EFEKTIFITAS ARANG AKTIF KAYU SENGON
(Vitex falcatoria L. Nielsen) DAN TEMPURUNG KELAPA
(Cocos nucifera L.) UNTUK PEMURNIAN MINYAK GORENG BEKAS

OLEH:

SUWILIN

DEPARTEMEN HASIL HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR

2007
Sawitlin, E24102014, “Pembuatan Arang Aktif kayu Sengon (Paraserianthes falcatoria L. Nielsen) dan Tempurung Kelapa (Cocos nucifera L.) untuk Pemurnian Minyak Goreng Bekas”. Di bawah bimbingan Prof. Dr. Ir. Kurnia Sofyan, MS dan Dr. Gustian Hariadi, Msi, APUI.

RINGKASAN

Kebutuhan arang aktif bagi sebagian besar industri dunia diduga dari tahun ke tahun semakin meningkat. Peningkatan tersebut dipengaruhi oleh meningkatnya permintaan industri diberbagai bidang, baik dibatang pangan non maupun pangan yang menggunakan arang aktif sebagai bahan utama dalam proses produksinya. Arang aktif dapat dibuat dari semua bahan yang mengandung karbon baik organik maupun anorganik dengan syarat bahan tersebut memiliki sifat pori-pori. Kayu dan batu bara muda biasa digunakan untuk membuat arang aktif sebagai bahan pemucat minyak makan (Sudrajat dan Salim, 1994). Dalam rangka efisiensi dan peningkatan pemanfaatan potensi bahan baku lebih lanjut, pembuatan arang aktif dari limbah kayu sengon (Paraserianthes falcatoria L. Nielsen) berupa potongan batu, cabang serta ranting dan tempurung kelapa (Cocos nucifera) perlu dilakukan lebih mendalam sehingga mengubah pemanfaatannya untuk pemanfaatan kebutuhan arang aktif dapat terus ditingkatkan.

Tujuan penelitian ini adalah membuat arang aktif dari bahan baku kayu sengon dan tempurung kelapa serta menguji kualitasnya, menguji kemampuan daya serap terhadap berbagai senyawa gas dari arang aktif tersebut sehingga diketahui efektifitasnya, dan menguji arang aktif kayu sengon dan tempurung kelapa dalam pemurnian minyak goreng bekas. Manfaat dari penelitian ini adalah untuk mengetahui efektivitas adsorpsi terhadap senyawa dari arang aktif kayu sengon dan tempurung kelapa dalam pemurnian minyak goreng bekas.

Bahan baku untuk arang yang digunakan dalam penelitian ini adalah kayu sengon yang diperoleh dari hasil pembuahan kayu rakyat daerah Cibeung Udik, Bogor, Jawa Barat dan berbagai perbandingan digunakan arang tempurung kelapa yang dibuat dengan pengaturan suhu kritis yang sama. Arang aktif yang dihasilkan diaplikasikan untuk pemurnian minyak goreng bekas yang diperoleh dari pedagang ‘gorengan’ Kampus Dalam IPB, Bogor. Untuk menelaah data kualitas arang aktif kayu sengon dan tempurung kelapa hasil percobaan, digunakan rancangan percobaan acak lengkap (RAL) berpola faktorial 2x2x5 dengan dua ulangan. Uji lanjut yang digunakan adalah uji jarak Tukey atau Beda Nyara Jujur (BNJ). Hasil analisa data dengan menggunakan program komputer SAS Version 6.12 menunjukkan bahwa sebagian besar interaksi berpengaruhi nyata terhadap respon yang diukur, meskipun tidak seluruhnya.

Penelitian dilakukan dalam beberapa tahap, yaitu analisa terhadap komponen kimia, pembuatan arang, pembuatan arang aktif, dan diaplikasikan dalam pemurnian minyak. Hasil analisa komponen kimia menunjukkan bahwa kayu sengon dan tempurung kelapa dapat dimanfaatkan sebagai bahan baku arang aktif.

Proses karbonisasi dilakukan terhadap bahan baku kayu sengon dan tempurung kelapa pada suhu ≥ 400°C sebelum aktivasi. Arang kayu sengon dan tempurung kelapa menghasilkan rendemen untuk kapasitas full pada tungku berbentuk drum dengan bobot 50 kg berbentuk antara 20-25 %. Rendemen yang tidak terlalu tinggi ini disebabkan karena bahan baku yang digunakan berbentuk kayu solid yang memiliki berat jenis rata-rata yang rendah sekitar 0.33 (memiliki bobot yang besar) pada kayu sengon dan berbentuk pecahan kecil pada tempurung kelapa dengan kadar karbon serabut cukup tinggi. Ukuran kedua bahan yang diangkut dalam bentuk partikel kecil tersebut dapat meningkatkan pembentukan abu. Semakin banyak abu yang dihasilkan dalam proses karbonisasi menyebabkan nilai rendemen menjadi semakin rendah.

Arang aktif kedua jenis bahan dibuat dalam retort dengan kapasitas 300 gram. Selanjutnya dilakukan penggalian terhadap 12 sifat kualitas arang aktif kayu sengon dan tempurung kelapa. Enam kualitas arang aktif tersebut diantarnya adalah kadar air dengan hasil masing-masing berkisar antara 4.72-14.50 % dan 3.68-6.59 %, kadar zat terbang masing-masing berkisar antara 12.8-16.10 % dan 8.58-14.49 %, kadar abu masing-masing berkisar 6.70-12.47 % dan 5.76-18.73 %, kadar karbon teristik masing-masing berkisar antara 64.61-78.55 % dan 66.77-83.55 %, daya sorbasi masing-masing berkisar antara 388.24-940.68 mg/g dan 316.30-984.92 mg/g, dan daya serap benzena masing-masing berkisar antara 11.55-22.58 % dan 10.37-21.29 % yang mengikuti pada standar mutu yang ada dalam SNI (Standard Nasional Indonesia). Hasil analisa
terhadap kualitas arang aktif hasil percoaban menunjukkan bahwa arang aktif yang dihasilkan memenuhi SNI (Standard Nasional Indonesia), kecuali pada daya serap benzena. Enam sifat kualitas arang aktif yang belum terdapat dalam SNI adalah daya serap formalin untuk arang aktif kayu sengon dan tempurung kelapa masing-masing berkisar antara 0.011-0.615 % dan 0.38-3.88 %, daya serap kloroform masing-masing berkisar antara 0.34-3.17 % dan 0.34-3.17 %, daya serap metanol masing-masing berkisar antara 0.50-1.52 % dan 0.50-1.52 %, daya serap kapler masing-masing berkisar antara 0.60-1.61 % dan 0.60-1.61 %, daya serap UF masing-masing berkisar antara 0.50-1.52 % dan 0.50-1.52 %, dan kadar pH masing-masing berkisar antara 9.41-9.57 % dan 9.41-9.57 %.

Pengujian enam sifat tersebut dilakukan untuk memberikan gambaran kemampuan arang aktif kedua jenis bahan dalam menyerap gas/ujap berbagai senyawa.

Arang aktif yang digunakan dalam pemurnian minyak goreng bekas adalah arang aktif kayu sengon dengan suhu 750°C selama 190 menit (a₁b₁c₁) dan suhu 850°C selama 210 menit (a₁b₂c₁) serta arang aktif tempurung kelapa dengan suhu 750°C selama 210 menit (a₁b₁c₂) dan suhu 850°C selama 210 menit (a₁b₂c₂).

Arang aktif kayu sengon pada suhu aktivasi 750°C selama 190 menit (a₁b₁c₁) dan suhu 850°C selama 210 menit (a₁b₂c₁) dengan kadar air masing-masing 14.18 % dan 10.58 % serta pH 9.60 dan 9.71, walaupun keduau memiliki kadar abu yang cukup besar, arang aktif kayu sengon pada suhu aktivasi 750°C selama 190 menit (a₁b₁c₁) memiliki nilai tertinggi pada hampir semua indikator kualitas, yaitu daya serap iodin, benzena, formalin, kloroform, metanol, kapler dan pH. Sementara pada suhu 850°C selama 210 menit (a₁b₂c₁) memiliki nilai tertinggi pada indikator kualitas daya serap iodin, benzena, kloroform dan pH. Sedangkan untuk arang aktif tempurung kelapa dengan suhu aktivasi 750°C selama 210 menit (a₁b₁c₂) dan suhu 850°C selama 190 menit (a₁b₂c₂) dengan kadar air masing-masing 5.19 % dan 5.88 %, pH 9.54 dan 9.44 serta kadar abu 8.99 % dan 15.03 % memiliki indikator kualitas tertinggi. Arang tempurung kelapa pada suhu 750°C selama 210 menit (a₁b₁c₂) memiliki nilai tertinggi pada semua indikator kualitas, yaitu daya serap iodin, benzena, formalin, kloroform, metanol, kapler, UF dan pH. Sementara pada suhu 850°C selama 190 menit (a₁b₂c₂) memiliki nilai tertinggi pada indikator kualitas daya serap iodin, benzena, formalin, kapler dan pH.

Berdasarkan hasil pengujian kualitas minyak dan analisa statistik terhadap kedua jenis bahan (arang aktif kayu sengon dan tempurung kelapa) menunjukkan bahwa secara umum mempunyai pengaruh yang beragam terhadap seluruh indikator kualitas yang diuji. Dalam pemurnian minyak, indikator utama yang digunakan adalah bilangan asam, untuk arang aktif kayu sengon dan tempurung kelapa masing-masing berkisar antara 400-0.444 dan 400-0.521, dan bilangan peroksida masing-masing berkisar antara 0.500-1.299 dan 0.450-0.757.

Sedangkan untuk indikator pendukung lain yang diukur adalah bilangan penyabunan dengan kisaran masing-masing 133.885-174.438 dan 133.885-182.064, dan bilang ester masing-masing berkisar antara 133.485-174.177 dan 133.485-181.592. Kombinasi perlakuan yang menghasilkan bilangan asam dan bilangan peroksida optimum untuk arang aktif kayu sengon adalah pada suhu 850°C selama 190 menit (a₁b₁d₁) sebesar 0.261, meskipun nilainya tidak jauh berbeda dengan perlakuan yang lainnya. Sementara untuk jenis tempurung kelapa sebagian besar penambahan arang aktif di atas 2 % cenderung menaikkan bilangan asam dan bilangan peroksida. Sedangkan untuk bilangan penyabunan dan bilangan ester penambah arang aktif kayu sengon sebagian besar cenderung menaikkan kedua bilangan tersebut bila dibandingkan dengan arang aktif tempurung kelapa.

Dari keseluruhan aplikasi dapat dikatakan bahwa pemurnian minyak goreng bekas dengan arang aktif kayu sengon memberikan kemampuan daya serap yang lebih baik dibandingkan dengan arang aktif tempurung kelapa, meskipun tidak memberikan perbedaan yang cukup signifikan antar variasi konsentrasi. Namun demikian sebenarnya arang aktif dari jenis kayu sengon dan tempurung kelapa kurang efektif untuk dijadikan bahan penyaring senyawa berbentuk cairan. Selain itu, cairan efektif untuk dijadikan sebagai bahan adsorbsi senyawa dalam bentuk uap/gas.
EFEKTIFITAS ARANG AKTIF KAYU SENGON
(Paraserianthes falcatoria L. Nieben) DAN TEMPURUNG KELAPA
(Coconus nucifera L.) UNTUK PEMURNIAN MINYAK GORENG BEKAS

Skripsi:
Sebagai Salah Satu Syarat Untuk Memperoleh Gelar
Sarjana Kehutanan Pada Fakultas Kehutanan
Institut Pertanian Bogor

Oleh:
SUWILIN

DEPARTEMEN HASIL HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2007
Efektivitas Arang Aktif Kayu Sengon (Paraserianthes macrocarpa L.) untuk Penumbuhan Mika Goreng Bekas
RIWAYAT HIDUP

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Kehutanan di Fakultas Kehutanan Institut Pertanian Bogor, penulis melaksanakan penelitian dan bidang Kimia Hasil Hutan dan Energi Biomasa dengan judul: "Pembuatan Arang Aktif Kayu Sengon (Paraserianthes falcataria L. Nielsen) dari Tempurung Kelapa (Coconus nucifera L.) Untuk Pemurnian Minyak Goreng Bekas" di bawah bimbingan Prof. Dr. Ir. Kurnia Sofyan, M.S dan Dr. Gustan Pari, MSi, APU.
KATA PENGANTAR

Penelitian yang dilakukan penulis, diharapkan dapat menghasilkan model pendugaan kualitas arang aktif yang dibuat sehingga dapat diketahui efisiensi dan efektivitasnya dalam pemanfaatannya sebagai bahan penyedap senyawa yang ada pada minyak khususnya.

Penelitian ini pula mudah-mudahan dapat memberikan informasi awal dan menjadi dasar acuan dalam pengembangan pengujian arang aktif sebagai bahan penyedap senyawa pada bahan cair yang lebih luas. Penulis sangat menyadari dengan keterbatasan yang dimiliki, penelitian ini perlu terus dikembangkan lagi untuk keempurnaannya, oleh karenanya diharapkan kritik dan saran yang membangun demi perkembangan penelitian selanjutnya. Akhirnya, penulis berharap semoga karya kecil ini tidak mengurangi hakekat kebenaran ilmiahnya dan bisa bermanfaat bagi semua pihak yang memerlukannya. Amien.

Bogor, Maret 2007

Penulis
UCAPAN TERIMA KASIH

Puji syukur tertuntun kehadirat Allah SWT atas segala limpahan rahmat dan karunia-Nya bagi seluruh ciptaan-Nya. Sholawat beserta salam semoga tetap tercurah limpahan kepada suri tauladan kita Rasulullah Muhammad SAW dan seluruh umatnya yang senantiasa istiqamah hingga akhir zaman. Pada kesempatan ini, penulis menyampaikan penghargaan setinggi-tingginya dan terima kasih yang tak terhingga kepada:

Prof. Dr. Ir. Kumia Sofyan, M.S selaku pembimbing I dan Dr. Gustan Pari, Msi, APU selaku Pembimbing II, atas kesabaran, ketulusan dan keikhlasan dalam meberikan ilmu, bimbingan, arahan dan nasehat kepada penulis.

Dosen penguji dari Dept. Manajemen Hutan bapak Dr.Ir. Basuki Wasis, MS dan bapak Ir. Agus Priono, MS dari Dept. Konservasi Sumberdaya Hutan dan Ekowisata yang telah memberikan saran dan masukan berharga dalam penyusunan skripsi ini.

M. Zulfikri, Spi yang telah mengenalkan penulis pada indahnya Syumulyatul islam, dan atas segala do’a, nasehat, bimbingan serta dukungan spiritual maupun material kepada penulis semasa kuliah hingga menyelesaikan karya ilmiah ini.

Ibu, Bapak, Kakak dan keponakanku (Diki S. & Syaufi) atas segala curahan kasih sayang dan do’a pada penulis selama kuliah hingga terselesaikannya karya ilmiah ini.

6. Yayasan Tanabe Foundation (Iepang), yang telah memberikan dukungan moril dan materi kepada penulis dalam menyelesaikan studi ini di IPB.

Semoga Allah SWT membalas semua kebaikan dan merahmati setiap usaha dan kerja dalam rangka pengabdian tulus untuk menggapai ridho-Nya disetiap himpunan aktivitas apapun yang dikerjakan. Amien.

Bogor, Maret 2007

Penulis
DAFTAR ISI

DAFTAR ISI ... i
DAFTAR GAMBAR ... iv
DAFTAR TABEL .. vi
DAFTAR LAMPIRAN ... vii

PENDAHULUAN
Latar Belakang .. 1
Tujuan .. 2
Manfaat Hasil Penelitian ... 2

PENJAUAN PUSTAKA
Gambaran Umum Arang Aktif ... 3
 Arang Aktif ... 3
 Pembuatan Arang Aktif .. 5
 Kegunaan Arang Aktif ... 7
Jenis Bahan Baku Arang Aktif Yang Diuji .. 9
 Sengon .. 9
 Kelapa ... 11
Minyak, Penggorengan, Adsorbsi, dan Beberapa Senyawa Gas .. 13
 Minyak Goreng .. 13
 Pemakaian Minyak Goreng .. 14
 Adsorbsi ... 16
 Senyawa Benzena ... 17
 Formalin .. 17
 Metanol .. 17
 Kloroform ... 18
 Kamper ... 18
 Perekat Urea Formaldehida ... 18

METODE PENELITIAN
Waktu dan Tempat Penelitian .. 19
Bahan dan Alat .. 19
Metode ... 20
Analisa Komponen Kimia Kayu Sengon & Tempurung .. 20
Pembuatan Arang ... 20
Pembuatan Arang Aktif ... 21
Pemurnian Minyak ... 21

Pengujuan Kualitas Arang aktif .. 22
Penentuan Rendemen .. 22
Penentuan Kadar Air .. 22
Penentuan Kadar Zat Terbang .. 22
Penetapan Kadar abu .. 23
Penentuan Kadar karbon Terikat 23
Penentuan Daya Serap Iod .. 24
Penentuan Daya Serap terhadap Gas 24
Penentuan pH ... 25

Pengujuan Kualitas Minyak goreng bekas 25
Penentuan Asam Lemak Bebas/Bilangan Asam 25
Penentuan Bilangan Peroksida ... 25
Penentuan Bilangan Penyabunan 26
Penentuan Bilangan Ester .. 26

Analisis Data .. 27

HASIL DAN PEMBAHASAN

Analisa Komponen Kimia .. 29
Pembuatan Arang Aktif .. 32

Rendemen .. 33
Kadar Air ... 36
Kadar Zat Terbang .. 38
Kadar Abu ... 42
Kadar Karbon Terikat .. 45
Daya Serap Iodium .. 47
Daya Serap Benzena .. 51
Daya Serap Formalin .. 54
Daya Serap Kloroform .. 57
Daya Serap Metanol .. 60
Daya Serap Kamper .. 63
Daya Serap Urea Formaldehida (UF) 66
pH ... 69
Kombinasi Perlakuan Arang Aktif 71

Pemurnian Minyak dengan Arang Aktif 73
Asam Lemak Bebas/Bilangan Asam 77
Bilangan Peroksida .. 80
Bilangan Penyabunan ... 83
Bilangan Ester ... 85

Hasil Aplikasi Arang Aktif antara Kayu sengon dan Tempurung elapa ... 87
<table>
<thead>
<tr>
<th>LAMPIRAN</th>
<th>DAFTAR PUSTAKA</th>
<th>KESIMPULAN DAN SARAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Gambar</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Proses penggorengan</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Bahan Baku untuk pengujian/analisa komponen kimia dan pembuatan arang aktif</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Arang aktif yang digunakan dalam pemurnian minyak goreng bekas</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>Pengaruh perlakuan terhadap rendemen arang aktif kayu sengon dan tempurung kelapa</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Histogram pengaruh perlakuan terhadap rata-rata kadar air arang aktif kayu sengon dan tempurung kelapa</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>Histogram pengaruh perlakuan terhadap rata-rata kadar zat terbang arang aktif kayu sengon dan tempurung kelapa</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Histogram pengaruh perlakuan terhadap rata-rata kadar abu arang aktif kayu sengon dan tempurung kelapa</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>Histogram pengaruh perlakuan terhadap rata-rata kadar karbon arang aktif kayu sengon dan tempurung kelapa</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Histogram pengaruh perlakuan terhadap rata-rata daya serap iodium arang aktif kayu sengon dan tempurung kelapa</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>Histogram pengaruh perlakuan terhadap rata-rata daya serap benzena arang aktif kayu sengon dan tempurung kelapa</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>Histogram pengaruh perlakuan terhadap rata-rata daya serap formalin arang aktif kayu sengon dan tempurung kelapa</td>
<td>56</td>
</tr>
<tr>
<td>12</td>
<td>Histogram pengaruh perlakuan terhadap rata-rata daya serap kloroform arang aktif kayu sengon dan tempurung kelapa</td>
<td>59</td>
</tr>
<tr>
<td>13</td>
<td>Histogram pengaruh perlakuan terhadap rata-rata daya serap metanol arang aktif kayu sengon dan tempurung kelapa</td>
<td>62</td>
</tr>
<tr>
<td>14</td>
<td>Histogram pengaruh perlakuan terhadap rata-rata daya serap kamper arang aktif kayu sengon dan tempurung kelapa</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>Histogram pengaruh perlakuan terhadap rata-rata daya serap UF arang aktif kayu sengon dan tempurung kelapa</td>
<td>68</td>
</tr>
</tbody>
</table>
Gambar 16. Histogram pengaruh perlakuan terhadap rata-rata kadar pH arang aktif kayu sengon dan tempurung kelapa 70

Gambar 17. Penampilan visual minyak goreng sebelum dan sesudah pemurnian dengan arang aktif kayu sengon 75

Gambar 18. Penampilan visual minyak goreng sebelum dan sesudah pemurnian dengan arang aktif tempurung kelapa 76

Gambar 19. Histogram pengaruh perlakuan terhadap rata-rata bilangan asam arang aktif kayu sengon dan tempurung kelapa 79

Gambar 20. Histogram pengaruh perlakuan terhadap rata-rata bilangan peroksida arang aktif kayu sengon dan tempurung kelapa 82

Gambar 21. Histogram pengaruh perlakuan terhadap rata-rata bilangan penyabun arang aktif kayu sengon dan tempurung kelapa 84
<table>
<thead>
<tr>
<th>Tabel</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 1</td>
<td>Penggunaan arang aktif dalam industri</td>
<td>8</td>
</tr>
<tr>
<td>Tabel 2</td>
<td>Komponen kimia kayu sengon</td>
<td>10</td>
</tr>
<tr>
<td>Tabel 3</td>
<td>Presentase Komposisi Buah Kelapa</td>
<td>12</td>
</tr>
<tr>
<td>Tabel 4</td>
<td>Komposisi Tempurung Kelapa</td>
<td>12</td>
</tr>
<tr>
<td>Tabel 5</td>
<td>Kandungan Komponen Kimia Kayu Sengon dan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tempurung Kelapa</td>
<td>29</td>
</tr>
<tr>
<td>Tabel 6</td>
<td>Hasil analisa rendemen arang aktif kayu sengon dan</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
<tr>
<td>Tabel 7</td>
<td>Hasil analisa kadar air arang aktif kayu sengon dan</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
<tr>
<td>Tabel 8</td>
<td>Hasil analisa kadar zat terbang arang aktif kayu sengon dan</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
<tr>
<td>Tabel 9</td>
<td>Hasil analisa kadar abu arang aktif kayu sengon dan</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
<tr>
<td>Tabel 10</td>
<td>Hasil analisa kadar karbon arang aktif kayu sengon dan</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
<tr>
<td>Tabel 11</td>
<td>Hasil analisa daya serap iodium arang aktif kayu sengon dan</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
<tr>
<td>Tabel 12</td>
<td>Hasil analisa daya serap benzena arang aktif kayu sengon dan</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
<tr>
<td>Tabel 13</td>
<td>Hasil analisa daya serap formalin arang aktif kayu sengon dan</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
<tr>
<td>Tabel 14</td>
<td>Hasil analisa daya serap kloroform arang aktif kayu sengon dan</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
<tr>
<td>Tabel 15</td>
<td>Hasil analisa daya serap metanol arang aktif kayu sengon dan</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
<tr>
<td>Tabel 16</td>
<td>Hasil analisa daya serap kamper arang aktif kayu sengon dan</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
<tr>
<td>Tabel 17</td>
<td>Hasil analisa daya serap UF arang aktif kayu sengon dan</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>tempurung kelapa</td>
<td></td>
</tr>
</tbody>
</table>
Tabel 18. Hasil analisa kadar pH arang aktif kayu sengon dan tempurung kelapa

Tabel 19. Hasil analisa kualitas minyak dalam pemurnian minyak dengan arang aktif kayu sengon dan tempurung kelapa
<table>
<thead>
<tr>
<th>Lampiran</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Skema prosedur percobaan</td>
<td>94</td>
</tr>
<tr>
<td>2.</td>
<td>Prosedur Pengujian Komponen Kimia</td>
<td>95</td>
</tr>
<tr>
<td>3.</td>
<td>Tanur Aktivasi Steam Uap Air dan Gas</td>
<td>99</td>
</tr>
<tr>
<td>4.</td>
<td>Syarat mutu berdasarkan SNI</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>Rekapitulasi seluruh data kualitas arang aktif</td>
<td>101</td>
</tr>
<tr>
<td>6.</td>
<td>Faktor-faktor aktivasi selain suhu dan waktu aktivasi</td>
<td>103</td>
</tr>
<tr>
<td>7.</td>
<td>Rekapitulasi data pemurnian minyak goreng</td>
<td>104</td>
</tr>
<tr>
<td>8.</td>
<td>Hasil Analisa statistik untuk seluruh indikator kualitas arang aktif kayu sengon dan tempurung kelapa</td>
<td>106</td>
</tr>
<tr>
<td>9.</td>
<td>Hasil Uji Tukey untuk seluruh indikator kualitas arang aktif hasil pengaruh setiap faktor</td>
<td>109</td>
</tr>
<tr>
<td>10.</td>
<td>Rekapitulasi hasil Uji Tukey interaksi 2 faktor perlakuan untuk seluruh indikator kualitas arang aktif</td>
<td>110</td>
</tr>
<tr>
<td>11.</td>
<td>Rekapitulasi hasil Uji Tukey interaksi 3 faktor perlakuan untuk seluruh indikator kualitas arang aktif</td>
<td>111</td>
</tr>
<tr>
<td>12.</td>
<td>Hasil Analisa statistik untuk semua indikator kualitas minyak hasil pemurnian arang dengan arang aktif kayu sengon dan tempurung kelapa</td>
<td>112</td>
</tr>
<tr>
<td>13.</td>
<td>Hasil Uji Tukey untuk seluruh indikator kualitas hasil pengaruh setiap faktor</td>
<td>113</td>
</tr>
<tr>
<td>14.</td>
<td>Rekapitulasi hasil Uji Tukey interaksi 2 faktor perlakuan untuk seluruh indikator kualitas</td>
<td>114</td>
</tr>
<tr>
<td>15.</td>
<td>Rekapitulasi hasil Uji Tukey interaksi 3 faktor perlakuan untuk seluruh indikator kualitas</td>
<td>115</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar Belakang

Kebutuhan arang aktif bagi sebagian besar industri dunia diduga dari tahun ke tahun semakin meningkat. Peningkatan tersebut dipengaruhi oleh meningkatnya pertumbuhan industri diberbagai bidang, baik dibidang pangan maupun non pangan yang menggunakan arang aktif sebagai bahan utama dalam proses produknya.

Indonesia dengan beragam jenis tumbuhannya mempunyai potensi bahan bakar arang aktif yang cukup besar, diantaranya berupa kayu; limbah pertanian seperti sekam padi, jerami dan pelepas jagung; limbah perkebunan seperti kelapa sawit, tempurung dan lain sebagainya yang belum dimanfaatkan secara optimal sehingga peranannya dalam memenuhi kebutuhan arang aktif baik ditingkat lokal maupun internasional masih sangat kurang.

Dalam rangka efisiensi dan peningkatan pemanfaatan potensi bahan baku lebih lanjut, pembuatan arang aktif dari limbah kayu sengon (*Paraserianthes falcataria* L. Nielsen) berupa potongan batang, cabang serta ranting dan tempurung kelapa (*Coconus nucifera*) perlu dikaji lebih mendalam sehingga kemungkinan pemanfaatannya untuk pemenuhan kebutuhan arang aktif dapat terus ditingkatkan.

Arang aktif dapat dibuat dari semua bahan yang mengandung karbon baik organik maupun anorganik dengan syarat bahan tersebut memiliki struktur berpori. Kayu dan batu bara muda biasa digunakan untuk membuat arang aktif sebagai bahan pemucat minyak makan (Sudrajat dan Salim, 1994).

Arang aktif merupakan produk yang banyak digunakan di dalam negeri dan impor 70% produk arang aktif digunakan untuk pemurnian dalam sektor industri gula, minyak kelapa, farmasi, dan kimia. Selain itu juga digunakan untuk proses penjernihan air (Pari, 1994 dalam Rachmawati, 2004).

Menggoreng merupakan suatu metode memasak bahan pangan dengan menggunakan minyak sebagai salah satu medianya. Banyaknya jumlah permintaan akan bahan pangan digoreng, merupakan suatu bukti yang nyata mengenai betapa besarnya jumlah bahan pangan digoreng yang dikonsumsi oleh

Pemakaian minyak secara berulang-ulang dalam proses penggorengan akan menurunkan kualitas minyak. Kerusakan minyak selama menggoreng akan mempengaruhi mutu dan nilai gizi dari bahan pangan yang digoreng. Minyak akan mengalami kerusakan pada pemanasan suhu tinggi, hal ini disebabkan karena proses oksidasi dan polimerisasi. Minyak yang rusak akibat proses tersebut akan menghasilkan bahan pangan dengan rupa yang kurang menarik dan citarasa yang tidak enak, serta rusaknya sebagian vitamin dan asam lemak esensial yang terdapat dalam minyak (Ketaren, 1986).

