KARAKTERISTIK MASSA AIR ARUS PANTAI BARAT SUMATERA (APS) SEBAGAI PANGKAL ARUS PANTAI SELATAN JAWA (APJ)

LA ODE NURMAN MBAY

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2007
ABSTRAK

LA ODE NURMAN MBAY. Karakteristik Massa Air Arus Pantai Barat Sumatera (APS) sebagai Pengal Arus Pantai Selatan Jawa (APJ). Dibimbing oleh I WAYAN NURJAYA dan NYOMAN METTA N. NATIHY.

Arus Pantai Jawa merupakan arus pada lapisan permukaan yang bergerak ke arah tenggara di sepanjang perairan dekat pantai baratdaya Sumatera dan kearah timur di selatan Pulau Jawa hingga Sumbawa (Soeriaatmadja, 1957; Wyrtki, 1961; Quadfasel and Cresswell, 1992; dan Fieux et al., 1996a).

Dari hasil analisis yang dilakukan oleh penulis ditemukan adanya APJ pada Arus Pantai Barat Sumatera dan beberapa jenis massa air dengan salinitas maksimum dan minimum yaitu massa air yang berasal bagian Ekuator Samudera India (Equatorial Indian Ocean Water), massa air Subtropis Lapisan Bawah (Subtropical Lower Water), massa air dari Laut Arab (Arabian Sea Water), massa air yang berasal dari bagian selatan (Southern Salinity Minimum), massa air yang berasal dari Teluk Persia (Persian Gulf Water), dan massa air yang berasal dari Laut Merah (Red Sea Water).

APJ yang ditemukan di pantai barat Sumatera pada bulan Juli 1990 dan Maret 1991 berada di dekat Selat Sunda dengan karakter salinitas minimum 32,5-34,1 dan suhu hangat sekitar 28-29 °C, dengan kecepatan 6-20 cm/dtk dan total volume angkutan 3 x 10^6 m^3/dtk.
1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan atau menyebutkan sumber.
 a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah.
 b. Pengutipan tidak merugikan kepentingan yang wajar bagi IPB.

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis dalam bentuk apapun tanpa izin IPB.

© Hak Cipta milik Institut Pertanian Bogor, Tahun 2007
Hak Cipta dilindungi Undang-Undang
KARAKTERISTIK MASSA AIR ARUS PANTAI BARAT
SUMATERA (APS) SEBAGAI PANGKAL ARUS PANTAI
SELATAN JAWA (APJ)

LA ODE NURMAN MBAY

Tesis
Sebagai salah satu syarat untuk memperoleh gelar
Magister Sains pada
Program Studi Ilmu Kelautan

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2007
Judul Tesis : Karakteristik Massa Air Arus Pantai Barat Sumatera (APS) sebagai Pangkal Arus Pantai Selatan Jawa (APJ)
Nama : La Ode Nurman Mbay
NRP : C651040041
Program Studi : Ilmu Kelautan

Disetujui

Komisi Pembimbing

Dr. Ir. Wayan Nurjaya, M.Sc.
Ketua

Dr. Ir. Nyoman Metta N. Natih, M.Si.
Anggota

Diketahui

Ketua Program Studi Ilmu Kelautan

Dr. Ir. Djisman Manurung, M.Sc.

Prof. Dr. Ir. Khairi Anwar Notodiputro, MS

Tanggal Ujian : 24 Agustus 2007
Tanggal Lulus : 07 SEP 2007
PRAKATA

Puji syukur penulis panjatkan kehadirat Allah S.W.T, atas segala limpahan Rahmat-sehingga penulis dapat menyelesaikan tugas akhir ini untuk meraih gelar Megister dalam bidang Oseanografi Fisik. Tesis ini berjudul "Karakteristik Massa Air Pantai Barat Sumatera (APS) sebagai Pangkal Arus Pantai Selatan Jawa (APS)".

Penulis mengucapkan terima kasih dan penghargaan yang setinggi-tingginya atas esainya tesis kepada yang terhormat:

Bapak Dr. Ir. I. Wayan Nurjaya, M.Sc. sebagai ketua komisi pembimbing dan Bapak Dr. Ir. Nyoman Matta N. Natih, M.Si. sebagai anggota yang telah memberikan saran dan masukan serta dengan penuh kesabaran membantu mengarahkan dalam penulisan tesis ini. Bapak Dr. Ir John I Pariwono sebagai penguji tamu yang telah memberikan saran dan koreksi serta terjalinya hubungan kerja sama yang baik selama penulis menyelesaikan studi di pascasarjana IKL-IPB.

Bapak Dr. Wahyu Pandu, Andry Purwadani dan staf yang lain di Badan Pengkajian dan Penerapan Teknologi (BPPT) pusat Jakarta khususnya di UPT Baruna Jaya yang telah menyediakan data yang diperlukan.

Keluarga tersayang, Mami dan Rafly yang selalu memberikan do’a dan dukungan semangat tanpa henti dengan penuh kasih sayang, serta keiklasan waktunya yang terampas selama penulis menyelesaikan studi.

Rekan-rekan selama studi: Heron, Bahar, Mutia, Iwan, Pa Sakka, Uca, Era, Tri, Bu Puji serta seluruh angkatan 2004 dan 2005 atas hubungan baik selama ini yang saling mendukung dan memberi semangat selama studi hingga penulisan tesis ini.

Atas kekurangan yang ada penulis mengharapkan saran dan kritik yang konstruktif untuk keempuruan tesis ini. Semoga tesis ini dapat memberikan kontribusi bagi pembangunan ilmu kelautan di Indonesia pada masa yang akan datang. Amin.

Bogor, Agustus 2007

La Ode Nurman Mbay
RIWAYAT HIDUP

DAFTAR ISI

PRAKATA... i
DAFTAR ISI .. ii
DAFTAR GAMBAR ... iv
DAFTAR TABEL ... vi
DAFTAR LAMPIRAN ... vii

ENDAHULUAN

Latar Belakang .. 1
Tujuan Penelitian ... 2

INJAUAN PUSTAKA

Sirkulasi Massa Air Permukaan di Barat Sumatera dan Selatan Jawa 3
Diagram T-S dan Identifikasi Jenis-jenis Massa Air ... 8
Arus Pantai Jawa (APJ) ... 16
Arus Geostropik ... 18

METODE PENELITIAN

Tempat dan Waktu Penelitian ... 20
Perolehan Data ... 20
Data Konduktivitas, Temperatur dan Suhu (Data CTD) 20
Analisis Data Untuk Arus Geostropik .. 21
Kedalaman Dinamik ... 21
Arah Arus Geostropik dan Kecepatan Relatif ... 23
Volume Angkutan (Ty) ... 25
Identifikasi Jenis Massa Air ... 27
Diagram Alir ... 27

HASIL DAN PEMBAHASAN

Sebaran Melintang Suhu dan Salinitas pada Bulan Maret 1991 29
Sebaran Melintang Suhu dan Salinitas pada Bulan Juli 1990 33
Sebaran Mendatar Suhu dan Salinitas pada Bulan Maret 1991 38
Sebaran Mendatar Suhu dan Salinitas pada Bulan Juli 1990 42
Anomali Kedalaman Dinamik dan Kecepatan Arus Geostropik 45
Identifikasi Massa Air Arus Pantai Barat Sumatera (APS) 52
Arus Pantai Barat Sumatera (APS) sebagai Awal APJ 59

SIMPULAN DAN SARAN

Simpulan ... 64
Saran .. 65

DAFTAR PUSTAKA

LAMPIRAN
DAFTAR GAMBAR

Gambar 1. Sirkulasi Massa Air Barat Sumatera hingga Selatan Jawa (WOCE Indian Ocean Expedition File Chereskin, 1994) 4

Gambar 2. Pola Arus selama Muson Baratdaya dan beberapa Titik Transpor Massa Airnya (Schott and McCreary, 2001) 5

Gambar 3. Pola Arus selama Muson Timurlaut dan beberapa Titik Transpor Massa Airnya (Schott and McCreary, 2001) 7

Gambar 4. Posisi berbagai Kedalaman Core Layer Massa Air Perairan Timurlaut Samudera Indonesia di Sepanjang 88° BT; 4° LU - 11° LS (Wyrki, 1961) 19

Gambar 5. Diagram Suhu-Salinitas (T-S) Massa Air Samudera Hindia diambil dari Levitus and Boyer (1994a,b) (Schott and McCreary, 2001) .. 11

Gambar 6. Sebaran Massa Air Salinitas Maksimum Samudera Indonesia bagian Utara dan Kedalaman Penyebarannya (Schott and McCreary, 2001) .. 25

Gambar 8. Pengaruh gaya tekanan terhadap permukaan isobar relative terhadap permukaan acuan (Pond and Pickard, 1983) ... 22

Gambar 10. Diagram Alir Tahapan Proses Pengolahan Data 28

Gambar 11. Sebaran Melintang Suhu (°C) pada Bulan Maret 1991 30

Gambar 13. Sebaran Melintang Suhu (°C) pada Bulan Juli 1990 34

Gambar 14. Sebaran Melintang Salinitas pada Bulan Juli 1990 34
Gambar 15. Sebaran Mendatar Suhu (°C) dan Salinitas pada Bulan Maret 1991 pada Kedalaman 0-100 m ... 39

Gambar 16. Sebaran Mendatar Suhu (°C) dan Salinitas pada Bulan Maret 1991 pada Kedalaman 150-200 m .. 40

Gambar 17. Sebaran Mendatar Suhu (°C) dan Salinitas Bulan pada Juli 1991 pada Kedalaman 0-150 m ... 43

Gambar 18. Sebaran Mendatar Suhu (°C) dan Salinitas (PSU) pada Bulan Juli 1990 pada Kedalaman 150-200 m .. 44

Gambar 19. Sebaran Melintang Anomali Kedalaman Dinamik (Dyn.m) pada Bulan Maret 1991 ... 46

Gambar 20. Sebaran Melintang Anomali Kedalaman Dinamik (Dyn.m) pada Bulan Juli 1990 ... 47

Gambar 23. Diagram T-S Massa Air Pantai Barat Sumatera Bulan Maret 1991 ... 53

Gambar 24. Diagram T-S Massa Air Pantai Barat Sumatera Bulan Juli 1990 ... 54

Gambar 25. Diagram T-S Selatan Jawa dan Barat sumatera 60

Gambar 26. Kondisi Arus Permukaan Bulan Maret 61

Gambar 27. Kondisi Arus Permukaan Bulan Juli 62
Tabel 1. Jenis-jenis Massa air di Perairan Timurlaut Samudera India

(Wyrtki, 1961)

<table>
<thead>
<tr>
<th>No.</th>
<th>Deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jenis-jenis massa air di perairan Timurlaut Samudera India (Wyrtki, 1961)</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

Lampiran 1. Jenis-jenis Massa Air di Perairan Barat Sumatera 69
Lampiran 2. Lokasi APJ di Barat Sumatera Bulan Desember 1993 73
Lampiran 3. Lokasi APJ di Barat Sumatera Bulan Oktober 2002 74
Lampiran 4. Tabel Volume Angkutan APJ di Barat Sumatera 73
Lampiran 5. Diagram T-S dan Kecepatan Arus Geostropik di Perairan Barat Sumatera Transek A dan B bulan Desember 1993 76
Lampiran 7. Tabel Lapisan Termoklin di perairan Barat Sumatera 78
PENDAHULUAN

Latar Belakang

Perairan Indonesia merupakan satu-satunya penghubung antara Samudera Pasifik dan Samudera Hindia di daerah tropis, sehingga perairan Indonesia mempunyai peranan penting dalam sistem sirkulasi massa air antara samudera.

Kecepatan Arus Pantai Jawa berkisar antara 3–75 cm/dtk, dan mengangkut massa air sekitar 1–6 SV (1 SV = 10⁶ m³/dtk), di selatan Bali (115° BT) kecepatanya bisa melebihi 150 cm/dtk dengan puncak pada bulan Februari–Maret mana pada saat itu berkembang angin muson baratlaut-barat (Soeriaatmadja, 1957; Wyrtki, 1961). Soeriaatmadja, 1957 dan Wyrtki, 1961 mengatakan bahwa berkembangan dari Arus Pantai Jawa sangat dipengaruhi oleh angin muson, curah

Penelitian tentang Arus Pantai Jawa ini telah banyak dilakukan terkait dengan pentingnya peranan sirkulasinya terutama yang berhubungan dengan sumber massa air dari samudera pasifik yang melalui perairan Indonesia atau yang biasa dikenal dengan Arlindo.

Melihat pentingnya peranan APJ ini dalam sistem sirkulasi massa air regional disekitar perairan Indonesia dan sirkulasi Arus Lintas Indonesia akan perasa lebih lengkap jika kita mengetahui asal terbentuknya APJ ini di sekitar Pantai Barat Sumatera.

Penelitian ini terkonsentrasi pada wilayah pantai barat Sumatera bagian selatan, dengan menganalisa karakteristik massa air dari arus pantai barat Sumatera yang selanjutnya akan didefinisikan sebagai APS yaitu Arus Pantai Barat Sumatera.

Tujuan Penelitian

Penelitian ini bertujuan untuk:

1. Mengidentifikasi karakteristik massa air untuk mengetahui pangkal terbentuknya Arus Pantai Jawa (APJ).

TINJAUAN PUSTAKA

Sirkulasi Massa Air Permukaan di Barat Sumatera dan Selatan Jawa

Ciri dominan perairan di barat Sumatera dan selatan Jawa adalah, Arus Katulistiwa Selatan (AKS) dengan kecepatan mencapai 1,5 m/dtk (Quadfasel et al., 1996). Arus Katulistiwa Selatan disupply oleh aliran dari kepulauan Indonesia bagian timur (kecepatan 1,5 m/dtk) dan aliran anticyclonic dari selatan yang biasanya lemah (kecepatan 0,2 – 0,5 m/dtk). Di utara Northwest Cape (Australia), aliran subtropical gyre dari selatan terbagi dua cabang. Satu cabang mengikuti garis pantai Australia menuju timur laut dan satu lagi mensuplai langsung AKS.

