3.4 Umpan</td>
<td>90.000.000,00</td>
</tr>
<tr>
<td></td>
<td>3.5 Perbekalan konsumsi</td>
<td>63.000.000,00</td>
</tr>
<tr>
<td></td>
<td>3.6 Upah ABK</td>
<td>216.000.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>536.400.000,00</td>
</tr>
<tr>
<td></td>
<td>Total Biaya</td>
<td>648.560.000,00</td>
</tr>
<tr>
<td>4</td>
<td>Total Penerima</td>
<td>849.690.000,00</td>
</tr>
<tr>
<td>5</td>
<td>Rata-rata RTO per tahun (pemil)</td>
<td>172.440.000,00</td>
</tr>
<tr>
<td>6</td>
<td>Rata-rata RTO per bulan (pemil)</td>
<td>14.370.000,00</td>
</tr>
<tr>
<td>7</td>
<td>Rata-rata RTL per tahun (per ABK)</td>
<td>14.384.615,38</td>
</tr>
<tr>
<td>8</td>
<td>Rata-rata RTL per Bulan (per ABK)</td>
<td>1.198.717,95</td>
</tr>
<tr>
<td>9</td>
<td>ROI = Benefit / Investasi</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>PP= Investasi /Benefit</td>
<td>1,99</td>
</tr>
</tbody>
</table>

Hak cipta milik IPB (Institut Pertanian Bogor)
Lampiran 8

Aliran *cash flow* usaha perikanan *pole and line* di Ternate

<table>
<thead>
<tr>
<th>A. Inflow</th>
<th>Tahun Proyek</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Nilai hasil tangkapan</td>
<td>849690000</td>
</tr>
<tr>
<td>Nilai sisa</td>
<td></td>
</tr>
<tr>
<td>Total inflow</td>
<td></td>
</tr>
<tr>
<td>DF 12%</td>
<td>1,000</td>
</tr>
</tbody>
</table>

| A. Inflow, 12% | 849690000 | 733339286 | 654767220 | 584613589 | 521976418 | 466050374 | 416116405 | 371532504 | 331725450 | 296183438 | 264449498 |

<table>
<thead>
<tr>
<th>B. Outflow</th>
<th>Tahun Proyek</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Investasi</td>
<td></td>
</tr>
<tr>
<td>1.1 Kapal penangkapan</td>
<td>225000000</td>
</tr>
<tr>
<td>1.2 Mesin</td>
<td>75000000</td>
</tr>
<tr>
<td>1.3 Perlengkapan Pancing</td>
<td>2000000</td>
</tr>
<tr>
<td>1.4 Rumpon laut dalam</td>
<td>30000000</td>
</tr>
<tr>
<td>1.5 GPS</td>
<td>4000000</td>
</tr>
<tr>
<td>1.6 Kompor</td>
<td>350000</td>
</tr>
<tr>
<td>1.7 Radiator</td>
<td>600000</td>
</tr>
<tr>
<td>1.8 Drum BBM</td>
<td>1000000</td>
</tr>
<tr>
<td>Total investasi</td>
<td>343350000</td>
</tr>
</tbody>
</table>

| B. Outflow, 12% | 948950000 | 319575893 | 286930007 | 257862500 | 228783844 | 203096257 | 342621961 | 161907093 | 145367671 | 130639997 | 115886217 |

| C. Net Cash Flow (A-B) | -99260000 | 463415000 | 461415000 | 459065000 | 461415000 | 463415000 | 463415000 | 463415000 | 463415000 | 463415000 | 463415000 |

| C. Net Cash Flow (A-B), 12% | 2097265404 | 0,895400179 | 0,895400179 | 0,895400179 | 0,895400179 | 0,895400179 | 0,895400179 | 0,895400179 | 0,895400179 | 0,895400179 | 0,895400179 |

| C. Net Cash Flow (A-B), DF (12%) | | | | | | | | | | | |
Lampiran 9
Analisis usaha perikanan *purse seine* di Ternate

<table>
<thead>
<tr>
<th>No</th>
<th>Uraian</th>
<th>Nilai (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Investasi</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Kapal penangkapan</td>
<td>30.000.000,00</td>
</tr>
<tr>
<td>1.2</td>
<td>Perahu lampu</td>
<td>6.000.000,00</td>
</tr>
<tr>
<td>1.3</td>
<td>Mesin</td>
<td>64.000.000,00</td>
</tr>
<tr>
<td>1.4</td>
<td>Jaring</td>
<td>130.000.000,00</td>
</tr>
<tr>
<td>1.5</td>
<td>Rumpon</td>
<td>15.000.000,00</td>
</tr>
<tr>
<td>1.6</td>
<td>Keranjang ikan</td>
<td>1.000.000,00</td>
</tr>
<tr>
<td>1.7</td>
<td>Kompas</td>
<td>350.000,00</td>
</tr>
<tr>
<td>1.8</td>
<td>Radio HT</td>
<td>1.500.000,00</td>
</tr>
<tr>
<td>1.9</td>
<td>Jerigen</td>
<td>300.000,00</td>
</tr>
<tr>
<td>1.10</td>
<td>Lampu Petromaks</td>
<td>1.500.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>249.650.000,00</td>
</tr>
</tbody>
</table>