Konsumsi minyak yang cukup besar dewasa ini dipastikan akan menghasilkan minyak bekas dengan jumlah yang besar pula. Minyak goreng bekas yang telah mengalami pemurnian sangat bermanfaat dalam rangka penghematan penggunaannya bagi konsumen, sehingga dalam pemakaianannya bisa dimanfaatkan beberapa kali secara efisien. Berdasarkan pertimbangan di atas, maka perlu dilakukan penelitian tentang pembuatan arang aktif dari bahan baku kayu sengon dan tempurung kelapa serta kemungkinannya untuk dimanfaatkan pada pemurnian minyak goreng bekas.

Tujuan

Menguji arang aktif kayu sengon dan tempurung kelapa dalam pemurnian minyak goreng bekas.

Manfaat Penelitian

Mengetahui efektifitas adsorpsi terhadap senyawa dari arang aktif kayu sengon dan tempurung kelapa dalam pemurnian minyak goreng bekas.
TINJAUAN PUSTAKA

Gambaran Umum Arang Aktif

Arang Aktif

Arang aktif adalah arang yang diolah lebih lanjut pada suhu tinggi sehingga pori-porinya terbuka dan permukaan konfigurasi atom bertambah luas berbisa antara 300-2000 m²/g. Permukaan arang aktif yang semakin luas, menyebabkan daya adsorbsinya terhadap gas atau cairan semakin tinggi (Kirk dan Othmer, 1964 dalam Radimawati, 2004).

Arang aktif mengandung 2-15 % air dan 2-3 % abu (Jacobs, 1994).

Selanjutnya menurut Sudrajat (1994), arang aktif merupakan arang yang konfigurasi atom karbonnya dibebaskan dari ikatan dengan unsur lain, serta rongga atau porinya dibersihkan dari senyawa lain atau kotoran sehingga permukaan dan pusat aktif menjadi luas atau daya adsorbsi terhadap cairan dan gas akan meningkat.

Arang adalah suatu bahan padat yang berpori dan merupakan hasil pembakaran dari bahan yang mengandung unsur karbon. Sebagian besar dari pori-porinya masih tertutup dengan hidrokarbon, ter, dan senyawa organik lain yang komponennya terdiri dari karbon terikat (fixed carbon), abu, air, nitrogen dan sulfur (Djatmiko, et al., 1985).

Proses pemanasan terhadap bahan dapat dilakukan dengan cara memanas secara langsung atau tidak langsung di dalam timbunan, kiln, atau retort.

Arang merupakan hasil pembakaran dari bahan-bahan yang mengandung karbon pada suhu 500-600°C dalam keadaan tanpa udara. Arang dari selulosa bersifat lunak dan mudah hancur, sedangkan arang dari tempurung kelapa dan batu bara lebih padat dan keras.

Apabila bahan-bahan yang menutupi pori-pori tersebut dihilangkan, maka arang tersebut menjadi arang aktif dengan daya adsorbsi yang tinggi. Arang dapat
diaktifkan dengan menggunakan gas CO₂, uap air dan bahan kimia. Proses pengaktifan arang bertaunungan agar arang bersifat mampu menyerap zat warna dan gas secara efektif walaupun dalam jumlah yang kecil (Djatmiko, et al., 1985).

Ciri-ciri arang yang berkualitas baik menurut Hendra (1999) diantaranya:

b. Tidak mengotori tangan

c. Tidak cepat habis terbakar dan jika dipukul berdenting seperti logam.

Di Indonesia hampir semua industri arang aktif menggunakan tempurung kelapa sebagai bahan baku utamanya, dengan total produksi 13.000 ton/tahun (Dewi, 2002). Dari jumlah tersebut, sebanyak 9.518.293 kg di ekspor dengan

Pembuatan Arang Aktif

Arang aktif pada dasarnya dapat dibuat dari semua bahan yang mengandung karbon baik organik maupun anorganik asal bahan tersebut memiliki struktur berpori. Kualitas arang aktif yang dihasilkan diantaranya dipengaruhi oleh kesempurnaan proses pengaran. Proses pengaran terdiri atas empat tahap sebagai berikut (Suryadarma dan Salim, 2004):

- Pada suhu 100-120°C terjadi penurunan air dan sampai suhu 270°C mulai terjadi penguapan selulosa, destilasi mengandung asam organik dan sedikit metanol. Asam cuka terbentuk pada suhu 200-270°C.
- Pada suhu 270-310°C reaksi eksoterm berlangsung dimana terjadi perurai selulosa secara intensif menjadi larutan perolignat, gas kayu dan sedikit ter.
- Asam pirolignat merupakan asam organik dengan titik didih rendah seperti asam cuka dan metanol sedangkan gas kayu terdiri dari CO dan CO₂.
- Pada suhu 310-500°C, terjadi perurai lignin, dihasilkan lebih banyak ter sedang larutan pirolignat menurun. Gas CO₂ menurun sedangkan gas CO, CH₄ dan H₂ meningkat.
- Pada suhu 500-1000°C merupakan tahap pemurnian arang atau peningkatan kadar karbon.

Pembuatan arang aktif pada dasarnya mencakup dua tahap utama yaitu proses karbonisasi dan proses aktivasi atau pengeluaran senyawa yang menutupi rongga dan pori bahan terkarbonisasi pada temperatur yang tinggi (Pari1, 996).

Proses aktivasi pada suhu dibawah 800°C terjadi aksi oksidasi uap air ataupun gas CO₂ yang berlangsung lambat, sementara aktivasi pada suhu diatas 1000°C akan menyebabkan kerusakan susunan kisi-kisi heksagonal.

Reaksi yang terjadi dalam proses aktivasi:

\[C + H_2O \rightarrow CO + H_2 \quad \Delta H = +117 \text{ kJ} \]

\[C + 2H_2O \rightarrow CO_2 + 2H_2 \quad \Delta H = + 75 \text{ kJ} \]

\[C + CO_2 \rightarrow 2CO \quad \Delta H = +157 \text{ kJ} \]

Reaksi berlangsung endoterm, sehingga aktivasi yang terjadi kurang efektif yaitu berakibat pada panas yang dihasilkan menjadi burukurang. Langkah yang bisa ditunjuk untuk mengatasi masalah tersebut adalah dengan membakar gas-gas yang terbentuk (Kienle, 1986 dalam Rachmawati, 2004).
Menurut FAO dalam Ferry (2002) dan Resmeiliana (2005) menyatakan bahwa selama proses pengaktifan arang terjadi beberapa proses sebagai berikut:

1. Pada temperatur 20 - 110°C, terjadi penyerapan panas oleh bahan, sehingga komponen volatil dan air menguap.
5. Pada temperatur 400 - 500°C, perubahan bahan menjadi arang secara teoritis telah sempurna.

\[
\begin{align*}
\text{CO} & + \frac{1}{2} \text{O}_2 \rightarrow \text{CO}_2 & \Delta H = -285 \text{ kJ} \\
\text{H}_2 & + \frac{1}{2} \text{O}_2 \rightarrow \text{H}_2\text{O} & \Delta H = -238 \text{ kJ}
\end{align*}
\]

Kegunaan Arang Aktif

Kegunaan arang aktif menurut fungsinya dibedakan menjadi dua macam menurut Setyaningsih (1995) yaitu:

1. Arang penyerap gas (gas adsorben carbon)

Jenis arang ini digunakan untuk menyerap kotoran berupa gas. Pori-pori yang ada pada jenis ini adalah mikropori yang menyebabkan molekul gas akan
mampu melewatiya, tapi molekul dari cairan tidak bisa melewatinya. Karbon jenis ini dapat ditemui pada karbon jenis kelapa.

2. Arang fasa cair (liquid-phase carbon)

Arang aktif merupakan produk yang banyak digunakan untuk pemurnian dalam sektor industri gula, minyak kelapa, farmasi, dan kimia. Selain itu juga digunakan untuk proses penjemihan air (Pari, 1994).

<table>
<thead>
<tr>
<th>Nopol</th>
<th>Tujuan</th>
<th>Pemakaian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pemurnian gas</td>
<td>Desulfurisasi, Menghilangkan gas beracun, bau busuk dan asap</td>
</tr>
<tr>
<td>2</td>
<td>Pengolahan LNG</td>
<td>Desulfurisasi dan penyaringan berbagai bahan mentah serta reaksi</td>
</tr>
<tr>
<td>3</td>
<td>Katalisator</td>
<td>Katalisator reaksi/pengangkut vinil klorida dan vinil asetat</td>
</tr>
<tr>
<td>4</td>
<td>Lain-lain</td>
<td>Menghilangkan bau pada kamar pendingin</td>
</tr>
</tbody>
</table>
| Huk Kaodiatillyah | Menyaring dan menghilangkan warna
| Industri obat dan makanan | Menyaring dan menghilangkan warna dan bau
| Minuman ringan dan keras | Menghilangkan bahan mentah, zat perantara
| Kimia perminyakan | Menyaring atau menghilangkan warna, bau zat pencemar dalam air, sebagai pelindung dan penukar resin dalam alat penyulingan air
| Pembersih air | Mengatur dan membersihkan air buangan dari pencemar, bau, bau, dan logam berat
| Pembersih air buangan | Pemurnian udang dan benur
| Penambakan udang dan benur | Pemurnian dan penghilangan bau dan warna
| Pelarut yang digunakan kembali | Penarikan kembali berbagai pelarut, sisa metanol, etil asetat dan lain-lain
| Lain-lain | Menghilangkan warna, bau, dan rasa tidak enak

(Sumber: PDII LIPI, 1998)

Jenis Bahan Baku Arang Aktif Yang Dinji

Sengon

Selanjutnya Atmosuseno (1994) menyebutkan bahwa sengon memiliki dua nama, yaitu *Albizia falcatoria* (L) Fosberg dan *Paraserianthes falcatoria* (L) Niederf. termasuk kedalam famili Fabaceae, merupakan salah satu jenis kayu yang cepat tumbuh (*fast growing species*). Secara morfologi pohon sengon berbatang lurus, tidur berkiri, kulit berwarna kelabu keputih-putihan, licin, tidak mengelupas, dan memiliki batang bebas cabang mencapai 20 m. Tajuk berbentuk perisai, agak jarang,
dan selalu hijau. Tajuk yang agak jarang ini memungkinkan beberapa jenis tanaman perdu tumbuh baik di bawahnya.

Menurut Martawijaya et al. (1989) dalam Resmeiliana (2005) mengatakan bahwa dalam pertumbuhannya pohon sengon mencapai tinggi hingga 45 m dengan diameter 100 cm, sedangkan kayu teras pada sengon berwarna keputih-putihan atau cokelat muda dan warna kayu gubal umumnya tidak berbeda dengan warna kayu tanahnya.

Berikut sifat dasar kayu sengon menurut Martawijaya (1989):

<table>
<thead>
<tr>
<th>Sifat jenis</th>
<th>0.24-0.49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klas kuat</td>
<td>IV-V</td>
</tr>
<tr>
<td>Pelang serat</td>
<td>1.242 mikron</td>
</tr>
<tr>
<td>Diameter serat</td>
<td>46.00 mikron</td>
</tr>
<tr>
<td>Tepal dinding</td>
<td>3.30 mikron</td>
</tr>
<tr>
<td>Diameter lumen</td>
<td>39.40</td>
</tr>
</tbody>
</table>

Presentase komponen kimia yang dimiliki kayu sengon menurut Martawijaya et al. (1989) adalah sebagai berikut (Tabel 2):

<table>
<thead>
<tr>
<th>Komponen kimia</th>
<th>Presentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selulosa</td>
<td>49.4*</td>
</tr>
<tr>
<td>Holoselulosa</td>
<td>73.99**</td>
</tr>
<tr>
<td>Hemiselulosa</td>
<td>24.59**</td>
</tr>
<tr>
<td>Lignin</td>
<td>26.8*</td>
</tr>
<tr>
<td>Abu</td>
<td>0.6*</td>
</tr>
<tr>
<td>Silika</td>
<td>0.2*</td>
</tr>
</tbody>
</table>

Jumlah/kadar komponen kimia yang dimiliki kayu sengon menurut Abosuseno (1994) adalah sebagai berikut:

<table>
<thead>
<tr>
<th>Komponen kimia</th>
<th>Jumlah/kadar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar selulosa</td>
<td>tinggi</td>
</tr>
<tr>
<td>Kadar lignin</td>
<td>rendah</td>
</tr>
<tr>
<td>Kadar pentosan</td>
<td>rendah</td>
</tr>
<tr>
<td>Bahan aktif</td>
<td>tinggi</td>
</tr>
</tbody>
</table>
Berdasarkan Penelitian Puslitbang Hasil Hutan, diketahui bahwa kayu sengon cukup baik digunakan sebagai bahan baku pembuatan arang aktif. Arang aktif ini merupakan jenis komoditas karbon yang mempunyai daya serap tinggi terhadap bahan-bahan kimia, zat warna, zat racun, atau polutan dalam fase gas atau cair.

Pembuatan arang aktif dilakukan dengan cara aktivasi arang kayu sengon dengan uap air panas (900°C) selama 1-2 jam dengan katalisator bahan kimia soda aq (Na$_2$CO$_3$) atau soda api (NaOH) sebesar 1 %. Oleh karena daya serap yang tinggi tersebut arang aktif jenis sengon banyak digunakan dalam industri makanan, minuman, kimia, dan pembersih air (Atmosuseno, 1994)

Kelapa

Tanaman kelapa termasuk ke dalam divisi Spermatophyta, sub divisi Areciphasmea, kelas Monokotyledoneae famili Palmae sub famili Cocodinae, genus Cocos dan species Cocos nucifera. Kelapa mempunyai penyebaran yang cukup luas dibandingkan dengan tanaman Palmae lainnya (Fuller dan Tippo, 1954 dalam Rohman, 1999).

Menurut Setyamijdaja (1982) dalam Resmeiliana (2005), jenis tanaman kelapa di Indonesia terdiri atas dua varietas yaitu varietas genjah (nan$_a$ variety) dan varietas dalam (typica variety). Seiring dengan berkembangnya ilmu pemuliaan pohon, saat ini dikenal golongan ketiga yaitu golongan kelompok hibrida yang merupakan persilangan antara varietas genjah dan varietas dalam.

Kelapa (Cocos nucifera) merupakan tanaman perkebunan yang banyak dimanfaatkan oleh manusia. Kelapa merupakan tanaman tropis, dapat tumbuh dari tepi pantai hingga di ketinggian 1000 meter di atas permukaan laut diantara 23° LU dan 23° LS (Pranowo et al, 1993). Keuntungan dari tanaman kelapa ini dapat dimanfaatkan dari mulai akar, batang, daun, bunga, sampai dengan buahnya.

Buah kelapa tersusun atas komponen serabut (eksokarp dan mesokarp), twardurung (endocarp), daging buah (endosperm) dan air buah (Ketaren 1986).

Komposisi buah kelapa memiliki keunikan bilam dibandingkan dengan beberapa tanaman Palmae lainnya. Selain daging buahnya yang dapat dikonsumsi, bagian lain
1. Dicari menggunakal sebujat seluruh kulit ulu baut buah kelapa yang tidak kelar kalah pentingnya adalah tempurung. Tempurung dengan kekerasan strukturanya sangat baik digunakan sebagai bahan baku energi biomasa, seperti campuran arang briket, arang dan arang aktif.

Komposisi buah kelapa dapat disajikan pada Tabel 3.

<table>
<thead>
<tr>
<th>No</th>
<th>Komponen</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Serabut</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Tempurung</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Daging buah</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>Air buah</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abu</td>
<td>0,23</td>
</tr>
<tr>
<td>Lignin</td>
<td>33,30</td>
</tr>
<tr>
<td>Selulosa</td>
<td>27,31</td>
</tr>
<tr>
<td>Pentosan</td>
<td>17,67</td>
</tr>
<tr>
<td>Metoxil</td>
<td>5,39</td>
</tr>
</tbody>
</table>

Tempurung kelapa di dalam industri biasanya tidak digunakan secara langsung melainkan diolah menjadi arang/arang aktif terlebih dahulu. Beberapa sifat arang aktif dari tempurung kelapa antara lain adalah strukturanya sebagian mikropori, kekerasannya tinggi, mudah diregenerasi dan memiliki daya serap iod yang cukup tinggi sekitar 1100 mg/g (Actech, 2002 dalam Pari, 2004). Arang tempurung banyak digunakan juga di dalam industri kimia sebagai larutan pengencer insektisida dan bahan bangunan sebagai pengisi industri kayu lapis, asbes, dan obat nyamuk.

Di Indonesia hampir semua industri arang aktif menggunakan tempurung kelapa sebagai bahan baku utamanya, dengan total produksi 13.000 ton/tahun (Diperindag, 2002 dalam Pari, 2004).
Minyak Goreng, Pemakaian Minyak, Adsorbsi, dan Beberapa Senyawa Gas.

Minyak Goreng

Proses penggorengan adalah proses pemasakan yang populer karena masakan hasil penggorengan menjadi lebih gurih, berwarna lebih menarik, nilai gizi meningkat, dan tingkat pemasakan yang lebih cepat (Damayanthi, 1994).

![Diagram Proses Penggorengan](image)

Gambar 1. Proses Penggorengan (Ketaren, 1986)

Minyak goreng adalah minyak yang telah mengalami pemurnian yang meliputi degumming, netralisasi, pemucatan dan deodorisasi. Secara umum komponen utama minyak yang sangat menentukan mutu minyak adalah asam lemaknya, karena asam lemak menentukan sifat kimia maupun stabilitas minyak (Djatmiko et al., 1985 dalam Rachmawati, 2004).

Lemak dan minyak sebagai bahan pangan dibagi menjadi dua golongan yaitu lemak yang dikonsumsi tanpa dimasak misalnya mentega, dan lemak yang dimasak bersama-sama bahan pangan atau dijadikan sebagai medium penghangat panas dalam memasak bahan pangan misalnya minyak goreng.

Tujuan penambah minyak dalam bahan pangan adalah untuk memperbaiki rupawan dan struktur fisik bahan pangan, menambah nilai gizi dan kalori serta memberikan citarasa yang gurih dari bahan pangan. Pada umumnya sifat lemak yang
diinginkan dalam bahan pangan adalah yang mempunyai titik cair mendekati suhu tubuh (tubuh manusia), sehingga jika dikonsumsi maka lemak tersebut akan mencair sewaktu berada di dalam mulut. Minyak bersifat sebagai medium penghantar panas, penambah rasa gurih, penambah nilai gizi dan kalori bahan pangan dalam proses penggorengan (Ketaren, 1986).

Penataan Minyak Goreng

Reaksi-reaksi kerusakan selama proses penggorengan terjadi secara bersamaan, mula-mula diawali dengan terjadinya pembentukan warna, oksidasi yang diikuti dengan polimerisasi dan pada akhirnya adalah reaksi hidrolisis. Proses oksidasi akibat adanya oksigen akan menghasilkan hidroperoksida dan senyawa karbonil (Ketaren, 1986).

Proses oksidasi dapat berlangsung apabila ada kontak antara sejumlah oksigen dengan minyak atau lemak. Oksidasi minyak akan menghasilkan senyawa aldehida, keton, hidrokarbon, alkohol, lakton, serta senyawa aromatis yang mempunyai bau teruk dan rasa getir. Menurut Ketaren (1986), kerusakan minyak karena proses oksidasi, terdiri dari 6 tahap berikut ini:

1. Pada permulaan terbentuk *volatile decomposition product* (VDP) yang dihasilkan dari pemecahan rantai karbon asam lemak.

3. Oksidasi asam-asam lemak berantai panjang.

4. Degradiasi ester oleh panas.

Adsorpsi

Adsorpsi merupakan proses terjadinya perpindahan massa adsorbat dari fase gerak (fluida pembawa adsorbat) ke permukaan adsorben. Adsorpsi terjadi dikarenakan adanya daya tarik menarik antara molekul adsorbat dengan tempat aktif dipermukaan adsorben (Setyaningsih, 1995).

Adsorpsi adalah suatu peristiwa fisik atau kimia pada permukaan yang diangarui oleh adanya reaksi kimia antara adsorben dan adsorbat. Adsorben merupakan padatan atau cairan yang mengabsorpsi, sedangkan adsorbat adalah padatan, cairan, atau gas yang diadsorpsi. Dengan demikian proses adsorpsi dapat terjadi antara padatan dengan padatan, padatan dengan cairan, gas dengan padatan, gas dengan cairan, dan cairan dengan cairan (Ketaren, 1986).

Mekanisme proses adsorpsi dapat dijelaskan sebagai berikut: molekul adsorbat berdifusi melalui suatu lapisan batas ke permukaan luar adsorben (disebut difusi eksternal); sebagian ada yang teradsorpsi dipermukaan luar, sebagian besar berdifusi lanjut didalam pori-pori adsorben (disebut difusi internal).

Beberapa faktor yang mempengaruhi adsorpsi diantaranya karakteristik fisik dan kimia adsorben seperti luas ukuran pori, kehalusan, dan komposisi kimia permukaan; karakteristik fisik dan kimia adsorbat seperti ukuran molekul dan kepadatan molekul; konsentrasi adsorbat dalam fase cair; karakteristik fase cair seperti pH, temperatur dan lamanya proses adsorpsi berlangsung.
Senyawa Benzena

Benzena merupakan hidrokarbon melingkar yang mengandung cincin segi enam, dikenal dengan hidrokarbon aromatik karena umumnya hidrokarbon ini memiliki bau yang harum, meskipun banyak juga yang beracun. Struktur utama senyawa aromatik yang menjadi dasar sifat-sifat kimianya adalah cincin benzena.

Cincin benzena bisa digambarkan sebagai segi enam beraturan dengan tiap sudutnya ditempati oleh atom (C) yang mengikat satu atom H dan ikatan rangkap yang berselang seling antara dua atom (C) yang berurutan. Sifat fisika dari senyawa ini adalah berbentuk cairan, dengan titik didih 80°C, tidak berwarna, tidak larut dalam air, dan banyak pelarut organik, mudah terbakar dengan nyala berkelaga dan berbusa.

Formalin

Formalin merupakan larutan komersial dengan konsentrasi 37 - 40 % dari formaldehida. Biasanya bahan ini digunakan sebagai antiseptik, germisia dan penyedot air. Formalin diketahui efektif dalam pengobatan penyakit akibat ektoparasit seperti fluwe dan kulit berlendir.

Metanol

Metanol termasuk dalam gugus fungsi alkohol, memiliki rantai terpendek dari gugus tersebut. Senyawa ini merupakan senyawa polar yang dapat larut dalam air. Metanol banyak digunakan untuk pelarut, antifreeze radiator mobil, sintesis formaldehida, metilamina, metil klorida, dan metilkatalis. Metanol menyebabkan bau yang tajam.
Kloroform

Kloroform merupakan senyawa organohalogen yang bersifat racun yang dapat menyebabkan kerusakan hati apabila dihirup terlalu banyak/berlebihan.

Kamper

Kamper mengandung senyawa napthalene yang menyebabkan bau yang menyengat. Senyawa ini merupakan senyawa hidrokarbon aromatis nonpolar dengan dua rantai siklik. Kekhasan bau yang menyengat (wangi) pada kamper juga dapat menyebabkan pencemaran udara.

Perekat Urea Formaldehida

Perekat urea formaldehida merupakan hasil kondensasi dari urea dan formaldehida, yang dihasilkan dari reaksi antara urea dan formaldehida dengan perbandingan tertentu (Kolman et al., 1975 dalam Bintang, 1989 dan Resmeiliana, 2002).

Perekat ini banyak digunakan dalam pembuatan papan partikel, selain hal tersebut yang relatif murah juga mudah dikerjakan dan cepat matang dalam pengempaan. Pada proses emisi formaldehida dapat menyebabkan pencemaran udara, bau yang tidak enak dan dikhawatirkan dapat mengganggu kesehatan.
BAHAN DAN METODE

Waktu dan Tempat Penelitian

Bahan dan Alat
Bahan baku untuk arang yang digunakan dalam penelitian ini adalah kayu seron yang diperoleh dari hasil limbah penebangan kayu rakyat daerah Cihideung Uji, Bogor, Jawa Barat dan sebagai perbandingan digunakan arang tempurung kelapa yang dibuat dengan pengaturan suhu aktivasi yang sama. Arang aktif yang dipasarkan diaplikasikan untuk pemumian minyak goreng bekas yang diperoleh dari pedagang 'gorengan' Kampus Dalam IPB, Bogor.

Bahan kimia yang digunakan adalah Benzena (C₆H₆), Formalin, Kloroform (C₂H₅Cl), Metanol (CH₃OH), Kamper (Naphthalene), UF untuk penetapan daya serap arang aktif terhadap gas; iodium (I₂) untuk penetapan daya serap arang aktif terhadap larutan, NaOH 0.1 N, KI, Natrium thiosulfat (Na₂S₂O₃) yang digunakan untuk menguji kualitas arang aktif. Air suling untuk penetapan kadar pH arang aktif. Sedangkan untuk pengujian kualitas minyak goreng digunakan Alkohol 95 %, indikator pp, kanji; KOH 0.1 N dan 0.5 N, HCL 0.5 N, KI, Natrium thiosulfat (Na₂S₂O₃), kloroform, asam asetat glasial, diethyl etar dan air suling.

Alat yang digunakan antara lain tungku pemanas, pompa vakum, tanur listrik, oven, timbangan listrik, retor listrik, water bath, Hammer mill (alat untuk membuat serbuk), alat penggerus, masker, tissue, plastik, nampam plastik, gayung, gelas ukur, pH meter (alat pengukur pH), aluminium foil, cawan petri, saringan, cawan porselin, dekantator, gegep, alat kocok (shaker), kertas saring, peralatan titrasi dan peralatan geo.
Metode

Analisa Komponen Kimia Kayu Sengon dan Tempurung Kelapa

Kayu sengon dalam bentuk serbuk di jemur hingga kering udara selama 2 hari, kemudian digiling hingga halus serta disaring. Tahap selanjutnya dilakukan analisa terhadap komponen kimia yang terkandung di dalam kayu sengon. Analisa kimia yang dilakukan meliputi kadar air, selulosa, holoselulosa dan zat ekstraktif yang terdiri atas karbon dalam air panas, karbon dalam air dingin, karbon dalam alkohol benzena (1:2), karbon dalam NaOH 0.1 %, kadar abu, kadar zat terbang serta kadar lignin. Sedangkan untuk tempurung kelapa, dalam kondisi kering udara dihancurkan menjadi bentuk granular (serpian kecil-kecil) kemudian dibersihkan dari serabut dan kotoran, selanjutnya digiling hingga halus dan dilakukan analisa komponen kimia seperti kayu sengon.

Pembuatan Arang

Pembuatan Arang Aktif

Pembuatan arang aktif ini dilakukan secara terpisah antara arang kayu sengon dengan arang tempurung kelapa. Sebanyak 150 gram arang kayu sengon dan 300 gram arang tempurung kelapa yang telah bebas dari kotoran dimasukkan ke dalam retort arang aktif, aktivasi dilakukan terhadap arang kayu sengon terlebih dahulu kemudian dilanjutkan dengan arang tempurung kelapa. Sebanyak 1500 cc air dimasukkan ke dalam steam. Suhu di dalam retort dinaikkan secara teratur setiap 100°C sampai dengan 850°C. Sebelum mencapai suhu maksimal aktivasi yang diinginkan (100°C di bawah suhu maksimal), air steam dipanasakan dengan memasang uap steam sebesar 1500 cc. Beberapa menit setelah steamer mengeluarkan uap, uap pada steamer dinaikkan ke dalam aktivator pada tekanan konstan 0.025 kg/jam.

Setelah waktu aktivasi yang diinginkan tercapai steam dihentikan dan aktivator dihanginkan. Pendinginan dilakukan selama 19-24 jam kemudian arang aktif dapat dikeluarkan dari aktivator. Percobaan dilakukan juga pada suhu maksimum 750°C dengan uap steam minimal untuk arang kayu sengon dan uap steam 1000 cc untuk tempurung kelapa. Variasi waktu yang digunakan adalah 0, 150, 170, 190, dan 210 menit.

Arang aktif yang dihasilkan diuji kualitasnya, meliputi rendemen, kadar air, kadar zat terbang, kadar abu, kadar karbon terikat, daya serap terhadap iodium, benzena, formalin, kloroform, metanol, kamon, perekat urea formaldehida dan pH.

Pemurnian Minyak

Arang aktif dengan kualitas terbaik dari dua jenis (arang aktif kayu sengon dan tempurung kelapa) yang digunakan dalam penelitian ini yakni dua perlakuan hasil percobaan, diuji coba untuk memurnikan minyak goreng bekas yang diperoleh dari penggang ‘gorengan’ Kampus Dalam IPB, Bogor.

Sebanyak 20 g arang aktif untuk masing-masing jenis dicuci dengan air destilata sampai diperoleh filtrat yang netral, kemudian dikerlingkan di dalam oven 105°C selama 4 jam. Bobot arang aktif yang digunakan adalah 0%, 2%, 4%, 6% dan 8% (b/b) dimasukkan ke dalam 100 g cointoh minyak kemudian dikocok dengan shaker selama

Pengujian Kualitas Arang Aktif

Penentuan Rendemen (SNI, 1995)

Arang aktif yang diperoleh terlebih dahulu dibersihkan, kemudian diimbang. Penimbangan yang dihitung adalah perbandingan bobot bahan baku sebelum dan setelah melalui aktivasi.