Daerah ini mempunyai ciri-ciri yang menarik bila dibandingkan dengan ekuator bagian timur di Samudera Atlantik dan Pasifik. Pertama karena Kepulauan Indonesia merupakan batas timur yang menyebar tidak beraturan, dan adanya massa air dari Samudera Pasifik ke Hindia melalui perairan ini dengan volume yang bervariasi antara 2 - 25 Sv (1 Sv = 10⁶ m³/dtk) (Fieux et al., 1994; Meyers et al., 1995 dalam Quadfasel et al., 1996). Jalur masuknya massa air dari Samudera Pasifik ke Hindia adalah melalui utara dan selatan Laut Timor dan Selat Lombok. Kedua, laut-laut ini merupakan sumber Leeuwin Current (LC) yang mengalir menuju ke kutub. LC digerakkan oleh gradien tekanan meridional skala besar di papan panjang pantai barat Australia, di mulai bulan Februari pada akhir Northeast Monsoon, mencapai (kekuatan tertinggi pada Juni dan menghilang beberapa bulan kemudian). Ketiga, bagian timurlaut dari anticyclonic subtropical gyre yang mensuplai daerah ini dari selatan. Ketiga aliran ini mempengaruhi source dan sink AKS di Samudera Hindia.
Sumber 1 Sirkulasi Massa Air di Perairan Barat Sumatera hingga Selatan Jawa, (WOCE Indian Ocean Expedition File, Chereskin, 1994).

Saat bulan Desember di Teluk Bengal drift current terbentuk menguat ke selatan menjadi Arus Katulistiwa Utara atau AKU (muson timurlaut), sirkulasi di Samudera Hindia berubah. Arus ini mencapai ujung baratlaut Sumatera dan disuplai sebagian oleh massa air yang keluar dari Selat Malaka, tetapi sebagian besar sebagian oleh counter current yang berbelok ke utara di pantai barat Sumatera. Axis counter current terdapat di dekat ekuator. Pada sekitar 2°5 terbentuk divergensi dari counter current, membawa aliran kuat yang berbelok ke utara dan aliran lemah yang berbelok ke selatan. Sebagian massa air counter current di ekuator pada 04°BT mengalir ke tenggara di pantai barat Sumatera sepanjang tahun kemudian berbelok ke timur menyusuri pantai selatan Jawa menjadi Arus Pantai Jawa (APJ), tetapi antara Jawa dan Sumbawa arahnya berubah secara musiman (Quadfasel et al., 1996).

Pada Januari dan Februari muson timurlaut mencapai kekuatan maksimal di atas Teluk Bengal. Arus Katulistiwa Utara (AKU) terbentuk dengan kuat dan eddy anticyclonic yang besar terbentuk di Teluk Bengal. Counter current menjadi terdesak jauh ke selatan dan mengalir antara 3°5 dan 5°5 dengan lebar yang sempit.

Pada bulan Februari Arus Katulistiwa Selatan mencapai pantai barat Australia dan bah satu cabangnya berbelok ke Laut Timor. Axis arus bergerak dari ujung baratlaut Australia ke baratdaya dan berbelok ke barat bergabung dengan massa air counter current pada 9°5 dan 10° BT. APJ terbentuk dengan kuat, tetapi hanya mencapai akhir bagian timur pulau Jawa.

Muson timurlaut berakhir pada bulan Maret, dan pada bulan April muson baratlaut daya dimulai secara gradual. Eddy anticyclonic di Teluk Bengal masih ada dan AKU menjadi sangat lemah. Di sisi lain counter current menguat dan meluas dari
3°5 LS hingga 5°5 LS kemudian berbelok pada 7°5 LS bergabung dengan AKS, tetapi sebagian terus menjadi APJ.

Pasat Tenggara bergerak ke utara pada bulan April dan dimulainya muson tenggara diatas Laut Timor, AKS menguat kembali dan axis arus terdapat di barat 100° BT. APJ menurun kekuatannya pada saat dimulainya muson tenggara. Kemudian axis arus bergeser mendekati pantai selatan Jawa pada bulan Juni, tetapi masih terlihat adanya APJ yang lemah. Massa air dari Laut Timor dan Laut Sawu dan dari daerah upwelling di lepas pantai Australia menambah kekuatan AKS. Axis arus bergerak ke selatan dari 10°5 LS dan 100° BT dimana bergabung dengan under current dan berbelok ke baratdaya.

Gambar 3 Pola Arus selama Muson Timurlaut (keterangan gambar sama dengan Gambar 2) (Schott and McCreary 2001).

Menurut Michidn et al. (1996) Arus Sakal Samudera Hindia (ASH) mengalir ke timur pada 2°5-8°5 LS, dan terdapat sepanjang tahun pada atau selatan ekuator, pergseraan ke selatan ini erat hubungannya dengan pembentukan Arus Katulistiwa Utara, mungkin juga merupakan alasan pergseraan ke utara Arus Katulistiwa Selatan pada bulan-bulan tersebut,
sehingga dapat diasumsikan bahwa keseluruhan sirkulasi terdesak pada daerah yang sempit.

Michida et al. (1996) mengatakan bahwa dari Desember hingga April AKU mengalir ke barat dibawah pengaruh muson timur laut, sedangkan dari bulan Juni hingga Oktober arus muson ke timur terbentuk. Pada periode transisi antar muson terdapat aliran ke timur yang kuat dari jet equator, yaitu pada boreal spring (April-Juni) dan boreal autumn (Oktober-Desember) dengan kecepatan mencapai 100 cm/dtk. Hal ini disebabkan oleh angin barat yang kuat bertiup di tengah ekuator Samudera Hindia selama musim hujan dan musim gugur.

Diagram T-S dan Identifikasi Jenis-jenis Massa Air

Wyrtki (1961), mengatakan untuk mempelajari massa air di suatu perairan, sangat dibutuhkan data suhu, salinitas dan kandungan oksigen terlarut. Studi massa air terutama didasarkan pada data sebaran vertikal dan horizontal serta diagram dari ketiga parameter tersebut seperti diagram suhu dengan salinitas (T-S), suhu dengan oksigen terlarut (T-O2), serta salinitas dengan oksigen terlarut (S-O2). Studi tentang massa air pada perairan Indonesia maupun massa air dunia banyak didasarkan pada karakter dari diagram T-S dan T-O2 yang terbentuk. Disamping itu dari nilai-nilai maksimum atau minimum suhu, salinitas dan oksigen dapat melacak suatu massa air tertentu yang dikalangan para peneliti oceanografi dikenal sebagai metode lapisan gumbang (core layer method).

Neumann and Pierson, (1966) mengatakan bahwa diagram T-S adalah suatu grafik hubungan antara suhu (T) dan salinitas (S) dalam suatu kolom air laut untuk identifikasi jenis-jenis air (water types) dan beberapa massa air (water masses), studi massa air laut dunia, interaksi dan transformasi massa air, proses-proses pertukaran salinitas dan bahang yang terjadi di dalam lautan dunia. Eddy dan Pierson (1966), menambahkan bahwa jenis air adalah suatu kolom air dengan suatu nilai suhu dan salinitas yang tetap (fixed), sedangkan massa air adalah percampuran dua atau lebih jenis air yang dicirikan oleh suatu garis dalam diagram T-S. Oleh sebab itu massa air
mempunyai kisaran suhu dan salinitas yang lebih besar dibandingkan dengan jenis air.

Diagram T-S dibuat dari nilai suhu dan nilai salinitas, dimana salinitas dan suhu masing-masing diplotkan pada sumbu x dan y dalam sistem koordinat Cartesian. Selain itu suhu dan salinitas dapat diplotkan secara terpisah terhadap kedalaman. Hasil plot dalam diagram T-S akan membentuk suatu kombinasi pasangan suhu dan salinitas atau membentuk kurva tertentu, yang seringkali mendekati bentuk garis lurus, dimana nilai suhu dan salinitas sama-sama mengalami penurunan. Di dalam diagram T-S dapat pula dimasukkan nilai \(\sigma_t\), garis-garis yang menunjukkan nilai \(\sigma_t\) yang sama menurun secara perlahan melintang pada diagram dari kanan ke kiri atau yang menunjukkan nilai densitas yang semakin tinggi ke arah bawah. Massa air yang homogen tampaknya oleh suatu titik hasil pasangan satu nilai suhu dan satu nilai salinitas.

Menurut Poche, et al. (1979) dalam Najid (1999), diagram T-S dapat pula digunakan untuk studi percampuran massa air. Hubungan suhu-salinitas yang menghasilkan suatu garis lurus (mendekati) menunjukkan percampuran antara dua massa air yang berbeda. Percampuran secara lateral ditandai dengan adanya pergerakan sepanjang permukaan \(\sigma_t\), sedang percampuran secara vertikal ditandai dengan adanya pergerakan yang memotong permukaan \(\sigma_t\).

Wyrkty (1961), telah mengidentifikasi jenis-jenis massa air di perairan Timurlaut Samudera India, termasuk perairan baratdaya Sumatera sampai selatan Jawa-Sumbawa seperti seperti yang disajikan pada Tabel 1. Kemudian posisi kedalaman dari lapisan gumbar (core layer) yang menjadi ciri utama dari jenis-jenis massa air di perairan Timurlaut Samudera Hindia di sepanjang 88° BT antara 0° LU - 11° LS disajikan pada Gambar 4.

Wyrkty (1961), mengatakan di perairan timurlaut Samudera Hindia, di lapisan permukaan didominasi oleh Massa Air Subtropik Bawah (Subtropical Lower Water) dengan karakter salinitas maksimum antara 34,6 - 36,0 suhu berkisar antara 16 - 27°C dan 0 - 2,5 ml/l. Kedalaman dari lapisan gumbar massa air tersebut berada antara 50-100 meter.
Tabel 1. Jenis-jenis Massa air di Perairan Timurlaut Samudera Hindia (Wyrkti, 1961)

<table>
<thead>
<tr>
<th>Jenis Massa Air</th>
<th>Ciri</th>
<th>Suhu (°C)</th>
<th>Salinitas</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtropical Lower Water</td>
<td>S_maks</td>
<td>16 - 27</td>
<td>34,6-36,0</td>
<td>>2,5</td>
</tr>
<tr>
<td>Northern Salinity Minimum</td>
<td>S_min</td>
<td>16 - 19</td>
<td>34,8-35,0</td>
<td>1,0-2,0</td>
</tr>
<tr>
<td>Southern Salinity Minimum</td>
<td>S_min</td>
<td>12 - 17</td>
<td>34,5-34,8</td>
<td>1,6-2,5</td>
</tr>
<tr>
<td>Upper Oxygen Minimum</td>
<td>O₂_maks</td>
<td>12 - 16</td>
<td>34,8-35,1</td>
<td><1,6</td>
</tr>
<tr>
<td>Persian Gulf Water</td>
<td>S_maks</td>
<td>8 – 14</td>
<td>34,6-35,1</td>
<td>1,0-2,0</td>
</tr>
<tr>
<td></td>
<td>O₂_maks</td>
<td>11 – 13</td>
<td>34,9-35,1</td>
<td>1,2-2,2</td>
</tr>
<tr>
<td>t < 27,0</td>
<td>O₂_maks</td>
<td>8 - 11</td>
<td>34,7-35,1</td>
<td>3,2-0,4</td>
</tr>
<tr>
<td>Red Sea Water</td>
<td>S_maks</td>
<td>7 – 9</td>
<td>34,8</td>
<td>0,7-1,4</td>
</tr>
<tr>
<td>α = 27,2-27,4</td>
<td>O₂_maks</td>
<td>6 - 10</td>
<td>34,6-35,0</td>
<td><2,1</td>
</tr>
<tr>
<td>Banda Sea Water</td>
<td>S_min</td>
<td>4,5 - 6</td>
<td>34,5-34,9</td>
<td>1,3-2,4</td>
</tr>
</tbody>
</table>

Massa air Subtropical Lower Water berasal dari Samudera Hindia bagian tengah dan baratlaut pada kedalaman sekitar 75 meter dan menyebar bersama SH ke arah timur dan tenggelam sampai 100 - 125 meter di baratdaya Sumatera, selanjutan dalam perjalananannya berada pada kedalaman sekitar 125-150 meter di selatan Jawa-Sumbawa.

Bentuk kurva T-S di beberapa stasiun oceanografi di perairan Timurlaut Samudera Hindia yang meliputi perairan Teluk Bengal, Laut Andaman dan perairan barat Sumatera yang diduga merupakan asal dari massa air yang dibawa oleh APJ disajikan pada Gambar 5 berikut.

Gambar 5 Diagram Suhu-Salinitas (T-S) Massa Air Samudera Hindia diambil dari Levitus and Boyer (1994a,b) Climatologi Bay of Bengal (BB), Northern Arabian Sea (AS), Equatorial Rgion of Western Basin (EQ), South Equatorial Current (SEC), Western Exit of Indonesian Throughflow (ITF), and Leeuwin Current (LC). Somali Current (SC), Core Water Masses Indicated are Circumpolar Deep Water (CDW), Indian Deep Water (IDW), Antarctic Intermediate Water (AAIW), Indian Central Water (ICW), Red Sea Water (RSW), Persian Gulf Water (PGW), dan Arabian Sea Water (ASW), (Schott and McCreary 2001).

Di bawah massa air Subtropik Bawah terdapat massa air Northern Salinity minimum yang menyebar bersama arus muson pada kedalaman sekitar 150 meter menuju ke tenggara yaitu pantai Sumatera. Massa air ini mempunyai ciri salinitas rendah (34,8 - 35,0) dan suhu antara 16 - 17 °C serta kandungan oksigen terlarut minimum antara 1 - 2 ml/l. Di bagian selatan katulistiwa terdapat massa air
Southern Salinity Minimum dengan ciri salinitas lebih rendah antara 34,5 - 34,8
dan suhu sekitar 12-17 °C serta kandungan oksigen terlarut antara 1,6 - 2,5 ml/l,
lapisan gumbar dari massa air ini terdapat pada kedalaman antara 150-200 meter.

Massa air lain yang terdapat di perairan Timurlaut Samudera Hindia adalah
Massa Air Teluk Persia (the Persian Gulf Water) yang menyebar pada core depth
σ=26,6 kg/m³ pada kedalaman 250-300 meter. Massa air ini mempunyai karakter
salinitas dan kandungan oksigen terlarut yang tinggi. Massa air Teluk Persia
dicirikan oleh dua lapisan gumbar, yaitu salinitas maksimum dan oksigen
maksimum. Kedalaman dari lapisan gumbar tersebut berada antara 200 dan 300
meter. Massa air lainnya yang dicirikan oleh dua lapisan gumbar salinitas
maksimum dan oksigen minimum adalah Massa Air Laut Merah (Red Sea Water).
lapisan gumbar yang menjadi ciri dari massa air ini berada pada kedalaman
antara 600 dan 800 meter.