	Biaya Tetap	
2	Biaya penyusutan	
2.1	Penyusutan kapal penangkapan	3.650.000,00
2.2	Penyusutan perahu lampu	1.200.000,00
2.3	Penyusutan mesin	7.700.000,00
2.4	Penyusutan jaring	23.200.000,00
2.5	Penyusutan rumpon	7.500.000,00
2.6	Penyusutan keranjang ikan	30.000,00
2.7	Penyusutan kompas	60.000,00
2.8	Penyusutan radio HT	1.300.000,00
2.9	Penyusutan jerigen	10.000,00
2.10	Penyusutan lampu petromaks	450.000,00
	Jumlah	45.100.000,00

	Biaya perawatan	
2.21	Perawatan kapal penangkapan	3.000.000,00
2.22	Perawatan perahu lampu	2.000.000,00
2.23	Perawatan mesin	1.000.000,00
2.24	Perawatan jaring	2.000.000,00
2.25	Perawatan lampu petromaks	150.000,00
	Jumlah	8.150.000,00

	Biaya Tidak Tetap	
3	Minyak tanah	64.800.000,00
3.2	Bensin	27.000.000,00
3.3	Oli	40.500.000,00
3.4	Perbekalan	22.400.000,00
3.5	Upah ABK	189.000.000,00
	Jumlah	353.700.000,00

| | Total Biaya | 406.950.000,00|

	Rata-rata RTO per bulan (pemilik)	217.280.000,00
	Rata-rata RTL per bulan (pemilik)	18.106.700,00
	Rata-rata RTO per bulan (ABK)	13.300.000,00
	Rata-rata RTL per bulan (ABK)	1.125.000,00

ROI = Benefit / Investasi

PP = Investasi / Benefit

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Investasi</td>
<td>30.000.000,00</td>
</tr>
<tr>
<td>1.1</td>
<td>Kapal penangkapan</td>
<td>30.000.000,00</td>
</tr>
<tr>
<td>1.2</td>
<td>Perahu lampu</td>
<td>6.000.000,00</td>
</tr>
<tr>
<td>1.3</td>
<td>Mesin</td>
<td>64.000.000,00</td>
</tr>
<tr>
<td>1.4</td>
<td>Jaring</td>
<td>130.000.000,00</td>
</tr>
<tr>
<td>1.5</td>
<td>Rumpon</td>
<td>15.000.000,00</td>
</tr>
<tr>
<td>1.6</td>
<td>Keranjang ikan</td>
<td>1.000.000,00</td>
</tr>
<tr>
<td>1.7</td>
<td>Kompas</td>
<td>350.000,00</td>
</tr>
<tr>
<td>1.8</td>
<td>Radio HT</td>
<td>1.500.000,00</td>
</tr>
<tr>
<td>1.9</td>
<td>Jerigen</td>
<td>300.000,00</td>
</tr>
<tr>
<td>1.10</td>
<td>Lampu Petromaks</td>
<td>1.500.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>249.650.000,00</td>
</tr>
</tbody>
</table>
Lampiran 10

Aliran cash flow usaha perikanan purse seine di Ternate

<table>
<thead>
<tr>
<th>Tahun Proyek</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilai hasil tangkapan</td>
<td>616230000</td>
</tr>
<tr>
<td>Nilai sisa</td>
<td>616230000</td>
</tr>
<tr>
<td>Aliran inflow</td>
<td>616230000</td>
</tr>
<tr>
<td>Dampak 12%</td>
<td>1,000</td>
<td>0,893</td>
<td>0,797</td>
<td>0,712</td>
<td>0,636</td>
<td>0,567</td>
<td>0,507</td>
<td>0,452</td>
<td>0,404</td>
<td>0,361</td>
<td>0,322</td>
</tr>
<tr>
<td>Nilai sisa</td>
<td>616230000</td>
<td>550205357</td>
<td>491254783</td>
<td>438620342</td>
<td>391625305</td>
<td>349665451</td>
<td>312201296</td>
<td>278751157</td>
<td>248884962</td>
<td>222218716</td>
<td>198409568</td>
</tr>
<tr>
<td>Dampak 12%</td>
<td>1,000</td>
<td>0,893</td>
<td>0,797</td>
<td>0,712</td>
<td>0,636</td>
<td>0,567</td>
<td>0,507</td>
<td>0,452</td>
<td>0,404</td>
<td>0,361</td>
<td>0,322</td>
</tr>
<tr>
<td>Outflow</td>
<td>616230000</td>
<td>550205357</td>
<td>491254783</td>
<td>438620342</td>
<td>391625305</td>
<td>349665451</td>
<td>312201296</td>
<td>278751157</td>
<td>248884962</td>
<td>222218716</td>
<td>198409568</td>
</tr>
</tbody>
</table>