Rendemen dihitung berdasarkan rumus:

\[
\text{Rendemen (\%)} = \frac{b}{a} \times 100\%
\]

Di mana:
- \(a \) = bobot arang sebelum pemanasan (gram)
- \(b \) = bobot arang setelah pemanasan atau arang aktif yang diperoleh (gram)

Penentuan Kadar Air (ASTM, 1999b)

Contoh sebanyak 2 gram (bobot kering udara) ditempatkan di dalam cawan porselin yang telah diketahui bobot keringnya. Cawan yang telah berisi contoh tersebut dipanaskan dalam oven 150°C selama 3 jam.

\[
\text{Kadar Air (\%)} = \frac{a-b}{a} \times 100\%
\]

Di mana:
- \(a \) = bobot contoh sebelum pemanasan (gram)
- \(b \) = bobot contoh setelah pemanasan (gram)

Penentuan kadar Zat Terbang (ASTM, 1999d)

Contoh kering sebanyak 2 gram dimasukan ke dalam cawan porselin yang telah diketahui bobot keringnya. Selanjutnya contoh dipanaskan dalam tanur pada
suhu 950°C selama 10 menit. Setelah itu didinginkan di dalam desikator selama 1 jam
dan ditimbang. Cawan ditutup serapat mungkin (bila perlu diikat dengan kawat)
selama pemanasan dan hindari terjadinya pembakaran contoh. Apabila contoh
terbakar, maka pengerjaan diulang dengan prosedur yang sama.

\[
\text{Kadar Zat Mudah Menguap} = \frac{a-b}{a} \times 100 \%
\]

Dimana:
\[a = \text{bobot contoh sebelum pemanasan (gram)}\]
\[b = \text{bobot contoh setelah pemanasan (gram)}\]

Penentuan Kadar Abu (ASTM, 1999a)

Contoh kering sebanyak 2 gram dimasukkan ke dalam cawan porselin yang
telah diketahui bobot keringnya. Selanjutnya contoh dipanaskan dalam tanur yang
bervariasi suhu 750°C selama 6 jam. Setelah itu didinginkan di dalam desikator selama 1 jam
dan ditimbang. Pemanasan dan penimbangan diulang hingga diperoleh bobot yang
stasioner. Waktu pemanasan cukup 1 jam selama pengulangan.

\[
\text{Kadar Abu (\%)} = \frac{a}{b} \times 100 \%
\]

Dimana:
\[a = \text{bobot sisa contoh (gram)}\]
\[b = \text{bobot awal contoh (gram)}\]

Penentuan Kadar Karbon Terikat (SNI, 1995)

Karbon dalam arang adalah zat yang terdapat pada fraksi padat hasil pirolisis
senyawa abu (zat anorganik). Definisi karbon terikat hanya berupa pendekatan.

\[
\text{Kadar Karbon Terikat (\%)} = 100 \% - (b + c)
\]

Dimana:
\[b = \text{kadar abu (\%)}\]
\[c = \text{kadar zat mudah menguap (\%)}\]
Penentuan Daya Serap terhadap Iod (ASTM, 1999d)

Contoh kering sebanyak 0.2 gram dimasukkan ke dalam erlenmeyer. Kemudian ditambahkan 25 ml larutan Iodium 0.1 N dan dikocok selama 15 menit pada suhu kamar, larutan langsung disaring. Selanjutnya 10 ml contoh diambil dan dititrasi dengan larutan natrium thiosulfat (Na₂S₂O₃) 0.1 N sampai didapatkan larutan berwarna kuning muda lalu ditambahkan beberapa tetes larutan kanji 1 % sebagai indikator. Kemudian titrasi dilakukan kembali sampai warna biru tepat hilang.

\[
\text{Daya serap Iodium (mg/g)} = \frac{[(b-a) \times N] \times 126.93 \times fp}{S}
\]

di mana:

\[
\begin{align*}
 a & = \text{Volume Na}_2\text{S}_2\text{O}_3 \text{ yang digunakan untuk titrasi 10 ml larutan contoh (ml)} \\
 b & = \text{Volume Na}_2\text{S}_2\text{O}_3 \text{ yang digunakan untuk titrasi 10 ml larutan blando (ml)} \\
 N & = \text{Normalitas Na}_2\text{S}_2\text{O}_3 \\
 fp & = \text{faktor pengenceran} \\
 S & = \text{bobot arang aktif (gram)} \\
 \text{BE I}_2 & = 126.93
\end{align*}
\]

Penentuan Daya Serap terhadap Gas (SNI, 1995)

Satu gram contoh dimasukkan ke dalam cawan petri yang telah diketahui bobot keringnya. Cawan yang berisi contoh tersebut kemudian dimasukkan ke dalam desikator yang telah dijenuhkan dengan uap Benzena, Formalin, Kloroform, Metanol, Kamper, dan Urea Formaldehyde kemudian diikubasi selama 24 jam pada suhu 19-20°C agar tercapai kesetimbangan absorbasi. Sebelum ditimbang contoh dibiarakan selama 5 menit untuk mengeluarkan uap yang menempel pada permukaan cawan petri untuk mengurangi kesalahan positif.

\[
\text{Daya Serap Gas (\%)} = \frac{a-b}{b} \times 100 \%
\]

di mana:

\[
\begin{align*}
 a & = \text{bobot contoh sebelum inkubasi (gram)} \\
 b & = \text{bobot contoh setelah inkubasi (gram)}
\end{align*}
\]
Penentuan pH (ASTM, 1980d)

Siapkan contoh kering sebanyak 1 gram. Kemudian contoh dimasukkan ke dalam tabung uji. Setelah itu, tabung diberi air sulizing dengan pH = 7 sebanyak 100 ml, dikocok, dan didiamkan selama 5 menit supaya terjadi pengendapan kemudian disaring. Filtrat diukur pH-nya dengan menggunakan pH meter.

Pengujian Kualitas Minyak Goreng Bekas

Penentuan Asam Lemak Bebas (AOAC, 1999b)

Contoh minyak ditimbang dengan bobot antara 10-20 gram dimasukkan ke dalam labu erlenmeyer 250 ml kemudian ditambahkan 25 ml diethyl etar dan 25 ml esethanol 95%. Ditambahkan 3 tetes indikator fenolf talein kemudian dititrasi dengan larutan 0.1 N NaOH sampai berwarna orange.

\[
\text{Bilangan Asam Lemak Bebas (\%)} = \frac{\text{ml NaOH} \times N \times BM}{G} \times 100 \%
\]

Dimana :
- \(\text{ml NaOH}\) = NaOH terpakai
- \(N\) = Normalitas larutan NaOH
- \(BM\) = Berat Molekul asam lemak palmitat yaitu 26.1
- \(G\) = Bobot Contoh

Penentuan Bilangan Peroksida (AOAC, 1999a)

Contoh sebanyak 5 ± 0.05 gram dimasukkan ke dalam erlenmeyer 250 ml, kemudian ditambahkan 30 ml larutan campuran kloroform dan asam asetat glasial (2:3) dikocok sampai larut. Kemudian ditambahkan 0.5 ml larutan KI jenuh dan dikocok selama 1 menit, selanjutnya labu erlenmeyer ditambahkan dengan 30 ml air dan aditif. Kelebihan iod dititrasi dengan natrium thiosulfat 0.1 N sampai warna kuning hampir hilang, kemudian ditambahkan 0.5 ml larutan kanji 1 % dan titrasi dilanjutkan sampai titik akhir (warna biru tepat hilang). Jika natrium thiosulfat 0.1 N yang dimasukkan kurang dari 0.5 ml, penentuan bilangan peroksida diulangi dengan menggunakan natrium thiosulfat 0.01 N.
Bilangan Peroksida (mg O₂/100 g minyak) = \(\frac{(S-B) N \times 100}{G} \)

Dimana:
- \(S \) = Banyak titrasi contoh (ml)
- \(B \) = Banyak blanko (ml)
- \(N \) = Normalitas Natrium Thiosulfat
- \(G \) = Bobot contoh

Penentuan Bilangan Penyabunan (AOAC, 1999)

Contoh minyak atau lemak cair disaring dengan kertas saring untuk membuang bahan asing dan kandungan air. Kemudian timbang 4-5 gram contoh dalam labu erlenmeyer 250 atau 300 ml. Perlakan-lahan 50 ml KOH 0.5 N beralkohol dibahkan dengan pipet. Labu erlenmeyer kemudian dihubungkan dengan pendingin tegak dan contoh dididihkan dengan hati-hati sampai semua contoh habis bubar dengan sempurna, yaitu jika diperoleh larutan yang bebas dari butir-butir lemak. Larutan didinginkan dan bagian dalam dari pendingin tegak dibilas dengan sedikit air.

Ke dalam larutan tersebut ditambahkan 1 ml larutan indikator pp 1% dalam alkohol, kemudian dititrasi dengan HCl 0.5 N sampai warna merah jambu menghilang. Perhitungan tiap-tiap penentuan secara titrasi dilakukan juga titrasi blanko sebagai pembanding. Dasar perhitungan adalah selisih antara jumlah ml titrasi contoh dengan titrasi blanko.

\[\text{Bilangan Penyabunan} = \frac{(a-b) \times 28.05}{G} \]

Dimana:
- \(a \) = Jumlah ml HCL 0.5 N untuk titrasi blanko
- \(b \) = Jumlah ml HCL 0.5 N untuk titrasi contoh
- \(G \) = Bobot contoh minyak
- 28.5 = Setengah dari BM KOH

Penentuan bilangan Ester (AOAC, 1999)

Bilangan ester dapat dihitung sebagai selisih antara bilangan asam dengan bilangan penyabunan.

\[\text{Bilangan ester} = [\text{bilangan penyabunan} - \text{bilangan asam}] \]
Analisis Data

Untuk menelaah data kualitas arang aktif kayu sengon dan tempurung kelapa hasil percobaan, digunakan rancangan percobaan acak lengkap (RAL) berpola faktorial 2x2x5 dengan dua ulangan. Tiga faktor yang diterapkan yaitu: jenis (A), yakni sengon (a1) dan tempurung kelapa (a2); suhu aktivasi arang aktif (B) dalam dua taraf yakni 750°C (b1) dan 850°C (b2); dan waktu aktivasi (C) dalam 5 taraf yaitu: 0 menit (c0), 150 menit (c1), 170 menit (c2), 190 menit (c3), dan 210 menit (c4).

Untuk respons yang diamati dalam percobaan ini adalah kadar air (y), kadar zat organik (y1), kadar abu (y2), kadar karbon terikat (y3), daya serap iodin (y4), daya serap benzena (y5), daya serap formalin (y6), daya serap kloroform (y7), daya serap etanol (y8), daya serap kamer (y9), daya serap UF (y10), dan daya serap pH (y11).

Model umum rancangan percobaan faktorial yang digunakan adalah sebagai berikut:

\[Y_{ijkl} = \mu + A_i + B_j + C_k + (AB)_{ij} + (AC)_{jk} + (BC)_{jk} + (ABC)_{ijk} + \epsilon_{ijkl} \]

Di mana:

- \(Y_{ijkl} \) = Nilai respons yang diamati
- \(\mu \) = Efek rata-rata yang sebenarnya
- \(A_i \) = Pengaruh faktor jenis ke-\(i \)
- \(B_j \) = Pengaruh faktor suhu aktivasi taraf ke-\(j \)
- \(C_k \) = Pengaruh faktor waktu aktivasi taraf ke-\(k \)
- \((AB)_{ij} \) = Pengaruh interaksi antara faktor jenis ke-\(i \) dengan suhu aktivasi taraf ke-\(j \)
- \((AC)_{jk} \) = Pengaruh interaksi antara faktor jenis ke-\(i \) dengan waktu aktivasi taraf ke-\(k \)
- \((BC)_{jk} \) = Pengaruh interaksi antara faktor suhu aktivasi ke-\(j \) dengan waktu aktivasi taraf ke-\(k \)
- \((ABC)_{ijk} \) = Pengaruh interaksi antara faktor jenis ke-\(i \) dengan suhu aktivasi taraf ke-\(j \) dan faktor waktu aktivasi taraf ke-\(k \)
- \(\epsilon_{ijkl} \) = Galat dari rancangan faktorial

Jika pengaruh faktor A, faktor B, dan faktor C, atau interaksinya (AB), (AC), (BC) dan (ABC) nyata terhadap respons tersebut, dilakukan penelaahan lebih lanjut menggunakan uji jarak Tukey atau Beda Nyata Jujur (BNJ).
Pemurnian minyak dengan arang aktif juga digunakan model yang sama berpola faktorial 2x2x5 dengan dua ulangan. Faktor yang digunakan ada tiga, yaitu jenis (A), yakni sengon (a₁) dan tempurung kelapa (a₂); suhu aktivasi arang aktif (B) dalam dua taraf yaitu 750°C (b₁) dan 850°C (b₂); dan konsentrasi arang aktif (D) dalam 5 taraf yakni 0% (d₀), 2% (d₁), 4% (d₂), 6% (d₃), dan 8% (d₄). Sedangkan respons yang diamati adalah kadar asam lemak bebas (y), bilangan peroksid (y₁), bilangan penyabunan (y₂), dan bilangan ester (y₃). Penelaahan lebih lanjut dilakukan dengan jarak Tukey atau Beda Nyata Jujur (BNJ).
HASIL DAN PEMBAHASAN

Analisa Komponen Kimia

Analisa kimia dilakukan terhadap kayu sengon dan tempurung kelapa sebagai bahan baku yang akan dibuat arang aktif. Komponen kimia yang dianalisa terdapat pada Tabel 5.

<table>
<thead>
<tr>
<th>Komponen Kimia</th>
<th>Kandungan (%)</th>
<th>Komponen Kimia</th>
<th>Kandungan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kayu Sengon</td>
<td></td>
<td>Kayu Sengon</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>8.09</td>
<td>Kadar Air</td>
<td>7.43</td>
</tr>
<tr>
<td>Kadar Zat ekstrakif</td>
<td>8.35</td>
<td>Kadar Zat ekstrakif</td>
<td>7.53</td>
</tr>
<tr>
<td>Larutan air dingin</td>
<td>5.32</td>
<td>Larutan air dingin</td>
<td>4.78</td>
</tr>
<tr>
<td>Larutan air parnas</td>
<td>6.16</td>
<td>Larutan air parnas</td>
<td>4.53</td>
</tr>
<tr>
<td>Larutan NaOH</td>
<td>14.27</td>
<td>Larutan NaOH</td>
<td>12.96</td>
</tr>
<tr>
<td>Alkohol benzena</td>
<td>3.66</td>
<td>Alkohol benzena</td>
<td>2.42</td>
</tr>
<tr>
<td>Kadar Zat terbang</td>
<td>84.25</td>
<td>Kadar Zat terbang</td>
<td>77.54</td>
</tr>
<tr>
<td>Kadar Abu</td>
<td>0.98</td>
<td>Kadar Abu</td>
<td>1.07</td>
</tr>
<tr>
<td>Kadar Holoselulosa</td>
<td>84.12</td>
<td>Kadar Holoselulosa</td>
<td>89.21</td>
</tr>
<tr>
<td>Kadar selulosa</td>
<td>49.26</td>
<td>Kadar selulosa</td>
<td>29.16</td>
</tr>
<tr>
<td>Kadar lignin</td>
<td>17.97</td>
<td>Kadar lignin</td>
<td>34.74</td>
</tr>
</tbody>
</table>

Kandungan air baik dalam kayu sengon ataupun tempurung kelapa ditunjukkan oleh kadar air. Kadar air kayu sengon berkisar antara 8.09-8.35 %, sedangkan kadar air tempurung kelapa berkisar antara 7.43-7.53 %. Kadar air yang terdapat dalam bahan baku baik pada kayu sengon maupun tempurung kelapa tergolong rendah, hal ini sebagai akibat dari proses pengeringan yang dilakukan terdapat kedua bahan tersebut yang relatif cukup lama dan penyimpanannya di tempat yang kering. Kadar air yang rendah sangat di butuhkan dalam pembuatan arang aktif agar proses karbonisasi berlangsung mudah dan cepat.
Bahan baku yang digunakan berupa potongan batang, cabang/ranting dalam kondisi kering udara, setelah proses pengeringan berlangsung dapat menurunkan kandungan air yang terdapat di dalam bahan.

Gambar 2. Bahan baku yang digunakan untuk pengujian/analisa komponen kimia dan pembuatan arang aktif.

A. Kayu sengon

B. Tempurung kelapa

Kadar zat ekstraktiv yang terkandung baik dalam kayu sengon maupun tempurung kelapa diukur dengan beberapa indikator. Indikator-indikator yang digunakan adalah kelarutan air dingin, kelarutan air panas, kelarutan dalam NaOH 1 %, kelarutan dalam alkohol benzena (1:2). Kelarutan air dingin dan air panas yang diperoleh pada kayu sengon berkisar antara 5.32-5.86 % dan 6.16-6.35 %, sedangkan pada tempurung kelapa berkisar antara 4.78-5.38 % dan 4.53-4.74 %.

aktif. Hal ini disebabkan karena bahan ekstraktif yang tinggi dapat mengganggu kemampuan adsorpsi arang aktif. Bahan baku dengan kadar ekstraktif yang tinggi kurang disukai dalam pembuatan arang aktif.

Kadar zat terbang yang diperoleh pada kayu sengon dan tempurung kelapa masing-masing berkisar antara 84.25-84.96 % dan 77.54-78.71 %. Pengukuran kadar zat terbang bertujuan untuk mengetahui banyaknya senyawa yang menguap pada pembuatan dengan suhu 950°C. Kadar abu yang terdapat pada kayu sengon berkisar antara 0.98-1.04 %, sedangkan pada tempurung kelapa berkisar antara 1.07-1.34 %. Komponen anorganik baik pada kayu sengon maupun tempurung kelapa terdapat dalam abu. Komponen abu terutama terdiri dari K, Ca, dan Mg. Komponen abu yang tinggi tidak diinginkan dalam pembuatan arang aktif karena dapat mengurangi kemampuan arang aktif dalam proses adsorpsi.

Holoselulosa adalah fraksi polisakarida total dari jaringan dinding sel, memiliki warna hampir putih sebagai zat yang tertinggal setelah kayu bebas zat ekstraktif dan telah mengalami delignifikasi. Holoselulosa merupakan fraksi selulosa dan hemiselulosa. Kadar holoselulosa kayu sengon dan tempurung kelapa masing-masing 84.12 % dan 89.21 %.

Lignin merupakan polimer kompleks yang memiliki berat molekul tinggi dan tersusun atas unit-unit phenil propana. Kadar lignin yang diperoleh pada kayu sengon dan tempurung kelapa masing-masing berkisar antara 17.97-21.12 % dan 34.74-35.57 % dan kandungan karbon lignin kayu lunak berkisar antara 65-60 % pada umumnya lebih tinggi daripada lignin kayu keras yang berkisar antara 56-60 % (Fengel dan Wegener, 1977). Hasil analisa komponen kimia dengan beberapa indikator di atas dapat diketahui bahwa kayu sengon dan tempurung kelapa memiliki potensi untuk dijadikan arang aktif.

Pembuatan Arang Aktif

Proses karbonisasi dilakukan terhadap bahan baku kayu sengon dan tempurung kelapa pada suhu ± 400°C sebelum aktivasi. Arang kayu sengon dan tempurung kelapa menghasilkan rendemen untuk kapasitas full pada tungku berbentuk drum dengan bobot 50 kg berkisar antara 20-25 %. Rendemen yang tidak tinggi ini disebabkan karena bahan baku yang digunakan berbentuk kayu solid yang memiliki berat jenis rata-rata yang rendah sekitar 0.33 (memiliki bobot yang ringan) pada kayu sengon dan berbentuk pecahan kecil pada tempurung kelapa dengan kandungan serabut yang cukup tinggi. Ukuran kedua bahan yang diangkakan dalam bentuk partikel kecil tersebut dapat meningkatkan pembentukan abu. Semakin banyak abu yang dihasilkan dalam proses karbonisasi menyebabkan nilai rendemen menjadi semakin rendah.

Proses karbonisasi terhadap kayu sengon dan tempurung kelapa, pembakaran yang terjadi berlangsung secara eksternal, sehingga tidak diperlukan energi tinggi, dan pada kala lain pembakaran ini dapat menghasilkan panas selama proses karbonisasi. Setelah proses karbonisasi, arang yang dihasilkan diaktifkan dengan menggunakan retor baja tahan karat dengan kapasitas 300 gram. Retort baja dengan fungsi sebagai aktivator ini dilengkapi dengan pengatur suhu sehingga aktivasi terhadap bahan berlangsung merata. Selain itu retort baja dilengkapi pula dengan peralatan listrik yang berperan sebagai sumber panas selama proses aktivasi. Selama aktivasi, alat ini dikondisikan dengan menutup lubang tempat memasukan tabung
contoh dengan kapas supaya udara tidak dapat masuk sehingga proses pemanasan pun berjalan merata dan sempurna.

Gambar 3. Arang aktif yang digunakan dalam pemurnian minyak goreng bekas

Serbuk arang aktif kayu sengon hasil aktivasi dengan suhu 750°C selama 190 menit
Serbuk arang aktif kayu sengon hasil aktivasi dengan suhu 850°C selama 210 menit
Serbuk arang aktif tempurung kelapa hasil aktivasi dengan suhu 750°C selama 210 menit
Serbuk arang aktif tempurung kelapa hasil aktivasi dengan suhu 850°C selama 190 menit

Rendemen

Pengaruh masing-masing perlakuan aktivasi terhadap bahan yang digunakan dapat di ketahui dengan melihat rendemen yang dihasilkan. Penentuan nilai rendemen dapat dihitung berdasarkan pada bobot kering bahan baku. Data lengkap untuk nilai rendemen arang aktif kayu sengon dan tempurung kelapa terdapat pada (Lampiran 5a dan 5b).

Menurut Gruber (1976), kandungan karbon dalam selulosa dan lignin pada bahan organik adalah 40 % dalam selulosa dan 30 % dalam lignin, sehingga semakin tinggi kadar tersebut maka kemungkinan untuk pemanfaatan arang aktif semakin besar. Struktur bahan dari jenis sengon yang relatif lunak menyebabkan nilai rendemen arang aktif yang dihasilkan sangat rendah bila dibandingkan dengan tempurung kelapa, hal ini di duga karena materi yang terkandung di dalam kayu sengon jauh lebih sedikit daripada tempurung kelapa sehingga pada saat pemanasan
berlangsung material sengon banyak habis terbakar menjadi abu. Berbeda dengan jenis tempurung kelapa yang memiliki struktur padat dan keras, sehingga potensi menjadi abu relatif lebih kecil untuk suhu dan waktu aktivasi yang sama.

Tabel 6. Hasil analisa rendemen arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>Kayu Sengon</th>
<th>Tempurung Kelapa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waktu (menit)</td>
<td>Suhu (°C)</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>750</td>
<td>0</td>
</tr>
<tr>
<td>850</td>
<td>74.00</td>
</tr>
<tr>
<td>150</td>
<td>18.67</td>
</tr>
<tr>
<td>170</td>
<td>26.00</td>
</tr>
<tr>
<td>190</td>
<td>29.33</td>
</tr>
<tr>
<td>210</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Rendemen arang aktif yang diperoleh untuk kayu sengon dan tempurung kelapa masing-masing berkisar antara 4.67-74.00 % dan 33.50-79.00 % pada (Tabel 6). Rendemen terendah pada kedua contoh (arang kayu sengon dan arang tempurung kelapa) diperoleh pada suhu aktivaasi 850°C dengan waktu aktivasi 190 menit untuk kayu sengon (a_1b_2c_3) dan waktu aktivasi 210 menit untuk tempurung kelapa (a_2b_4c_4). Sedangkan rendemen tertinggi pada ke dua contoh (arang kayu sengon dan arang tempurung kelapa) diperoleh pada suhu aktivaasi 750°C dengan waktu aktivasi masing-masing 0 menit (a_12b_1c_0).

Beberapa faktor yang mempengaruhi rendemen arang aktif diantaranya adalah suhu maksimum dan waktu aktivasi yang digunakan, selain dari karakteristik bahan itu sendiri. Bahan dengan struktur keras cenderung memiliki rendemen yang relatif tinggi bila dibandingkan dengan bahan yang memiliki struktur yang lunak untuk perlakuan dengan suhu dan waktu yang sama. Faktor lain yang juga berpengaruh terhadap rendemen adalah faktor pemberian uap steam, tekanan uap, set suhu luar, air steam, dan lama waktu tuju aktivasi (Lampiran 6).

Semakin tinggi suhu yang digunakan dalam pembuatan arang aktif maka rendemen yang dihasilkan cenderung lebih rendah. Hal ini sesuai dengan teori kimia yang mengatakan bahwa semakin tinggi suhu yang digunakan maka reaksi yang terjadi berlangsung lebih cepat. Artinya laju reaksi antara karbon dengan gas
berupa uap air pada retort semakin meningkat yang berakibat pada sedikitnya arang aktif yang dihasilkan.

Pemanasan dengan suhu tinggi pada proses aktivasi juga menyebabkan senyawa mudah menguap yang terkandung pada arang banyak yang terlepas sehingga akan mengurangi bobot arang aktif yang diperoleh.

![Diagram](image_url)

Keterangan:
- a_1 = Jenis sengon; a_2 = Jenis tempurung kelapa; b_1 = Suhu aktivesi 700°C; b_2 = Suhu aktivesi 850°C; c_1 = Waktu aktivesi 0 menit; c_2 = Waktu aktivesi 150 menit; c_3 = Waktu aktivesi 170 menit; c_4 = Waktu aktivesi 190 menit; c_5 = Waktu aktivesi 210 menit.

Gambar 4. Pengaruh Perlakuan terhadap rendemen arang aktif kayu sengon dan tempurung kelapa.

Percobaan dalam menentukan kualitas arang aktif yang dibuat dilihat dari berapa indikator kualitas. Indikator kualitas yang digunakan adalah kadar air, kadar zat terbang, kadar karbon terikat, daya serap iodium, daya serap benzena, daya serap formalin, daya serap kloroform, daya serap metanol, daya serap kamper, daya serap Formaldehida (UF) dan kadar pH arang aktif.
Kadar Air

Penentuan kadar air berguna untuk mengetahui sifat higroskopis dari arang aktif. Perhitungan kadar air arang aktif didasarkan pada bobot kering oven. Data selengkapnya dapat dilihat pada Lampiran 5.

Tabel 7. Hasil analisa kadar air arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>Kayu Sengon</th>
<th>Tempurung Kelapa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suhu (°C)</td>
<td>Suhu (°C)</td>
</tr>
<tr>
<td>0</td>
<td>750</td>
<td>850</td>
</tr>
<tr>
<td>150</td>
<td>12.43</td>
<td>5.08</td>
</tr>
<tr>
<td>170</td>
<td>6.67</td>
<td>5.93</td>
</tr>
<tr>
<td>190</td>
<td>4.72</td>
<td>190</td>
</tr>
<tr>
<td>210</td>
<td>14.50</td>
<td>10.58</td>
</tr>
</tbody>
</table>

Pada (Tabel 7) dapat dilihat bahwa kadar air arang aktif kayu sengon berkisar antara 4.72-14.50 %. Sedangkan kadar air arang aktif tempurung kelapa berkisar antara 3.68-6.59 %. Kadar air terendah pada kedua contoh (arang aktif kayu sengon dan tempurung kelapa) diperoleh pada suhu aktivaasi 850°C dengan waktu aktivaasi masing-masing 190 menit ($a_1b_2c_3$) dan 0 menit ($a_2b_2c_0$). Sedangkan kadar air tertinggi pada kedua contoh (arang aktif kayu sengon dan tempurung kelapa) diperoleh pada suhu aktivaasi 750°C dengan waktu aktivaasi masing-masing 210 menit ($a_1b_1c_4$) dan 190 menit ($a_2b_1c_3$). Kadar air yang tinggi dapat menurunkan kualitas arang aktif sebagai bahan adsorpsi terhadap gas maupun cairan. Oleh karena itu, untuk keperluan aplikasi adsorpsi arang aktif dikeringkan lebih dahulu untuk menghilangkan airnya. Berdasarkan SNI (1995), arang aktif yang berbentuk serbuk disyaratkan memiliki kadar air kurang dari 15 %. Dari tabel dapat dilihat bahwa semua arang aktif baik arang aktif kayu sengon maupun arang aktif tempurung kelapa hasil percobaan menuhi SNI. Arang aktif kayu sengon memiliki kadar air dengan nilai lebih tinggi dibandingkan dengan arang aktif tempurung kelapa. Hal ini kemungkinan disebabkan pada saat proses karbonisasi dan aktivaasi, kayu sengon belum kering udara sehingga masih terdapat sisa air.