Indian Equatorial Water (IEW) yang dicirikan dengan perbedaan salinitas
vertikal yang kecil yang merupakan hasil percampuran air dari Indonesian
througflow (ITF) yang masuk dari timur dan perairan Samudera Hindia dari
ara kedalaman pertengahan Antarctic Intermediate Water (AIW, curva IC)
dengan gumbar densitas σ=27,1 - 27,3 kg/m³ masuk ke basin di bagian selatan
(Fine, 1993 dalam Schott and McCreary 2001). Massa air ini dibangkitkan oleh
subduction di daerah frontal subpolar yang dicirikan dengan salinitas rendah
karena tingginya presipitasi di daerah tersebut dan oksigen minimum. Pada
densitas yang sama massa air yang hangat dan salinitas yang tinggi Red Sea
Water (RSW) menyebar dari utara keluar Teluk Aden yang dicirikan oleh kurva
Arabian Sea (AS) dan Somali Current (SC) (Gambar 5), dengan jalur penyebaran
masuk Samudera Hindia melalui celah antara Socotra dan daratan Afrika
seudar terus ke selatan masuk ke Mozambique Channel (Beal, Ffield, and
ordon, 2000a dalam Schott and McCreary, 2001). Penyebarannya di timurlaut
samudera Hindia sangat inhomogeneous karena adanya aktifitas Eddy yang
tingat intensif di Somali Current dan di Laut Arab bagian utara (Quadfasel and
chott, 1982).
Pada kedalaman yang lebih dalam Lower Circumpolar Deep Water (CDW) masuk Madagaskan dan basin Australia barat (Toole and Warren, 1993), tetapi langsung masuk ke tengah basin Samudera Hindia yang terhalang oleh deep ridge. Indian Deep Water (IDW) merupakan massa air yang spesifik di utara Samudera Hindia yang bergerak dengan range densitas diatas CDW, yang kemungkinan dibangkitkan oleh deep upwelling dari CDW dengan kandungan oksigen yang rendah dan salinitas yang tinggi sebagai hasil dari percampurannya dengan massa air pertengahan tua di bagian atas, juga mempunyai kandungan silikat yang tinggi yang berasal dari sungai-sungai bagian utara. Di baratdaya mengalami percampuran dengan North Atlantic Deep Water dengan karakter peningkatan kandungan oksigen dan salinitas (Mantyla and Reid, 1995 dalam Schott and LeaCreary 2001).

Selain itu Rochford (1964) juga mengidentifikasi lima jenis massa air di Samudera Hindia Utara dengan salinitas maksimum dari asal yang berbeda di atas kedalaman 1000 meter, dengan menggunakan metode kurva T-S, yaitu:

1. Massa air dari Laut Merah (Red Sea Water) yang menyebar antara $\sigma = 27,1 - 27,3$ pada kedalaman 600-900 meter dengan salinitas antara 34,9-36,3.
2. Massa air dari Teluk Persia (Persian Gulf Water) yang menyebar antara $\sigma = 26,4 - 26,8$ dengan salinitas antara 35,00-36,1 yang menyebar pada kedalaman 300-400 meter.
3. Massa air ketiga yang teridentifikasi disimbolkan dengan C dengan sumner air yang berasal dari Northen Arabian Sea yang menyebar antara $\sigma = 24,9 - 26$ pada kedalaman 100-200 meter dengan salinitas antara 35,00-36,5.
4. Massa air keempat berasal dari Laut Arab (Arabian Sea Water) yang dangkal (100 m) dan berubah secara musiman, dan dipengaruhi oleh
musan timurlaut yang menyebar antara $\sigma = 23.8 - 25.0$ dengan salinitas 35.2-36.6.

5. Massa air yang kelima disimbolkan dengan E yang ditemukan di daerah ekuator Samudera Hindia dari 10° LU – 10° LS, berada pada kedalaman 0-110 meter dan sebaran $\sigma = 23.0 - 23.5$ dengan salinitas 35.2-35.8.

Kelima massa air dengan salinitas maksimum dan kedalaman tertentu tersebut sajikan pada Gambar 6.

perairan yang dalam, oksigen terlarut akan selalu dikonsumsi untuk keperluan respirasi organisme laut dan oksidasi bakteri untuk mendekomposisi materi-materi yang membusuk (decaying material), massa air yang terisolasi dari atmosfer dalam jangka waktu yang lama, dengan demikian akan memiliki kandungan oksigen terlarut yang rendah. Kandungan oksigen terlarut air permukaan yang tinggi ditemukan di perairan kutub, karena air yang dingin lebih mudah selarutkan gas dibandingkan dengan air hangat. Pengetahuan tentang sifat kandungan oksigen terlarut dalam air laut tersebut adalah dasar untuk menjadikannya sebagai pengenal dan pelacak massa air. Salah satu caranya adalah dengan membuat diagram T-O₂. Massa air tertentu akan memberikan sumbangan kurva yang khas pada diagram T-O₂ tersebut.

Menurut Gordon et al. (1994) dan Field (1994) dalam Najid (1999), ada beberapa faktor yang mempengaruhi kekuatan percampuran, misalnya bentuk dasar perairan, kekuatan aliran, stabilitas massa air serta proses fisik yang terjadi atas massa air seperti pasang surut, gelombang dalam, dan turbulensi. Kekuatan dan proses-proses turbulensi di dalam laut-laut Indonesia lebih banyak disebabkan oleh interaksi antara arus pasut dengan bentuk dasar perairan, selat, dan gili (ridges) yang menyebabkan flux vertikal dan horisontal dari kandungan massa air menjadi sangat besar, misalnya bahang, garam, unsur hara dan momentum.
Arus Pantai Jawa (APJ)

Quadfasel and Cresswell (1992), menemukan bahwa pergerakan APJ di sepanjang perairan baratdaya Sumatera mengalir lebih menjauhi pantai, sementara di selatan Jawa-Sumbawa arus tersebut di dekat pantai sekitar 50 km dari pantai.

Arah pergerakan APJ sangat dikendalikan oleh muson yang terjadi di Sumatera Hindia dan Kepulauan Indonesia. Pada kondisi rata-rata secara umum APJ mengalir ke arah tenggara di sepanjang pantai selama muson baratlahut di sekitar selatan Jawa (Desember – April), dan bergerak ke baratlahut di sepanjang pantai selama muson tenggara (Juni – Oktober) di sekitar selatan Jawa dan mengalami masa transisi selama dua minggu pada bulan Mei dan November. Kecepatan APJ dari kedua muson tersebut sekitar 0,3 – 0,6 m/dtk dan kecepatannya meningkat hingga 2 – 3 kali selama periode transisi tersebut (Tomczak, 2002).

Ilahude (1992), mengatakan pada bulan Maret-April 1990 APJ mengalir ke
mur di sepanjang perairan selatan Pulau Jawa ditemukan mulai dari Ujung Kulon
ingga Blambangan dengan lebar arus sekitar 60 mil pada kedalaman 75 – 200
eter. Pada bulan Maret 1992 berdasarkan hasil analisis arus geostropik di
perairan selatan Bali kecepatan arus APJ sekitar 5 cm/detik -140 cm/detik dan pengaruhnya sampai pada lapisan kedalaman 100 m (Fieux et al., 1996a dalam Najid, 1999).

Transport APJ tertinggi terjadi pada saat puncak Muson Baratlaut yaitu sekitar bulan Februari sebesar 4 Sv (1 Sv = 1 x 10^6 m^3/s) dan terrendah terjadi pada bulan Juni sebesar 1 Sv. Pada bulan April transport APJ sebesar 3 Sv dan pada bulan Nopember sebesar 2 Sv (Wyrtki, 1961). Fieux et al. (1996a) dalam Najid (1999), menyoroti bahwa transport APJ di selatan Bali pada 115° BT besarnya 2 – 6 Sv dengan arah arus geostropik ke timur.

Soeriaatmadja (1957), menemukan arus geostropik yang terjadi di sepanjang perairan selatan Jawa hingga kedalaman sekitar 150 m - 250 m dengan kecepatan antara 2 - 48 cm/det dengan batas selatan arus sekitar 90 mil dari pantai.
Hasil penelitian mooring di perairan selatan Jawa (Cilacap) pada posisi 8°11,5' LS-109°32' BT pada kedalaman 55 meter, 115 meter dan 155 meter selama periode 15 April sampai 15 Juni 1997 ditemukan aliran ke tenggara mencapai maksimum 1,5 m/detik pada kedalaman 55 meter dan 0,8 m/detik pada kedalaman 115 meter yang terjadi selama pertengahan hingga akhir bulan Mei 1997. Meningkatnya kecepatan aliran ini kemungkinan berhubungan dengan adanya Gelombang Kelvin di sekitar mooring. Kecepatan arus maksimum terjadi pada kedalaman 175 meter sebesar 0,3 m/detik yang terjadi pada pertengahan bulan Mei 1997, kemudian kecepatan menurun secara perlahan dan pada 5 Juni pada kedalaman 55 dan 115 meter ditemukan aliran ke barat laut yanggate time series selesai (Sprintall et al., 1999).

Atmadipoera (1990); Purba dan Atmadipoera (1992), dari analisa topografi dinamik di sepanjang perairan selatan Jawa-Sumbawa dalam bulan Maret-April 1990 tidak menemukan dengan jelas arah pergerakan ke timur dari APJ.

Arus Geostropik

Menurut Neumann and Pierson, (1966) arus geostropik adalah arus yang terakibatkan karena adanya perbedaan densitas, dimana air akan mengalir dari densitas yang lebih tinggi ke densitas yang lebih rendah. Untuk dapat lebih menjelaskan tentang arus geostropik, maka perlu dijelaskan adanya istilah isobar (Isobaric Surface) dan permukaan datar (Level Surface). Permukaan isobar adalah merupakan suatu permukaan imajiner dimana sepanjang permukaan tersebut tekanan terhadap fluida adalah sama. Sedangkan permukaan datar adalah suatu permukaan imajiner dimana permukaan itu posisinya tegak lurus dengan arah gravitasi dimana energi potensialnya konstan disajikan dalam gambar 8.

Tekanan meningkat sesuai dengan bertambahnya kedalaman, sehingga tekanan dalam air laut memiliki arah berlawanan dengan arah gaya gravitasi bumi, ditutup kearah nilai tekanan yang menurun. Jika gaya tekanan yang memiliki arah berlawanan dengan gaya gravitasi bumi tersebut dapat mengimbangi percepatan gaya gravitasi yang arahnya ke pusat bumi maka akan membuat permukaan isobar sejar dengan permukaan datar. Namun kenyataannya permukaan isobar jarang sejar dengan permukaan datar, melainkan selalu berbeda walaupun
Menurut Neumann and Pierson, (1966) jarak antara satu titik stasiun di suatu permukaan isobar dengan suatu titik di permukaan dengan isobar yang berbeda, dapat diketahui bila densitas massa air di antara dua titik di kedua permukaan isobar tersebut diketahui.

Perhitungan untuk menentukan jarak vertical antar permukaan isobar biasa disebut perhitungan dinamik, sedangkan jarak vertikalnya disebut kedalaman dinamik.

Kedalaman dinamik adalah kerja (work) yang dibutuhkan untuk menggerakan satu satuan massa dari suatu permukaan isobar ke permukaan isobar lain, dimana kerja tersebut dinyatakan dalam satuan meter dinamik.
METODE PENELITIAN

Tempat dan Waktu Penelitian

Peta lokasi penelitian perairan Pantai Barat Sumatera disajikan dalam Gambar 12. berikut:

Proses Data

Data Konduktivitas, Temperatur dan Suhu (Data CTD)

Data konduktivitas, temperatur (°C) dan salinitas (PSU) diperoleh dari instrumen CTD, selain itu juga diperoleh data parameter oceanografi lainnya seperti tekanan (dBar), oksigen terlarut (ml/L), suhu potensial (°C) dan sigma-t. Data ini digunakan untuk menganalisis karakteristik massa air di lokasi penelitian. Informasi yang diperoleh adalah: peta temperatur, peta salinitas, peta sigma-t, diagram T-S dan diagram T-O, peta topografi kedalaman dinamik, arah dan
kecepatan arus geostropik serta transpor massa airnya. Data nilai parameter oceanografi berupa kedalaman, tekanan, temperatur, salinitas, oksigen, suhu potensial, sigma-t, disusun berdasarkan stasiun CTD mulai dari stasiun pertama. Data tersebut akan ditulis dalam format MS Excel dengan urutan “cruise; tahun; tanggal; stasiun; lintang; bujur; kedalaman; tekanan; temperatur; salinitas; oksigen; temperature potensial; sigma-t”.

Fungsi-fungsi turunan seperti temperatur potensial dan kedalaman dinamik peroleh dari perhitungan melalui fasilitas window yang disediakan oleh ODV. Dari format MS Excel yang telah disusun tersebut kemudian disimpan dalam format file * .txt.

Analisis Data untuk Arus Geostropik

Kedalaman Dinamik

Untuk analisis pergerakan APJ pada data CTD dianalisis berdasarkan peculiasi massa air yang ditimbulkan oleh arus geostropik berdasarkan Neumann dan Pierson, 1966. Dengan mengetahui nilai tekanan (p) pada dua permukaan isobar yang berbeda masing-masing p₁ dan p₂, ρ adalah rata-rata densitas pada kolom vertikal di antara dua permukaan isobar, dan g adalah gravitasi, maka jarak vertikal (z) dari dua permukaan isobar diketahui yaitu:

\[
z = \frac{(p_1 - p_2)}{\rho g}
\]

(1)

Kedalaman dinamik adalah kerja (work) yang dibutuhkan untuk menggerakkan satu satuan massa air dari suatu permukaan isobar ke permukaan isobar lain. Kerja tersebut dinyatakan dalam satuan dynamic meter. Dynamic meter memiliki hubungan dengan tekanan dengan persamaan:

\[
p = \rho D \text{ (dibar)}
\]

(2)

di mana D adalah gz.

Untuk kedalaman dinamik D di bawah permukaan laut maka nilai tekanannya adalah:

\[
p = \int_0^D \rho \, dD
\]

(3)

di mana Do adalah kedalaman dinamik permukaan laut. Nilai kedalaman dinamik
antara permukaan isobar dengan tekanan p_o dan p diperoleh melalui persamaan:

$$D = \int_{p_o}^{p} \alpha \, dp$$ (4)

dengan α merupakan volume spesifik.

