3. PENDEKATAN TEORETIK

1. Reaksi Pengomposan

1.1. Dinamika Reaksi Kimia Pengomposan

![Diagram Reaksi Pengomposan](image)

Gambar 2 Bagan Penguraian Bahan Organik Menjadi Kompos (Dalzell et al., 1987)

Reaksi kimia penguraian bahan organik kelompok karbohidrat terutama glukosa dan selulosa dituliskan sebagai berikut:

- Selulosa + O₂ → Selobiosa (2 unit gula)
- Selobiosa + O₂ → Mikroorganisme dan enzim selulase
- Mikroorganisme dan enzim b.glukosidase
- Glukosa dalam reaksi berikutnya

- Glukosa + O₂ → 2 Piruvat + 2 ATP + 2NADH₂
- Piruvat + NADH₂ → Etanol + CO₂
- Piruvat → 3CO₂ + ATP + (14/3) NADH₂
- 0.68 Glukosa + 0.17 Piruvat + NH₃ + 14.7 ATP → C₅₆H₁₀₆O₃₃N
Reaksi penguraian karbohidrat secara umum dituliskan:

\[(\text{CHO}) + O_2 + NH_3 \rightarrow CO_2 + H_2O + \text{sel mikroorganisme} + \text{Energi} \]

mikroorganisme aerob dan enzim

Reaksi kimia pada pengomposan bahan organik kelompok protein dituliskan:

\[\text{Protein (N-organik)} \rightarrow \text{NH}_4^+ \]
\[\text{NH}_4^+ + O_2 \rightarrow \text{NO}_2^- + H_2O + \text{Energi} \]
\[\text{NO}_2^- + O_2 \rightarrow \text{NO}_3^- + \text{Energi} \]

Bach et al. (1987) menuliskan persamaan stoikiometri reaksi kimia penguraian bahan organik secara global. Karbohidrat, protein dan lemak dengan unsur utama C, H, O dan N pada pengomposan secara aerob sebagai berikut:

\[C_{6}H_{10}O_{5}N_{3} + eO_{2} \rightarrow fCO_{2} + gH_{2}O + h'NH_{3} + Ck'H_{m}O_{n}N_{o} + Q_{r} \ (3.1) \]

Substrat mikroorganisme selulotik, lignolitik kompos

Roig et al., 1993 merumuskan reaksi untuk amonia sebagai berikut:

\[2\text{NH}_3 + 3O_2 \rightarrow 2\text{HNO}_2 + 2H_2O + Q_r \ (3.2) \]

bakteri nitrosomonas

\[\text{HNO}_2 + \frac{1}{2}O_2 \rightarrow \text{HNO}_3 + Q_r \ (3.3) \]

Bakteri pengoksidas nitrogen

Sampah organik dengan rumus kimia \(C_{6}H_{10}O_{5}N_{3} \) mikroorganisme pengurai, dan kompos dengan rumus kimia \(C_{k}H_{m}O_{n}N_{o} \). Dari reaksi kimia tersebut menurut Bach et al. (1987) jumlah karbon dalam kompos yang dihasilkan adalah \((1 - X_c) \),
dengan konversi karbon oleh reaksi. Persamaan koefisien-koefisien reaksi kimia pengomposan ditulis:

\[e = \frac{(2f + g + n - c)}{2} \]

\[f = a - k' \]

\[g = \frac{b - m - 3h}{2} \]

\[h' = d - o \]

Menurut Vinierega dan González, (1998); Nakasaki et al., 1987c produksi karbon dioksida dari fermentasi limbah padat dirumuskan

\[\text{R}_{\text{CO}_2} = \text{Yrs x Rx + m' X} \]

Nilai Yrs x Rx adalah jumlah karbon dioksida yang digunakan untuk perkembangbiakan mikroorganisme, sedangkan nilai m' X adalah jumlah mol karbon dioksida untuk pemeliharaan sel mikroorganisme pada fase stasioner dan kematian. Nilai Yrs sebesar \(10^{-10} \) sampai \(10^{-11} \) mol set\(^{-1} \) jam\(^{-1} \), m' pada fase stasioner \(10^{-14} \) mol set\(^{-1} \) jam\(^{-1} \) sampai \(10^{-17} \) mol set\(^{-1} \) jam\(^{-1} \) dan fase kematian m' arganya \(10^{-16} \) sampai \(10^{-18} \) mol set\(^{-1} \) jam\(^{-1} \). Nilai f disubtitusikan pada persamaan (3.8), menjadi:

\[f = \text{R}_{\text{CO}_2} \]