Berdasarkan hasil uji sidik ragam dapat diketahui bahwa seluruh faktor mempengaruhi yang nyata (Lampiran 8a). Uji lanjut Tukey menunjukkan
bahwa faktor jenis \((a_1 \text{ dan } a_2)\) serta faktor suhu \((b_1 \text{ dan } b_2)\) menyebabkan perbedaan kadar air (Lampiran 9). Faktor waktu aktifikasi selama 0 dan 170 menit \((c_0 \text{ dan } c_2)\) serta 150 dan 190 menit \((c_1 \text{ dan } c_3)\) tidak menyebabkan adanya perbedaan kadar air yang nyata. Sedangkan waktu aktifikasi selama 210 menit \((c_4)\) memberikan pengaruh yang berbeda nyata dan memiliki nilai kadar air yang tinggi.

Faktor interaksi jenis dan suhu aktifikasi \((a, b)\) tidak menyebabkan perbedaan kadar air yang nyata satu sama lain. Sedangkan faktor interaksi antara jenis dan waktu aktifikasi \((a, c)\) memberikan pengaruh yang bervariasi terhadap kadar air. Kadar arang aktif yang rendah diinginkan dalam pembuatan arang aktif karena dapat meningkatkan daya serap. Jenis tempurung kelapa dengan waktu aktifikasi 0 menit \((c_0)\) menghasilkan kadar air terbaik dengan nilai rata-rata kadar air terendah yakni 10% dan berbeda nyata terhadap jenis sengon dengan waktu aktifikasi 210 menit \((c_4)\) sebagai interaksi yang memiliki rata-rata kadar air tertinggi yakni 12.54%.

Uji lanjut Tukey untuk faktor interaksi suhu dan waktu aktifikasi \((b, c)\) tidak memberikan perbedaan yang nyata terhadap kadar air, suhu aktifikasi 850°C selama 150 menit \((b_2c_0)\) memiliki nilai kadar air terendah bila dibandingkan dengan suhu aktifikasi 750°C selama 190 menit \((a_1c_3)\) meskipun keduanya tidak berbeda nyata.

![Histogram pengaruh perlakuan terhadap rata-rata kadar air arang aktif kayu sengon dan tempurung kelapa.](image-url)
Untuk interaksi antara jenis, suhu dan waktu aktivasi (a, b, c) berdasarkan uji lanjut Tukey memberikan pengaruh yang bervariasi terhadap kadar air (Lampiran 11). Jenis tempurung kelapa dengan suhu 850°C dan waktu aktivasi selama 0 menit (a1b2c0) menghasilkan kadar air terbaik dengan nilai rata-rata 3.69 %. Sedangkan untuk jenis sengon kadar air terbaik dihasilkan pada suhu yang sama selama 190 menit (a1b2c3) sebesar 4.72 %, keduanya memberikan pengaruh yang berbeda nyata.

Pada Histogram (Gambar 5.) dapat dilihat bahwa perbedaan perubahan rata-rata kadar air pada arang aktif kayu sengon relatif tidak seragam seiring dengan asamnya penambahan waktu, hal ini disebabkan oleh faktor lain pada proses aktivasi yaitu pengaruh perbedaan jumlah uap steam yang terpakai selama proses aktivasi (Lampiran 6.).

Berdasarkan hasil analisa statistik, untuk memperoleh kadar air paling optimum untuk pembuatan arang aktif kayu sengon adalah pada suhu 850°C dengan waktu 190 menit (a1b2c3), sedangkan untuk memperoleh kadar air paling optimum untuk pembuatan arang aktif tempurung kelapa adalah pada suhu 850°C dengan waktu 0 menit (a1b2c0).

Kadar Zat Terbang

Kadar zat mudah menguap mengandung pengertian kandungan zat-zat mudah menguap yang hilang pada pemanasan 950°C. Zat mudah menguap yang terdapat pada arang aktif berupa senyawa karbon, sulfur, dan nitrogen yang menutupi pori-pori dari arang aktif. Data lengkap untuk kadar zat terbang tercantum pada (Lampiran 5.). Sedangkan untuk kadar zat terbang yang dihasilkan dari setiap kombinasi perlakuan ditunjukkan pada Tabel 8.

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>Kayu Sengon</th>
<th>Tempurung Kelapa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suhu (°C)</td>
<td>Suhu (°C)</td>
</tr>
<tr>
<td>0</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>17.36</td>
<td>850</td>
<td>10.69</td>
</tr>
<tr>
<td>150</td>
<td>23.69</td>
<td>11.11</td>
</tr>
<tr>
<td>170</td>
<td>15.30</td>
<td>8.58</td>
</tr>
<tr>
<td>190</td>
<td>26.10</td>
<td>10.63</td>
</tr>
<tr>
<td>210</td>
<td>25.74</td>
<td>9.60</td>
</tr>
</tbody>
</table>
Pada Tabel 8. dapat dilihat bahwa kadar zat terbang arang aktif kayu sengon berkisar antara 12.80-26.10 %. Sedangkan kadar zat terbang arang aktif tempurung kelapa berkisar antara 8.58-14.49 %. Kadar zat terbang terendah pada arang aktif kayu sengon diperoleh pada suhu aktivaasi 850°C dengan waktu aktivaasi selama 190 menit (a₁b₂c₃), sementara untuk tempurung kelapa diperoleh pada suhu aktivaasi 750°C dengan waktu aktivaasi 170 menit (a₂b₁c₂). Sedangkan kadar zat terbang tertinggi pada arang aktif kayu sengon dan tempurung kelapa masing-masing diperoleh pada suhu aktivaasi 750°C dengan waktu aktivaasi selama 190 menit (a₁b₁c₁) dan pada suhu 850°C dengan waktu 210 menit (a₂b₂c₄).

Sebagaimana kadar air, arang aktif dengan kadar zat terbang tinggi tidak diinginkan karena senyawa-senyawa yang menempel pada arang aktif mengakibatkan daya serapnya terhadap gas atau cairan larut menjadi berkurang. Untuk kadar zat terbang arang aktif serbuk, SNI mensyaratkan nilai maksimum dari nilainya sebesar 25 %. Dari seluruh arang aktif hasil bercobaan hampir semua menyenuhi SNI, kecuali arang aktif kayu sengon dengan suhu aktivaasi 750°C selama 190 dan 210 menit (a₁b₁c₃ dan a₁b₁c₄).

Dengan demikian dapat dikatakan bahwa kadar zat terbang arang aktif tempurung kelapa hasil percobaan lebih baik bila dibandingkan dengan kadar zat terbang arang aktif kayu sengon. Hal ini kemungkinan disebabkan karena selain struktur kayu sengon yang lunak, juga diduga arang kayu sengon pada proses aktivaasi mampu menguapkan senyawa volatil lebih banyak dari arang tempurung kelapa pada waktu perlakuan yang sama. Komponen senyawa volatil dalam arang aktif adalah gas yang tidak terkondensasi seperti gas CO₂, CO, CH₄ dan H₂ (Kuriyama, dalam Pers, 1995).

Dari hasil uji sidik ragam (Lampiran 8b) dihasilkan bahwa seluruh faktor berpengaruh nyata terhadap kadar zat terbang. Pada uji lanjut Tukey (Lampiran 9) dapat diketahui bahwa faktor jenis (a₁ dan a₂) serta faktor suhu (b₁ dan b₂) menyebabkan perbedaan kadar zat terbang. Faktor waktu aktivaasi selama 0 dan 170 menit (c₀ dan c₁) tidak menyebabkan perbedaan kadar zat terbang.
Sedangkan waktu aktivasi selama 210 menit (c_4) memberikan pengaruh yang berbeda nyata terhadap semua waktu aktivasi.

Faktor interaksi jenis dengan suhu aktivasi (a, b) pada jenis sengon menyebabkan perbedaan kadar zat terbang yang nyata satu sama lain, sementara pada jenis tempurung kelapa interaksi dengan suhu aktivasi tidak menyebabkan adanya perbedaan kadar zat terbang yang nyata.

Faktor interaksi antara jenis dan waktu aktivasi (a, c) memberikan pengaruh yang bervariasi terhadap kadar zat terbang. Kadar zat terbang arang aktif yang rendah dijumpai dalam pembuatan arang aktif karena dapat meningkatkan daya serapnya.

Jenis tempurung kelapa dengan waktu aktivasi 0 menit (a_1c_0) menghasilkan kadar zat terbang terbaik dengan nilai rata-rata terendah yakni 10.34% dan berbeda nyata terhadap jenis sengon dengan waktu aktivasi 210 menit (a_1c_4) sebagai interaksi yang memiliki rata-rata kadar zat terbang tertinggi yakni 23.06%.

Uji lanjut Tukey untuk faktor interaksi suhu dan waktu aktivasi (b, c) tidak memberikan perbedaan yang nyata terhadap kadar zat terbang, suhu aktivasi 750°C selama 210 menit (b_1c_4) memiliki nilai kadar zat terbang tertinggi bila dibandingkan dengan waktu aktivasi selama 170 menit dengan suhu yang sama (b_1c_2) sebagai interaksi yang memiliki rata-rata kadar zat terbang terendah dalam interaksi suhu dan waktu aktivasi.

Untuk interaksi 3 faktor (Lampiran 11) antara jenis, suhu dan waktu aktivasi (a,b,c) berdasarkan uji lanjut Tukey jenis sengon dengan suhu 850°C dan waktu akt.vivasi selama 190 menit ($a_1b_2c_3$) menghasilkan kadar zat terbang terbaik yang berbeda nyata dengan interaksi yang lain dan memiliki nilai rata-rata terendah sebesar 11.31%. Sedangkan untuk jenis tempurung kelapa kadar zat terbang terbaik dijumpai pada suhu 750°C selama 170 menit ($a_2b_1c_2$), meskipun tidak berbeda nyata dengan waktu aktivasi selama 210 menit ($a_2b_1c_4$) dan waktu 0 menit pada jenis tempurung kelapa dengan suhu aktivasi 850°C ($a_2b_2c_0$).
Keterangan:
\[a_t = \text{Jenis sengon}, \quad b_t = \text{Jenis tempurung kelapa}, \quad c_t = \text{Suhu aktifasi 750}^\circ\text{C}, \quad b_s = \text{Suhu aktifasi 850}^\circ\text{C} \]

Gambar 6. Histogram pengaruh perlakuan terhadap rata-rata kadar zat terbang arang aktif kayu sengon dan tempurung kelapa.

Berdasarkan histogram pengaruh perlakuan terhadap rata-rata kadar zat terbang kedua bahan (Gambar 6) dapat dilihat bahwa arang aktif kayu sengon pada suhu 750°C dan 850°C sebagian besar memiliki kadar zat terbang yang semakin meningkat dengan adanya penambahan waktu, kecuali pada waktu 170 menit \((a_1 b_1 c_2) \) untuk suhu 750°C dan waktu 190 menit \((a_1 b_2 c_3) \) untuk suhu 850°C. Hal ini diduga karena semakin lama waktu aktivasi maka pemanasan terhadap arang meningkat sehingga senyawa yang terdapat pada pori-pori pada arang makin banyak yang keluar/menguap. Namun demikian suhu 750°C untuk jenis sengon sebenarnya telah mampu mengangkat senyawa mudah menguap pada pori-pori arang, sehingga penambahan suhu lebih tinggi berpotensi terhadap pembentukan abu yang lebih besar.

Sedangkan pada arang aktif tempurung kelapa suhu 750°C penambahan waktu cenderung tidak memberikan perubahan peningkatan terhadap kadar zat terbang, hal ini diduga karena pada suhu tersebut senyawa pada pori-pori arang banyak yang keluar/menguap. Sementara pada arang aktif tempurung kelapa suhu 850°C penambahan waktu cenderung memberikan perubahan peningkatan terhadap kadar zat terbang, diduga pada suhu ini dengan penambahan waktu yang diberikan zat terbang mulai terangkat keluar.
Berdasarkan hasil analisa statistik, untuk memperoleh kadar zat terbang optimum untuk pembuatan arang aktif kayu sengon adalah pada suhu 850°C dengan waktu 190 menit, sedangkan untuk arang aktif tempurung kelapa adalah pada suhu 750°C dengan waktu 170 menit ($a_1b_2c_3$, $a_2b_1c_2$).

Kadar Abu

Kadar abu merupakan jumlah oksida-oksida logam yang tersisa pada pemanasan dengan suhu tinggi. Abu pada arang aktif berasal dari mineral-mineral yang terikat kuat pada arang. Mineral ini seperti kalsium (Ca), kalium (K), dan manganesium (Mg). Data lengkap untuk kadar abu dapat dilihat pada Lampiran 5.

Tabel 9. Hasil analisa kadar abu arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>Kayu Sengon</th>
<th>Tempurung Kelapa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waktu (menit)</td>
<td>Suhu (°C)</td>
</tr>
<tr>
<td>0</td>
<td>7.60</td>
</tr>
<tr>
<td>150</td>
<td>7.80</td>
</tr>
<tr>
<td>170</td>
<td>9.69</td>
</tr>
<tr>
<td>190</td>
<td>8.29</td>
</tr>
<tr>
<td>210</td>
<td>8.06</td>
</tr>
</tbody>
</table>

Pada Tabel 9, dapat diketahui bahwa kadar abu arang aktif kayu sengon berkisar antara 6.70-12.47 %. Sedangkan kadar abu arang aktif tempurung kelapa berkisar antara 5.76-18.73 %. Kadar abu terendah pada arang aktif kayu sengon diperoleh pada suhu aktivasi 850°C dengan waktu aktivasi selama 0 menit ($a_1b_2c_0$), sedangkan pada suhu aktivasi 750°C dengan waktu aktivasi yang sama ($a_1b_2c_0$). Sedangkan kadar abu tertinggi pada arang aktif kayu sengon dan tempurung kelapa diperoleh pada suhu aktivasi 850°C dengan waktu aktivasi selama 210 menit ($a_1b_2c_4$), meskipun keduanya tidak memenuhi SNI.

Kadar abu dengan bentuk serbuk disyaratkan dalam SNI tidak lebih dari 10%. Dari seluruh arang aktif hasil bercobaan hanya beberapa perlakuan yang memilikik kadar abu memenuhi SNI. Arang aktif yang tidak memenuhi SNI adalah yang mendapatkan perlakuan dengan suhu aktivasi 850°C selama 150, 190, dan 210 menit ($a_1b_2c_1$, $a_1b_2c_3$, $a_1b_2c_4$) pada arang aktif kayu sengon, sedangkan pada arang
aktif tempurung kelapa yang mendapatkan perlakuan dengan suhu aktivasi 750°C selama 170 menit \((a_1c_2)\) dan suhu aktivasi 850°C untuk semua waktu \((a_2b_1c_0, a_2b_2c_1, a_2b_3c_2, a_2b_4c_3, \text{dan} a_2b_5c_4)\).

Kadar abu yang diinginkan adalah serendah mungkin sehingga proses adsorpsi bisa berlangsung lebih baik. Kandungan mineral dalam abu dapat menyebabkan dalam kisi-kisi arang aktif dan menutupi pusat aktif, sehingga akan mengganggu proses adsorpsi arang aktif (Pari, 1996). Bila dibandingkan dengan arang aktif tempurung kelapa, kadar abu arang aktif kayu sengon sebagian besar telah memenuhi Standar Tingginya sebagian besar kadar abu arang aktif hasil percobaan pada tempurung kelapa kemungkinan disebabkan karena arang tempurung yang digunakan telah memiliki kadar abu yang cukup tinggi, selain itu ada bebrapa faktor lain yang mempengaruhi seperti terlihat pada (Lampiran 6).

Berdasarkan hasil uji sidik ragam (Lampiran 8c) dihasilkan bahwa seluruh faktor berpengaruh nyata terhadap kadar abu. Berdasarkan uji lanjut Tukey (Lampiran 9) dapat diketahui bahwa faktor jenis \((a_1 \text{ dan } a_2)\) serta faktor suhu \((b_1 \text{ dan } b_2)\) menyebabkan adanya perbedaan kadar abu. Faktor waktu aktivasi selama 0 menit \((c_0)\) menyebabkan perbedaan kadar abu yang nyata terhadap semua waktu waktu aktivasi.

Faktor interaksi jenis dengan suhu aktivasi \((a, b)\) pada jenis tempurung kelapa menyebabkan perbedaan kadar abu yang nyata, sementara pada jenis sengon interaksi dengan suhu aktivasi tidak menyebabkan adanya perbedaan kadar abu.

Faktor interaksi antara jenis dan waktu akt.\((a, c)\) tidak memberikan pengaruh yang nyata terhadap kadar abu, kecuali pada jenis sengon dengan waktu 0 menit \((a_1c_0)\) dan jenis tempurung kelapa dengan waktu 170 menit \((a_2c_2)\). Kadar abu arang aktif serendah mungkin diinginkan dalam pembuatan arang aktif sehingga proses adsorpsi terhadap gas ataupun larutan lebih baik.

Jenis sengon pada waktu aktivasi 0 menit \((a_1c_0)\) menghasilkan kadar abu teknik dengan nilai rata-rata terendah yakni 7.15 % dan berbeda nyata dengan waktu aktivasi 170 menit \((a_2c_2)\) pada jenis tempurung kelapa sebagai interaksi yang memiliki rata-rata kadar abu tertinggi yakni 14.88 %.

...
Uji lanjut Tukey untuk faktor interaksi suhu dan waktu (b, c) pada suhu aktivasi 750\(^\circ\)C selama 0 menit (b\(_1c_0\)) memiliki nilai kadar abu terendah bila dibandingkan dengan waktu aktivasi selama 210 menit pada suhu 850\(^\circ\)C (b\(_2c_4\)) sebagai interaksi yang memiliki rata-rata kadar abu tertinggi, interaksi masing-masing suhu dengan keduanya berbeda nyata satu sama lain.

Pada Lampiran 11. untuk interaksi antara jenis, suhu dan waktu aktivasi (a, b, c) jenis sengon pada suhu 750\(^\circ\)C dengan waktu aktivasi selama 0 menit (a\(_1b_1c_0\)) menghasilkan kadar abu terbaik dengan nilai rata-rata terendah sebesar 7.61 %. Pada lampiran untuk jenis tempurung kelapa kadar abu terbaik dihasilkan pada suhu dan waktu yang sama (a\(_2b_1c_0\)).

![Histogram pengaruh perlakuan terhadap rata-rata kadar abu arang aktif kayu sengon dan tempurung kelapa.](image)

Pada histogram pengaruh perlakuan terhadap rata-rata kadar abu kedua bahan (Gambar 7.) dapat dilihat bahwa secara umum penambahan waktu aktivasi cenderung meningkatkan kadar abu, baik pada jenis sengon maupun jenis tempurung kelapa, meskipun tidak seluruhnya. Hal ini disebabkan karena terjadi proses lebih lanjut seperti pembentukan abu lebih banyak. Dari hasil analisa statistik, untuk mendapatkan nilai kadar abu paling optimum dalam pembuatan arang aktif kayu sengon dan tempurung kelapa adalah pada suhu 750\(^\circ\)C selama 0 menit (a\(_1b_1c_0\), a\(_2b_1c_0\)).
Kadar Karbon Terikat

Karbon dalam arang merupakan zat-zat pada fraksi padat hasil proses pirolisis selain abu (zat organik) dan zat-zat atsiri yang masih melekat pada pori-pori arang. Data selengkapnya dari kadar karbon terikat terdapat pada Lampiran 5.

Tabel 10. Hasil analisa kadar karbon arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>Kayu Sengon</th>
<th>Tempurung Kelapa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waktu (menit)</td>
<td>Suhu (°C)</td>
</tr>
<tr>
<td>0</td>
<td>75.03</td>
</tr>
<tr>
<td>150</td>
<td>68.50</td>
</tr>
<tr>
<td>170</td>
<td>75.00</td>
</tr>
<tr>
<td>190</td>
<td>64.61</td>
</tr>
<tr>
<td>210</td>
<td>65.69</td>
</tr>
</tbody>
</table>

Pada Tabel 10. dapat dilihat bahwa kadar karbon terikat yang dihasilkan pada arang aktif kayu sengon berkurang antara 64.61-78.55%. Sedangkan kadar karbon terikat arang aktif tempurung kelapa berkurang antara 66.77-83.55%. Kadar karbon terikat terendah pada arang aktif kayu sengon diperoleh pada suhu aktivasi 750°C dengan waktu aktivasi selama 190 menit ($a_{1}b_{1}c_{3}$), sementara untuk tempurung kelapa diperoleh pada suhu aktivasi 850°C dengan waktu aktivasi 210 menit ($a_{2}b_{2}c_{4}$).

Sedangkan kadar karbon terikat tertinggi pada arang aktif kayu sengon dan tempurung kelapa masing-masing diperoleh pada suhu aktivasi 850°C dan suhu aktivasi 750°C dengan waktu aktivasi selama 0 menit ($a_{1}b_{2}c_{0}$) dan ($a_{2}b_{1}c_{0}$). SNI (1995) mensyaratkan kadar karbon terikat minimum 65 % untuk arang aktif dalam bentuk serbuk, dengan demikian dapat dikatakan bahwa kadar karbon terikat yang diinginkan dalam pembuatan arang aktif adalah dengan nilai setinggi mungkin.

Dari seluruh arang aktif hasil percobaan hampir seluruhnya memenuhi SNI, kecuali arang aktif kayu sengon dengan suhu aktivasi 750°C selama 190 menit ($a_{1}b_{2}c_{3}$). Dengan demikian dapat dikatakan bahwa arang aktif kayu sengon dan tempurung kelapa kedua menemukan memiliki kadar karbon terikat yang cukup baik. Besar kecilnya kadar karbon terikat sangat dipengaruhi oleh kadar abu dan kadar zat terikat, kadar karbon terikat ini berbanding terbalik dengan kadar abu dan kadar zat terikat.
Dari hasil uji sidik ragam (Lampiran 8d) menunjukkan bahwa seluruh faktor dan interaksinya masing-masing berpengaruh nyata terhadap kadar karbon terikat. Hasil uji lanjut Tukey (Lampiran 9) dapat diketahui bahwa faktor jenis (a₁ dan a₂) serta faktor suhu (b₁ dan b₂) menyebabkan adanya perbedaan kadar karbon terikat. Faktor waktu aktivasi selama 0 menit (c₀) berbeda nyata dengan waktu aktivasi selama 210 menit (c₄). Sedangkan waktu aktivasi selama 150, 170, dan 190 menit (c₁, c₃, dan c₄) tidak memberikan pengaruh yang berbeda nyata satu sama lain terhadap kadar karbon terikat.

Faktor interaksi jenis dengan suhu aktivasi (a, b) pada jenis tempurung kelapa menyebabkan perbedaan kadar karbon, sementara pada jenis sengon interaksi dengan suhu aktivasi tidak menyebabkan adanya perbedaan kadar karbon terikat yang nyata. Faktor interaksi antara jenis dan waktu aktivasi (a, c) tidak memberikan pengaruh yang nyata terhadap kadar karbon terikat, kecuali pada jenis tempurung kelapa dengan waktu 0 menit (a₁c₀) dan jenis sengon dengan waktu 210 menit (a₁c₄) yang berbeda nyata terhadap seluruh interaksi antara jenis dengan waktu aktivasi (Lampiran 10).

Uji lanjut Tukey untuk faktor interaksi suhu dan waktu aktivasi (b, c) pada suhu aktivasi 750°C selama 0 menit (b₁c₀) memiliki nilai kadar karbon terikat lebih tinggi bila dibandingkan dengan waktu aktivasi selama 210 menit pada suhu 850°C (b₂c₀) sebagai interaksi yang memiliki rata-rata kadar karbon terikat terendah dalam interaksi suhu dan waktu aktivasi, meskipun interaksi masing-masing suhu dan waktu dari keseluruhan interaksi tidak berbeda nyata satu sama lain.

Untuk interaksi 3 faktor antara jenis, suhu dan waktu aktivasi (a,b,c) berdasarkan uji lanjut Tukey memberikan pengaruh yang bervariasi terhadap kadar karbon terikat (Lampiran 11). Jenis sengon dengan suhu 850°C dan waktu aktivasi selama 0 menit (a₁b₂c₀) menghasilkan kadar karbon terbaik yang berbeda nyata dengan interaksi yang lain, dan memiliki nilai rata-rata tertinggi sebesar 78.56%.

Sedangkan untuk jenis tempurung kelapa kadar karbon terikat terbaik ditemukan pada suhu dan waktu yang sama (a₂b₁c₀).
Keterangan :
\(a_1 = \) Jenis sengon, \(a_2 = \) Jenis tempurung kelapa; \(b_1 = \) Suhu aktivasi 750\(^\circ\)C, \(b_2 = \) Suhu aktivasi 850\(^\circ\)C; \(c_0 = \) Waktu aktivasi 0 menit, \(c_1 = \) Waktu aktivasi 150 menit, \(c_2 = \) Waktu aktivasi 170 menit, \(c_3 = \) Waktu aktivasi 190 menit, \(c_4 = \) Waktu aktivasi 210 menit.

Gambar 8. Histogram pengaruh perlakuan terhadap rata-rata kadar karbon terikat arang aktif kayu sengon dan tempurung kelapa.

Waktu aktivasi berhubungan negatif dengan kadar karbon terikat. Berdasarkan histogram pengaruh perlakuan terhadap rata-rata kadar karbon terikat kedua bahan (Gambar 8.) dapat dilihat bahwa penambahan waktu aktivasi cenderung menurunkan kadar karbon terikat, baik pada jenis sengon maupun jenis tempurung kelapa. Hal ini disebabkan karena peningkatan waktu aktivasi akan meningkatkan kadar abu sehingga kadar karbon terikat akan menurun. Dari hasil analisa statistik, untuk memperoleh nilai kadar karbon terikat paling optimum dalam pembuatan arang aktif kayu sengon dan tempurung kelapa baik pada suhu 750\(^\circ\)C maupun 850\(^\circ\)C adalah selama 0 menit (a_1b_1c_0, a_1b_2c_0, a_2b_1c_0, dan a_2b_2c_0).

Data Serap Iodium

Data serap terhadap iodium merupakan salah satu indikator penting dalam menilai kualitas arang aktif. Tujuan penetapan data serap iodium adalah untuk mengetahui kemampuan arang aktif dalam menyerap larutan berwarna. Data serap iodium juga menunjukkan kemampuan arang aktif menyerap zat dengan ukuran molekul yang lebih kecil dari 10 Å atau memberikan indikasi jumlah pori yang...
berdiameter 10-15 Å. Semakin tinggi daya serap iodium maka semakin baik kualitas arang aktif. Data selengkapnya untuk daya serap iodium tercantum pada Lampiran 5.

Tabel 11. Hasil analisa daya serap iodium arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>Kayu Sengon</th>
<th>Tempurung Kelapa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suhu (°C)</td>
<td>Waktu (menit)</td>
</tr>
<tr>
<td>750</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>850</td>
<td>537.03</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>388.24</td>
<td>170</td>
</tr>
<tr>
<td>150</td>
<td>796.62</td>
<td>170</td>
</tr>
<tr>
<td>868.89</td>
<td>170</td>
<td>979.22</td>
</tr>
<tr>
<td>851.82</td>
<td>190</td>
<td>984.92</td>
</tr>
<tr>
<td>889.65</td>
<td>210</td>
<td>928.91</td>
</tr>
</tbody>
</table>

Daya serap iodium arang aktif kayu sengon dan tempurung kelapa yang dikeraskan masing-masing berkisar antara 388.24-940.68 mg/g dan 316.30-984.92 mg/g (Tabel 11). Daya serap iodium terendah pada arang aktif kayu sengon dan tempurung kelapa masing-masing diperoleh pada suhu aktivasi 850°C dan suhu aktivasi 750°C selama 0 menit (a1b1c1) dan (a1b1c1). Sedangkan daya serap iodium arang aktif tertinggi diperoleh pada arang aktif kayu sengon suhu aktivaasi 750°C dengan waktu aktivasi selama 190 menit (a2b1c3), sementara untuk tempurung kelapa diperoleh pada suhu aktivasi 850°C dengan waktu aktivasi yang sama (a2b2c3).

Daya serap iodium yang diinginkan dalam pembuatan arang aktif adalah setinggi mungkin. SNI (1995) mensyaratkan daya serap iodium untuk arang aktif dalam bentuk serbuk minimum 750 mg/g. Seluruh arang aktif hasil percobaan pada umumnya memenuhi SNI, kecuali untuk arang aktif kayu sengon dengan suhu aktivasi 750°C dan suhu aktivasi 850°C selama 0 menit (a1b1c1, a1b2c1) serta untuk arang aktif tempurung kelapa dengan suhu dan waktu aktivasi yang sama (a2b1c0, a2b2c0). Dari segi daya serap iodium dapat dikatakan bahwa arang aktif kayu sengon dan arang aktif tempurung kelapa keduanya memiliki daya serap iodium yang cukup baik. Pengujian daya serap iodium dari arang aktif menunjukkan bahwa aktivasi dapat meningkatkan daya serap iodium.
Uji sidik ragam (Lampiran 8e) menunjukkan bahwa jenis dan suhu aktivasi tidak berpengaruh nyata terhadap daya serap iodium, sementara untuk waktu dan interaksi yang dihasilkan berpengaruh nyata terhadap daya serap iodium, kecuali interaksi 3 faktor antara jenis, suhu, dan waktu aktivasi yang memberikan pengaruh tidak nyata terhadap daya serap iodium.