Neumann and Pierson (1966) membagi persamaan tersebut menjadi dua bagian:

$$D = D_{35,0,p} + \Delta D$$ (5)

$D_{35,0,p}$ adalah kedalaman dinamik dari permukaan isobar dengan tekanan p yang diukur berdasarkan standar air laut dengan salinitas 35 dan suhu 0 °C. Sementara suku pertama ruas kanan persamaan tersebut diperoleh melalui:

$$D_{35,0,p} = \int_{p_o}^{p} \alpha_{35,0,p} \, dp$$ (6)

$\alpha_{35,0,p}$ adalah volume spesifik air laut berdasarkan standar air laut dengan salinitas 35 dan suhu 0 °C. Suku kedua ruas kanan diperoleh dari:

$$\Delta D = \int_{p_o}^{p} \delta \, dp$$ (7)

δ adalah nilai penyimpangan (anomaly) volume spesifik lautan nyata dengan volume spesifik lautan baku. Densitas air laut biasanya ditentukan berdasarkan pada tekanan laut $p=0$ dan sering ditulis:

$$\sigma_t = (\rho_{t,5,0} - 1) \times 1000$$ (8)

σ_t adalah sigma t dan $\rho_{t,5,0}$ adalah densitas pada $p=0$. Volume spesifik adalah nilai kebalikan dari densitas ditulis:

$$\alpha_{t,5,p} = \alpha_{0,35,p} + \delta$$ (9)

$\alpha_{0,35,p}$ adalah volume spesifik lautan baku dengan salinitas 35 dan suhu 0 °C pada tekanan yang berbeda-beda.
Arah Arus Geostropik dan Kecepatan Relatif

![Diagram Arus Geostropik dan Kecepatan Relatif](image)

Dengan menetapkan komponen kecepatan air relative terhadap bumi pada permukaan p₁ adalah V₁ dan pada permukaan p₂ adalah V₂ maka kecepatan relative arus geostropik antara dua stasiun A dan B untuk kedua level ini adalah

\[2 \Omega (\sin (\phi_1 - \phi_2)) V_1 = g \tan i_1 \]
\[2 \Omega (\sin (\phi_1 - \phi_2)) V_2 = g \tan i_2 \]

dengan \(\Omega = 7,292 \times 10^{-5} \) radian/detik, \(\phi \) adalah posisi lintang dimana wilayah penelitian berada, \(g \tan i \) adalah gaya per unit massa dan \(V \) adalah kecepatan
relatif arus geostropik yang disebabkan oleh gradien tekanan yang dibelokkan ke kiri oleh gaya Coriolis (karena di BBS).

Dengan mengurangkan persamaan (10) dan (11) diperoleh:

\[2\Omega (\sin (\phi_1 - \phi_2)) (V_1 - V_2) = g (\tan i_1 - \tan i_2) \]

\[2\Omega (\sin (\phi_1 - \phi_2)) (V_1 - V_2) = \frac{g}{A_1 C_1} \left(B_1 C_1 - B_2 C_2 \right) \]

\[2\Omega (\sin (\phi_1 - \phi_2)) (V_1 - V_2) = \frac{g}{L} \left(B_1 B_2 - C_1 C_2 \right) \]

Karenanya \(A_1 C_1 = A_2 C_2 = L \), dan

\[C_1 - B_2 C_2 = B_1 B_2 - C_1 C_2 = \frac{g}{L} \left(B_1 B_2 - A_1 A_2 \right), \text{ karena } C_1 C_2 = A_1 A_2 \]

\[= \frac{g}{L} [(Z_1 Z_3 - Z_2 Z_4)] \quad (12) \]

Persamaan hidroestatis:

\[g \, dz = -\alpha \, dp \]

\[\int_{Z_3}^{Z_1} g \, dz = g (Z_3 - Z_1) = -\int_{\rho_1}^{\rho_2} \alpha \, dp \]

\[= -\left[\int_{\rho_1}^{\rho_2} \alpha_{35,0} \, dp + \int_{\rho_1}^{\rho_2} \delta \, dp \right] \quad (13) \]

(dimana \(\alpha_B = \alpha_{35,0} \rho + \delta \))

Semua nilai \(z \) bernilai negative, jadi \(g (Z_3 - Z_1) \) adalah negative seperti ruas kanan persamaan (13).

Dengan cara yang sama didapat,

\[g \cdot (Z_4 - Z_2) = -\frac{g}{L} \left[\int_{\rho_1}^{\rho_2} \alpha_{35,0} \, dp + \int_{\rho_1}^{\rho_2} \delta \, dp \right] \quad (14) \]

 Kemudian persamaan (13) dan (14) dikalikan dengan -1 agar tanda suku-suku \(Z \) sama dengan tanda di persamaan (12). Selanjutnya dengan mengurangkan kedua persamaan tersebut dan dibagi ruas kiri dan kanannya dengan panjang \(L \), karena dua suku (\(\alpha_{35,0} \rho \) dp) adalah identik sehingga saling meniadakan, sehingga kita diperoleh:

\[\frac{g}{L} [(Z_1 - Z_3) - (Z_2 - Z_4)] = \frac{1}{L} \left[\int_{\rho_1}^{\rho_2} \delta \, dp - \int_{\rho_1}^{\rho_2} \delta \, dp \right] \quad (15) \]
\[
(V_1 - V_2) = \frac{1}{L2\Omega \sin(\phi_1 - \phi_2)} \left[\int_{\delta_n}^{\delta_n} \delta_n dp - \int_{\delta_A}^{\delta_A} \delta_A dp \right]
\]

(16)

\[
(V_1 - V_2) = \frac{1}{L2\Omega \sin(\phi_1 - \phi_2)} [\Delta \Phi_n - \Delta \Phi_A]
\]

(17)

Atau dalam dynamic meter (dyn.m) dalam Pond and Pickard (1983) adalah

\[
(V_1 - V_2) = \frac{10}{L.2\Omega \sin(\phi_1 - \phi_2)} [\Delta D_n - \Delta D_A]
\]

(18)

Dengan :

- \(V_1 - V_2\) = Kecepatan relative arus geostropik antara stasiun A dan B (cm/dtk)
- Jarak antara stasiun A dan B (meter)
- Tekanan atau kedalaman (dobar atau meter)
- Sudut perputaran bumi (7,29 \(10^{-5}\)/dtk)
- Titik lintang di stasiun A dan B
- Kedalaman dinamik (m²/dtk²) permukaan isobarik p₁ dan p₂

Volume Angkutan (Ty)

Untuk menghitung volume transpor relatif terhadap reference level (p₀) pat dihitung dengan menggunakan rumus (Unesco, 1991):

\[
T_y = \int_A^B \int_{Z_n}^{Z_0} (V_1 - V_2) dz dx = L \int_{Z_n}^{Z_0} (V_1 - V_2) dz
\]

(19)

dimana A, B adalah batas atau limit horisontal dan \(Z_n, Z_0\) adalah batas vertikal dari intergrasi, dan \(V_1 - V_2\) adalah kecepatan arus geostropik (dengan satuan m/detik) pada garis yang menghubungkan dua stasiun relatif terhadap paparan. Jika kecepatan arus geostropik \(V (m/detik)\) yang dihitung dari perbedaan kedalaman dinamik antara dua stasiun A dan B adalah:

\[
V_{1-2} = \frac{10(\Delta D_2 - \Delta D_1)}{fL} \bigg|_A^B
\]

(20)

Maka persamaan 13 menjadi:

\[
10^6 T_y = \frac{10}{L} \int_{Z_n}^{Z_0} (\Delta D_2 - \Delta D_1) dz \bigg|_A^B
\]

(21)
karena: $$\Delta D = 10^{-5} \int^{p_n}_{p_0} \delta dp$$

Maka persamaan 15 menjadi:

$$= \frac{10^{-5}}{f} \int^{p_n}_{p_0} \int^{Z_0}_{Z_n} \delta dp dz \bigg|_{B} \bigg|_{A}$$

Setelah integralkan perbagian selanjutnya menghasilkan:

$$10^6 T_y = \frac{10^{-4}}{f} \int^{p_n}_{p_0} \int^{Z_0}_{Z_n} \delta dp \bigg|_{B} \bigg|_{A}$$

$$= \frac{10^{-4} p_n}{f} \int^{Z_0 - Z}_{Z_n} \left(Z_0 - Z \right) \delta dp \bigg|_{B} \bigg|_{A}$$

dimana Z_0 adalah lapisan permukaan p_0. Transpor volume (T_y) tidak dipengaruhi oleh jarak L antara stasiun - stasiun. Untuk unit satuan dari volume transport adalah Svedrup ($1 \text{ Sv} = 10^6 \text{ m}^3/\text{detik}$).

Fasilitas yang dapat diperoleh dari ODV antara lain sebaran menegak, pararan mendatar, sebaran melintang, membujur diagram TS, kecepatan arus geostropik (komponen timur-barat dan komponen utara-selatan) serta luas bidang yang dilewati arus geostropik.
Identifikasi Jenis Massa Air

Untuk identifikasi jenis massa air dan asal usul massa air digunakan diagram T-S. Diagram T-S ini dibuat dari nilai suhu dan nilai salinitas, dimana salinitas dan suhu masing-masing diplotkan pada sumbu x dan sumbu y dalam sistem koordinat Cartesian. Pelacakan jenis massa air ini akan mempeliharkan perbedaan massa air di Samudera India, seperti yang pernah dilakukan Rochford (1964) dan Kyrtki (1961) dalam mengidentifikasi jenis-jenis massa air di bagian utara dan murlaut Samudera Hindia.

Diagram Alir

Tahapan pengerjaan penelitian ini mengikuti langkah-langkah seperti pada Gambar 10, yang dilakukan mulai dari pengumpulan data, pengolahan hingga analisisnya untuk selanjutnya menjabarkan kesimpulan seperti yang dimaksudkan dalam tujuan penelitian ini.
Gambar 10 Diagram Alir Tahapan Proses Pengolahan Data.
HASIL DAN PEMBAHASAN

Sebaran Melintang Suhu dan Salinitas pada Bulan Maret 1991

Menurut Wyrtki (1961) di perairan baratdaya Sumatera terdapat arus yang datang dari arah barat yang dikenal dengan Arus Sakal Katulistiwa Samudera Hindia (Equatorial Counter Currant) atau ASH yang bertemu dengan Arus Katulistiwa Selatan (AKS) dari timur di sekitar baratdaya Sumatera bagian selatan.

Lapisan termoklin pada bulan Maret terbentuk pada kedalaman yang bervariasi di setiap transeknya dengan ketebalan yang berbeda-beda. Lapisan termoklin terdalam ditemukan pada kedalaman 27 meter (st. 8) dengan ketebalan 138 meter, suhu batas atasnya 28,97 °C dan batas bawahnya 12,8 °C. Lapisan termoklin terdalam ada pada kedalaman 54 meter (st. 1, 6 dan 8) dengan ketebalan yang berbeda-beda, yang paling tebal pada stasiun 13 yaitu 9 meter dengan suhu 28,58 (batas atas) dan 12,8 °C sebagai batas atsanya. Pada ambar 16 terlihat bahwa pada transek A dan D batas atas lapisan termoklin menurun (isotherm 29) kearah pantai sedangkan pada transek B dan C terjadi baliknya. Fenomena terjadinya penurunan lapisan atas termoklin ke arah pantai da transek A dan D kemungkinan disebabkan oleh adanya penenggelaman massa air (downwelling). Menurut Purba (1996) dan Tim Fak. Perikanan dan

Nama: [Nama]

Fakultas: [Fakultas]

Universitas: [Universitas]
Ilmu Kelautan (1997; 1998), naiknya batas atas atau batas bawah termoklin berkaitan dengan terjadinya proses upwelling. Fenomena menurunnya batas bawah lapisan termoklin (isotherm 13) pada transek D ke arah pantai kemungkinan berhubungan dengan adanya aliran massa air salinitas maksimum (S-maks) yaitu > 35,0 PSU. Kondisi ini terlihat jelas pada sebaran melintang salinitas, yaitu adanya intrusi massa air dengan salinitas maksimum yang masuk ke wilayah studi.

Dari gambar sebaran melintang suhu juga terlihat adanya intrusi massa air yang masuk dari arah selatan, massa air ini diduga adalah massa air Arus Katutistiwa Selatan atau AKS yang terjadi sepanjang tahun di Samudera Hindia karena pengaruh angin pasat.

Dari gambar profil sebaran melintang salinitas (Gambar 12) terlihat adanya pisan gumbar S-maks yang bukan merupakan ciri dari massa air lokal, ini duga merupakan massa air dari daerah lain yang masuk ke wilayah studi. Hal ini terlihat dengan jelas pada Gambar 12, pada transek C dan D (stasiun 15 – 10) terlihat adanya intrusi massa air dengan salinitas > 35 PSU yang masuk dari laut lepas dan menyebar pada kedalaman 50 - 100 meter, massa air ini
terlihat ter dorong ke arah pantai. Pada transek D (stasiun 19 – 17) juga terlihat adanya intrusi massa air dari arah baratlaut dengan S-maks (=35) pada kedalaman 100-350 meter, massa air ini kemungkinan terbawa oleh ASH yang sampai ke wilayah study dengan menyusuri pantai.

Dari analisis profil melintang suhu dan salinitas pada bulan Maret di wilayah study dimana dengan teridentifikasinya suhu permukaan yang relatif tinggi 29 °C dan salinitas permukaan yang relative rendah (< 33,5) serta ditemukan batas atas termoklin yang cenderung tertekan ke bawah (lebih dalam) pada stasiun-stasiun dekat pantai, maka dapat diduga bahwa wilayah study pada bulan Maret terdapat aliran APS yang mengalir ke arah tenggara, dimana Soeriaatmadja (1957), mengatakan bahwa pada lapisan permukaan, massa air aliran APJ yang bergerak ke timur (di selatan Jawa) mempunyai ciri-ciri salinitas rendah antara 33,1 – 33,9 dengan suhu antara 27,5 – 28 °C.

Beberapa peneliti seperti Fieux et al. (1996b) dan Susan et al. (1996) juga mengatakan bahwa aliran APJ pada lapisan permukaan membawa massa air dengan salinitas rendah (< 34,0) dangan suhu yang hangat (> 27,5 °C) yang berasal dari sepanjang pantai barat Sumatera dan Laut Jawa, sedangkan menurut Rochford (1996) bahwa karakter massa air permukaan di wilayah study yang memiliki slinitas rendah (< 34,0) dan suhu yang hangat (> 27 °C) adalah merupakan ciri-ciri dari Massa Air Tropis (Tropical Water).