Laju konsumsi oksigen untuk reaksi pengomposan dituliskan Nakasaki et al. (1987c) dengan persamaan:

\[\text{R}_{\text{O}_2} = \frac{\text{R}_{\text{CO}_2}}{RQ} \]

RQ adalah respirasi rata-rata dan sebagai fungsi suhu. Harga RQ masing-masing 0,5, 0,55, 0,65, 0,71, dan 0,79 untuk suhu 37 °C, 46 °C, 56 °C, 62 °C dan 70 °C. Pada awal reaksi \(\text{R}_{\text{CO}_2} \) diberikan harga \(1 \times 10^{-7} \) mol CO\(_2\) jam\(^{-1} \) g\(^{-1}\) kompos ring.

Dari persamaan (3.10), maka jumlah mol oksigen yang dibutuhkan dalam reaksi pengomposan (e) adalah:

\[e = \text{R}_{\text{O}_2} \]

Hasil penelitian Nakasaki et al., 1987c berat air hasil reaksi pengomposan man organik padat berkorelasi dengan jumlah mol CO\(_2\). Hubungan tersebut dirumuskan:

\[\text{R}_{\text{H}_2\text{O}} = \gamma \cdot \text{R}_{\text{CO}_2} \]
Nilai γ adalah 15, sehingga jumlah mol air hasil reaksi pengomposan (g) adalah:

\[g = \frac{R_{\text{H}_2\text{O}}}{BM_{\text{H}_2\text{O}}} \]
(3.13)

Didalam proses pengomposan bahan organik padat sebagian besar berupa daun dan sedikit bahan makanan. Unsur nitrogen dalam limbah tersebut sangat kecil, oleh sebab itu besarnya NH₃ hasil reaksi dapat diabaikan. Dengan asumsi NH₃ sangat kecil, maka persamaan (3.6) menjadi:

\[g = \frac{b - m}{2} \]
(3.14)

dan persamaan (3.7) menjadi:

\[d = 0 \]
(3.15)

Substitusi persamaan (3.9) pada persamaan (3.5) didapatkan persamaan (3.16) berikut:

\[k' = a - f. \]
(3.16)

Substitusi persamaan (3.13) pada persamaan (3.14) didapatkan persamaan (3.17):

\[m = b - 2g \]
(3.17)

Substitusi persamaan (3.9), persamaan (3.11), dan persamaan (3.13) pada persamaan (3.4) didapatkan persamaan (3.18):

\[n = 2e + c - 2f - g \]
(3.18)

dan

\[\chi c = \frac{f}{a} \]
(3.19)

Ratio karbon nitrogen atau C/N dirumuskan:

\[\frac{C}{N} = \frac{12k'}{140} \]
(3.20)

1.1.2. Dinamika Populasi Mikroorganisme

Jumlah mikroorganisme didalam proses fermentasi termasuk pengomposan menurut Birol et al. (2002) mengalami peningkatan. Peningkatan populasi mikroorganisme dituliskan:

\[X_t = X_{t-1} e^{\mu t} \]
(3.21)

engan harga \(\mu(t) \) untuk fase logaritmik, fase laju menurun, fase stasioner dan fase stagnan kapang dan bakteri dari hasil percobaan pendahuluan dirumuskan pada.
persamaan (3.22) s/d (3.28). Laju perkembangbiakan bakteri dan kapang pada fase logaritmik dirumuskan:

$$\mu_b = 0.203 \times e^{0.5675t}$$ \hspace{1cm} (3.22)
$$\mu_k = 0.1095 \times e^{0.7585t}$$ \hspace{1cm} (3.23)

Laju perkembangbiakan bakteri dan kapang pada fase laju menurun dirumuskan:

$$\mu_b = 6.3219 \times e^{-0.251t}$$ \hspace{1cm} (3.25)
$$\mu_k = 14.903 \times e^{-0.421t}$$ \hspace{1cm} (3.26)