Berdasarkan uji lanjut Tukey (Lampiran 9) waktu aktivasi selama 0 menit (c₀) memberikan pengaruh yang berbeda nyata dengan semua waktu aktivasi. Faktor interaksi jenis dengan suhu aktivasi (a, b) baik pada jenis sengon maupun tempurung kelapa tidak memberikan perbedaan daya serap iodium yang nyata satu sama lain (Lampiran 10). Interaksi jenis dengan waktu aktivasi (a, c) masing-masing perlakuan tidak memberikan pengaruh yang nyata terhadap daya serap iodium, kecuali pada jenis sengon dan tempurung kelapa dengan waktu aktivasi selama 0 menit (a₁c₀ dan a₂c₀) yang berbeda nyata terhadap seluruh interaksi, meskipun kedunya juga tidak berbeda nyata satu sama lain.

Sebagaimana faktor interaksi jenis dengan suhu aktivasi (a, b) baik pada jenis sengon maupun tempurung kelapa, interaksi suhu dengan waktu aktivasi (b, c) pun tidak memberikan perbedaan daya serap iodium yang nyata untuk masing-masing perlakuan, kecuali pada jenis sengon dan tempurung kelapa dengan waktu 0 menit (b₁c₀ dan b₂c₀) yang berbeda nyata terhadap seluruh interaksi antara suhu dengan waktu aktivasi, meskipun kedunya juga tidak berbeda nyata.

Interaksi antara jenis, suhu dan waktu aktivasi (a,b,c) berdasarkan uji lanjut Tukey memberikan pengaruh yang tidak berbeda nyata untuk setiap perlakuan, kecuali pada jenis sengon dengan suhu 750°C dan suhu 850°C selama 0 menit (a₁b₁c₀, a₁b₂c₀) kedunya menunjukkan perbedaan daya serap iodium yang berbeda nyata (Lampiran 11). Jenis sengon dengan suhu 750°C dan waktu aktivasi selama 190 menit (a₁b₁c₃) menghasilkan daya serap iodium terbaik dengan nilai rata-rata tertinggi sebesar 940.68 mg/g, meskipun tidak berbeda nyata dengan interaksi yang lain.

Sedangkan untuk jenis tempurung kelapa interaksi 3 faktor berdasarkan uji lanjut Tukey memberikan pengaruh yang bervariasi terhadap daya serap iodium. Jenis tempurung kelapa dengan suhu 850°C dan waktu aktivasi selama 190 menit
menghasilkan daya serap iodium terbaik dengan nilai rata-rata tertinggi sebesar 984.93 mg/g ($\alpha_2\beta_C$).

![Diagram](image)

Keterangan :
- α_1 = Jenis sengon; α_2 = Jenis tempurung kelapa; b_1 = Suhu aktifasi 750°C; b_2 = Suhu aktifasi 850°C; c_0 = Waktu aktifasi 0 menit; c_1 = Waktu aktifasi 150 menit; c_2 = Waktu aktifasi 170 menit; c_3 = Waktu aktifasi 190 menit; c_4 = Waktu aktifasi 210 menit.

Pada histogram pengaruh perlakuan terhadap rata-rata daya serap iodium bahan (Gambar 9) dapat diketahui bahwa penambahan waktu aktifasi cenderung meningkatkan daya serap iodium, baik pada jenis sengon maupun jenis tempurung kelapa. Namun demikian pada jenis sengon aktifasi pada suhu 750°C menghasilkan daya serap iodium yang lebih tinggi dibandingkan dengan suhu 850°C, hal ini diduga pada jenis sengon sebagian besar senyawa hidrokarbon telah terangkat keluar pada suhu 750°C atau dengan kata lain pori-pori pada permukaan arang sudah mengalami perluasan pada suhu tersebut, sehingga penambahan suhu yang lebih tinggi tidak mempengaruhi peningkatan daya serap iodium.

Berbeda dengan sengon pada jenis tempurung kelapa aktivasi 850°C menghasilkan daya serap iodium yang lebih tinggi daripada suhu 750°C. Hal tersebut disebabkan senyawa hidrokarbon pada permukaan arang baru terangkat dengan pemanasan dengan suhu yang lebih tinggi. Suhu dan waktu aktifasi yang lebih tinggi menyebabkan pembentukan pori dalam pelat-pelat karbon menjadi lebih baik.
Daya Serap Benzena

Benzena merupakan hidrokarbon melingkar yang mengandung cincin segi enam, dikenal dengan hidrokarbon aromatik karena umumnya hidrokarbon ini memiliki bau yang harum, meskipun banyak juga yang beracun. Struktur utama senyawa aromatik yang menjadi dasar sifat-sifat kimianya adalah cincin benzena.

Benzena merupakan senyawa aromatis yang paling sederhana, berasal dari bumi, baru dan minyak bumi. Penetapan daya serap benzena memberikan indikasi kemampuan arang aktif dalam menyerap gas yang bersifat nonpolar dengan ukuran molekul kurang dari 6 Å. Sifat fisika senyawa ini diantaranya memiliki titik didih 80°C, tidak berwarna, tidak larut dalam air, larut dalam kebanyakan pelarut organik, dan mudah terbakar dengan nyala yang berjelaga. Data selengkapnya untuk daya serap benzena dapat dilihat pada Lampiran 5.

<table>
<thead>
<tr>
<th>Kayu Sengon</th>
<th>Tempurung Kelapa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waktu (menit)</td>
<td>Suhu (°C)</td>
</tr>
<tr>
<td>0</td>
<td>750</td>
</tr>
<tr>
<td>150</td>
<td>15.90</td>
</tr>
<tr>
<td>170</td>
<td>19.00</td>
</tr>
<tr>
<td>190</td>
<td>22.58</td>
</tr>
<tr>
<td>210</td>
<td>20.73</td>
</tr>
</tbody>
</table>

Pada Tabel 12, dapat dilihat bahwa daya serap benzena yang dihasilkan pada arang aktif kayu sengon berkisar antara 11.55-22.58 %. Sedangkan daya serap benzena arang aktif tempurung kelapa berkisar antara 10.37-21.29 %. Daya serap benzena terendah pada arang aktif kayu sengon dan tempurung kelapa diperoleh pada suhu aktivaasi 750°C dengan waktu aktivaasi selama 0 menit \(\text{(a}_{12}\text{b}_{10}) \). Sedangkan daya serap benzena tertinggi pada arang aktif kayu sengon dan tempurung kelapa masing-masing diperoleh pada suhu aktivaasi 750°C selama 190 menit \(\text{(a}_{11}\text{b}_{14}) \) dan pada suhu aktivaasi 850°C dengan waktu aktivaasi yang sama \(\text{(a}_{12}\text{b}_{20}) \).

Menurut SNI (1995) mensyaratkan daya serap benzena minimum untuk arang aktif butiran adalah 25 %. Dari seluruh arang aktif hasil percobaan semuanya tidak
1. Diketahui bahwa arang akif kayu sengon dan tempurung kelapa keduanya memiliki daya serap terhadap benzena dibawah SNI, hal ini menunjukkan bahwa arang akif hasil percobaan hanya memiliki sedikit pori dengan ukuran 6 Å, sehingga arang akif hasil percobaan kurang efektif apabila digunakan untuk adsorbsbi gas benzena.

Hasil uji sidik ragam untuk daya serap benzena (Lampiran 8f) menunjukkan bahwa seluruh faktor dan interaksinya masing-masing berpengaruh nyata terhadap daya serap benzena. Hasil uji lanjut Tukey (Lampiran 9) dapat diketahui bahwa faktor jenis (a1 dan a2) serta faktor suhu (b1 dan b2) menyebabkan adanya perbedaan daya serap benzena. Seluruh faktor waktu aktivasi masing-masing memberikan perbedaan yang nyata satu dengan yang lainnya.

Faktor interaksi jenis dengan suhu aktivasi (a, b) baik pada jenis sengon maupun tempurung kelapa tidak memberikan perbedaan daya serap benzena yang nyata satu sama lain (Lampiran 10), faktor interaksi antara jenis dan waktu aktivasi (a,c) masing-masing perlakuan memberikan pengaruh yang beragam terhadap daya serap benzena. Jenis sengon dan tempurung kelapa dengan waktu masing-masing 210 dan 0 menit (a1c4 dan a2c0) menunjukkan perbedaan yang nyata.

Jenis sengon dengan waktu aktivasi selama 210 menit (a1c4) dengan waktu 150, 190 menit (a1c1, a1c3) dan jenis tempurung kelapa dengan waktu 190, 210 (a2c3, a2c4) menit tidak menyebabkan pebedaan yang nyata terhadap daya serap benzena. Sementara jenis tempurung kelapa dengan waktu aktivasi selama 0 menit (a2c0) memberikan perbedaan yang nyata terhadap seluruh interaksi antara jenis dengan waktu aktivasi.

Faktor interaksi suhu dengan waktu aktivasi (b, c) memberikan perbedaan daya serap benzena yang ber variasi. Interaksi suhu dengan waktu aktivasi terbaik disiskalkan pada suhu aktivasi 850°C dengan waktu 210 menit (b2c4) dengan nilai rata-rata sebesar 21.16 % yang berbeda nyata dengan suhu aktivasi 750°C selama 0 menit (b1c0), terdapat pada (Lampiran 10).

Interaksi antara jenis, suhu dan waktu aktivasi (a,b,c) berdasarkan uji lanjut Tukey memberikan pengaruh yang beragam (Lampiran 11). Dari hasil percobaan pada jenis sengon interaksi terbaik dihasilkan pada suhu aktivasi 750°C dengan waktu
aktivasi selama 190 menit \((a_1b_1c_2)\) dengan nilai rata-rata sebesar 22.58 % yang berbeda nyata terhadap seluruh interaksi. Sedangkan pada jenis tempurung kelapa interaksi terbaik dihasilkan pada suhu aktivasi 850°C dengan waktu aktivasi yang sama \((a_2b_2c_3)\) dengan nilai rata-rata sebesar 21.30 % dan berbeda nyata terhadap seluruh interaksi yang lainnya.

![Histogram pengaruh perlakuan terhadap rata-rata daya serap benzena arang aktif kayu sengon dan tempurung kelapa.](image)

Keterangan:
- \(a_1\) Jenis sengon
- \(a_2\) Jenis tempurung kelapa
- \(b_1\) Suhu aktivasi 750°C
- \(b_2\) Suhu aktivasi 850°C
- \(c_1\) Waktu aktivasi 0 menit
- \(c_2\) Waktu aktivasi 150 menit
- \(c_3\) Waktu aktivasi 190 menit

Pada histogram pengaruh perlakuan terhadap rata-rata daya serap benzena kedua bahan (Gambar 10) dapat diketahui bahwa untuk jenis sengon penambahan waktu aktivasi pada suhu 750°C cenderung meningkatkan daya serap benzena, kecuali pada waktu aktivasi selama 210 menit \((a_1b_1c_4)\), hal ini disebabkan karena suhu yang diberikan telah mampu mengangkat senyawa hidrokarbon sehingga permukaan arang menjadi lebih luas, begitu pula dengan suhu 850°C, kecuali waktu aktivasi 170 dan 190 menit \((a_2b_2c_2\) dan \(a_1b_2c_3)\).

Sedangkan untuk jenis tempurung kelapa pada suhu 750°C mampu meningkatkan daya serap benzena, kecuali pada waktu aktivasi selama 170 menit \((b_1c_2)\) dan \((b_2c_2)\), begitu pula dengan suhu 850°C, kecuali waktu aktivasi 170 dan 210 menit \((b_1c_2\) dan \(b_2c_4)\). Namun demikian untuk jenis kelapa suhu lebih tinggi menerapkan pengaruh terhadap nilai rata-rata daya serap benzena yang semakin...
besar. Hal ini diduga karena senyawa hidrokarbon pada bahan padat seperti tempurung sebagian besar terangkat pada suhu yang relatif lebih tinggi bila dibandingkan dengan jenis sengon.

Arang aktif yang optimum untuk penyerapan benzena adalah arang aktif yang diaktivasi pada suhu 750°C selama 190 menit (a₁b₁c₁) pada jenis sengon. Sedangkan pada jenis tempurung kelapa adalah yang diaktivasi pada suhu 850°C selama 190 menit (a₂b₂c₂). Namun demikian secara keseluruhan arang aktif hasil percobaan tersebut mampu melakukan adsorpsi terhadap benzena.

Data Serap Formalin

Daya serap formalin berguna untuk mengetahui kemampuan arang aktif dalam menyerap gas. Formalin termasuk dalam gugus fungsi aldehida, merupakan senyawa pola yang mengandung gugus karbonil (C = O) seperti Urea Formaldehida. Selain itu, formalin berbentuk gas pada suhu kamar, tak berwarna, baunya tajam, dan mengandung formaldehida dalam H₂O mencapai 40%. Data selengkapnya untuk data serap iodum tercantum pada Lampiran 5.

Tabel 13. Hasil analisa daya serap formalin arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>Suhu (°C)</th>
<th>Kayu Sengon</th>
<th>Waktu (menit)</th>
<th>Suhu (°C)</th>
<th>Tempurung Kelapa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>750</td>
<td>850</td>
<td></td>
<td>750</td>
<td>850</td>
</tr>
<tr>
<td>0</td>
<td>12.42</td>
<td>11.85</td>
<td>0</td>
<td>10.38</td>
<td>11.73</td>
</tr>
<tr>
<td>150</td>
<td>19.31</td>
<td>24.83</td>
<td>150</td>
<td>18.29</td>
<td>23.52</td>
</tr>
<tr>
<td>170</td>
<td>23.61</td>
<td>20.86</td>
<td>170</td>
<td>18.44</td>
<td>23.11</td>
</tr>
<tr>
<td>190</td>
<td>25.15</td>
<td>22.60</td>
<td>190</td>
<td>19.67</td>
<td>24.80</td>
</tr>
<tr>
<td>210</td>
<td>23.76</td>
<td>22.07</td>
<td>210</td>
<td>21.67</td>
<td>23.45</td>
</tr>
</tbody>
</table>

Daya serap formalin arang aktif kayu sengon dan tempurung kelapa yang dibuktikan masing-masing berkisar antara 11.85-25.15 % dan 10.38-24.80 % (Tabel 13). Daya serap formalin terendah pada arang aktif kayu sengon dan tempurung kelapa masing-masing diperoleh pada suhu aktivasi 850°C dan suhu aktivasi 750°C selama 0 menit (a₁b₂c₀) dan (a₂b₁c₀).
Sedangkan daya serap formalin tertinggi diperoleh pada arang aktif kayu sengon pada suhu aktivaasi 750°C dengan waktu aktivaasi selama 190 menit (a1b1c1), sementara untuk tempurung kelapa diperoleh pada suhu aktivaasi 850°C dengan waktu aktivaasi yang sama (a1b1c3). Arang aktif yang dihasilkan dari kombinasi perlakuan hasil percobaan memiliki nilai daya serap formalin yang hampir sama, baik pada arang aktif kayu sengon maupun arang aktif tempurung kelapa, yaitu berkisar dari 11.85-25.15 %.

Dari hasil uji sidik ragam untuk daya serap formalin (Lampiran 8g) menunjukkan bahwa seluruh faktor serta interaksinya masing-masing berpengaruh nyata terhadap daya serap formalin, kecuali interaksi jenis dan waktu yang tidak memberikan pengaruh nyata terhadap daya serap formalin.

Hasil uji lanjut Tukey (Lampiran 9) dapat dilihat bahwa faktor jenis (a), dan b) serta faktor suhu (b1 dan b2) menyebabkan adanya perbedaan daya serap formalin. Faktor waktu aktivaasi masing-masing memberikan perbedaan daya serap formalin yang bervariasi. Waktu aktivaasi selama 0 menit berpengaruh nyata terhadap keluruh waktu aktivaasi. Waktu aktivaasi 150, 170 menit (c1, c2) dan waktu aktivaasi 190, 210 menit (c3, c4) masing-masing tidak memberikan perbedaan yang nyata terhadap daya serap formalin.

Faktor interaksi jenis dengan suhu aktivaasi (a, b) baik pada jenis sengon maupun tempurung kelapa tidak memberikan perbedaan daya serap formalin yang nyata satu sama lain (Lampiran 10), faktor interaksi antara jenis dan waktu aktivaasi (a, c) masing-masing perlakuan juga tidak memberikan pengaruh yang nyata terhadap daya serap formalin, kecuali pada jenis sengon dan tempurung kelapa dengan waktu aktivaasi masing-masing selama 0 menit (a1c0 dan a2c0). Interaksi terbaik hasil percobaan adalah jenis sengon dengan waktu aktivaasi selama 190 menit (a1c3) dengan nilai rata-rata sebesar 23.88 %, meskipun tidak berbeda nyata dengan interaksi yang lainnya.

Faktor interaksi suhu dengan waktu aktivaasi (b, c) memberikan perbedaan daya serap formalin yang berbeda-beda (Lampiran 10). Interaksi suhu dengan waktu aktivaasi terbaik dihasilkan pada suhu aktivaasi 850°C dengan waktu aktivaasi selama
150 menit \((b_2c_1)\) dengan nilai rata-rata sebesar 24.18 \%, meskipun tidak berbeda nyata dengan waktu aktivasi selama 190 dan 210 menit \((b_2c_3\) dan \(b_2c_4\)). Interaksi 3 faktor antara jenis, suhu dan waktu aktivasi \((a,b,c)\) berdasarkan uji lanjut Tukey memberikan pengaruh yang bervariasi terhadap daya serap formalin (Lampiran 11). Dari hasil percobaan pada jenis sengon interaksi terbaik dihasilkan pada suhu aktivasi 750\(^\circ\)C dengan waktu aktivasi selama 190 menit \((a_1b_1c_3)\) dengan nilai rata-rata sebesar 25.16 \% yang berbeda nyata terhadap keseluruhan interaksi.

Sedangkan pada jenis tempurung kelapa interaksi terbaik dihasilkan pada suhu aktivasi 850\(^\circ\)C dengan waktu aktivasi selama 190 menit \((a_2b_2c_3)\) dengan nilai rata-rata sebesar 24.81 \% yang berbeda nyata untuk setiap perlakuan.

![Histogram pengaruh aktivasi terhadap rata-rata daya serap formalin arang aktif kayu sengon dan tempurung kelapa.](image)

Keterangan :
- \(a_1\) = Jenis sengon
- \(a_2\) = Jenis tempurung kelapa
- \(b_1\) = Suhu aktivesis 750\(^\circ\)C
- \(b_2\) = Suhu aktivesis 850\(^\circ\)C
- \(c_1\) = Waktu aktivesis 10 min
- \(c_2\) = Waktu aktivesis 150 min
- \(c_3\) = Waktu aktivesis 170 min
- \(c_4\) = Waktu aktivesis 190 min
- \(c_5\) = Waktu aktivesis 210 min

Gambar 11. Histogram pengaruh perlakuan terhadap rata-rata daya serap formalin arang aktif kayu sengon dan tempurung kelapa.

Pada histogram pengaruh perlakuan terhadap rata-rata daya serap formalin suku bahan (Gambar 11.) dapat diketahui bahwa penambahan waktu aktivasi cenderung meningkatkan daya serap formalin. Namun demikian untuk jenis sengon penambahan suhu tidak memberikan pengaruh terhadap peningkatan daya serap formalin, bahkan mempunyai kecenderungan semakin menurun.

Diduga suhu 750\(^\circ\)C merupakan suhu maksimum yang bisa diberikan untuk suku bahan yang tergolong lunak seperti sengon, sehingga dengan suhu tersebut telah
mampu mengangkat senyawa hidrokarbon yang menempel pada permukaan arang yang dapat menghambat proses adsorsbi. Secara umum dapat diketahui bahwa seluruh arang aktif hasil percobaan dapat dimanfaatkan sebagai adsorben gas formalin.

Daya Serap Kloroform

Daya serap kloroform mengindikasikan kemampuan arang aktif dalam menyerap gas yang bersifat polar. Data selengkapnya untuk daya serap kloroform dapat dilihat pada Lampiran 5.

Tabel 14. Hasil analisa daya serap kloroform arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>Suhu (°C)</th>
<th>Waktu (menit)</th>
<th>Suhu (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>750</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9.64</td>
<td>12.02</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>17.33</td>
<td>23.13</td>
<td>150</td>
</tr>
<tr>
<td>170</td>
<td>23.37</td>
<td>21.27</td>
<td>170</td>
</tr>
<tr>
<td>190</td>
<td>27.11</td>
<td>20.77</td>
<td>190</td>
</tr>
<tr>
<td>210</td>
<td>19.01</td>
<td>24.41</td>
<td>210</td>
</tr>
</tbody>
</table>

Pada Tabel 14, dapat dilihat bahwa daya serap kloroform yang dihasilkan pada arang aktif kayu sengon berkisar antara 9.64-27.11 %. Sedangkan daya serap kloroform arang aktif tempurung kelapa berkisar antara 10.40-27.33 %. Daya serap kloroform terendah pada arang aktif kayu sengon dan tempurung kelapa diperoleh masing-masing pada suhu aktivasi 750°C dan suhu aktivasi 850°C selama 0 menit ($a_1b_1c_1$), $a_2b_2c_0$). Sedangkan daya serap kloroform tertinggi pada arang aktif kayu sengon dan tempurung kelapa masing-masing diperoleh pada suhu aktivasi 750°C dengan waktu aktivasi selama 190 menit ($a_1b_1c_3$) dan 210 menit ($a_2b_1c_4$). Arang aktif yang dihasilkan dari kombinasi perlakuan hasil percobaan memiliki nilai daya serap kloroform yang hampir sama, baik pada arang aktif kayu sengon maupun arang aktif tempurung kelapa, yaitu berkisar dari 9.64-27.33 %.

Hasil uji sidik ragam untuk daya serap kloroform (Lampiran 8h) menunjukkan bahwa seluruh faktor serta interaksinya masing-masing berpengaruh nyata terhadap

*Hak Cipta Dilindungi Undang-Undang
Buku ini disusun oleh: IPB (Institut Pertanian Bogor)
Bogor Agricultural University*
daya serap kloroform, kecuali suhu aktivasi yang tidak memberikan pengaruh nyata terhadap daya serap kloroform. Hasil uji lanjut Tukey (Lampiran 9) dapat diketahui bahwa faktor jenis (a1 dan a2) menyebabkan adanya perbedaan daya serap kloroform, sementara faktor suhu (b1 dan b2) tidak menyebabkan adanya perbedaan daya serap kloroform.

Seluruh faktor waktu aktivasi memberikan perbedaan daya serap kloroform yang nyata satu dengan yang lain. Faktor interaksi jenis dengan suhu aktivasi (a, b) baik pada jenis sengon maupun tempurung kelapa tidak memberikan perbedaan daya serap kloroform yang nyata satu sama lain (Lampiran 10). Faktor interaksi antara jenis dan waktu aktivasi (a, c) masing-masing perlakuan tidak memberikan perbedaan nyata terhadap daya serap kloroform, kecuali pada waktu 0 menit (a1c0) meskipun keduanya tidak berbeda nyata. Interaksi terbaik hasil percobaan adalah jenis tempurung kelapa dengan waktu aktivasi selama 210 menit (a2c4) dengan nilai rata-rata sebesar 24.40 %, meskipun tidak berbeda nyata dengan interaksi yang lainnya.

Interaksi dua faktor antara suhu dengan waktu aktivasi (b, c) memberikan perbedaan daya serap formalin yang berbeda-beda (Lampiran 10). Interaksi suhu dengan waktu aktivasi terbaik dihasilkan pada suhu aktivasi 750°C dengan waktu aktivasi selama 190 menit (b1c3) dengan nilai rata-rata sebesar 25.07 % dan berbeda nyata dengan interaksi yang lainnya.

Dari hasil percobaan pada jenis sengon interaksi 3 faktor (a,b,c) terbaik dihasilkan pada suhu aktivasi 750°C dengan waktu aktivasi selama 190 menit (a1b1c3) dengan nilai rata-rata sebesar 27.11 % yang berbeda nyata terhadap keseluruhan interaksi. Sedangkan pada jenis tempurung kelapa interaksi terbaik hasil percobaan adalah pada suhu aktivasi 750°C dengan waktu selama 210 menit (a2b1c4) dengan nilai rata-rata sebesar 27.33 % yang berbeda nyata terhadap setiap perlakuan.

Histogram pengaruh perlakuan terhadap rata-rata daya serap kloroform kedua (Gambar 12.) menunjukkan bahwa penambahan waktu aktivasi cenderung meningkatkan daya serap kloroform, kecuali pada jenis sengon pada suhu 750°C dengan waktu aktivasi 210 menit \((a_1b_1c_4)\) dan jenis tempurung kelapa pada suhu 800°C dengan waktu aktivasi yang sama \((a_2b_2c_4)\).

Pada jenis sengon dan tempurung kelapa penambahan suhu tidak memberikan pengaruh terhadap peningkatan daya serap kloroform, bahkan cenderung semakin menurun, diduga karena suhu 750°C merupakan suhu yang optimum untuk kedua jenis bahan ini, dengan suhu tersebut telah mampu mengangkat senyawa hidrokarbon yang menempel pada permukaan arang, dan arang aktif yang dihasilkan memiliki pori-pori yang semakin banyak sehingga luas permukaan arang aktif mampu menyerap gas/ubat lebih banyak. Secara umum dapat diketahui bahwa seluruh arang aktif hasil percobaan memiliki daya serap yang tidak terlalu tinggi terhadap kloroform.
Daya Serap Metanol

Daya serap metanol menunjukkan kemampuan dari arang aktif untuk menyerap gas yang berasal dari kelompok gugus alkohol dengan gugus fungsi hidroksil. Metanol termasuk dalam gugus fungsi alkohol, memiliki rantai terpendek dari gugus tersebut. Senyawa ini merupakan senyawa polar yang dapat larut dalam air. Metanol banyak digunakan untuk pelarut, antifreeze radiator mobil, sintesis formaldeida, metilamina, metil klorida, dan metilkatalis.

Tabel 15. Hasil analisa daya serap metanol arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>Kayu Sengon</th>
<th>Tempurung Kelapa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suhu (°C)</td>
<td>Suhu (°C)</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>850</td>
</tr>
<tr>
<td>0</td>
<td>7.50</td>
<td>8.22</td>
</tr>
<tr>
<td>150</td>
<td>8.88</td>
<td>11.73</td>
</tr>
<tr>
<td>170</td>
<td>14.21</td>
<td>7.69</td>
</tr>
<tr>
<td>190</td>
<td>15.72</td>
<td>13.50</td>
</tr>
<tr>
<td>210</td>
<td>13.08</td>
<td>12.14</td>
</tr>
</tbody>
</table>

Data selengkapnya untuk daya serap metanol dapat dilihat pada Lampiran 5.

Pada Tabel 15, daya serap metanol arang aktif kayu sengon dan tempurung kelapa yang dihasilkan masing-masing berkisar antara 7.50-15.72 % dan 8.56-18.40 % (Tabel 15). Daya serap metanol terendah pada arang aktif kayu sengon dan tempurung kelapa diperoleh pada suhu aktivasi 750°C selama 0 menit (a_{12b_{1c_{0}}}).

Sedangkan daya serap metanol tertinggi diperoleh pada arang aktif kayu sengon pada suhu aktivasi 750°C dengan waktu aktivasi selama 190 menit (a_{1b_{1c_{3}}}), sementara untuk tempurung kelapa diperoleh pada suhu aktivasi 850°C dengan waktu aktivasi selama 170 menit (a_{2b_{2c_{2}}}). Daya serap metanol yang diinginkan dalam pembuatan arang aktif adalah setinggi mungkin. Arang aktif yang dihasilkan dari kombinasi perlakuan hasil percobaan memiliki nilai rata-rata daya serap metanol yang hampir sama, baik pada arang aktif kayu sengon maupun arang aktif tempurung kelapa, yaitu berkisar dari 7.50-18.40 %.

Hasil uji sidik ragam untuk daya serap metanol (Lampiran 8i) menunjukkan bahwa semua faktor serta interaksinya masing-masing berpengaruh nyata terhadap
daya serap metanol. Hasil uji lanjut Tukey (Lampiran 9) dapat diketahui bahwa faktor jenis (a₁ dan a₂) menyebabkan adanya perbedaan daya serap metanol. Faktor suhu (b₁ dan b₂) menyebabkan adanya perbedaan terhadap daya serap metanol. Seluruh faktor waktu aktivasi memberikan perbedaan daya serap metanol yang nyata satu dengan yang lain.

Faktor interaksi jenis dengan suhu aktivasi (a, b) pada jenis sengon tidak memberikan perbedaan daya serap metanol yang nyata satu sama lain (Lampiran 10), sedangkan untuk jenis tempurung kelapa memberikan pengaruh yang berbeda nyata.

Faktor interaksi antara jenis dengan waktu aktivasi (a, c) memberikan pengaruh yang bervariasi terhadap daya serap metanol. Interaksi terbaik hasil percobaan adalah jenis tempurung kelapa dengan waktu aktivasi selama 190 menit (a₁c₁) dengan nilai rata-rata sebesar 16.23 %, dan berbeda nyata dengan interaksi yang lainnya, kecuali pada jenis yang sama dengan waktu aktivasi selama 170 menit (a₁c₂).