3. Sebaran Melintang Suhu dan Salinitas pada Bulan Juli 1990

Lapisan termoklin yang terbentuk pada bulan Juli pada kedalaman yang bervariasi di setiap transeknya dengan ketebalan yang berbeda-beda. Lapisan termoklin terdangkal ditemukan pada kedalaman 43 meter (st. 18) dengan ketebalan 174 meter dengan suhu pada batas atas dan batas bawahnya masing-masing 27,99 dan 12,5 °C. Lapisan termoklin terdalam ditemukan pada
Gambar 13 Sebaran melintang Suhu (°C) pada Bulan Juli 1990.
kedalaman 81 meter (St. 22) dengan ketebalan 98 meter dengan suhu batas atas dan bawahnya masing-masing 29.2 dan 12.5 °C. Pada Gambar 16 terlihat bahwa batas atas lapisan termoklin pada semua transek sedikit menurun atau lebih dalam (isotherm 27) pada sisi pantainya. Penurunan garis isotherm ini diduga karena adanya tekanan oleh aliran massa air di atasnya yang mengalir ke tenggara di sepanjang pantai barat Sumatera, yang merupakan bakal Arus Pantai Jawa (APJ) yang akan mengalir terus hingga ke selatan Jawa.

Dari profil melintang salinitas (Gambar 14) terlihat bahwa, salinitas permukaan pada bulan Juli di wilayah studi berkisar antara 32,93 – 34,20 dengan salinitas tertinggi berada di transek D yaitu lokasi paling barat wilayah studi, salinitas terendah ditemukan di depan Selat Sunda yaitu pada transek A. Secara umum sebaran salinitas permukaan pada stasiun-stasiun dekat pantai dengan salinitas-stasiun yang berada ke arah lepas pantai adalah seragam. Namun ada beberapa stasiun yang mempunyai salinitas > 34,0 yaitu pada stasiun 10 (34,10), stasiun 15 (34,05) dan stasiun 19 dan 20 (34,20 dan 34,02), hal ini terlihat jelas pada profil mendatar salinitas permukaan pada Gambar 17.

Lapisan gubun dengan salinitas > 35,0 terlihat dengan jelas pada profil mendatar salinitas (Gambar 17) yang berada pada kejelukan 75 – 100 meter, massa air ini sangat jelas terlihat masuk melalui sisi barat laut dari transek D wilayah studi hingga transek B dekat pantai. Menurut Rochford (1964), ciri-ciri massa air ini berasal dari daerah ekuator Samudera Hindia (10° S – 10° N), massa air ini berada pada kedalaman 0 – 110 meter, yang sampai ke barat Sumatera terbawa oleh ASH.

Dari profil mendatar suhu pada bulan Juli (Gambar 17) terlihat dengan jelas massa air yang datang dari arah barat laut menyusuri pantai wilayah studi dengan membawa suhu yang lebih hangat (> 29 °C), pada bagian timurlaut wilayah studi juga terlihat adanya intrusi massa air dari Selat Sunda yang juga membawa massa hangat (> 29 °C) yang berasal dari Laut Jawa. Pada profil mendatar salinitas (Gambar 17) terlihat salinitas rendah (< 33,8) dari arah pantai yang masuk ke wilayah studi menyusuri pantai, salinitas yang sedikit lebih tinggi ditemukan ke arah laut lepas, dari arah timurlaut salinitas rendah juga masuk dari Selat Sunda...
yang berasal dari Laut Jawa, sedangkan salinitas tinggi (> 34) masuk dari arah baratlaut yang menekan masuk hingga transek B.

Menurut Quadfasel (1999), dalam Schott and McCreary (2001), bahwa pada bulan Juli dimana berlaku monson baratdaya (di utara katutistiwa) sumber airnya berasal dari Laut Arab – Barat yang mengalir hingga Teluk Bengal dan melalui pantai Sri Lanka dengan ciri salinitas rendah, massa air ini terperangkap di Teluk Bengal oleh gelombang yang dibangkitkan oleh angin, massa air ini sebagian akan mengalir ke arah selatan melalui pantai barat Sumatera.

Secara keseluruhan dari analisis profil sebaran melintang salinitas pada bulan Maret (musim baratlaut) dan bulan Juli (musim tenggara) terlihat bahwa salinitas pada lapisan permukaan di daerah dekat pantai lebih rendah (isohaline 33,7) daripada di stasiun-stasiun arah laut lepas. Profil sebaran melintang salinitas tersebut mempunyai pola yang sama yaitu mempunyai lereng isohaline menurun atau sedikit lebih dalam di sisi pantai. Kondisi ini terlihat seperti pada lereng isohaline 34,0, baik pada bulan Maret (1991) maupun bulan Juli (1990). Dalamnya posisi isohaline 34,0 pada bulan Maret dan Juli ini diduga disebabkan oleh adanya aliran massa air permukaan APS di sepanjang pantai baratdaya Sumatera yang mengarah ke tenggara yang merupakan indikasi adanya APJ yang membawa massa air dengan salinitas rendah dari sepanjang pantai Baratdaya Sumatera dan yang berasal dari Laut Jawa yang masuk melalui Selat Sunda (Fieux et al., 1996b dan Susan et al., 1996). Masa air ini akan menumpuk di sisi kiri (sisi pantai) BBS, dan menekan lapisan massa air di bawahnya, menyebabkan posisi isohaline 34,0 tertekan lebih dalam.

Secara umum sebaran salinitas pada musim baratlaut lebih rendah bandingkan dengan salinitas pada musim tenggara, kondisi ini diduga karena ringanya curah hujan yang terjadi pada musim baratlaut. Menurut Rochford (1969), karakter massa air permukaan di wilayah studi yang memiliki salinitas
rendah (<34,0) dan suhu hangat (> 27 °C) merupakan karakter dari Massa Air Tropis (Tropical Water).

Dari uraian profil sebaran menegak suhu dan salinitas pada lapisan permukaan di atas termoklin, ditemukan indikasi APS yang berpotensi sebagai APJ di sepanjang wilayah studi pantai baratdaya Sumatera baik pada musim baratlaut-barat maupun musim tenggara-timur. Indikasi APS sebagai awal bentuknya APJ ini ditemukan dari karakter massa air permukaan dengan salinitas rendah (< 34.0 PSU) dan suhu perairan yang hangat (> 27,5 °C), serta runyxa atau lebih dalamnya batas atas termoklin di sisi pantai (Rochford, 1969).

Menurut Rochford (1969), aliran massa air baratdaya Sumatera hingga selatan Jawa (Sumatera – Java Current) pada bulan Januari membawa massa air dengan karakter salinitas rendah (< 34,0) dan suhu tinggi (> 27,5 °C) dan ditemui pada 9° 30’ LS dan 110° BT di selatan Jawa, sama dengan Soeriaatmadja (1975) yang mengatakan bahwa pada lapisa permukaan, massa air yang dibawa aliran APJ ke timur kemilki ciri salinitas rendah antara 33,1 – 33,89 dengan suhu antara 27,5 – 28 °C, sedangkan AKS di permukaan membawa massa air dengan salinitas yang tetatif tinggi (34,04). Menurut Quadfasel dan Cresswell (1992), penggerak utama APJ adalah penurunan salinitas perairan pantai dan angin muson barat.

Dari beberapa penelitian yang dilakukan seperti Soeriaatmadja (1957); Rochford (1969); Ilahude (1992); Fieux et al. (1996b) dan Susan et al. (1996), melaporkan bahwa aliran APJ pada lapisan permukaan membawa massa air segar dengan salinitas rendah (< 34,0 PSU) dan suhu yang hangat (> 27,5 °C) yang berasal dari sepanjang pantai barat Sumatera dan Laut Jawa.

Sebaran Mendatar Suhu dan Salinitas pada Bulan Maret 1991

Di baratdaya Sumatera ASH bercabang dua, salah satu cabangnya berbelok ke baratdaya dan bersatu dengan AKS, sedangkan cabang yang lainnya mengalir endekati pantai Sumatera dan ke tenggara di sepanjang pantai baratdaya Sumatera dan terus ke timur hingga selatan pulau Jawa-Sumbawa (Soeriaatmadja, 1957; Wyrkti, 1961; Tomzcak and Godfrey, 1994).

Sebaran mendatar suhu dan salinitas pada lapisan permukaan, 50 meter, 100 meter, 150 meter, 200 meter dan 250 meter disajikan pada Gambar 15 dan 16.
Bogor Agricultural University

mbar 15 Sebaran Mendatar Suhu dan Salinitas Bulan Maret 1991 pada kedalaman 0-100 meter.
Dari pola sebaran mendatar suhu dan salinitasnya terlihat adanya intrusi massa air yang memasuki wilayah studi. Pada lapisan permukaan terlihat massa air dengan suhu lebih hangat (> 29 °C) dan salinitas rendah (< 33,75) masuk dari arah baratlaut yang mendominasi bagian barat wilayah studi (transek D dan C), sedangkan bagian tenggara wilayah studi (transek A dan B) dari arah timurlaut dengan salinitas yang lebih rendah (< 33,25) terlihat jelas masuk dari arah Selat Sunda dengan suhu di bawah 29 °C. Kuatnya pengaruh intrusi dari Selat Sunda menyebabkan penurunan salinitas yang cukup signifikan dan dapat menimbulkan perubahan gradasi tekanan melintang pantai sehingga membukukan suatu irisan yang cepat ke tenggara di dekat pantai (Quadfasel dan Cresswell, 1992).

Adanya pengaruh angin muson baratlaut-barat dari arah barat yang membawa massa air permukaan ke arah timur menyebabkan terjadinya penumpukan massa air pada sisi pantai sehingga mengakibatkan terjadinya penaikan muka laut (sea level) di sisi pantai yang pada akhirnya mempercepat pergerakan massa air ke tenggara di sepanjang pantai.

Pada sebaran mendatar salinitas di kedalaman 50 dan 100 meter bagian barat wilayah studi (transek C dan D) terlihat suatu pola sebaran salinitas yang menggambarkan adanya pergerakan massa air dengan salinitas maxium (> 34,75) dan suhu < 27 °C yang bergerak dari barat (arah laut) menuju pantai.

Indikasi adanya intrusi massa air dengan salinitas maksimum (> 34,9) dengan suhu rendah (< 14 °C) juga terlihat dari sebaran salinitas pada kedalaman...
200 – 250 meter pada transek C dan D yang masuk ke wilayah studi dari arah barat laut dengan menyusuri pantai. Indikasi massa air ini juga ditemukan pada sampai pada kedalaman 400 meter di transek A dan B. Menurut Wyrtki (1961), massa air ini sama dengan massa air yang berasal dari Teluk Persia (Persian Gulf) dengan karakter salinitas maksimum (34,6 – 35,1) dengan suhu berkisar 8 – 14 °C, kemungkinan massa ini masuk ke wilayah studi juga terbawah oleh ASH.

Sebaran Mendatar Suhu dan Salinitas pada Bulan Juli 1990

Sebaran mendatar suhu dan salinitas bulan Juli pada lapisan permukaan, 50 meter, 100 meter, 150 meter, 200 meter dan 250 meter disajikan pada Gambar 17 dan 18. Pada profil sebaran mendatar suhu dan salinitas permukaan terlihat suhu perairan dekat pantai lebih hangat (> 29°C) dibandingkan dengan suhu permukaan arah laut, sedangkan salinitas permukaannya cenderung seragam sekitar 33,75, sedangkan sebaran salinitas jelas adanya intrusi massa air dengan salinitas rendah (33,75) yang masuk dari arah barat laut dan menyebar hampir keseluruhan wilayah studi. Di bagian timur wilayah studi dipengaruhi dua massa air yang masuk dari arah yang berlawanan, dari arah Selat Sunda masuk salinitas rendah (< 33,35) dengan suhu yang relatif lebih tinggi (> 29,50). Massa air ini kemungkinan berasal dari perairan dalam Indonesia (Laut Jawa) yang telah memasuki musim timur yang keluar melalui Selat Sunda. Sedangkan dari arah timur wilayah studi dipengaruhi oleh AKS yang mulai berkembang pada bulan Juli dengan membawa salinitas sekitar 33,5 dengan suhu < 29 °C.

Pada lapisan kedalaman 50 meter terlihat juluran salinitas > 34,96 yang masuk dari arah barat (stasiun 18), sedangkan dari arah timur dengan cukup kuat salinitas rendah < 33,75 masuk ke wilayah studi. Kondisi ini dapat menunjukan bahwa perputaran dua massa air (daerah front sekitar 7 °SLS) dari arah yang berbeda dengan karakter yang juga berbeda. Massa air yang bergerak dari arah barat laut merupakan massa air dari ASH dengan suhu berkisar pada 28,7 °C dan massa air yang berasal dari arah timur adalah AKS yang membawa suhu antara 26,0 – 26,5 °C (Wyrtki, 1957 dalam Rochford, 1962).

Pada kedalaman 100 meter terlihat adanya intrusi massa air dengan salinitas maksimum (> 35,0) dari arah barat yang masuk ke wilayah studi. Sedangkan dari
Gambar 17 Sebaran Mendatar Suhu dan Salinitas Bulan Juli 1990 pada kedalaman 0 - 100 meter.
Diagram menunjukkan adanya asal-usul dan atau seluruh karya tulis ini dapat disusun dan menyertakan sumber.

- Temperature [°C] @ Depth [m]=150
- Salinity [psu] @ Depth [m]=150
- Temperature [°C] @ Depth [m]=200
- Salinity [psu] @ Depth [m]=200
- Temperature [°C] @ Depth [m]=250
- Salinity [psu] @ Depth [m]=250

Mbar 18 Sebaran Mendatar Suhu dan Salinitas Bulan Juli 1990 pada kedalaman 150-250 meter.
arah timur intrusi massa air AKS semakin kuat, menurut Wyrtki (1961), pada saat AKS berkembang penuh pada bulan-bulan Juli-Agustus pengaruh AKS bisa sampai ke 6 – 5 °LS dekat pantai dengan salinitas ± 34,75 dan suhu berkisar 22 – 21 °C. Pengaruh AKS ini masih sangat jelas terlihat pada kedalaman 150 meter. Pada kedalaman 200 meter terlihat adanya intrusi massa air dengan salinitas maksimum (> 35) dengan suhu < 12,6 °C di bagian baratlaut wilayah studi (transek khususnya pada Stasiun 20, 21 dan 22. Massa air ini masuk dari arah baratlaut, dengan karakter salinitas > 35 dan σ=25 kg/m³, massa air ini mempunyai karakter yang sama dengan massa air yang berasal dari Laut Arab (Arabian Sea). Menurut Rochford dalam Rhodes (1964) massa air yang berasal dari Laut Arab mempunyai karakter salinitas antara 34,6 – 36 dengan σ antara 23,9 – 26 kg/m³ yang terbawah oleh ASH dan berada pada kedalaman 100 – 200 meter di sekitar perairan barat Sumatera.