Pada fase stasioner harga μ_b dan μ_k adalah nol, sedangkan untuk fase kematian dirumuskan:

$$\mu_b = 10 / (-14. - 126.3 \times 0.733^{t-1})$$ \hspace{1cm} (3.27)
$$\mu_k = 10 / (-14. - 126.3 \times 0.733^{t-1})$$ \hspace{1cm} (3.28)

3.2. Pindah Massa Pada Reaksi Pengomposan

Laju produksi karbon dioksida dan konsumsi oksigen pada reaksi kimia pengomposan didekati dengan persamaan:

$$R_{CO_2} = \left(D_x \cdot \frac{\partial C_{CO_2}}{\partial x} + D_t \cdot \frac{\partial C_{CO_2}}{\partial t} \right) \frac{1}{BM_{CO_2}}$$ \hspace{1cm} (3.29)

dan harga R_{O_2} dirumuskan:

$$R_{O_2} = \left(D_t \cdot \frac{\partial C_{O_2}}{\partial t} + D_x \cdot \frac{\partial C_{O_2}}{\partial x} \right) \frac{1}{BM_{O_2}}$$ \hspace{1cm} (3.30)

$$R_{H_2O} = \left(D_t \cdot \frac{\partial C_{H_2O}}{\partial t} + D_x \cdot \frac{\partial C_{H_2O}}{\partial x} \right) \frac{1}{BM_{H_2O}}$$ \hspace{1cm} (3.31)

Sampah organik merupakan media poros yang terdiri dari padatan, dan udara yang mengandung uap air. Padatan terdiri dari bahan organik padat dan mikroorganisme, sedangkan udara terdiri dari gas O_2, N_2, CO_2, dan uap air (H_2O). Uap air menempati pori-pori massa sampah organik. Massa sampah organik mengalami penyebaran akibat reaksi kimia pengomposan. Berdasarkan neraca massa pada reaksi kimia, maka perubahan massa sampah organik dirumuskan dengan persamaan (3.32):

$$\frac{\partial m_x}{\partial t} = (R_{CO_2} + R_X + R_{H_2O} - R_{O_2})m_s$$ \hspace{1cm} (3.32)
3.3. Pindah Panas Pada Proses Pengomposan

Panas yang dihasilkan dalam pengomposan sesuai dengan hasil penelitian Nakasaki et al. (1987) yaitu:

\[Q_t = Q_w + Q_a + Q_i \]
(3.33)

Panas reaksi didekati dengan modifikasi persamaan yang dikembangkan Nakasaki et al. (1987).

\[Q_t = \frac{R_{O_2} Q_o}{C_p} \]
(3.34)

Nilai \(Q_o \) adalah 106 k.kal/mol-O$_2$.

Panas yang dibuang lewat aliran udara keluar sistem, dihitung dengan persamaan:

\[Q_i = h.A.(T_s - T_a) \]
(3.35)

Panas untuk menaikan suhu atau \(Q_a \) adalah:

\[Q_a = m_a C_p_a \Delta T_s \]
(3.36)

Sedangkan panas untuk menguapkan air atau \(Q_w \) didekati dengan persamaan:

\[Q_w = \frac{R_{H_2O} h_{tg}}{C_p} \]
(3.37)

Neraca energi pada media poros sistem dua dimensi dituliskan dalam persamaan:

\[\nabla_x \frac{\partial T_x}{\partial x} + \nabla_T \frac{\partial T_s}{\partial x} = \frac{h(T_s - T_w)}{\rho_T(C_p_T + H.C_v)} \]
(3.38)

Suhu material padat pada sistem dua dimensi didekati dengan persamaan neraca energi mengikuti persamaan Fourier's. Pembentukan energi akibat reaksi kimia pada sistem pengomposan sebesar \(Q_n \), dan energi yang dihasilkan menyebabkan perubahan suhu. Apabila harga \(k \) dan \(\rho_S \) diasumsikan tetap, dan harga \(-\frac{\partial (1-\varepsilon)}{\partial x} = 0\), maka persamaan neraca panas sebagai berikut:

\[\alpha = \frac{k}{\rho_S C_p_s} \]
(3.39)

\[\frac{\partial T_s}{\partial t} = \alpha \frac{\partial^2 T_s}{\partial x^2} + \alpha \frac{\partial^2 T_s}{\partial T_s^2} + Q_t - Q_w \]
(3.40)