Interaksi antara suhu dengan waktu aktivasi (b, c) memberikan perbedaan daya serap metanol yang berbeda-beda (Lampiran 10). Interaksi suhu dengan waktu aktivasi terbaik dihasilkan pada suhu aktivasi 850°C dengan waktu aktivasi selama 190 menit (b₁c₁) dengan nilai rata-rata sebesar 15.95 % dan berbeda nyata dengan interaksi yang lainnya.

Interaksi jenis, suhu dan waktu aktivasi (a,b,c) berdasarkan uji lanjut Tukey (Lampiran 11) memberikan pengaruh yang beragam terhadap daya serap metanol. Berdasarkan hasil percobaan pada jenis sengon interaksi terbaik dihasilkan pada suhu aktivasi 750°C dengan waktu aktivasi selama 190 menit (a₁b₁c₁) dengan nilai rata-rata sebesar 15.73 % yang berbeda nyata terhadap keseluruhan interaksi.

Sedangkan pada jenis tempurung kelapa interaksi terbaik hasil percobaan dipperoleh pada suhu aktivasi 850°C dengan waktu aktivasi selama 170 menit (a₂b₂c₂) dengan nilai rata-rata sebesar 18.41 % yang berbeda nyata terhadap setiap perlakuan, kecuali pada waktu 190 menit (a₁b₂c₂) pada suhu dan jenis yang sama.
Histogram pengaruh perlakuan terhadap rata-rata daya serap metanol arang aktif kayu sengon dan tempurung kelapa.

Histogram pengaruh perlakuan terhadap rata-rata daya serap metanol dapat dijelaskan bahwa penambahan waktu aktivasi pada suhu 750°C untuk jenis sengon cenderung meningkatkan daya serap metanol, kecuali pada waktu aktivasi 210 menit (c), sementara pada suhu 850°C penambahan waktu tidak memberikan perbedaan terhadap daya serap metanol, hal ini disebabkan oleh pembentukan abu yang meningkat. Abu yang terbentuk dapat menghambat pori-pori dalam menyerap uap/gas.

Sedangkan untuk jenis tempurung kelapa penambahan suhu dan waktu aktivasi juga cenderung meningkatkan daya serap metanol, kecuali pada suhu 850°C selama 210 menit (b,c), diduga karena penambahan suhu dan waktu yang lebih lama mampu mengangkat senyawa hidrokarbon yang menempel pada permukaan arang sehingga arang aktif yang dihasilkan memiliki pori-pori yang semakin banyak luas permukaan arang aktif menjadi lebih luas yang mampu menyerap uap/gas lebih banyak. Secara umum dapat diketahui bahwa seluruh arang aktif hasil uji cobaan memiliki daya serap terhadap metanol yang tidak terlalu tinggi.
Daya Serap Kamper

Daya serap kamper memberikan indikasi arang aktif dalam menyerap uap/gas senyawa tersebut. Kamper mengandung senyawa napthalene yang menyebabkan bau yang menyenangkan. Senyawa ini merupakan senyawa hidrokarbon aromatis nonpolar dengan dua rantai siklik. Data lengkap untuk daya serap kamper dapat dilihat pada Lampiran 5.

<table>
<thead>
<tr>
<th></th>
<th>Kayu Sengon</th>
<th>Tempurung Kelapa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waktu (menit)</td>
<td>Suhu (°C)</td>
<td>Suhu (°C)</td>
</tr>
<tr>
<td>0</td>
<td>7.21</td>
<td>8.00</td>
</tr>
<tr>
<td>150</td>
<td>11.15</td>
<td>16.01</td>
</tr>
<tr>
<td>170</td>
<td>9.70</td>
<td>8.75</td>
</tr>
<tr>
<td>190</td>
<td>13.40</td>
<td>16.51</td>
</tr>
<tr>
<td>210</td>
<td>13.33</td>
<td>14.26</td>
</tr>
<tr>
<td></td>
<td>4.80</td>
<td>8.17</td>
</tr>
<tr>
<td>150</td>
<td>6.09</td>
<td>9.82</td>
</tr>
<tr>
<td>170</td>
<td>5.43</td>
<td>11.77</td>
</tr>
<tr>
<td>190</td>
<td>6.11</td>
<td>13.69</td>
</tr>
<tr>
<td>210</td>
<td>7.31</td>
<td>10.69</td>
</tr>
</tbody>
</table>

Daya serap kamper arang aktif kayu sengon dan tempurung kelapa yang didiskakan masing-masing berkisar antara 7.21-16.51 % dan 4.80-13.69 %. Daya serap kamper terendah pada arang aktif kayu sengon dan tempurung kelapa diperoleh pada suhu aktifikasi 750°C selama 0 menit (a1b1c0) dan (a2b1c0).

Sedangkan daya serap kamper tertinggi, baik pada arang aktif kayu sengon maupun tempurung kelapa diperoleh pada suhu aktivasi 850°C dengan waktu aktifikasi selama 190 menit (a1b2b3). Arang aktif kayu sengon hasil percobaan pada suhu 850°C sebagian besar memiliki nilai daya serap kamper lebih tinggi dibandingkan pada suhu 750°C, Sedangkan arang aktif tempurung kelapa hasil percobaan pada suhu 850°C seluruhnya memiliki nilai daya serap kamper lebih tinggi dibandingkan pada suhu 750°C (Tabel 16).

Uji sidik ragam untuk daya serap kamper (Lampiran 8j) dapat diketahui bahwa seluruh faktor serta interaksinya masing-masing berpengaruh nyata terhadap daya serap kamper. Hasil uji lanjut Tukey (Lampiran 9) dapat dilihat bahwa faktorjenis (a1 dan a2) serta faktor suhu (b1 dan b2) menyebabkan adanya perbedaan daya serap kamper. Seluruh faktor waktu aktifikasi memberikan perbedaan daya serap
kamper yang nyata, kecuali waktu 150 dan 210 menit (c₁ dan c₄) yang tidak berbeda nyata satu sama lain.

Faktor interaksi jenis dengan suhu aktivasi (a, b) pada jenis sengon tidak memberikan perbedaan daya serap kamper yang nyata (Lampiran 10), sementara pada jenis tempurung kelapa menunjukkan adanya perbedaan yang nyata.

Faktor interaksi antara jenis dan waktu aktivasi (a, c) masing-masing pula memberikan pengaruh yang bervariasi terhadap daya serap kamper. Interaksi terbaik hasil percobaan adalah jenis sengon dengan waktu aktivasi selama 150 menit (a₁c₁) dengan nilai rata-rata sebesar 14.96 %, dan memiliki perbedaan yang nyata dengan interaksi yang lainnya.

Interaksi antara suhu dengan waktu aktivasi (b, c) memberikan perbedaan daya serap kamper yang berbeda-beda (Lampiran 10). Interaksi suhu dengan waktu aktivasi terbaik dihasilkan pada suhu aktivasi 850°C dengan waktu aktivasi selama 150 menit (b₁c₁) dengan nilai rata-rata sebesar 15.11 % dan berbeda nyata dengan interaksi yang lainnya.

Interaksi 3 faktor (a,b,c) berdasarkan uji lanjut Tukey (Lampiran 11) memberikan pengaruh yang beragam terhadap daya serap kamper. Dari hasil percobaan pada jenis sengon interaksi terbaik dihasilkan pada suhu aktivasi 850°C dengan waktu selama 190 menit (a₁b₁c₁) dengan nilai rata-rata sebesar 16.52 % yang berbeda nyata terhadap keseluruhan interaksi. Sedangkan pada jenis tempurung kelapa interaksi terbaik hasil percobaan diperoleh pada suhu dan waktu aktivasi yang sama (a₂b₂c₂) dengan nilai rata-rata sebesar 13.70 % yang berbeda nyata dengan interaksi lainnya.

Pada histogram pengaruh perlakuan terhadap rata-rata daya serap kamper arang aktif kayu sengon cenderung meningkatkan daya serap kamper, kecuali pada waktu aktivasi 170 dan 210 menit ($a_1b_1c_2$ dan $a_1b_2c_2$).

Sebagaimana jenis sengon, untuk jenis tempurung kelapa penambahan suhu dan waktu aktivasi juga cenderung meningkatkan daya serap kamper, kecuali pada suhu 750°C dengan waktu 170 menit ($a_2b_1c_2$) dan pada suhu 850°C pada suhu 210 menit ($a_2b_2c_4$). Hal tersebut terjadi diduga karena penambahan suhu dan waktu yang lebih lama mampu mengangkat senyawa hidrokarbon yang menempel pada permukaan arang sehingga mampu menyerap uap/gas lebih banyak.

Berdasarkan hasil analisa statistik dapat diketahui bahwa arang aktif hasil uji cobaan yang paling optimum dalam adsorpsi kamper adalah yang dibuat pada suhu 850°C selama 190 menit, untuk jenis sengon dan tempurung kelapa ($a_1b_2c_3$).
Daya Serap Urea Formaldehida (UF)

Pengujian daya serap UF mengindikasikan kemampuan arang aktif dalam menyerap gas/uap senyawa UF. Urea Formaldehida merupakan senyawa aldehida dengan gugus fungsi berupa gugus karbonil \(C = O \). Pada umumnya UF banyak digunakan sebagai perekat kayu lapis dan papan partikel. Data selengkapnya untuk daya serap UF tercantum pada Lampiran 5.

Tabel 17. Hasil analisa daya serap UF arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>Suhu (^\circ\mathrm{C})</th>
<th>Waktu (menit)</th>
<th>Suhu (^\circ\mathrm{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>750</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10.66</td>
<td>9.41</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>18.70</td>
<td>20.99</td>
<td>150</td>
</tr>
<tr>
<td>170</td>
<td>25.64</td>
<td>15.14</td>
<td>170</td>
</tr>
<tr>
<td>190</td>
<td>25.19</td>
<td>22.24</td>
<td>190</td>
</tr>
<tr>
<td>210</td>
<td>21.57</td>
<td>18.77</td>
<td>210</td>
</tr>
</tbody>
</table>

Daya serap UF arang aktif kayu sengon yang dihasilkan berkisar antara 9.41-25.50 \% \(\text{SUU} \), sedangkan daya serap UF arang aktif tempurung kelapa yang dihasilkan berkisar antara 9.97-26.59 \% \(\text{SUU} \). Daya serap UF terendah pada arang aktif kayu sengon dengan suhu 750\(^\circ\mathrm{C}\) selama 0 menit (a\(_{1b2c0}\)).

Sedangkan daya serap UF tertinggi diperoleh pada arang aktif kayu sengon pada suhu aktivaasi 750\(^\circ\mathrm{C}\) dengan waktu aktivaasi selama 170 menit (a\(_{1b1c2}\)), sementara untuk tempurung kelapa diperoleh pada suhu aktivaasi 850\(^\circ\mathrm{C}\) dengan waktu aktivaasi selama 210 menit (a\(_{1b2c4}\)).

Arang aktif kayu sengon hasil percobaan pada suhu 750\(^\circ\mathrm{C}\) sebagian besar memiliki nilai daya serap UF lebih tinggi dibandingkan pada suhu 850\(^\circ\mathrm{C}\), sedangkan untuk arang aktif tempurung kelapa hasil percobaan pada suhu 850\(^\circ\mathrm{C}\) sebagian besar memiliki nilai daya serap UF lebih tinggi dibandingkan pada suhu 750\(^\circ\mathrm{C}\) (Tabel 17).

Dari hasil uji sidik ragam untuk daya serap UF (Lampiran 8k) dapat dilihat bahwa seluruh faktor serta interaksinya masing-masing berpengaruh nyata, kecuali faktor jenis yang tidak memberikan pengaruh nyata. Hasil uji lanjut Tukey (Lampiran 9) dapat diketahui bahwa faktor jenis \((a_1\) dan \(a_2 \)) tidak menyebabkan adanya perbedaan daya serap UF, sementara faktor suhu \((b_1\) dan \(b_2 \)) menyebabkan
adanya perbedaan terhadap daya serap UF. Seluruh faktor waktu aktivasi memberikan perbedaan daya serap UF yang nyata, kecuali waktu 170 dan 210 menit (c2 dan c4) yang tidak berbeda nyata satu sama lain.

Faktor interaksi jenis dengan suhu aktivasi (a, b) pada jenis sengon tidak memberikan perbedaan daya serap UF yang nyata satu sama lain, sedangkan pada jenis tempurung kelapa memberikan perbedaan yang nyata (Lampiran 10).

Faktor interaksi antara jenis dan waktu aktivasi (a, c) masing-masing perakuan memberikan pengaruh yang bervariasi terhadap daya serap UF. Interaksi terbaik hasil percobaan adalah jenis sengon dengan waktu aktivasi selama 190 menit (a2c4) dengan nilai rata-rata sebesar 23.72 %, meskipun tidak berbeda nyata dengan jenis tempurung kelapa pada waktu 210 menit (a2c4).

Interaksi dua faktor antara suhu dengan waktu aktivasi (b, c) memberikan perbedaan daya serap UF yang berbeda-beda (Lampiran 10). Interaksi suhu dengan waktu aktivasi terbaik dihasilkan pada suhu aktivasi 850°C dengan waktu aktivasi selama 150 menit (b2c1) dengan nilai rata-rata sebesar 23.25 % dan berbeda nyata dengan interaksi yang lainnya, kecuali dengan waktu 190 dan 210 menit (b2c3 dan b2c4).

Interaksi jenis, suhu dan waktu aktivasi (a,b,c) berdasarkan uji lanjut Tukey memberikan pengaruh yang beragam terhadap daya serap UF (Lampiran 11). Hasil percobaan pada jenis sengon interaksi terbaik dihasilkan pada suhu aktivasi 750°C dengan waktu aktivasi selama 170 menit (a1b1c2) dengan nilai rata-rata sebesar 25.64 % yang berbeda nyata terhadap keseluruhan interaksi, kecuali dengan waktu 190 menit (a1b1c3).

Sedangkan pada jenis tempurung kelapa interaksi terbaik hasil percobaan diperoleh pada suhu aktivasi 850°C dengan waktu aktivasi selama 210 menit (a2b2c4) dengan nilai rata-rata sebesar 26.60 % yang berbeda nyata terhadap semua interaksi.
Dari histogram pengaruh perlakuan terhadap rata-rata daya serap UF arang aktif kayu sengon dan tempurung kelapa.

Bara 15. Histogram pengaruh perlakuan terhadap rata-rata daya serap UF arang aktif kayu sengon dan tempurung kelapa.

Dari histogram pengaruh perlakuan terhadap rata-rata daya serap UF dapat di ketahui bahwa penambahan waktu aktivasi pada suhu 750°C untuk jenis sengon cenderung meningkatkan daya serap UF, kecuali pada waktu aktivasi 210 menit (c4). Sementara penambahan waktu pada suhu 850°C tidak memberikan peningkatan daya serap UF, bahkan semakin menurun bila dibandingkan dengan suhu sebelumnya. Terjadinya hal tersebut diduga karena penambahan suhu dan waktu aktivasi yang semakin lama mengakibatkan terbentuknya abu dengan sisa mineral yang menutupi pori-pori arang aktif yang dihasilkan sehingga menghambat dalam proses adsorpsi.

Berbeda dengan jenis sengon, untuk jenis tempurung kelapa penambahan suhu dan waktu aktivasi justru cenderung meningkatkan daya serap UF. Hal ini diduga karena penambahan suhu dan waktu yang lebih lama pada bahan keras seperti tempurung kelapa mampu mengeluarkan senyawa hidrokarbon pada permukaan sehingga arang aktif yang dihasilkan mampu menyerap uap/gas lebih banyak.

Berdasarkan hasil analisa statistik dapat diketahui bahwa arang aktif hasil percobaan paling optimum dalam adsorpsi UF adalah yang dibuat pada suhu 750°C selama
menit \((a_1b_1c_2)\), untuk jenis sengon. Sedangkan untuk jenis tempurung kelapa adalah yang dibuat pada suhu 850°C selama 210 menit \((a_2b_2c_4)\).

Derajat keasaman suatu zat ditunjukkan oleh suatu bilangan yang disebut dengan pH. Seluruh arang aktif hasil percobaan, baik arang aktif kayu sengon maupun arang aktif tempurung kelapa memiliki \(pH > 7.00\), sehingga dapat dikatakan merupakan zat yang bersifat basa. Data lengkap mengenai pH tercantum dalam Lampiran 5.

Tabel 18. Hasil analisa kadar pH arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>Suhu (°C)</th>
<th>Waktu (menit)</th>
<th>Suhu (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>750</td>
<td>0</td>
<td>750</td>
</tr>
<tr>
<td>150</td>
<td>9.56</td>
<td>150</td>
<td>9.50</td>
</tr>
<tr>
<td>170</td>
<td>9.44</td>
<td>170</td>
<td>9.63</td>
</tr>
<tr>
<td>190</td>
<td>9.60</td>
<td>190</td>
<td>9.67</td>
</tr>
<tr>
<td>210</td>
<td>9.54</td>
<td>210</td>
<td>9.70</td>
</tr>
<tr>
<td>850</td>
<td>9.72</td>
<td>850</td>
<td>9.58</td>
</tr>
<tr>
<td>850</td>
<td>9.44</td>
<td>850</td>
<td>9.69</td>
</tr>
<tr>
<td>850</td>
<td>9.71</td>
<td>850</td>
<td>9.44</td>
</tr>
</tbody>
</table>

Pada Tabel 18. dapat dilihat bahwa nilai pH arang aktif kayu sengon dan tempurung kelapa memiliki kecenderungan yang seragam, yaitu berkisar antara 9.38-9.71 % dan 9.39-9.70 %. Nilai pH arang aktif kayu sengon dan tempurung kelapa terendah diperoleh masing-masing pada suhu aktivasi 850°C selama 150 menit \((a_1b_1c_0)\) dan pada suhu aktivasi 850°C selama 0 menit \((a_2b_1c_0)\).

Sedangkan nilai pH tertinggi diperoleh pada arang aktif kayu sengon dan tempurung kelapa masing-masing pada suhu aktivasi 850°C dengan waktu aktivasi selama 210 menit \((a_1b_1c_2)\) dan pada suhu 750°C selama 210 menit \((a_2b_1c_4)\). Arang aktif yang dihasilkan dari kombinasi perlakuan hasil percobaan memiliki nilai pH yang hampir sama, baik pada arang aktif kayu sengon maupun arang aktif tempurung kelapa, yaitu berkisar dari 9.38-9.70 %.

Hasil uji sidik ragam untuk pH (Lampiran 8 I.) menunjukkan bahwa seluruh faktor serta interaksinya masing-masing tidak berpengaruh nyata terhadap \(pH\). Hasil analisis Tukey (Lampiran 9) menunjukkan bahwa faktor jenis \((a_1\) dan \(a_2\)) serta faktor
suhu (b_1 dan b_2) tidak menyebabkan adanya perbedaan pH. Seluruh faktor waktu aktifikasi juga tidak memberikan adanya perbedaan terhadap pH.

Faktor interaksi jenis dengan suhu aktifikasi (a, b) baik pada jenis sengon maupun tempurung kelapa tidak memberikan perbedaan pH yang nyata satu sama lain (Lampiran 10). Faktor interaksi antara jenis dan waktu aktifikasi (a, c) masing-masing perlakuan tidak memberikan pengaruh yang nyata terhadap pH. Interaksi baik hasil percobaan adalah jenis tempurung kelapa dengan waktu aktifikasi selama 10 menit (a_2c_3) dengan nilai rata-rata sebesar 9.68 %, meskipun tidak berbeda nyata dengan seluruh interaksi. Interaksi dua faktor (b, c) tidak memberikan perbedaan pH. Interaksi suhu dengan waktu aktifikasi terbaik dihasilkan pada suhu aktifikasi 750°C dengan waktu aktifikasi selama 190 menit (b_1c_3) dengan nilai rata-rata sebesar 9.64 %.

Interaksi jenis, suhu dan waktu aktifikasi (a, b, c) berdasarkan uji lanjut Tukey luruhnya tidak memberikan pengaruh yang nyata terhadap pH. Dari hasil percobaan pada jenis sengon interaksi terbaik dihasilkan pada suhu aktifikasi 850°C dengan waktu aktifikasi selama 0 dan 210 menit ($a_1b_2c_0$, $a_1b_2c_4$) dengan nilai rata-rata yang sama yaitu 9.2 %. Sedangkan pada jenis tempurung kelapa interaksi terbaik hasil percobaan digapai pada suhu aktifikasi 750°C dengan waktu aktifikasi selama 210 menit ($a_2b_1c_4$) dengan nilai rata-rata sebesar 9.70 %, meskipun tidak berbeda nyata dengan interaksi yang lainnya.

![Diagram](image_url)

Keterangan:

a_0: Jenis sengon, a_2: Jenis tempurung kelapa; b_0: Suhu aktifikasi 750°C, b_2: Suhu aktifikasi 850°C; c_0: Waktu aktifasi 0 menit, c_1: Waktu aktifasi 150 menit, c_2: Waktu aktifasi 170 menit, c_3: Waktu aktifasi 190 menit, c_4: Waktu aktifasi 210 menit.

Pada histogram (Gambar 16.) pengaruh perlakuan terhadap rata-rata pH menunjukkan bahwa penambahan waktu aktivasi pada suhu 750°C untuk jenis sengon cenderung meningkatkan pH, kecuali pada waktu aktivasi 210 menit ($a_1b_2c_4$). Sementara penambahan waktu pada suhu 850°C juga memberikan peningkatan pH, kecuali pada waktu aktivasi selama 190 dan 210 menit ($a_1b_2c_3, a_1b_2c_4$).

Demikian halnya dengan jenis tempurung kelapa, penambahan waktu aktivasi pada suhu 750°C cenderung meningkatkan daya serap pH, kecuali pada waktu 190 menit ($a_2b_1c_3$) dan pada suhu 850°C selama 210 menit ($a_2b_2c_4$). Hal ini disebabkan karena senyawa yang bersifat asam dalam pori-pori arang menguap pada saat proses aktivasi sehingga pH bersifat lebih basa. Penambahan waktu pada suhu 850°C tidak memberikan peningkatan pH, bahkan memiliki nilai yang lebih rendah bila dibandingkan dengan suhu sebelumnya.

Dalam aplikasinya untuk pemumian minyak, maka dibutuhkan arang aktif yang bersifat basa karena proses degradasi terhadap kualitas minyak pada saat memanaskan menghasilkan asam lemak bebas. Dalam hal ini arang aktif hasil percobaan yang terbaik digunakan untuk pemumian minyak berdasarkan pH pada jenis sengon adalah arang aktif yang dibuat pada suhu 750°C dengan waktu aktivasi selama 190 menit ($a_1b_1c_3$) dan arang aktif yang dibuat pada suhu 850°C dengan waktu aktivasi selama 210 menit ($a_1b_2c_4$). Sedangkan pada jenis tempurung kelapa adalah arang aktif yang dibuat pada suhu 750°C dengan waktu aktivasi selama 210 menit ($a_2b_1c_4$) dan arang aktif yang dibuat pada suhu 850°C dengan waktu aktivasi selama 190 menit ($a_2b_2c_3$).

Kombinasi Perlakuan Arang Aktif

Kualitas arang aktif ditentukan oleh kadar air, kadar zat mudah menguap, kadar abu, kadar karbon terikat, daya serap terhadap Iod, dan daya serap terhadap uap benzene. Syarat mutu arang aktif tersebut diatur dalam SNI. Arang aktif hasil percobaan baik arang aktif kayu sengon maupun arang aktif tempurung kelapa memenuhi SNI, kecuali pada daya serap benzene. Analisa statistik arang aktif hasil percobaan memberikan pengaruh yang bervariasi terhadap kualitasnya.
Beberapa pengujian terhadap daya serap gas, seperti formalin, kloroform, metanol, kamper, dan UF bertujuan untuk mengetahui sekaligus memberikan gambaran kemampuan arang aktif dalam menyerap gas/uap berbagai senyawa dengan tingkat kepolaran yang berbeda dalam kaitannya terhadap pemurnian minyak.

Senyawa Benzena dan kamper termasuk senyawa hidrokarbon aromatis nonpolar. Benzena memiliki satu molekul rantai siklik, sementara kamper memiliki dua molekul rantai siklik. Dengan kata lain, haas permukaan pada kamper lebih besar dari benzena, dari (Tabel 12) dapat dilihat bahwa daya serap benzena memiliki kisaran nilai daya serap yang lebih besar dari daya serap kamper (Tabel 16). Hal ini menunjukkan diameter pori yang terbentuk pada arang aktif hasil percobaan baik pada sengon maupun tempurung kelapa banyak yang lebih kecil dari ukuran partikel kamper dan arang aktif bersifat nonpolar.

Degradasi dari lemak/minyak yang terosidasi meliputi pembentukan senyawa persenyaan baru yaitu hidroperoksida berkonjugasi (misalnya metil linoleat), yang pada suhu lebih tinggi akan mengalami siklisasi dan membentuk senyawa polimer, persenyaan rantai panjang non siklis dan produk yang dapat menguap. Beberapa zat menguap tersebut seperti aldehida, keton, asam-asam alkohol, dan hidrokarbon (Ketaren, 1986).

Pengujian daya serap formalin dan UF untuk mendekati kemampuan arang aktif dalam menyerap senyawa formaldehida, kloroform untuk senyawa organohalogen, metanol untuk senyawa alkohol, dan kamper untuk senyawa hidrokarbon aromatis.

Dalam SNI 06-4262-1996 yang berisi tentang arang aktif untuk aplikasi pemurnian minyak makan mensyaratkan bahwa indikator uji dalam percobaan mengetahui kadar air, kadar abu, pH, dan daya serap iodium.

Hasil pengujian kualitas dan analisa statistik yang dilakukan membuktikan bahwa arang aktif hasil percobaan terbaik untuk digunakan dalam pemurnian minyak garing bekas adalah arang kayu sengon yang diaktivasikan pada suhu 750°C selama 190 menit (a1b1c3) dan pada suhu 850°C selama 210 menit (a1b2c4) serta arang tempurung
kelapa yang diaktivasi pada suhu 750°C selama 210 menit (a_{2b_{1c_{4}}}) dan pada suhu 850°C selama 190 menit (a_{2b_{2c_{3}}}).

Arang aktif kayu sengon pada suhu aktivasi 750°C selama 190 menit (a_{1b_{1c_{3}}}) dan suhu 850°C selama 210 menit (a_{1b_{2c_{4}}}) dengan kadar air masing-masing 14.18 % dan 10.58 % serta pH 9.60 dan 9.71, walaupun keduanya memiliki kadar abu yang cukup besar, arang aktif kayu sengon pada suhu aktivasi 750°C selama 190 menit (a_{1b_{1c_{3}}}) memiliki nilai tertinggi pada hampir semua indikator kualitas, yaitu daya serap iodium, benzena, formalin, kloroform, metanol, kamper dan pH. Sementara pada suhu 850°C selama 210 menit (a_{1b_{2c_{4}}}) memiliki nilai tertinggi pada indikator kualitas daya serap iodium, benzena, kloroform dan pH.

Sedangkan untuk arang aktif tempurung kelapa dengan suhu aktivasi 750°C selama 210 menit (a_{2b_{1c_{4}}}) dan suhu 850°C selama 190 menit (a_{2b_{2c_{3}}}) dengan kadar air masing-masing 5.19 % dan 5.88 %, pH 9.54 dan 9.44 serta kadar abu 8.99 % dan 10.83 % memiliki indikator kualitas tertinggi.

Arang aktif tempurung kelapa pada suhu aktivasi 750°C selama 210 menit (a_{2b_{1c_{4}}}) memiliki nilai tertinggi pada semua indikator kualitas, yaitu daya serap iodium, benzena, formalin, kloroform, metanol, kamper, UF dan pH. Sementara pada suhu 850°C selama 190 menit (a_{2b_{2c_{3}}}) memiliki nilai tertinggi pada indikator kualitas daya serap iodium, benzena, formalin, kamper dan pH.

Pemurnian Minyak dengan Arang Aktif

Minyak dan lemak (trigliserida) yang diperoleh dari berbagai sumber memiliki sifat fisiko-kimia yang berbeda satu sama lain, karena perbedaan jumlah dan jenis ester yang terdapat di dalamnya. Minyak dan lemak tidak berbeda dalam bentuk umum trigliseridanya dan hanya berbeda dalam bentuk (wujud).

Pemurnian minyak dengan arang aktif ini adalah sebagai salah satu upaya untuk mengembalikan kualitas minyak hingga sesuai dengan standard yang diperbolehkan, sehingga dapat di ketahui kemungkinan layak atau tidaknya dikonsumsi.