Anomali Kedalaman Dinamik dan Kecepatan Arus Geostropik

Sebaran melintang anomali kedalaman dinamik di wilayah baratdaya Sumatera pada bulan Maret (muson baratlaut-barat) dan bulan Juli (muson tenggara-timur) yang dihitung relatif terhadap papar acuan kedalaman 600 dbar disajikan pada Gambar 19 dan 20.

Orientasi dari penampang melintang anomali kedalaman dinamik di baratdaya Sumatera ini adalah baratdaya – timurlaut (atau dari stasiun arah laut ke stasiun dekat pantai). Dengan asumsi massa air yang berada pada kedalaman dinamik yang lebih tinggi akan bergerak ke tempat yang memiliki kedalaman dinamik yang lebih rendah. Pada wilayah bumi bagian selatan (BBS) dengan pengaruh gaya Coriolis, massa air yang bergerak dari stasiun yang memiliki kedalaman dinamik lebih tinggi ke yang lebih rendah tersebut akan dibelokan ke belah kiri, sehingga dengan orientasi tersebut maka arah arus geostropik di baratdaya Sumatera pada transek baratdaya – timurlaut antara dua stasiun menjadi arah baratlaut - arah tenggara.

Pada gambar penampang melintang anomali kedalaman dinamik tersebut arus geostropik yang bergerak ke arah tenggara digambarkan dengan simbol titik tengah lingkaran ○ (keluar kertas), sedangkan arus yang bergerak ke arah
Gambar 19 Sebaran Melintang Anomali Kedalaman Dinamik (Dyn.m) pada Bulan Maret 1991.
Gambar 20 Sebaran Melintang Anomali Kedalaman Dinamik (Dyn.m) pada Bulan Juli 1990.
Hok Cipta Dlingur Undang-Undang

1. Diagram menunjukkan adanya aliran larutan ke arah timur di transek A dan B.
2. Pengupasan tambang untuk kepentingan pertambangan tanah, penambangan, penulisan dan lainnya perlu dilakukan dengan hati-hati agar tidak mengganggu ketersediaan air.

Maret 22 Kecepatan Arus Geostropik pada Bulan Juli 1990.
barat laut digambarkan dengan simbol kali dalam lingkaran Θ (ke dalam kertas), dan untuk anomali kedalaman dinamik antara dua stasiun yang mempunyai selisih nilai, berarti tidak ada aliran relatif yang bergerak antara kedua stasiun tersebut yang digambarkan dengan lingkaran kosong O.

Sebaran melintang anomali kedalaman dinamik pada bulan Merat 1991 pada permukaan (0 dbar) hingga 600 dbar yang relatif terhadap paparan acuan kedalaman 0 dbar berturut-turut adalah pada transek A adalah 0-1,290 dyn.m, transek B adalah 0-1,273 dyn.m, transek C adalah 0-1,31 dyn.m dan transek D adalah 0-1,345 dyn.m. Secara umum anomali kedalaman dinamik pada transek C dan D lebih tinggi dibandingkan dengan transek A dan B. Kondisi ini kemungkinan disebabkan oleh intrusi massa air salinitas tinggi pada transek D (stasiun 16, 17, dan 19) dari arah barat laut yang terbawah bersama aliran dari ASH yang menuju pantai barat Sumatera.

Kondisi ini menyebabkan gerak air eddy antisiklon (anticyclonic eddy) yaitu pendaran arah air yang berlawanan dengan arah jarum jam. Kondisi sebaliknya terjadi pada transek B, dimana lebih rendahnya anomali kedalaman dinamik di sekitar transek tersebut kemungkinan disebabkan oleh adanya intrusi massa air dari Selat Mandara dengan salinitas rendah sehingga membentuk pusaran air yang searah dengan arah jarum jam atau eddy siklon (cyclonic eddy), seperti yang terlihat pada peta topografi kedalaman dinamik pada Lampiran 8.

Pada gambar 19 terlihat bahwa pada Transek A, B dan C mempunyai lereng permukaan dinamik yang relatif datar dari laut ke arah pantai. Massa air dominan bergerak ke barat laut, dengan kecepatan antara 17 - 28 cm/dtk yang terjadi pada transek A (Stasiun 1-2), B (Stasiun 8-9) C (Stasiun 12-13), seperti terlihat pada gambar 23. Kondisi ini disebabkan oleh adanya intrusi massa air dari Persian Gulf Water (PGW) yang masuk ke wilayah studi dari arah barat laut. Sedangkan massa air yang bergerak ke arah tenggara pada Transek A terlihat pada Stasiun 4 - 10 dengan kecepatan 6 cm/dtk dipermukaan. Pada Transek B tidak ditemukan massa air di permukaan yang bergerak ke tenggara. Pada Transek C yang bergerak ke arah tenggara ditemukan pada stasiun 13-14, di permukaan sampai kedalaman 60 meter (<5 cm/dtk).
Pada Transek D terlihat adanya kemiringan muka air dari arah laut ke pantai yang cukup tajam pada stasiun 15 – 16 dan 17 - 18, menyebabkan aliran massa air permukaan ke tenggara terlihat cukup jelas dengan kecepatan maksimum, kemiringan muka air ini masih ditemui hingga kedalaman 600 meter. Dipermukaan massa air ini bergerak sampai dengan kecepatan 55 cm/dtk (Gambar 21). Kondisi ini kemungkinan berhubungan dengan adanya intrusi massa air Troropical Lower Water (STLW) dengan salinitas maksimum yang terbawa bersama ASH di baratdaya Sumatera.

Pada sebaran melintang anomali kedalaman dinamik pada bulan Juli di mukaan (0 dbar) hingga 600 dbar yang relatif terhadap paparan acuan kedalaman 0 dbar berturut-turut adalah pada transek A adalah 0-1,411 dyn.m, transek B adalah 0-1,378 dyn.m, transek C adalah 0- 1,337 dyn.m dan transek D adalah 0-1,45 dyn.m. Secara umum anomali kedalaman dinamik pada transek C dan D lebih tinggi dibandingkan dengan transek A dan B. Kondisi ini kemungkinan disebabkan oleh intrusi massa air salinitas tinggi pada transek D (stasiun 16, 17, dan 19) dari arah barat laut yang terbawah bersama aliran dari ASH yang menuju pantai barat Sumatera.

Pada gambar 20 secara umum penampang melintang anomali kedalaman dinamik bulan Juli antara stasiun pantai dan arah lepas pantai tidak terlalu signifikan. Aliran massa air permukaan ke tenggara ditemukan pada Stasiun 3-4, 4-5 dan 5-6 (Transek A) dengan kecepatan yang lemah (< 30 cm/dtk) dan menurun seiring kedalaman sampai pada kedalaman 150 meter, sedangkan aliran ke barat laut terjadi pada Stasiun 1-2 dan 2-3 dengan kecepatan kurang dari 45 cm/dtk kondisi ini berkaitan dengan adanya intrusi massa air dari Subtropical Lower Water (STLW) yang masuk ke wilayah studi dari arah barat menuju pantai. Pada Transek B didominasi oleh aliran ke barat laut dengan kecepatan kurang dari 10 cm/dtk, aliran permukaan ke tenggara terlihat pada Stasiun 8-9 dan 10-11 dengan kecepatan yang lemah (< 23 cm/dtk) sampai dengan kedalaman 130 meter, aliran massa air ini berhubung dengan adanya intrusi massa air yang asal dari Equatorial Indian Ocean Water (EIOW), menurut Rochford (1964), massa air ini menyebar di Samudera Hindia antara 10 °LU hingga 10 °LS di mukaan sampai dengan kedalaman 110 meter.
Pada Transek C dibulat Juli (Stasiun 16-17) terlihat kemiringan permukaan kedalaman dinamik ke arah pantai yang cukup tinggi, massa air permukaan bergerak ke baratlaut dengan kecepatan maksimal 60 cm/dtk. Kondisi ini kemungkinan dipengaruhi oleh adanya aliran massa air ke barat (AKS) yang mulai berkembang pada bulan Juli dan biasanya mencapai puncaknya pada bulan Agustus. Massa air permukaan yang bergerak ke tenggara pada bulan Juli dicurahkan pada Stasiun 15-16 dengan kecepatan 22 cm/dtk yang berkembang sampai dengan kedalaman 100 meter (Gambar 22). Pada Transek D terlihat miringan anomali kedalaman dinamik di permukaan pantai ke arah laut sampai kedalaman di atas 100 meter, hal ini terlihat jelas dengan adanya aliran massa air permukaan yang didominasi ke arah tenggara dengan kecepatan maksimum 27 cm/dtk, aliran ini berkembang hingga kedalaman 90 meter (Gambar 24). Massa air permukaan yang bergerak ke tenggara pada transek C dan D berhubungan dengan adanya intrusi massa air salinitas maksimum yang terbawah oleh massa air Subtropical Lower Water (Rochford, 1964).

Identifikasi Massa Air Arus Pantai Barat Sumater (APS)

Pada Gambar 23 Diagram T-S, terlihat massa air lapisan permukaan mempunyai σ_i yang rendah ($\sigma_i = 21-22$) hal ini disebabkan karena rendahnya salinitas permukaan pada bulan Maret, terutama pada stasiun-stasiun dekat Selat Sunda, sedangkan daerah pikniklin berada pada lapisan $\sigma_i = 21,7-26,2$.

Pada bulan Juli lapisan permukaan mempunyai σ_i rendah yaitu 21,4 – 21,7 dengan kondisi yang tidak jauh berbeda dengan bulan Maret, dimana lapisan permukaan mempunyai salinitas yang relatif rendah pada beberapa stasiun terutama pada stasiun-stasiun dekat Selat Sunda, dengan pikniklin berada pada lapisan $\sigma_i = 21,7-26,1$, yang berarti antara bulan Maret dan Juli densitas permukaan dan lapisan pikniklinnya relatif sama.

Pada Gambar 23, diagram T-S bulan Maret menunjukkan di bawah lapisan permukaan ditemukan beberapa lapisan gumbar salinitas maksimum, pada transek (Stasiun 15-19) ditemukan lapisan gumbar dengan salinitas maksimum (> 37,75) dengan suhu di bawah 27 °C, massa air ini menyebar pada kedalaman 71 – 90 meter pada lapisan densitas $\sigma_i = 22,4-24,5$. Menurut Wyrtki (1961) dan

Pada gambar T-S bulan Maret, terlihat di bawah lapisan STLW ditemukan lapisan gumbur lain dengan salinitas maksimum (> 35.0) pada suhu dibawah 18 °C dengan σt 25.3 – 26. Menurut Rochford (1964) massa air dengan karakter seperti ini sama dengan massa air yang berasal dari Laut Arab (Arabian Sea Water atau ASW) yang mempunyai salinitas maksimum (35 – 36.5), yang ditemukan di Samudera Hindia bagian utara pada kedalaman 100 – 200 meter, massa air Laut Arab ini merupakan massa air permukaan (di atas 100 meter) di Laut Arab. Di wilayah studi ASW terlihat pada Stasiun 18 dan 19 (Transek D) pada kedalaman 93 – 177 meter, diduga massa air ini masuk dari arah baratlaut dengan menyusur pantai Sumatera yang kemungkinan terbawah oleh ASH.

Pada gambar T-S bulan Juli, di bawah lapisan ASW terlihat adanya intrusi massa air dengan lapisan gumbar salinitas minimum. Massa air ini ditemukan hampir di semua stasiun pada bulan Juli dengan karakter salinitas minimum antara 35 – 34,9 yang berada pada kedalaman 120 – 230 meter dengan \(\sigma_t \) antara 25,1 – 26,6. Menurut Wyrtki (1961), massa air dengan karakter seperti ini merupakan massa air Salinitas Minimum Bagian Selatan (Southern Salinity Minimum atau SSM), dimana massa air ini mempunyai karakter yang sama dengan massa air dari arah Pasifik dan mempunyai karakter yang sama dengan AKS, massa air ini hanya ditemukan di bagian selatan pada lintang 5°.

Pada bulan Juli SSM ditemukan pada Transek D di Stasiun 18, 19 dan 20 menyebar pada kedalaman 145 – 215 meter dengan \(\sigma_t \) antara 25,4 – 26,4. Pada Transek C ditemukan di Stasiun 16 dan 17 dengan lapisan yang cukup terbentang berada pada kedalaman 122 – 230 meter dengan suhu dibawah 14 °C dan salinitas 34,6 – 34,7 dengan \(\sigma_t \) antara 25,1 – 26,6. Pada Transek B terlihat di semua stasiun (Stasiun 7 – 12) dengan lapisan yang cukup tebal berada pada kedalaman antara 120 – 205 meter dengan suhu dibawah 17 °C dengan salinitas 34,6 – 34,7 dan \(\sigma_t \) antara 25,3 – 26,3. Pada Transek A ditemukan di semua stasiun (kecuali Stasiun 3) pada lapisan kedalaman 124 – 205 meter dengan suhu 16 – 12 °C dengan salinitas antara 34,6 – 34,7 dan \(\sigma_t \) antara 25,3 – 26,3. SSM ini disuk ke wilayah studi dari arah tenggara dan bergerak ke arah barat laut (Wyrtki, 1961). Kondisi ini dapat terlihat jelas pada Gambar 14.

Pada gambar T-S bulan Maret untuk SSM juga ditemukan hampir di semua stasiun dengan lapisan yang lebih tipis dibandingkan pada bulan Juli. Pada Transek D hanya ditemukan pada Stasiun 15 dengan ketebalan 10 meter (154 – 14 meter) dengan suhu dan salinitas 13 °C dan 34,7 dengan \(\sigma_t \) antara 26,2 – 26,3. Pada Transek C terlihat di semua stasiun dengan kedalaman antara 107 – 177 meter dengan salinitas minimum 34,6 – 34,8 dan suhu 16 °C dengan \(\sigma_t \) antara 4 – 26,3. Pada Transek B juga terlihat di semua stasiun pada kedalaman 82

Di bawah lapisan SSM masih ditemukan lapisan gumpal salinitas maksimum (> 34,6) yang terlihat pada lapisan kedalaman 162 hingga 386 meter. Massa air ini datang dari arah barat laut dan masuk ke wilayah studi kemungkinan besar oleh ASH. Menurut Wyrtki (1961) massa air ini memiliki karakter yang sama dengan massa air yang berasal dari Teluk Persia (Persian Gulf Water atau PGW) yang ditemukan di Samudra Hindia pada kedalaman 200 – 400 meter.