Investasi

1. Investasi
 - Kapal penangkapan: 30000000
 - Perahu lampu: 6000000
 - Mesin: 64000000
 - Jaring: 130000000
 - Rumpon: 15000000
 - Keranjang ikan: 1000000
 - Kompas: 350000
 - Radio HT: 1500000
 - Jerigen minyak: 300000
 - Lampu petromak: 1500000

Biaya operasional

2. Biaya operasional
 - Minyak Tanah: 64800000
 - Bensin: 27000000
 - Perbekalan: 32400000
 - Upah ABK: 189000000

Biaya perawatan

3. Biaya perawatan
 - Jaring: 3000000
 - Kapal penangkapan: 2000000
 - Perahu lampu: 1000000
 - Mesin: 2000000
 - Lampu petromak: 150000

Total Outflow

4. Total Outflow: 616230000

DF (12%) 1,000 0,893 0,797 0,712 0,636 0,567 0,507 0,452 0,404 0,361 0,322

Net Cash Flow (A-B)

DF (12%) 1,000 0,893 0,797 0,712 0,636 0,567 0,507 0,452 0,404 0,361 0,322

NPV 12% 1092893786

B/C Ratio 1,007735078
Lampiran 11
Analisis usaha perikanan rawai tuna di Ternate.

<table>
<thead>
<tr>
<th>No</th>
<th>Uraian</th>
<th>Nilai (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Investasi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Kapal penangkapan</td>
<td>25.000.000,00</td>
</tr>
<tr>
<td></td>
<td>1.2 Mesin</td>
<td>64.000.000,00</td>
</tr>
<tr>
<td></td>
<td>1.3 Kompas</td>
<td>35.000,000</td>
</tr>
<tr>
<td></td>
<td>1.4 Radio HT</td>
<td>1.500.000,00</td>
</tr>
<tr>
<td></td>
<td>1.5 Alat tangkap</td>
<td>45.000.000,00</td>
</tr>
<tr>
<td></td>
<td>1.6 Jerigen</td>
<td>300.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>141.350.000,00</td>
</tr>
<tr>
<td>2</td>
<td>Biaya Tetap</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biaya penyusutan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.1 Penyusutan kapal penangkapan</td>
<td>5.000.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Penyusutan mesin</td>
<td>8.900.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.3 Penyusutan kompas</td>
<td>60.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.4 Penyusutan radio HT</td>
<td>300.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.5 Penyusutan alat tangkap</td>
<td>32.500.000,00</td>
</tr>
<tr>
<td></td>
<td>2.1.6 Penyusutan jerigen</td>
<td>50.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>46.810.000,00</td>
</tr>
<tr>
<td>3</td>
<td>Biaya perawatan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.1 Perawatan kapal penangkapan</td>
<td>12.000.000,00</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Perawatan mesin</td>
<td>20.000.000,00</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Perawatan alat tangkap</td>
<td>6.000.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>38.000.000,00</td>
</tr>
<tr>
<td>4</td>
<td>Biaya Tidak Tetap</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.1 Minyak tanah</td>
<td>28.800.000,00</td>
</tr>
<tr>
<td></td>
<td>3.2 Bensin</td>
<td>10.800.000,00</td>
</tr>
<tr>
<td></td>
<td>3.3 Oli</td>
<td>1.680.000,00</td>
</tr>
<tr>
<td></td>
<td>3.4 Umpan</td>
<td>7.200.000,00</td>
</tr>
<tr>
<td></td>
<td>3.5 Perbekalan</td>
<td>14.400.000,00</td>
</tr>
<tr>
<td></td>
<td>3.6 Upah ABK</td>
<td>178.560.000,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>241.440.000,00</td>
</tr>
<tr>
<td>5</td>
<td>Total Biaya</td>
<td>332.250.000,00</td>
</tr>
<tr>
<td>6</td>
<td>Total Penerima</td>
<td>420.000.000,00</td>
</tr>
<tr>
<td>7</td>
<td>Rata-rata RTO per tahun (pemilik)</td>
<td>178.360.000,00</td>
</tr>
<tr>
<td>8</td>
<td>Rata-rata RTO per bulan (pemilik)</td>
<td>14.880.000,00</td>
</tr>
<tr>
<td>9</td>
<td>Rata-rata RTL per tahun (per ABK)</td>
<td>41.490.000,00</td>
</tr>
<tr>
<td>10</td>
<td>Rata-rata RTL per Bulan (per ABK)</td>
<td>3.457.000,00</td>
</tr>
<tr>
<td>11</td>
<td>ROI = Benefit / Investasi</td>
<td>0,79</td>
</tr>
</tbody>
</table>
Lampiran 12