Hasil analisa kualitas minyak dalam pemurniannya dengan arang aktif kayu sengon dan tempurung kelapa disajikan dalam Tabel 19.
<table>
<thead>
<tr>
<th>Arang Aktif Kayu Sengon</th>
<th>Konsentrasi (%)</th>
<th>Bilangan</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>asam</td>
<td>peroksida</td>
<td>penyabunan</td>
</tr>
<tr>
<td>750°C/190°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.400</td>
<td>0.550</td>
<td>133.885</td>
</tr>
<tr>
<td>2</td>
<td>0.444</td>
<td>0.500</td>
<td>137.616</td>
</tr>
<tr>
<td>4</td>
<td>0.378</td>
<td>0.999</td>
<td>155.119</td>
</tr>
<tr>
<td>6</td>
<td>0.359</td>
<td>1.299</td>
<td>155.119</td>
</tr>
<tr>
<td>8</td>
<td>0.300</td>
<td>0.749</td>
<td>159.534</td>
</tr>
<tr>
<td>800°C/210°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.400</td>
<td>0.550</td>
<td>133.885</td>
</tr>
<tr>
<td>2</td>
<td>0.352</td>
<td>0.600</td>
<td>160.742</td>
</tr>
<tr>
<td>4</td>
<td>0.287</td>
<td>0.600</td>
<td>154.757</td>
</tr>
<tr>
<td>6</td>
<td>0.261</td>
<td>0.500</td>
<td>171.297</td>
</tr>
<tr>
<td>8</td>
<td>0.261</td>
<td>0.799</td>
<td>174.438</td>
</tr>
<tr>
<td>850°C/190°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.400</td>
<td>0.550</td>
<td>133.885</td>
</tr>
<tr>
<td>2</td>
<td>0.312</td>
<td>0.649</td>
<td>168.581</td>
</tr>
<tr>
<td>4</td>
<td>0.416</td>
<td>0.449</td>
<td>147.345</td>
</tr>
<tr>
<td>6</td>
<td>0.521</td>
<td>0.649</td>
<td>147.056</td>
</tr>
<tr>
<td>8</td>
<td>0.372</td>
<td>0.749</td>
<td>182.064</td>
</tr>
<tr>
<td>Minyak Baru</td>
<td>0.208</td>
<td>0.650</td>
<td>147.522</td>
</tr>
</tbody>
</table>

Dalam proses menggoreng, udara merupakan faktor utama penyebab kerusakan minyak, selain faktor lain seperti kontak dengan logam. Kerusakan minyak karena pemanasan pada suhu tinggi, disebabkan oleh proses oksidasi dan polymerisasi.

Oksidasi minyak akan menghasilkan senyawa aldehida, keton, hidrokarbon, alkohol, lakton, serta senyawa aromatis yang mempunyai bau tengik dan rasa getir.

Pembentukan senyawa polimer selama proses menggoreng terjadi karena reaksi polymerisasi adisi dari asam lemak tidak jenuh. Hal ini ditandai dengan terbentuknya

Tabel 19. Hasil analisa kualitas minyak dalam pemumian minyak dengan arang aktif kayu sengon dan tempurung kelapa.
bahan menyerupai gum (gummy material) yang mengendap di dasar wadah penggoreng.

Untuk memperbaiki kualitas minyak, dilakukan pemurnian minyak dengan menggunakan arang aktif hasil percobaan. Arang aktif yang digunakan adalah arang aktif kayu sengon yang diaktivasi pada suhu 750°C selama 190 menit \((a_1b_1c_3)\) dan suhu 850°C selama 210 menit \((a_1b_2c_4)\) serta arang aktif tempurung kelapa yang diaktivasi pada suhu 750°C selama 210 menit \((a_2b_1c_4)\) dan suhu 850°C selama 190 menit \((a_2b_2c_3)\).

Penampilan visual minyak baru, minyak bekas, dan seluruh hasil pemurniannya pada jenis sengon dengan variasi penambahan konsentrasi arang aktif besaran \(2\%, 4\%, 6\%,\) dan \(8\%\) ditampilkan pada Gambar 17.

![Gambar 17. Penampilan visual minyak goreng sebelum dan sesudah pemurnian dengan arang aktif kayu sengon.](image)

1. Minyak baru, 2. Minyak bekas, 3. Perlakuan \((a_1b_1d_3)\), 4. Perlakuan \((a_1b_2d_3)\), 5. Perlakuan \((a_1b_1d_4)\), 6. Perlakuan \((a_1b_2d_4)\), 7. Perlakuan \((a_2b_2d_3)\), 8. Perlakuan \((a_2b_2d_4)\), 9. Perlakuan \((a_1b_2d_3)\), 10. Perlakuan \((a_1b_2d_4)\).

Sedangkan penampilan visual minyak baru, minyak bekas, dan seluruh hasil pemurniannya pada jenis tempurung kelapa dengan variasi penambahan konsentrasi arang aktif sebesar \(2\%, 4\%, 6\%,\) dan \(8\%\) dapat dilihat pada Gambar 18.
Gambar 18. Penampakan visual minyak goreng sebelum dan sesudah pemurnian dengan arang aktif tempurung kelapa.

1. Minyak baru, 2. Minyak bekas, 3. Perlakuan (a,b,d), 4. Perlakuan (a,b,d), 5. Perlakuan (a,b,d), 6. Perlakuan (a,b,d), 7. Perlakuan (a,b,d), 8. Perlakuan (a,b,d), 9. Perlakuan (a,b,d), 10. Perlakuan (a,b,d).

Terlihat secara visual minyak baru dengan minyak bekas, serta hasil pemurniannya dengan arang aktif terlihat jelas pada warna minyak. Bila bandingkan dengan minyak hasil pemurnian pada minyak bekas terdapat endapan warna putih yang disebut dengan gum (gummy material). Hal ini disebabkan pembentukan senyawa polimer selama proses meng goreng terjadi karena reaksi polimerisasi adisi dari asam lemak tidak jenuh. Secara kimia juga menunjukkan adanya perbedaan yang jelas antara minyak baru dengan minyak bekas. Dari beberapa indikator dapat dilihat arang aktif mampu mengembalikan kualitas minyak hingga memenuhi SNI. Indikator uji dalam menilai kualitas minyak yang digunakan adalah bilangan asam, bilangan peroksida, bilangan penyabun, dan bilangan ester.

Bilangan Asam

Kadar asam lemak bebas pada minyak biasanya dinyatakan dalam suatu bilangan yang biasa disebut dengan bilangan asam. Penentuan kadar asam lemak bebas bertujuan untuk mengetahui tingkat kerusakan minyak akibat hidrolisis. Asam lemak bebas yang terdapat pada minyak akan mengakibatkan timbulnya rasa getir dan asam tengik.
Semakin tinggi kadar asam lemak bebas pada minyak maka semakin tinggi kerusakan yang dialami minyak tersebut. Konstanta asam lemak bebas hasil pemurnian dengan arang aktif kayu sengon dan tempurung kelapa masing-masing berkisar antara 0.400 - 0.444 dan 0.400 - 0.521 (Tabel 19). Data selengkapnya untuk asam lemak bebas terdapat pada Lampiran 7.

Nilai tertinggi diperoleh pada pemurnian minyak untuk arang aktif kayu sengon, adalah yang dibuat pada suhu 750°C dengan konsentrasi 2% (a_1b_4d_1), nilai pada konsentrasi ini justru lebih besar dari pada kontrol, diduga disebabkan karena kemungkinan pemanasan dengan suhu 750°C senyawa asam yang ada dalam pori-pori arang belum menguap pada saat di aktivasi sehingga arang aktif yang dihasilkan masih bersifat asam (Lampiran 7a).

Sementara untuk nilai terendah diperoleh pada pemurnian minyak dengan suhu 850°C konsentrasi 6%, dan 8% (a_1b_2d_3, dan a_1b_2d_4), keduaanya memiliki nilai yang sama, atau dengan kata lain penambahan konsentrasi setelah 6% tidak menunuk menurunkan bilangan asam, hal ini kemungkinan disebabkan karena karakter arang aktif dari bahan sengon yang memang memiliki kemampuan daya serap terhadap campuran larutan yang tidak terlalu tinggi sehingga perbedaan nilai bilangan asam yang dihasilkan dari variasi konsentrasi tersebut tidak memberikan perubahan yang signifikan.

Kadar asam lemak bebas dapat menunjukkan tingkat kerusakan minyak akibat hidrolisis. Asam lemak bebas pada minyak menimbulkan rasa getir dan bau tengik. Semakin tinggi asam lemak bebas maka semakin tinggi kerusakan yang dialami minyak. Menurut SNI (1995) untuk minyak dalam keadaan normal mensyaratkan asam lemak bebas maksimum sebesar 0.300. Dapat dilihat pada (Tabel 19) bahwa untuk jenis sengon yang mampu mengembrukan minyak hingga sesuai dengan SNI adalah arang aktif yang dibuat pada suhu 750°C dengan konsentrasi 8% (a_1b_1d_4), sementara pada suhu 850°C adalah dengan konsentrasi 4, 6, dan 8% (a_1b_2d_2, a_1b_2d_3, dan a_1b_2d_4).

Sedangkan pada jenis tempurung kelapa yang mampu mengembrukan minyak hingga sesuai dengan SNI adalah arang aktif yang dibuat pada suhu 850°C dengan
konsentrasi 2, 6, dan 8 % (a₁b₂d₁, a₁b₂d₃, dan a₁b₂d₄), tetapi untuk arang aktif tempurung kelapa penambahan arang aktif setelah konsentrasi 2 % pada minyak baik pada suhu 750°C maupun 850°C (a₂b₁₂d₁) cenderung menaikkan bilangan asam, kecuali pada suhu 850°C dengan konsentrasi 6 % (a₁b₂d₃), hal ini diduga karena arang aktif tempurung kelapa dengan pemanasan maksimum 850°C masih mengandung senyawa asam pada pori-pori arang yang belum menguap pada saat di aktivasi sehingga arang aktif yang dihasilkan masih bersifat asam, selain itu ada faktor lain yang mempengaruhi dalam proses aktivasi (Lampiran 6).

Hasil uji sidik ragam untuk bilangan asam (Lampiran 12a) menunjukkan bahwa seluruh faktor serta interaksinya masing-masing tidak berpengaruh nyata terhadap bilangan asam, kecuali faktor suhu aktivasi yang memberikan pengaruh yang nyata. Hasil uji lanjut Tukey (Lampiran 13) menunjukkan bahwa faktor jenis (a₁ dan a₂) tidak menyebabkan adanya perbedaan bilangan asam, sementara faktor suhu aktivasi (b₁ dan b₂) memberikan perbedaan yang nyata terhadap bilangan asam. Seluruh faktor konsentrasi (d) tidak memberikan adanya perbedaan terhadap bilangan asam yang nyata satu dengan yang lain.

Faktor interaksi jenis dengan suhu aktivasi (a, b) baik pada jenis sengon maupun tempurung kelapa tidak memberikan perbedaan bilangan asam yang nyata sama lain (Lampiran 14). Interaksi jenis dengan konsentrasi arang aktif (a, d) baik hasil percobaan adalah jenis sengon dengan konsentrasi 8 % (a₁d₄) dengan rata-rata sebesar 0.280 %, meskipun tidak berbeda nyata dengan interaksi yang lainnya. Interaksi dua faktor antara suhu dengan konsentrasi (b, d) tidak memberikan perbedaan terhadap bilangan asam. Interaksi suhu dengan konsentrasi arang aktif
terbaik dihasilkan pada suhu aktivasi 850°C dengan konsentrasi 6% (b₂d₁) dengan nilai rata-rata sebesar 0.267%.

Interaksi jenis, suhu dan waktu aktivasi (a, b, c) berdasarkan uji lanjut Tukey seluruhnya tidak memberikan perbedaan yang nyata terhadap bilangan asam (Lampiran 15). Dari hasil percobaan pada jenis sengon interaksi terbaik dihasilkan pada suhu aktivasi 850°C dengan konsentrasi 6 dan 8% (a₁b₂d₁ dan a₁b₂c₄) dengan nilai rata-rata yang sama yaitu 2.61%. Sedangkan pada jenis tempurung kelapa interaksi terbaik hasil percobaan diperoleh pada suhu yang sama dengan konsentrasi 6% (a₂b₂c₃) dengan nilai rata-rata sebesar 0.274%, meskipun tidak dapat adanya perbedaan yang nyata antar seluruh interaksi.

![Histogram pengaruh perlakuan terhadap rata-rata bilangan asam arang aktif kayu sengon dan tempurung kelapa.](image)

Keterangan:
- a₁ = Jenis sengon
- a₂ = Jenis tempurung kelapa
- b₁ = Suhu aktivasi 750°C
- b₂ = Suhu aktivasi 850°C
- c₁ = Waktu aktivasi 0 menit
- c₂ = Waktu aktivasi 10 menit
- c₃ = Waktu aktivasi 15 menit
- c₄ = Waktu aktivasi 20 menit

Histogram pengaruh perlakuan terhadap rata-rata bilangan asam untuk jenis sengon (Gambar 19.) menunjukkan bahwa penambahan konsentrasi arang aktif 10 gram/kilogram menurunkan bilangan asam baik pada suhu 750°C maupun suhu 850°C, khususnya pada jenis sengon pada suhu 750°C dengan konsentrasi 2% (a₁b₁d₁).

Konsentrasi berhubungan negatif dengan bilangan asam. Ini berarti bahwa semakin tinggi konsentrasi arang aktif yang diberikan akan menyebabkan bilangan asam penurun, tetapi pada suhu 850°C penambahan arang aktif hingga 8% tidak memberikan penurunan terhadap bilangan asam, sehingga dapat dikatakan bahwa
konsentrasi optimum untuk menurunkan bilangan asam pada suhu tersebut adalah 6% (a₁b₂d₁)

Sedangkan untuk jenis temperung kelapa baik pada suhu 750°C maupun 850°C penambahan konsentrasi setelah 2% cenderung meningkatkan bilangan asam meskipun tidak menunjukkan perbedaan yang cukup signifikan, kecuali pada suhu 850°C dengan konsentrasi arang aktif 6% (a₁b₂c₁), sehingga konsentrasi optimum untuk menurunkan bilangan asam dengan konsentrasi paling rendah adalah pada suhu 850°C dengan konsentrasi 2% (a₁b₂d₁), walaupun nilainya lebih besar bila dibandingkan dengan konsentrasi 6% (a₁b₂d₁).

Bilangan Peroksida

Peroksida terbentuk karena asam lemak jenuh yang terkandung pada minyak mengikat oksigen pada ikatan rangkapnya. Bilangan peroksida merupakan salah satu indikator tingkat kerusakan yang dialami minyak. Sehingga bilangan peroksida yang diinginkan adalah serendah mungkin.

Konstana bilangan peroksida hasil pemumian dengan arang aktif kayu sejenis dan temperung kelapa masing-masing berkisar antara 0,500-1,299 dan 0,450-0,757 (Tabel 19). Secara umum penambahan arang aktif ke dalam minyak tidak mempengaruhi adanya penurunan bilangan peroksida, bahkan bilangan peroksida cenderung naik dengan adanya penambahan arang aktif dalam konsentrasi yang lebih besar, kecuali pada jenis sengon suhu aktivasi 750°C dengan konsentrasi 2% (a₁b₂d₁) serta pada suhu aktivasi 850°C dengan konsentrasi 6% (a₁b₂d₁). Hal ini diduga disebabkan karena peroksida merupakan produk antara dari reaksi oksidasi yang berakibat labil.

Berdasarkan hasil uji sidik ragam untuk bilangan peroksida (Lampiran 12b) menunjukkan bahwa faktor jenis, suhu aktivasi dan konsentrasi arang aktif, serta interaksi ketiganya (a,b,c) berpengaruh nyata terhadap bilangan peroksida, sementara interaksi antara jenis dengan suhu aktivasi (a,b), interaksi jenis dan konsentrasi (a,d), dan interaksi suhu aktivasi dengan konsentrasi arang aktif tidak memberikan pengaruh nyata terhadap bilangan peroksida.
Hasil uji lanjut Tukey (Lampiran 13) dapat diketahui bahwa faktor jenis (a₁ dan a₂) serta faktor suhu (b₁ dan b₂) menyebabkan adanya perbedaan bilangan peroksida. Seluruh faktor konsentrasi arang aktif tidak memberikan adanya perbedaan yang nyata terhadap bilangan peroksida satu sama lain.

Faktor interaksi jenis dengan suhu aktivasi (a,b) pada jenis sengon dan tempurung kelapa masing-masing memberikan perbedaan bilangan peroksida yang nyata satu sama lain (Lampiran 14), tetapi untuk jenis sengon pada suhu aktivasi 850°C dengan jenis tempurung kelapa pada suhu aktivasi 750°C keduanya tidak memberikan perbedaan yang nyata, faktor interaksi antara jenis dan waktu aktivasi (a₁,b₁) masing-masing perlakuan tidak memberikan pengaruh yang nyata terhadap bilangan peroksida. Interaksi dengan nilai peroksida terendah hasil percobaan adalah jenis tempurung kelapa dengan konsentrasi arang aktif 4% (a₁b₁) dengan nilai rata-rata sebesar 0.500 mg/g, meskipun tidak berbeda nyata dengan interaksi yang lainnya.

Interaksi dua faktor antara suhu dengan konsentrasi (b,d) tidak memberikan perbedaan terhadap bilangan peroksida. Interaksi suhu dengan konsentrasi yang memiliki bilangan peroksida terendah dihasilkan pada suhu aktivasi 850°C dengan konsentrasi 2% (b₁d₁) dengan nilai rata-rata sebesar 0.525 mg/g.

Interaksi 3 faktor (a,b,c) berdasarkan uji lanjut Tukey untuk jenis sengon pada suhu 750°C dengan konsentrasi 6% (a₁b₁d₁) berbeda nyata dengan seluruh interaksi. Dari hasil percobaan pada jenis sengon interaksi dengan nilai bilangan peroksida terendah dihasilkan pada suhu aktivasi 750°C dengan konsentrasi arang aktif 2% (a₁b₁d₁) dan suhu 850°C, konsentrasi 6% (a₁b₁d₁) dengan nilai rata-rata yang sama yaitu 0.500 mg/g.

Sedangkan pada jenis tempurung kelapa interaksi yang memiliki nilai rata-rata bilangan peroksida terendah hasil percobaan diperoleh pada suhu aktivasi 750°C dengan konsentrasi arang aktif 4% (a₂b₁d₂) dan suhu 850°C, konsentrasi 2% (a₂b₂d₁) dengan nilai rata-rata yang sama yaitu 0.450 mg/g, meskipun keduanya tidak berbeda nyata satu sama lain.

Histogram pengaruh perlakuan terhadap rata-rata bilangan peroksida untuk jenis sengon (Gambar 20.) menunjukkan bahwa penambahan konsentrasi arang aktif cenderung menaikkan bilangan peroksida baik pada suhu 750°C maupun suhu 850°C, khususnya pada suhu 750°C dengan konsentrasi 2% (a₁b₁d₁) dan pada suhu 850°C dengan konsentrasi 6% (a₁b₂d₃).

Sebagaimana dengan jenis sengon untuk jenis tempurung kelapa baik pada suhu 750°C maupun 850°C menunjukkan bahwa penambahan konsentrasi arang aktif cenderung menaikkan bilangan peroksida, khususnya pada suhu 750°C dengan konsentrasi 4% (a₁b₁d₂) dan pada suhu 850°C dengan konsentrasi 2% (a₁b₂d₁). Hal tersebut terjadi diduga karena peroksida merupakan bahan pengoksidasi yang sifatnya tidak stabil, sehingga penambahan arang aktif hanya dapat mengurangi peroksida dalam jumlah kecil, namun fungsi anti-oksidan dari arang aktif akan rusak dalam waktu yang mengandung peroksida dalam jumlah besar.

Reaksi autooksidasi diawali dengan adanya pengikatan oksigen di udara atau lambat oleh minyak. Selanjutnya setelah periode induksi, kecepatan pengikatan oksigen meningkat dan akan membentuk peroksida dalam minyak.

Dalam SNI (1995) menyarankan bilangan peroksida maksimum sebesar 6.000 mg/g, sehingga dapat dikatakan bahwa minyak yang diuji pada percobaan ini masih memenuhi standard SNI dan masih layak untuk dikonsumsi.

Bilangan Penyabunan

Bilangan penyabunan hasil pemurnian dengan arang aktif kayu sengon dan tempurung kelapa masing-masing berkisar antara 133.885-174.438 dan 133.885-224.064 (Tabel 19). Nilai terendah diperoleh dari pemurnian minyak dengan arang aktif suhu pembuatan 750°C dan 850°C dengan konsentrasi 0 %, baik pada jenis sengon maupun jenis tempurung kelapa (a₁b₁d₁, a₁b₁d₀ dan a₂b₁d₀, a₂b₂d₀). Sedangkan nilai tertinggi untuk jenis sengon adalah pada suhu 850°C dengan konsentrasi 8 % (a₁b₂d₁), dan pada suhu 750°C dengan konsentrasi yang sama pada jenis tempurung kelapa (a₂b₁d₂).

Menurut Ketaren (1986), bilangan penyabunan memiliki korelasi dengan berat molekul minyak. Minyak yang tersusun oleh asam lemak pendek berarti memiliki molekul yang relatif kecil, yang akan mempunyai bilangan penyabunan yang besar. Berikutnya sebaliknya, minyak yang memiliki berat molekul yang besar memiliki bilangan penyabunan yang tinggi.

Tabel sidik ragam (Lampiran 12c) menunjukkan bahwa faktor konsentrasi (d), interaksi antara jenis dan suhu aktivasi (a, b) memberikan pengaruh yang nyata pada bilangan penyabunan. Faktor jenis (a), suhu aktivasi (b), interaksi antara jenis dengan konsentrasi (a, d), suhu aktivasi dengan konsentrasi (b, d) dan interaksi
keringnya (a,b,c) tidak memberikan pengaruh yang nyata terhadap bilangan penyabunan.

Hasil uji lanjut Tukey (Lampiran 13) menunjukkan bahwa faktor jenis (a₁ dan a₂) serta faktor suhu (b₁ dan b₂) tidak menyebabkan adanya perbedaan bilangan penyabunan. Faktor konsentrasi arang aktif 0 % (dₐ) memberikan adanya perbedaan yang nyata terhadap bilangan penyabunan, konsentrasi 2 % (d₁) tidak beda nyata dengan konsentrasi 8 % (d₄) dan konsentrasi 4 % (d₂) tidak berbeda nyata dengan konsentrasi 6 % (d₃).

Faktor interaksi jenis dengan suhu aktivasi (a, b) pada jenis sengon dan tempurung kelapa tidak memberikan perbedaan bilangan penyabunan yang nyata atau sama lain (Lampiran 14). Faktor interaksi antara jenis dan konsentrasi (a, d) masing-masing perlakuan tidak berbeda nyata terhadap bilangan penyabunan, sementara interaksi antara suhu dengan konsentrasi (b, d) yang tidak memberikan perbedaan terhadap bilangan penyabunan.

Interaksi jenis, suhu dan waktu aktivasi (a,b,c) berdasarkan uji lanjut Tukey untuk kedua jenis pada percobaan ini tidak memberikan adanya perbedaan bilangan penyabunan (Lampiran 15).

![Histogram pengaruh perlakuan terhadap rata-rata bilangan penyabunan arang aktif kayu sengon dan tempurung kelapa.](https://example.com/histogram.png)
Pada histogram (Gambar 21.) dapat dijelaskan bahwa secara umum pemumian minyak dengan penambahan arang aktif ke dalam minyak dapat meningkatkan bilangan penyabunan, kecuali pada suhu 750°C dengan konsentrasi 6 % (a1b1d1) dan suhu 850°C dengan konsentrasi 4 % (a1b2d2) untuk jenis sengon, meskipun memiliki nilai yang tidak jauh berbeda. Sedangkan untuk jenis tempurung kelapa penambahan arang aktif dengan konsentrasi berbeda tidak memberikan perubahan yang signifikan terhadap peningkatan bilangan penyabunan, kecuali pada suhu 750°C dengan konsentrasi 2 dan 8 % (a2b1d1 dan a2b1d4).

Dengan kata lain dapat dikatakan bahwa untuk jenis tempurung kelapa ini memiliki berat molekul yang relatif lebih besar bila dibandingkan dengan jenis sengon, sehingga menghasilkan bilangan penyabunan yang relatif lebih kecil daripada jenis sengon, kecuali pada suhu 750°C dengan konsentrasi 2 dan 8 % (a2b1d1 dan a2b1d4). Dari hasil percobaan, pemumian minyak dengan jenis sengon lebih menunjukkan adanya pengaruh yang memperlhatkan peningkatan terhadap bilangan penyabunan dengan variasi konsentrasi yang di berikan, kecuali pada suhu 750°C dengan konsentrasi 6 % (a1b1d3) dan suhu 850°C dengan konsentrasi 4 % (a1b2d2) bila dibandingkan dengan jenis tempurung kelapa.

Bilangan Ester

Nilai terendah diperoleh dari pemumian minyak dengan arang aktif suhu 750°C dan 850°C dengan konsentrasi 0 %, baik pada jenis sengon maupun jenis tempurung kelapa (a1b1d5, a1b2d5 dan a2b1d0, a2b2d0). Sedangkan nilai tertinggi untuk jenis sengon adalah pada suhu 850°C dengan konsentrasi 8 % (a1b2d4), dan pada suhu 750°C dengan konsentrasi yang sama pada jenis tempurung kelapa (a2b1d4).

Asam organik yang bersenyawa sebagai ester dinyatakan dalam bilangan ester. Bilangan ester mempunyai hubungan dengan bilangan asam dan bilangan
penyabunan. Bilangan ini dapat dihitung sebagai selisih antara bilangan penyabunan dengan bilangan asam.

Berdasarkan sidik ragam (Lampiran 12d) dapat diketahui bahwa faktor konsentrasi (d), dan interaksi antara jenis dan suhu aktivasi (a, b) memberikan pengaruh yang nyata terhadap bilangan ester. Sementara faktor jenis (a), suhu aktivasi (b), interaksi antara jenis dengan konsentrasi (a, d), suhu aktivasi dengan konsentrasi (b, d) dan interaksi ketiganya (a, b, c) tidak memberikan pengaruh yang nyata terhadap bilangan ester.

Dari hasil uji lanjut Tukey (Lampiran 13) dapat dilihat bahwa faktor jenis (a1 dan a2) serta faktor suhu (b1 dan b2) tidak menyebabkan adanya perbedaan bilangan ester. Konsentrasinya arang aktif 0 % (d0) memberikan adanya perbedaan yang nyata terhadap bilangan ester, konsentrasi 2 % (d1) tidak berbeda nyata dengan konsentrasi 8 % (d2) dan konsentrasi 4 % (d3) tidak berbeda nyata dengan konsentrasi 6 % (d4).

Faktor interaksi jenis dengan suhu aktivasi (a, b) pada jenis sengon dan tempe purung kelapa tidak memberikan perbedaan bilangan ester yang nyata satu sama lain (Lampiran 14). Faktor interaksi antara jenis dan waktu aktivasi (a, d) masing-masing perlakuan juga tidak memberikan pengaruh yang nyata terhadap bilangan ester, begitupun interaksi antara suhu dengan konsentrasi (b, d) tidak memberikan perbedaan terhadap ester. Interaksi 3 faktor antara jenis, suhu dan waktu aktivasi (a, b, c) berdasarkan uji lanjut Tukey (Lampiran 15) untuk kedua jenis pada percobaan ini pun tidak memberikan adanya perbedaan bilangan ester.

Dari hasil percobaan, pemumian minyak dengan jenis sengon lebih menunjukkan adanya pengaruh yang memperlihatkan peningkatan terhadap bilangan ester dengan variasi konsentrasi yang diberikan, kecuali pada suhu 750°C dengan konsentrasi 6 % (a1, b1, d1) dan suhu 850°C dengan konsentrasi 4 % (a1, b2, d2) bila dilingkangkan dengan jenis tempurung kelapa.
Hasil Aplikasi Arang aktif antara Kayu sengon dan Tempurung Kelapa

Berdasarkan hasil pengujian kualitas minyak dan analisa statistik terhadap kedua jenis bahan (arang aktif kayu sengon dan tempurung kelapa) menunjukkan bahwa secara umum memberikan pengaruh yang beragam terhadap seluruh indikator kualitas yang diukur. Dalam pemurnian minyak, indikator utama yang digunakan adalah bilangan asam dan bilangan peroksida. Sedangkan untuk bilangan penyabunan dan bilangan ester merupakan indikator pendukung.

Kombinasi perlakuan yang menghasilkan bilangan asam dan bilangan peroksida optimum untuk arang aktif kayu sengon adalah pada suhu 850°C selama 15 menit (a1b2c1), meskipun nilainya tidak jauh berbeda dengan perlakuan yang lainnya. Sementara untuk jenis tempurung kelapa sebagian besar penambahan arang aktif diatas 2% cenderung menaikkan bilangan asam dan bilangan peroksida. Sedangkan untuk bilangan penyabunan dan bilangan ester penambahan arang aktif ke kayu sengon sebagai besar cenderung menaikkan kedua bilangan tersebut bila dibandingkan dengan arang aktif tempurung kelapa.