Pada bulan Maret PGW ditemukan pada Transek D yang terlihat di semua stasiun dengan kedalaman antara 171 – 386 meter dengan salinitas sekitar 34,9 dan lapisan σ1 antara 26,4 – 26,8. Pada Transek C terlihat pada Stasiun 10 – 13 dengan kedalaman antara 187 hingga 297 meter dengan salinitas 34,8 – 34,9 dan lapisan σ1 antara 26,4 – 26,8. Pada Transek B terlihat di semua stasiun dan berada pada lapisan kedalaman 162 hingga 283 meter dengan salinitas 34,9 dan lapisan σ1 antara 26,4 – 26,7. Pada Transek A hanya terlihat di Stasiun 3 pada kedalaman antara 200 hingga 284 meter dengan salinitas 34,9 dengan σ1 antara 26,5 – 26,7.

Pada bulan Juli PGW hanya ditemukan pada Transek D dan C. Di Transek C terlihat pada Stasiun 18, 20, 21 dan 22 yang berada pada kedalaman 159 hingga 300 meter dengan salinitas 34,9 dan σ1 antara 26,4 – 26,7. Pada Transek C terlihat pada Stasiun 13, 14 dan 15 yang berada pada kedalaman 181 hingga 272 meter dengan salinitas 34,9 dan σ1 antara 26,4 – 26,7. PGW ini terlihat masuk dari arah barat laut wilayah studi yang diduga sampai ke barat Sumatera ikut terbawa bersama ASH. PGW juga terlihat pada bulan Desember 1993 pada kedalaman antara 192 hingga 347 meter dan bulan Oktober 2000 pada kedalaman 195 hingga 53 meter.

Lapisan gumpal salinitas maksimum yang paling dalam terlihat di wilayah ini baik bulan Juli maupun Maret adalah massa air yang teridentifikasi berasal

A. Arus Pantai Barat Sumatera (APS) sebagai Awal APJ

Dari hasil perhitungan kecepatan arus, maka dapat dihitung pula besarnya volume transpor massa air yang dibawa oleh APS sebagai pangkal terbentuknya APJ. Hal ini dapat ditentukan dengan mengidentifikasi pergerakan massa air di sekitar permukaan (0 – 300 dbar) yang bergerak ke tenggara. Perhitungan arus tropik berasumsi bahwa arus ini hanya terjadi di bagian interior samudera yang bebas dari pengaruh angin dan mengabaikan adanya pengaruh gesekan (摩擦). Perbedaan hasil perhitungan pada kecepatan arus akan mengakibatkan perbedaan pula dalam menghitung volume transporinya, karena besarnya volume transpor APJ berbanding lurus dengan nilai kecepatan arusnya.

Berdasarkan Gambar 25, pada bulan Maret transek A Arus Pantai Barat Sumatera (APS) yang dianggap sebagai trigger awal terbentuknya APJ yang bergerak ke tenggara terjadi pada stasiun 5 – 4, terlihat pergerakan ke tenggara sampai kedalaman 11 dbar dengan volume transport 0,031 Sv (1 Sv = 10^6 m^3/dtk) dengan kecepatan maksimum sekitar 6,4 cm/dtk, sedangkan massa air yang ada pada lapisan di bawahnya berubah arah ke baratlaut yang dapat disebabkan oleh adanya perbedaan densitas atau oleh adanya intrusi massa air dengan karakter yang berbeda.

Pada transek B tidak terlihat pergerakan massa air ke tenggara, sedangkan pada transek C massa air permukaan yang bergerak ke tenggara hanya terlihat pada stasiun 14 – 13 sampai dengan kedalaman 50 dbar dengan kecepatan yang tertinggi sekitar 6,5 cm/dtk dan semakin berkurang dengan bertambahnya kedalaman, dan total volume transport yang terbawah adalah 0,11 Sv.

Gambar 25 T-S Diagram. A adalah Daerah Selatan Jawa dengan Kejadian APJ (Gentio, 2006), B adalah Daerah Barat Sumatera Bulan Maret 1990 dengan indikasi Transek A.

Dari Gambar 25 terlihat T-S diagram dengan kejadian APJ di Selatan Jawa (Gambar A) dan T-S diagram di barat Sumatera pada Transek A (Gambar B) mempunyai karakter yang sama dengan suhu hangat (> 27 °C) dan salinitas yang adalah 32,5 – 34. Pada bulan yang sama yaitu bulan Maret-April 1990 Ilahude (1992), menemukan APJ yang mengalir ke timur di sepanjang perairan selatan Jawa yang ditemukan mulai dari Ujung Kulon hingga Blambangan dengan arus sekitar 60 mil pada kedalaman 75 – 200 meter. Hal ini dapat diartikan bahwa APJ yang ditemukan disekitar Ujung Kulon hingga Blambangan mungkin berasal dari APS yang ditemukan penulis di waktu yang sama pada Bulan Maret di sekitar Selat Sunda. Hal ini dapat diperkuat dengan kondisi arus...
yang terjadi di Transek A (104,5998 BT dan 7,0998 LS – 102,8453 BT dan 8,8167 LS) yang dominan bergerak ke tenggara-timur (Gambar 26).

Gambar 26 Kondisi Arus Bulan Maret di sekitar Wilayah Studi.

Pada bulan Juli Transek A terlihat massa air yang bergerak ke tenggara terhadap semua stasiun dan yang berpotensi sebagai APJ adalah antara stasiun 1, 2 – 3, dan 3 – 4 (104,17 BT dan 6,8417 LS hingga 103,386 BT dan 7,575 LS). Hal ini terlihat dari diagram T-S bulan Juli di Transek A (Gambar 24A) yang mempunyai kemiripan dengan diagram T-S di selatan Jawa (Gambar 25A), yaitu kembali antara stasiun dan stasiun 5 – 4 tidak ada indikasi APJ. Antara stasiun 1 terjadi dengan kecepatan yang relative lambat (7,7 cm/dtk) dengan angkut massa air sebanyak 0,034 Sv (0 – 16 dbar). Pada stasiun 3 – 2
kecepatan maksimunnya adalah 6,11 cm/dtk dengan volume transport 0,04 Sv (0 – 16 dbar) pada lapisan di bawahnya pergerakan massa airnya mempunyai pola yang sama dengan stasiu 1 – 2 yaitu ke arah barat laut. Pada stasiun 4 - 3 massa air yang bergerak ke tenggara telihat sampai pada kedalaman 145 dbar dengan kecepatan maksimum 19 cm/dtk dan volume transport 1,30 Sv, sedangkan kedalaman dibawah 150 dbar arahnya berbalik ke barat laut.

Pada transesk C pergerakan ke tenggara hanya terlihat pada stasiun 16 – 15 dengan pergerakan sampai pada kedalaman 112 dbar pada kecepatan 21 cm/dtk dengan volume transport 1,5 Sv, sedangkan pada kedalaman di bawahnya massa air bergerak ke utara dan barat laut. Pada stasiun 15 – 14 (tidak dianggap sebagai Arus) hanya terjadi pada lapisan permukaan saja dengan pergerakan yang sangat lambat (1,6 cm/dtk) dengan volume transport 0,003 Sv, dan lapisan dibawahnya bergerak ke timurlaut-timur dan tenggara.

![Diagram Arusметріческій карты](image)

Skala Vektor:

- 0.1 knot
- 0.5 knot
- 1 knot
- 1.5 knot
- 2 knot

Sumber: Diperoleh dari JOBC

Pembahasan 27 Kondisi Arus Bulan Juli di sekitar Wilayah Studi.

Terjadinya perubahan arah pergerakan massa air pada lapisan kedalaman berbeda-beda dapat disebabkan oleh perbedaan densitas massa air yang jadi karena adanya intrusi massa air dan juga terbentuknya pusat-pusat anomal tekanan rendah maupun tekanan tinggi yang terjadi di beberapa tempat.
Total volume transport terbesar terjadi pada bulan Juli yaitu 2,86 Sv, sedangkan pada bulan Maret sebesar 0,14 Sv. Menurut Quadfasel and Cresswell (1992) bahwa penggerak utama adanya massa air ke arah tenggara adalah penggerak lokal atau local effect seperti angin muson dan curah hujan yang tinggi atau banyaknya masukan air tawar dari daratan (run off) yang menurunkan salinitas perairan pantai, dan penurunan salinitas ini menyebabkan kenaikan gradasi tekanan melintang pantai, sehingga membangkitkan gerakan aliran yang cepat ke arah tenggara.

Walaupun penggerak utama APJ ke arah tenggara adalah angin muson dan penggerak lokal (local effect), namun ada faktor lain yang dapat mempengaruhi perhitungan volume transpor yaitu bidang papar acuan (reference level) yang digunakan untuk menentukan kecepatan arus relatifnya, Ilahude, (1992) menunjukkan bahwa semakin dalam reference level yang digunakan akan semakin pula kecepatan arus geostropiknya sehingga memperbesar jumlah volume transpor massa airnya. Besarnya jumlah volume transpor juga sangat ditentukan lebar dari APJ yang ditemukan, semakin lebar APJ-nya akan semakin besar jumlah volume transpor yang dibawanya.
SIMPULAN DAN SARAN

Simpulan

Pada muson baratlaut, bulan Maret 1991 massa air permukaan yang bergerak ke arah tenggara dengan indikasi APJ ditemukan di dekat Selat Sunda pada posisi 103,087 BT - 8,583 LS dan 100,41 BT - 7,1082 dengan total volume angkutan 0,14 Sv. Pada muson tenggara, bulan Juli 1990 massa air permukaan yang bergerak ke tenggara dengan indikasi APJ ditemukan juga dekat Selat Sunda pada posisi 103,386 - 104,17BT dan 6,8417 - 7,575 LS dan pada posisi 100,428 - 6,2 LS dengan total volume angkutan 2,86 Sv.

Saran

Berdasarkan pembahasan dan kesimpulan di atas dapat disarankan hal-hal berikut:

Membandingkan data/ penelitian terdahulu yang ada di pantai barat Sumatra dan selatan Jawa sehingga dapat dilihat lebih jelas arah pergerakan dari APS (bergerak ke tenggara di barat Sumatra) hingga APJ yang bergerak ke timur di selatan Jawa.
DAFTAR PUSTAKA

Japan Oceanography Data Center, www.jodc.go.jp

Lampiran 1 Jenis-jenis Massa Air di Perairan Barat Sumatera.