Aliran cash flow usaha perikanan rawai tuna di Ternate

<table>
<thead>
<tr>
<th>CASH FLOW / Tahun</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total inflow</td>
<td>420.00M</td>
</tr>
<tr>
<td>DF 12%</td>
<td>1.000</td>
<td>0.893</td>
<td>0.797</td>
<td>0.712</td>
<td>0.636</td>
<td>0.567</td>
<td>0.507</td>
<td>0.452</td>
<td>0.404</td>
<td>0.361</td>
<td>0.322</td>
</tr>
<tr>
<td>Inflow 12%</td>
<td>420.00M</td>
<td>375.00M</td>
<td>338.21M</td>
<td>298.94M</td>
<td>269.18M</td>
<td>243.23M</td>
<td>219.38M</td>
<td>197.28M</td>
<td>177.70M</td>
<td>159.82M</td>
<td>143.51M</td>
</tr>
<tr>
<td>Outflow</td>
<td>420.00M</td>
<td>375.00M</td>
<td>338.21M</td>
<td>298.94M</td>
<td>269.18M</td>
<td>243.23M</td>
<td>219.38M</td>
<td>197.28M</td>
<td>177.70M</td>
<td>159.82M</td>
<td>143.51M</td>
</tr>
<tr>
<td>DF (12%)</td>
<td>1,000</td>
<td>0,893</td>
<td>0,797</td>
<td>0,712</td>
<td>0,636</td>
<td>0,567</td>
<td>0,507</td>
<td>0,452</td>
<td>0,404</td>
<td>0,361</td>
<td>0,322</td>
</tr>
</tbody>
</table>

Tabel Operasional

<table>
<thead>
<tr>
<th>Tahun Proyek</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investasi</td>
<td>141.35M</td>
<td>0</td>
<td>0</td>
<td>35.00K</td>
<td>0</td>
<td>101.50M</td>
<td>215.00K</td>
<td>0</td>
<td>0</td>
<td>35.00K</td>
<td>0</td>
</tr>
<tr>
<td>Biaya perawatan</td>
<td>120.00K</td>
</tr>
<tr>
<td>Biaya rawatan</td>
<td>200.00K</td>
</tr>
<tr>
<td>Total inflow</td>
<td>420.79K</td>
<td>263.44K</td>
</tr>
<tr>
<td>DF 12%</td>
<td>1.000</td>
<td>0.893</td>
<td>0.797</td>
<td>0.712</td>
<td>0.636</td>
<td>0.567</td>
<td>0.507</td>
<td>0.452</td>
<td>0.404</td>
<td>0.361</td>
<td>0.322</td>
</tr>
<tr>
<td>Inflow 12%</td>
<td>420.79K</td>
<td>356.90K</td>
<td>305.66K</td>
<td>259.72K</td>
<td>223.20K</td>
<td>189.93K</td>
<td>159.31K</td>
<td>132.05K</td>
<td>108.06K</td>
<td>87.46K</td>
<td>69.40K</td>
</tr>
<tr>
<td>Net Cash Flow (A-B)</td>
<td>-99.77K</td>
<td>16.54K</td>
<td>8.15K</td>
<td>23.72K</td>
<td>44.14K</td>
<td>63.07K</td>
<td>100.02K</td>
<td>132.05K</td>
<td>120.00K</td>
<td>100.00K</td>
<td>80.00K</td>
</tr>
<tr>
<td>DF (12%)</td>
<td>1,000</td>
<td>0,893</td>
<td>0,797</td>
<td>0,712</td>
<td>0,636</td>
<td>0,567</td>
<td>0,507</td>
<td>0,452</td>
<td>0,404</td>
<td>0,361</td>
<td>0,322</td>
</tr>
<tr>
<td>NPV 12%</td>
<td>736.38K</td>
<td></td>
</tr>
<tr>
<td>B/C Ratio</td>
<td>0,998</td>
<td></td>
</tr>
</tbody>
</table>

2. Diterbitkan dalam bentuk elektronik atau dalam bentuk cetak atau dalam bentuk lain yang dibuat atau diterbitkan untuk tujuan umum atau tujuan komersial.
1. Dilengkapi dengan Undang-Undang

2. Dilengkapi dengan peraturan

Pembangunan

Pembangunan