<table>
<thead>
<tr>
<th>No.</th>
<th>Posisi</th>
<th>Jenis Massa Air /Lapisan Kedalaman (m)</th>
<th>Longitude</th>
<th>Latitude</th>
<th>EIOW</th>
<th>STLW</th>
<th>ASW</th>
<th>SSM</th>
<th>PGW</th>
<th>RSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104.5998</td>
<td>-7.0998</td>
<td>-</td>
<td>-</td>
<td>95</td>
<td>134</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>104.1623</td>
<td>-7.4500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>101</td>
<td>158</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>103.7455</td>
<td>-7.9000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>107</td>
<td>168</td>
<td>200</td>
<td>284</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>103.3287</td>
<td>-8.3500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>117</td>
<td>173</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>102.8453</td>
<td>-8.8167</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>113</td>
<td>177</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>101.8618</td>
<td>-7.7500</td>
<td>62</td>
<td>82</td>
<td>-</td>
<td>113</td>
<td>160</td>
<td>257</td>
<td>283</td>
<td>529</td>
</tr>
<tr>
<td>7</td>
<td>102.3448</td>
<td>-7.2832</td>
<td>87</td>
<td>95</td>
<td>-</td>
<td>109</td>
<td>136</td>
<td>162</td>
<td>211</td>
<td>560</td>
</tr>
<tr>
<td>8</td>
<td>102.8450</td>
<td>-8.8167</td>
<td>62</td>
<td>75</td>
<td>-</td>
<td>101</td>
<td>148</td>
<td>220</td>
<td>258</td>
<td>590</td>
</tr>
<tr>
<td>9</td>
<td>103.3118</td>
<td>-6.3832</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>82</td>
<td>137</td>
<td>177</td>
<td>273</td>
<td>539</td>
</tr>
<tr>
<td>10</td>
<td>102.0120</td>
<td>-5.5332</td>
<td>58</td>
<td>78</td>
<td>-</td>
<td>111</td>
<td>170</td>
<td>222</td>
<td>283</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>101.5283</td>
<td>-6.0000</td>
<td>66</td>
<td>93</td>
<td>-</td>
<td>113</td>
<td>154</td>
<td>200</td>
<td>290</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>101.0948</td>
<td>-6.4332</td>
<td>74</td>
<td>91</td>
<td>-</td>
<td>113</td>
<td>155</td>
<td>200</td>
<td>297</td>
<td>560</td>
</tr>
<tr>
<td>13</td>
<td>100.6447</td>
<td>-6.8832</td>
<td>76</td>
<td>90</td>
<td>-</td>
<td>107</td>
<td>171</td>
<td>187</td>
<td>283</td>
<td>533</td>
</tr>
<tr>
<td>14</td>
<td>100.1778</td>
<td>-7.3332</td>
<td>70</td>
<td>101</td>
<td>-</td>
<td>119</td>
<td>177</td>
<td>-</td>
<td>-</td>
<td>545</td>
</tr>
<tr>
<td>15</td>
<td>99.3110</td>
<td>-5.9832</td>
<td>71</td>
<td>97</td>
<td>-</td>
<td>154</td>
<td>164</td>
<td>171</td>
<td>290</td>
<td>530</td>
</tr>
<tr>
<td>16</td>
<td>99.7108</td>
<td>-5.5667</td>
<td>96</td>
<td>110</td>
<td>-</td>
<td>-</td>
<td>218</td>
<td>312</td>
<td>578</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>100.0943</td>
<td>-5.1332</td>
<td>64</td>
<td>97</td>
<td>-</td>
<td>-</td>
<td>216</td>
<td>326</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>100.5110</td>
<td>-4.7332</td>
<td>72</td>
<td>91</td>
<td>105</td>
<td>154</td>
<td>-</td>
<td>224</td>
<td>386</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>100.8945</td>
<td>-4.3167</td>
<td>66</td>
<td>89</td>
<td>93</td>
<td>177</td>
<td>-</td>
<td>267</td>
<td>353</td>
<td>-</td>
</tr>
</tbody>
</table>
Lanjutan Lampiran 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Posisi Longitud</th>
<th>Latitude</th>
<th>EIW</th>
<th>STLW</th>
<th>ASW</th>
<th>SSM</th>
<th>PGW</th>
<th>RSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104.3455</td>
<td>-6.6667</td>
<td></td>
<td>96</td>
<td>120</td>
<td></td>
<td>144</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>103.9953</td>
<td>-7.0167</td>
<td></td>
<td>84</td>
<td>121</td>
<td></td>
<td>153</td>
<td>183</td>
</tr>
<tr>
<td>3</td>
<td>103.6112</td>
<td>-7.3832</td>
<td></td>
<td>82</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>103.1618</td>
<td>-7.7667</td>
<td></td>
<td>74</td>
<td>115</td>
<td></td>
<td>127</td>
<td>185</td>
</tr>
<tr>
<td>5</td>
<td>102.7950</td>
<td>-8.1500</td>
<td></td>
<td>78</td>
<td>110</td>
<td></td>
<td>124</td>
<td>205</td>
</tr>
<tr>
<td>6</td>
<td>102.3332</td>
<td>-8.6000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>100.4447</td>
<td>-8.4000</td>
<td>96</td>
<td>84</td>
<td>128</td>
<td>130</td>
<td>149</td>
<td>167</td>
</tr>
<tr>
<td>8</td>
<td>101.0615</td>
<td>-7.7832</td>
<td></td>
<td>65</td>
<td>96</td>
<td></td>
<td>120</td>
<td>191</td>
</tr>
<tr>
<td>9</td>
<td>101.7283</td>
<td>-7.2167</td>
<td></td>
<td>64</td>
<td>100</td>
<td></td>
<td>142</td>
<td>205</td>
</tr>
<tr>
<td>10</td>
<td>102.3952</td>
<td>-6.6332</td>
<td>71</td>
<td>100</td>
<td>102</td>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>102.9453</td>
<td>-6.1667</td>
<td>87</td>
<td>93</td>
<td>94</td>
<td>115</td>
<td>128</td>
<td>205</td>
</tr>
<tr>
<td>12</td>
<td>103.5288</td>
<td>-5.5832</td>
<td></td>
<td>73</td>
<td>127</td>
<td></td>
<td>138</td>
<td>171</td>
</tr>
<tr>
<td>13</td>
<td>101.5613</td>
<td>-5.1832</td>
<td></td>
<td>74</td>
<td>100</td>
<td>100</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>101.2278</td>
<td>-5.5500</td>
<td></td>
<td>69</td>
<td>110</td>
<td></td>
<td></td>
<td>181</td>
</tr>
<tr>
<td>15</td>
<td>100.7943</td>
<td>-6.0000</td>
<td>76</td>
<td>97</td>
<td>98</td>
<td>108</td>
<td>110</td>
<td>122</td>
</tr>
<tr>
<td>16</td>
<td>100.0610</td>
<td>-6.4000</td>
<td></td>
<td>67</td>
<td>90</td>
<td></td>
<td>161</td>
<td>230</td>
</tr>
<tr>
<td>17</td>
<td>99.8778</td>
<td>-6.9000</td>
<td></td>
<td>83</td>
<td>110</td>
<td></td>
<td>122</td>
<td>179</td>
</tr>
<tr>
<td>18</td>
<td>98.5107</td>
<td>-5.9832</td>
<td>59</td>
<td>88</td>
<td>57</td>
<td>98</td>
<td>106</td>
<td>132</td>
</tr>
<tr>
<td>19</td>
<td>98.9442</td>
<td>-5.5667</td>
<td>73</td>
<td>84</td>
<td>65</td>
<td>114</td>
<td>118</td>
<td>138</td>
</tr>
<tr>
<td>20</td>
<td>99.3610</td>
<td>-5.1667</td>
<td></td>
<td>64</td>
<td>110</td>
<td></td>
<td>151</td>
<td>167</td>
</tr>
<tr>
<td>21</td>
<td>99.7612</td>
<td>-4.7332</td>
<td></td>
<td>100</td>
<td>107</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>100.6115</td>
<td>-3.8667</td>
<td></td>
<td></td>
<td></td>
<td>118</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>
Lanjutan Lampiran 1.

Tabel 2. Jenis Massa Air di Perairan Barat Sumatera pada Bulan Desember 1993

<table>
<thead>
<tr>
<th>No.</th>
<th>Posisi</th>
<th>Jenis Massa Air /Lapisan Kedalaman (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longitude</td>
<td>Latitude</td>
</tr>
<tr>
<td>1</td>
<td>99.7500</td>
<td>-2.8332</td>
</tr>
<tr>
<td>2</td>
<td>99.3775</td>
<td>-3.1332</td>
</tr>
<tr>
<td>3</td>
<td>99.0108</td>
<td>-3.4667</td>
</tr>
<tr>
<td>4</td>
<td>98.6107</td>
<td>-3.7832</td>
</tr>
<tr>
<td>5</td>
<td>98.1105</td>
<td>-4.2167</td>
</tr>
<tr>
<td>6</td>
<td>96.7267</td>
<td>-2.7832</td>
</tr>
<tr>
<td>7</td>
<td>97.2435</td>
<td>-2.3500</td>
</tr>
<tr>
<td>8</td>
<td>97.6270</td>
<td>-2.0332</td>
</tr>
<tr>
<td>9</td>
<td>98.0105</td>
<td>-1.7185</td>
</tr>
<tr>
<td>10</td>
<td>98.3772</td>
<td>-1.4000</td>
</tr>
</tbody>
</table>
Lanjutan Lampiran 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Posisi</th>
<th>Jenis Massa Air /Lapisan Kedalaman (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longitude</td>
<td>Latitude</td>
</tr>
<tr>
<td>1</td>
<td>105.0072</td>
<td>-6.0165</td>
</tr>
<tr>
<td>2</td>
<td>104.8768</td>
<td>-6.5315</td>
</tr>
<tr>
<td>3</td>
<td>104.3550</td>
<td>-6.7362</td>
</tr>
<tr>
<td>4</td>
<td>104.1175</td>
<td>-7.0880</td>
</tr>
<tr>
<td>5</td>
<td>103.8295</td>
<td>-7.5105</td>
</tr>
<tr>
<td>6</td>
<td>103.3475</td>
<td>-7.0115</td>
</tr>
<tr>
<td>7</td>
<td>103.7003</td>
<td>-6.4721</td>
</tr>
<tr>
<td>8</td>
<td>103.9328</td>
<td>-6.0792</td>
</tr>
<tr>
<td>9</td>
<td>104.1522</td>
<td>-5.7795</td>
</tr>
</tbody>
</table>
Lampiran 2 Lokasi APJ di Barat Sumatera Bulan Desember 1993

Diagram menunjukkan sedang atau keluar karya tuli ini tanpa merancun dan melarutkan karya tuli ini dalam bentuk asap tanpa zip PB.

Hak Cipta Dilindungi Undang-Undang

Bogor Agricultural University
Lampiran 4 Tabel Volume Angkutan dalam Sv (1 Sv = 10⁶ m³/dtk) APJ di Barat Sumatera.

<table>
<thead>
<tr>
<th>Waktu</th>
<th>Stasiun</th>
<th>Posisi</th>
<th>Kecepatan, (cm/dtk)</th>
<th>Vol. Angkutan, (Sv)</th>
<th>Kedalaman (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Longitude</td>
<td>Latitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maret, 1991</td>
<td>St 5 - 4</td>
<td>103.087</td>
<td>-8.58335</td>
<td>6.44</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>St 14 - 13</td>
<td>100.411</td>
<td>-7.1082</td>
<td>3.73</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>Juli, 1990</td>
<td>St 2 - 1</td>
<td>104.17</td>
<td>-6.8417</td>
<td>7.67</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>St 3 - 2</td>
<td>103.803</td>
<td>-7.19995</td>
<td>6.11</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>St 4 - 3</td>
<td>103.386</td>
<td>-7.57495</td>
<td>18.81</td>
<td>1.301</td>
</tr>
<tr>
<td></td>
<td>St 16 - 15</td>
<td>100.428</td>
<td>-6.2</td>
<td>20.75</td>
<td>1.488</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>2.86</td>
</tr>
<tr>
<td>Desember, 1993</td>
<td>St 3 - 2</td>
<td>99.1942</td>
<td>-3.29995</td>
<td>33.69</td>
<td>1.392</td>
</tr>
<tr>
<td></td>
<td>St 5 - 4</td>
<td>98.3606</td>
<td>-3.99995</td>
<td>113.72</td>
<td>6.557</td>
</tr>
<tr>
<td></td>
<td>St 6 - 7</td>
<td>96.9851</td>
<td>-2.5666</td>
<td>95.56</td>
<td>8.366</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>16.315</td>
</tr>
<tr>
<td>Oktober, 2000</td>
<td>St 5 - 4</td>
<td>103.973</td>
<td>-7.29926</td>
<td>102.02</td>
<td>3.962</td>
</tr>
<tr>
<td></td>
<td>St 6 - 7</td>
<td>103.524</td>
<td>-6.7418</td>
<td>53.67</td>
<td>3.176</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>7.138</td>
</tr>
<tr>
<td>No.</td>
<td>Waktu</td>
<td>Posis</td>
<td>BAT (m)</td>
<td>BAB (m)</td>
<td>Tebal (m)</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Longitude</td>
<td>Latitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Maret, 1991</td>
<td>104.5998</td>
<td>-7.0998</td>
<td>54</td>
<td>128</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>104.1623</td>
<td>-7.4500</td>
<td>45</td>
<td>173</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>103.7455</td>
<td>-7.9000</td>
<td>37</td>
<td>170</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>103.3287</td>
<td>-8.3500</td>
<td>46</td>
<td>172</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>102.8453</td>
<td>-8.8167</td>
<td>35</td>
<td>169</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>101.8618</td>
<td>-7.7500</td>
<td>54</td>
<td>146</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>102.3448</td>
<td>-7.2832</td>
<td>50</td>
<td>170</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>102.8450</td>
<td>-6.8167</td>
<td>27</td>
<td>165</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>103.3118</td>
<td>-6.3832</td>
<td>52</td>
<td>164</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>102.0120</td>
<td>-5.5332</td>
<td>36</td>
<td>149</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>101.5283</td>
<td>-6.0000</td>
<td>36</td>
<td>170</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>101.0948</td>
<td>-6.4332</td>
<td>50</td>
<td>151</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>100.6447</td>
<td>-6.8832</td>
<td>54</td>
<td>173</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>100.1778</td>
<td>-7.3332</td>
<td>53</td>
<td>174</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>99.3110</td>
<td>-5.9832</td>
<td>35</td>
<td>154</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>99.7108</td>
<td>-5.5667</td>
<td>47</td>
<td>181</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>100.0943</td>
<td>-5.1332</td>
<td>51</td>
<td>137</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>100.5110</td>
<td>-4.7332</td>
<td>48</td>
<td>167</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>100.8945</td>
<td>-4.3167</td>
<td>38</td>
<td>179</td>
</tr>
<tr>
<td>20</td>
<td>Juli, 1990</td>
<td>104.3455</td>
<td>-6.6667</td>
<td>78</td>
<td>151</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>103.9953</td>
<td>-7.0167</td>
<td>65</td>
<td>163</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>103.6112</td>
<td>-7.3832</td>
<td>64</td>
<td>178</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>103.1618</td>
<td>-7.7667</td>
<td>60</td>
<td>190</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>102.7950</td>
<td>-8.1500</td>
<td>55</td>
<td>163</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>102.3332</td>
<td>-8.6000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>100.4447</td>
<td>-8.4000</td>
<td>46</td>
<td>217</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>101.0615</td>
<td>-7.7832</td>
<td>59</td>
<td>181</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>101.7283</td>
<td>-7.2167</td>
<td>61</td>
<td>177</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>102.3952</td>
<td>-6.6332</td>
<td>58</td>
<td>162</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>102.9453</td>
<td>-6.1667</td>
<td>58</td>
<td>169</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>103.5288</td>
<td>-5.5832</td>
<td>58</td>
<td>184</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>101.5613</td>
<td>-5.1832</td>
<td>50</td>
<td>186</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>101.2278</td>
<td>-5.5500</td>
<td>53</td>
<td>169</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>100.7943</td>
<td>-6.0000</td>
<td>65</td>
<td>172</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>100.0610</td>
<td>-6.4000</td>
<td>53</td>
<td>177</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>99.8778</td>
<td>-6.9000</td>
<td>57</td>
<td>170</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>98.5107</td>
<td>-5.9832</td>
<td>43</td>
<td>217</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>98.9442</td>
<td>-5.5667</td>
<td>55</td>
<td>183</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>99.3610</td>
<td>-5.1667</td>
<td>72</td>
<td>180</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>99.7612</td>
<td>-4.7332</td>
<td>81</td>
<td>179</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>100.6115</td>
<td>-3.8667</td>
<td>-</td>
<td>154</td>
</tr>
<tr>
<td>No.</td>
<td>Waktu</td>
<td>Posis</td>
<td>BAT (m)</td>
<td>BAB (m)</td>
<td>Tebal (m)</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>42</td>
<td>Desember, 1993</td>
<td>99.7500</td>
<td>-99.7500</td>
<td>113</td>
<td>217</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>99.3775</td>
<td>-99.3775</td>
<td>103</td>
<td>197</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>99.0108</td>
<td>-99.0108</td>
<td>103</td>
<td>216</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>98.6107</td>
<td>-98.6107</td>
<td>118</td>
<td>203</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>98.1105</td>
<td>-98.1105</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>96.7267</td>
<td>-96.7267</td>
<td>87</td>
<td>184</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>97.2435</td>
<td>-97.2435</td>
<td>113</td>
<td>203</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>97.6270</td>
<td>-97.6270</td>
<td>111</td>
<td>223</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>98.0105</td>
<td>-98.0105</td>
<td>117</td>
<td>221</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>98.3772</td>
<td>-98.3772</td>
<td>112</td>
<td>194</td>
</tr>
</tbody>
</table>

- Lanjutan Lampiran 7
Lampiran 8 Peta Topografi Kedalaman Dinamik (0 - 150 m) Bulan Maret 1991.
Peta Topografi Kedalaman Dinamik (0 - 150 m) Bulan Juli 1990.