Dari keseluruhan aplikasi dapat dikatakan bahwa pemurnian minyak goreng beras dengan arang aktif kayu sengon memberikan kemampuan daya serap yang lebih baik bila dibandingkan dengan arang aktif tempurung kelapa, meskipun tidak memberikan perbedaan yang cukup signifikan antar variasi konsentrasi. Namun demikian sebenarnya arang aktif dari jenis kayu sengon dan tempurung kelapa kurang efektif untuk dijadikan bahan penyedap senyawa berbentuk cairan, tetapi cukup efektif untuk dijadikan sebagai bahan adsorbsi senyawa dalam bentuk uap/gas.
KESIMPULAN DAN SARAN

Kesimpulan

Berdasarkan hasil analisa dan pembahasan dapat diambil suatu kesimpulan sebagai berikut:

2. Jenis bahan, suhu aktivasi yang diberikan dan waktu aktivasi yang ditetapkan hingga nilai tertentu memberikan pengaruh yang nyata terhadap kualitas arang aktif yang dihasilkan.

3. Arang aktif kedua jenis bahan yang menghasilkan kualitas terbaik pada jenis sengon adalah pada suhu aktivasi 750\(^\circ\)C selama 190 menit dan suhu 850\(^\circ\)C selama 210 menit, sementara pada jenis tempurung kelapa adalah pada suhu aktivasi 750\(^\circ\)C selama 210 menit dan pada suhu 850\(^\circ\)C selama 190 menit.

4. Secara umum hasil pemurnian minyak goreng bekas dengan arang aktif kayu sengon memberikan kemampuan daya serap yang lebih baik bila dibandingkan dengan arang aktif tempurung kelapa, meskipun tidak memberikan perbedaan yang cukup signifikan antar variasi konsentrasi.

4. Arang aktif dari jenis kayu sengon dan tempurung kelapa kurang efektif untuk dijadikan bahan penyedap senyawa berbentuk cairan. Hal ini dilihat dari sebagian besar indikator kualitas kedua bahan tersebut sebagian besar tidak memenuhi standar yang ditetapkan SNI.

Saran

1. Perlu dilakukan percobaan mengenai pengaruh waktu yang lebih pendek dan suhu aktivasi yang tidak terlalu tinggi terutama untuk jenis sengon, karena perlakuan dengan suhu tinggi dan waktu yang relatif lama
mempengaruhi kualitas arang aktif yang dihasilkan. Sedangkan untuk jenis tempurung kelapa perlu dilakukan percobaan mengenai penambahan uap steam yang lebih besar, karena ternyata uap steam juga dapat mempengaruhi kualitas arang aktif.

2. Perlu dilakukan tahap perlakuan lain setelah pemurnian dengan arang aktif, sehingga dapat diketahui kemungkinan menjadi lebih baik untuk seluruh indikator kulitas yang diujikan.
DAFTAR PUSTAKA

Lampiran 1. Skema prosedur percobaan

1. Dikering henek pada suhu 750°C dan 850°C dalam 1, 150, 170, 190, dan 120 menit.
2. Dikering henek pada suhu 750°C dan 850°C dalam 1, 150, 170, 190, dan 120 menit.

Ket.: (a) Pengaturan suhu untuk pengeringan penggilingan media hidrotermaik.
(b) Pengaturan suhu untuk pengeringan penggilingan media hidrotermaik.

Kayan Sengon

Tempurung Kelapa

Karbonisasi

Penggilingan

Arang

Kayan sengon & Tempurung Kelapa

Serbuk

Kayan sengon & Tempurung Kelapa

Analisa komponen Kimia

Kadar air, zat Ekstraktif, zat terbang & abu, holoselulosa, setulosa, dan lignin.

Arang Aktif

Kayan sengon & Tempurung Kelapa

Uji Kualitas Arang Aktif

Kadar air
Kadar Zat Terbang
Kadar Abu
Kadar Karbon Terikat
Daya Serap Iodium
Daya Serap Benzena

Daya Serap Formalin
Daya Serap Kloroform
Daya Serap Metanol
Daya Serap Kemper
Daya Serap UF
pH

Arang Aktif yang Terbaik

Pernumian Minyak Goreng Bekas

Uji Kualitas Minyak Goreng Bekas

Bilangan Asam/Asam Lemak Bebas
Bilangan Peroksida
Bilangan Penyabunan
Bilangan ester
Lampiran 2. Prosedur Pengujian Komponen Kimia Kayu Sengon & Tempurung Kelapa.

a. Penentuan Kadar Air (TAPPI T 246 om - 88)

Masukkan cawan porselin kosong ke dalam oven 103\(^\circ\)C selama 1 jam, pindahkan ke dalam desikator untuk didinginkan lalu ditimbang. Serbuk sebanyak 1-2 gram ditimbang dan dimasukkan ke dalam cawan porselin yang sudah diketahui bobotnya dan di oven pada suhu 103\(^\circ\)C selama 3 jam, selanjutnya, didinginkan dalam desikator dan ditimbang sampai bobot konstan (tetap).

\[
\text{Kadar Air} = \frac{(B-A) - (C-A)}{(C-A)} \times 100\%
\]

Dinamakan :
\[A = \text{bobot kosong cawan porselin (gram)}\]
\[B = \text{bobot contoh dan cawan sebelum di oven (gram)}\]
\[C = \text{bobot contoh kering oven (gram)}\]

b. Penentuan Kelarutan dalam Air Dingin (TAPPI T 207 om - 88)

Serbuk sebanyak 2 gram dimasukkan ke dalam erlenmeyer, kemudian ditambahkan 30 ml aquadest, aduk dan didiamkan selama 48 jam pada suhu kamar. Oven kerta saring pada 103 \pm 2\(^\circ\)C minimal 1 jam, lalu ditimbang bobotnya. Saring dan cuci dengan aquadest hingga larutan bening, oven kertas saring berisi serbuk kayu pada 103 \pm 2\(^\circ\)C minimal 4 jam, lalu ditimbang bobot keringnya setelah ekstraksi. Hitung bobot contoh kering sebelum ekstraksi dari data kadar air sebelumnya.

\[
\text{Kelarutan dalam Air dingin} = \frac{(BKTA - (C-B))}{BKTA} \times 100\%
\]

Dinamakan :
\[BKTA = \text{bobot contoh kering sebelum ekstraksi (gram)}\]
\[B = \text{bobot kering oven kertas saring (gram)}\]
\[C = \text{bobot contoh kering oven setelah ekstraksi (gram)}\]

c. Penentuan Kelarutan dalam Air Panas (TAPPI T 207 om - 88)

Serbuk sebanyak 2 gram dimasukkan ke dalam labu erlenmeyer, kemudian ditambahkan 100 ml aquadest panas, aduk dan didiamkan selama 3 jam di atas waterbath pada suhu 80\(^\circ\)C. Oven kerta saring pada 103 \pm 2\(^\circ\)C minimal 1 jam, lalu ditimbang bobotnya. Saring dan cuci dengan aquadest hingga larutan bening, oven kertas saring
b. Serbuk kayu pada 103 ± 2°C minimal 4 jam, lalu ditimbang bobot keringnya setelah ekstraksi. Hitung bobot contoh kering sebelum ekstraksi dari data kadar air sebelumnya.

\[
\text{Kelarutan dalam Air dingin} = \left[\frac{\text{BKT}}{\text{D-C}} \right] \times 100%
\]

Dimana:
- \(\text{BKT} \) = bobot contoh kering sebelum ekstraksi (gram)
- \(\text{C} \) = bobot kering oven kertas saring (gram)
- \(\text{D} \) = bobot contoh kering oven setelah ekstraksi (gram)

Penentuan Kelarutan dalam Alkohol Benzene 1:2 (TAPPI T 204 om - 88)

Serbuk sebanyak 10 gram dimasukkan ke dalam kertas saring yang telah diketahui bobot kering oven, lalu dibuat seperti timbel. Masukkan timbel ke dalam soxhlet dan ekstraksi dengan 300 ml etanol benzene (1:2) selama 6-8 jam. Timbel dicuci dengan etanol selama 4 jam dan diangin-anginkan hingga larut bening. Timbel dioven pada 103 ± 2°C, didinginkan dalam desikator dan ditimbang hingga bobot konstan (tetap). Hitung bobot contoh kering sebelum ekstraksi dari data kadar air sebelumnya.

\[
\text{Kelarutan dalam Air dingin} = \left[\frac{\text{BKTC}}{\text{E-D}} \right] \times 100%
\]

Dimana:
- \(\text{BKTC} \) = bobot contoh kering sebelum ekstraksi (gram)
- \(\text{D} \) = bobot kering oven kertas saring (gram)
- \(\text{E} \) = bobot contoh kering oven setelah ekstraksi (gram)

e. Penentuan Kelarutan dalam NaOH 1% (TAPPI T 212 om - 88)

Serbuk sebanyak 2 gram dimasukkan ke dalam gelas piala, ditambahkan 100 ml NaOH 1% sambil diaduk. Contoh dipanaskan dalam waterbath selama 1 jam, selama manasana diaduk pada menit ke 5, 10, 15, dan 25. Sampel disaring, dicuci dengan aquadest panas dan tambahkan 25 ml asam asetat 10% sebanyak 2 kali, selanjutnya contoh dicuci kembali dengan aquadest panas sampai bebas asam. Sampel beserta kertas kering dioven pada 103 ± 2°C, didinginkan dalam desikator dan ditimbang hingga bobot konstan (tetap). Hitung bobot contoh kering sebelum ekstraksi dari data kadar air sebelumnya.
Kelarutan dalam Air dingin = [(BKTD - (F-E)) x 100%]

(BKTD)

Dimana :
- BKTD = bobot contoh kering sebelum ekstraksi (gram)
- E = bobot kering oven kertas saring (gram)
- F = bobot contoh kering oven setelah ekstraksi (gram)

f. Penentuan Kadar Holoselulosa (Metode Browning)

Contoh kering oven yang telah bebas bahan ekstraktif (telah diekstraksi alkohol bersih) sebanyak 1 gram dimasukkan ke dalam labu erlenmeyer berukuran 500 ml, kemudian tambahkan 100 ml aquadest, 3 ml Hipoklorit ditambahkan 100 ml asam asetat glacial. Panaskan sampel dengan waterbath pada suhu 70-80°C selama 5 jam dimana setiap 1 jam ditambahkan 3 ml hipoklorit dan 0.2 ml asam asetat glacial. Selanjutnya selanjutnya pemanasan seselain sampel disaring, dicuci dengan aquadest. Tambahkan 50 ml etanol, yang mengendap dalam kertas saring adalah holoselulosa. Oven kertas saring yang berisi holoselulosa pada 103 ± 2°C lalu ditimbang sampai bobot konstan (tetap).

\[\text{Kadar Holoselulosa} = \left(\frac{G-F}{E} \right) \times 100\% \]

Dimana :
- E = bobot contoh kering sebelum ekstraksi (gram)
- F = bobot kering oven kertas saring (gram)
- G = bobot contoh kering oven setelah ekstraksi (gram)

g. Penentuan Kadar Lignin (TAPPI T 13 os-54)

Sebuk yang telah bebas bahan ekstraktif ditimbang sebanyak 1 gram dan masukkan ke dalam gelas piala berukuran 100 ml, kemudian tambahkan 15 ml asam sulfat 72% dingin secara perlahan sambil diaduk setiap 15 menit (suhi dijaga agar tetap dingin 20 ± 1°C dengan menambahkan es disekelilingnya). Reaksikan selama 2 jam. Tuangkan ke dalam labu erlenmeyer ukuran 1000 ml yang telah ditandai tera sampai volume 575 ml, kemudian ditambahkan aquadest panas 300 ml. Tambahkan aquadest sampai batas tanda 575 ml (hingga konsentrasi 3%). Larutan dipanaskan di atas waterbath 100°C selama 4 jam, dengan volume yang dijaga tetap (tambahkan aquadest panas). Larutan diendapkan, saring dan cuci dengan air aquadest panas hingga bebas asam (± 500 ml). Oven kertas saring lalu ditimbang bobotnya. Kertas saring berisi endapan lignin dioven pada suhu 103 ± 2°C hingga diperoleh bobot kering oven (kertas saring + lignin), lalu ditimbang sampai bobot konstan (tetap).
Kadar Lignin = \[\frac{[H - G]}{F} \times 100\%\]

Dimana:
- \(F\) = bobot contoh kering bebas ekstraksi (gram)
- \(G\) = bobot kering oven kertas saring (gram)
- \(H\) = bobot contoh kering oven setelah ekstraksi (gram)

h. Penentuan Kadar Selulosa (TAPPI T 13 os-54)

Timbang 2,5 gram serbuk kayu bebas zat ekstraktif. Masukkan ke dalam erlenmeyer ukuran 250 ml, kemudian ekstraksi dengan menambahkan 250 ml aquades bas. Panaskan dalam waterbath bersuhu 80\(^\circ\)C selama 4 jam. Serbuk disaring dengan menggunakan kertas saring dan kering udaraan. Serbuk yang sudah dikering udaraan masukkan ke dalam erlenmeyer dan ditambahkan \(\text{HNO}_3\) 3,5% 125 ml. Panaskan di atas waterbath suhu 80\(^\circ\)C selama 12 jam lalu saring sampai bening dan kering udaraan.

Selanjutnya sampel dimasukkan ke dalam erlenmeyer 300 ml dan ditambahkan campuran \(\text{NaOH:Na}_2\text{SO}_3\) (20 gram : 20 gram dalam 1 liter) sebanyak 125 ml dan panaskan di atas waterbath suhu 50\(^\circ\)C selama 2 jam. Saring dengan kertas saring yang telah diketahui BKT, sampai filtrat tidak berwarna. Tambahkan 50 ml \(\text{NaClO}_2\) 10 % dan cuci dengan aquades panas hingga berwarna putih. Tambahkan \(\text{CH}_3\text{COOH}\) 10 % hingga banyak 100 ml. Cuci serbuk yang sudah disaring sampai bebas asam dengan aquades bas. Oven kertas saring yang berisi selulosa pada 103 ± 2\(^\circ\)C lalu ditimbang sampai berat konstan.

\[
\text{Kadar selulosa} = \frac{I - H}{G} \times 100 \%.
\]

Dimana:
- \(G\) = bobot contoh kering sebelum ekstraksi (gram)
- \(H\) = bobot kering oven kertas saring (gram)
- \(I\) = bobot contoh kering oven setelah ekstraksi (gram)
Lampiran 3. Tanur Aktivasi Steam Uap Air dan Gas

Keterangan Gambar:
1. Tabung tempat contoh
2. Elemen Pemanas
3. Kran Pengatur uap
4. Kondensor
Penunjuk suhu dalam Retort
Labu pembuangan gas aktivasi
Penunjuk tekanan (barometer)
Ketel uap
Kran pembuangan air steam
Pengatur suhu

Sumber: Pusat Penelitian dan Pengembangan Teknologi Hasil Hutan, Bogor
Lampiran 4. Syarat mutu berdasarkan SNI

a. Syarat mutu arang aktif teknis

<table>
<thead>
<tr>
<th>No.</th>
<th>Uraian</th>
<th>Satuan</th>
<th>Persyaratan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bagian yang hilang pada pemanasan 950°C, %</td>
<td>-</td>
<td>maks. 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>maks. 25</td>
</tr>
<tr>
<td>2.</td>
<td>Air, %</td>
<td>-</td>
<td>maks. 4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>maks. 15</td>
</tr>
<tr>
<td>3.</td>
<td>Abu, %</td>
<td>-</td>
<td>maks. 2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>maks. 10</td>
</tr>
<tr>
<td>4.</td>
<td>Bagian yang tidak terang</td>
<td>-</td>
<td>Tidak ternyata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tidak ternyata</td>
</tr>
<tr>
<td>5.</td>
<td>Daya serap terhadap l₂</td>
<td>mg/g</td>
<td>min. 750</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>min. 750</td>
</tr>
<tr>
<td>6.</td>
<td>Karbon aktif murni, %</td>
<td>-</td>
<td>min. 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>min. 65</td>
</tr>
<tr>
<td>7.</td>
<td>Daya serap terhadap benzena, %</td>
<td>-</td>
<td>min. 25</td>
</tr>
<tr>
<td>8.</td>
<td>Daya serap terhadap biru metilena</td>
<td>ml/g</td>
<td>min. 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>min. 120</td>
</tr>
<tr>
<td>9.</td>
<td>Kerapatan jenis curah</td>
<td>-</td>
<td>0.45-0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.30-0.35</td>
</tr>
<tr>
<td>10.</td>
<td>Lonas ukuran mesh 325 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>min. 90</td>
</tr>
<tr>
<td>11.</td>
<td>Jarak mesh, %</td>
<td>-</td>
<td>90</td>
</tr>
<tr>
<td>12.</td>
<td>Kekerasan, %</td>
<td>-</td>
<td>80</td>
</tr>
</tbody>
</table>

Sumber: SNI 06-3730-1995

b. Syarat mutu minyak goreng

Kriteria

<table>
<thead>
<tr>
<th>Persyaratan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
</tr>
</tbody>
</table>

Persyaratan

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Satuan</th>
<th>Persyaratan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bau</td>
<td>-</td>
<td>Normal</td>
</tr>
<tr>
<td>Rasa</td>
<td>-</td>
<td>Normal</td>
</tr>
<tr>
<td>Air % w/w</td>
<td>-</td>
<td>maks. 0.30</td>
</tr>
<tr>
<td>Asam Lemak Bebas (dihitung sebagai asam laurat)</td>
<td>-</td>
<td>maks. 0.30</td>
</tr>
<tr>
<td>Minyak Pelikan</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cemaran Logam</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Besi (Fe) %</td>
<td></td>
<td>maks. 1.5</td>
</tr>
<tr>
<td>Timbal (Pb) %</td>
<td></td>
<td>maks. 0.1</td>
</tr>
<tr>
<td>Tembaga (Cu) %</td>
<td></td>
<td>maks. 0.1</td>
</tr>
<tr>
<td>Seng (Zn) %</td>
<td></td>
<td>maks. 40</td>
</tr>
<tr>
<td>Raksa (Hg) %</td>
<td></td>
<td>maks. 0.05</td>
</tr>
<tr>
<td>Arsen (As) %</td>
<td></td>
<td>maks. 0.1</td>
</tr>
<tr>
<td>Peroksida mg/g</td>
<td></td>
<td>maks. 6.000</td>
</tr>
</tbody>
</table>

Sumber: SNI 01-3741-1995

c. Syarat mutu arang aktif untuk pemurnian minyak

<table>
<thead>
<tr>
<th>Uraian</th>
<th>Persyaratan</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8-9.5</td>
</tr>
<tr>
<td>Air % b/b</td>
<td>maks. 13</td>
</tr>
<tr>
<td>Abu % b/b</td>
<td>maks. 4</td>
</tr>
<tr>
<td>Kelolosan, 325 mesh</td>
<td>min. 90</td>
</tr>
<tr>
<td>Daya serap terhadap l₂</td>
<td>min. 1000</td>
</tr>
<tr>
<td>Daya serap terhadap biru metilena</td>
<td>min. 130</td>
</tr>
<tr>
<td>Kerapatan jenis curah</td>
<td>0.35-0.55</td>
</tr>
</tbody>
</table>

Sumber: SNI 01-3741-1995
Tampilan 5. Rekapitulasi seluruh data kualitas Arang aktif dari kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rendemen</th>
<th>Kadar</th>
<th>Daya Serap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Air</td>
<td>ZT</td>
</tr>
<tr>
<td>a₁b₁c₀</td>
<td>74.00</td>
<td>8.62</td>
<td>17.11</td>
</tr>
<tr>
<td>a₁b₁c₁</td>
<td>18.67</td>
<td>11.46</td>
<td>23.07</td>
</tr>
<tr>
<td>a₁b₁c₂</td>
<td>26.00</td>
<td>6.00</td>
<td>14.85</td>
</tr>
<tr>
<td>a₁b₁c₃</td>
<td>29.33</td>
<td>13.94</td>
<td>26.04</td>
</tr>
<tr>
<td>a₁b₁c₄</td>
<td>20.00</td>
<td>14.27</td>
<td>25.57</td>
</tr>
<tr>
<td>a₁b₂c₀</td>
<td>70.67</td>
<td>6.39</td>
<td>15.34</td>
</tr>
<tr>
<td>a₁b₂c₁</td>
<td>6.67</td>
<td>5.05</td>
<td>17.34</td>
</tr>
<tr>
<td>a₁b₂c₂</td>
<td>6.67</td>
<td>5.89</td>
<td>18.52</td>
</tr>
<tr>
<td>a₁b₂c₃</td>
<td>4.67</td>
<td>4.72</td>
<td>12.01</td>
</tr>
<tr>
<td>a₂b₂c₂</td>
<td>10.93</td>
<td>20.87</td>
<td>12.62</td>
</tr>
</tbody>
</table>

Keterangan:
- a₁ = Jenis Sengon
- b₁ = Suhu aktivasi 750°C
- c₀ = Waktu aktivasi 0 menit
- a₂ = Jenis Tempurung Kelapa
- b₂ = Suhu aktivasi 850°C
- c₁ = Waktu aktivasi 150 menit
- c₂ = Waktu aktivasi 170 menit
- c₃ = Waktu aktivasi 190 menit
- c₄ = Waktu aktivasi 210 menit
Kualitas Arang aktif dari tempurung kelapa

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rendemen</th>
<th>Kadar</th>
<th>Daya Serap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Air</td>
<td>ZT</td>
</tr>
<tr>
<td>a,b,c_0</td>
<td>79.00</td>
<td>5.02</td>
<td>10.41</td>
</tr>
<tr>
<td>a,b,c_1</td>
<td>57.33</td>
<td>5.20</td>
<td>10.97</td>
</tr>
<tr>
<td>a,b,c_2</td>
<td>59.17</td>
<td>5.87</td>
<td>11.21</td>
</tr>
<tr>
<td>a,b,c_3</td>
<td>61.5</td>
<td>6.15</td>
<td>10.41</td>
</tr>
<tr>
<td>a,b,c_4</td>
<td>57.17</td>
<td>7.04</td>
<td>10.85</td>
</tr>
<tr>
<td>a,b,c_0</td>
<td>77.67</td>
<td>5.08</td>
<td>9.53</td>
</tr>
<tr>
<td>a,b,c_1</td>
<td>48.00</td>
<td>5.30</td>
<td>9.67</td>
</tr>
<tr>
<td>a,b,c_2</td>
<td>70.3</td>
<td>3.63</td>
<td>10.36</td>
</tr>
<tr>
<td>a,b,c_3</td>
<td>42.00</td>
<td>6.01</td>
<td>13.06</td>
</tr>
<tr>
<td>a,b,c_4</td>
<td>38.33</td>
<td>6.13</td>
<td>14.57</td>
</tr>
<tr>
<td>a,b,c_0</td>
<td>33.50</td>
<td>5.83</td>
<td>13.02</td>
</tr>
<tr>
<td>a,b,c_1</td>
<td>38.33</td>
<td>5.94</td>
<td>13.44</td>
</tr>
<tr>
<td>a,b,c_2</td>
<td>33.50</td>
<td>6.26</td>
<td>13.48</td>
</tr>
<tr>
<td>a,b,c_3</td>
<td>33.50</td>
<td>6.26</td>
<td>15.50</td>
</tr>
</tbody>
</table>

Keterangan:
- a_1 = Jenis Sengon
- b_1 = Suhu aktivasi 750°C
- c_0 = Waktu aktivasi 0 menit
- c_1 = Waktu aktivasi 150 menit
- c_2 = Waktu aktivasi 170 menit
- c_3 = Waktu aktivasi 190 menit
- c_4 = Waktu aktivasi 210 menit
Lampiran 6. Faktor-faktor aktivasi selain suhu dan waktu aktivasi

a. Uap Steam (dalam cc)

<table>
<thead>
<tr>
<th>Kombinasi perlakuan</th>
<th>Suhu (°C)</th>
<th>Kombinasi perlakuan</th>
<th>Suhu (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>950</td>
<td>150</td>
<td>950</td>
</tr>
<tr>
<td>170</td>
<td>725</td>
<td>170</td>
<td>1175</td>
</tr>
<tr>
<td>190</td>
<td>500</td>
<td>190</td>
<td>1250</td>
</tr>
<tr>
<td>210</td>
<td>610</td>
<td>210</td>
<td>502</td>
</tr>
</tbody>
</table>

b. Tekanan Uap

<table>
<thead>
<tr>
<th>Kombinasi perlakuan</th>
<th>Suhu (°C)</th>
<th>Kombinasi perlakuan</th>
<th>Suhu (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>min (+)</td>
<td>150</td>
<td>1000</td>
</tr>
<tr>
<td>170</td>
<td>min (+)</td>
<td>170</td>
<td>1000</td>
</tr>
<tr>
<td>190</td>
<td>min</td>
<td>190</td>
<td>1000</td>
</tr>
<tr>
<td>210</td>
<td>min</td>
<td>210</td>
<td>1000</td>
</tr>
</tbody>
</table>

c. Suhu luar (dalam °C)

<table>
<thead>
<tr>
<th>Kombinasi perlakuan</th>
<th>Suhu (°C)</th>
<th>Kombinasi perlakuan</th>
<th>Suhu (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>850</td>
<td>0</td>
<td>850</td>
</tr>
<tr>
<td>150</td>
<td>850</td>
<td>150</td>
<td>850</td>
</tr>
<tr>
<td>170</td>
<td>850</td>
<td>170</td>
<td>850</td>
</tr>
<tr>
<td>190</td>
<td>850</td>
<td>190</td>
<td>850</td>
</tr>
<tr>
<td>210</td>
<td>850</td>
<td>210</td>
<td>850</td>
</tr>
</tbody>
</table>

d. Air steam (dalam ml)

<table>
<thead>
<tr>
<th>Kombinasi perlakuan</th>
<th>Suhu (°C)</th>
<th>Kombinasi perlakuan</th>
<th>Suhu (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1500</td>
<td>0</td>
<td>1500</td>
</tr>
<tr>
<td>150</td>
<td>1500</td>
<td>150</td>
<td>1500</td>
</tr>
<tr>
<td>170</td>
<td>1500</td>
<td>170</td>
<td>1500</td>
</tr>
<tr>
<td>190</td>
<td>1500</td>
<td>190</td>
<td>1500</td>
</tr>
<tr>
<td>210</td>
<td>1500</td>
<td>210</td>
<td>1500</td>
</tr>
</tbody>
</table>

e. Waktu tuju ke suhu aktivasi (dalam menit)

<table>
<thead>
<tr>
<th>Kombinasi perlakuan</th>
<th>Suhu (°C)</th>
<th>Kombinasi perlakuan</th>
<th>Suhu (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>145</td>
<td>0</td>
<td>132</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>150</td>
<td>135</td>
</tr>
<tr>
<td>170</td>
<td>150</td>
<td>170</td>
<td>120</td>
</tr>
<tr>
<td>190</td>
<td>150</td>
<td>190</td>
<td>135</td>
</tr>
<tr>
<td>210</td>
<td>135</td>
<td>210</td>
<td>150</td>
</tr>
</tbody>
</table>
Lampiran 7. Rekapitulasi data pemurnian minyak Goreng dengan arang aktif kayu sengon dan tempurung kelapa.

a. Data pemurnian minyak Goreng dengan arang aktif kayu sengon

<table>
<thead>
<tr>
<th>Arang Aktif (%)</th>
<th>Konsentrasi</th>
<th>Bilangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>asam</td>
<td>peroksida</td>
</tr>
<tr>
<td>0</td>
<td>0.313</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>0.487</td>
<td>0.599</td>
</tr>
<tr>
<td>2</td>
<td>0.391</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>0.496</td>
<td>0.500</td>
</tr>
<tr>
<td>4</td>
<td>0.365</td>
<td>0.900</td>
</tr>
<tr>
<td></td>
<td>0.391</td>
<td>1.099</td>
</tr>
<tr>
<td>6</td>
<td>0.352</td>
<td>0.900</td>
</tr>
<tr>
<td></td>
<td>0.365</td>
<td>1.698</td>
</tr>
<tr>
<td>8</td>
<td>0.234</td>
<td>0.700</td>
</tr>
<tr>
<td></td>
<td>0.365</td>
<td>0.799</td>
</tr>
<tr>
<td>0</td>
<td>0.313</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>0.487</td>
<td>0.599</td>
</tr>
<tr>
<td>2</td>
<td>0.339</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>0.365</td>
<td>0.700</td>
</tr>
<tr>
<td>4</td>
<td>0.286</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>0.287</td>
<td>0.700</td>
</tr>
<tr>
<td>6</td>
<td>0.234</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>0.287</td>
<td>0.500</td>
</tr>
<tr>
<td>8</td>
<td>0.208</td>
<td>0.699</td>
</tr>
<tr>
<td></td>
<td>0.313</td>
<td>0.900</td>
</tr>
</tbody>
</table>

Minyak Baru

| 0.156 | 0.600 | 139.365 | 139.365 |
| 0.260 | 0.700 | 155.678 | 155.678 |
Data pemurnian minyak Goreng dengan arang aktif tempurung kelapa

Arang Aktif	Konsentrasi (%)	Bilangan		
	asam	peroksida	penyabunan	ester
0	0.313	0.500	127.263	127.263
2	0.487	0.599	139.707	139.707
4	0.364	0.400	144.539	144.539
6	0.495	0.599	142.898	142.898
8	0.365	0.699	170.460	170.460
0	0.313	0.500	127.263	127.263
2	0.260	0.400	139.654	139.654
4	0.365	0.500	131.111	131.111
6	0.287	0.500	138.505	138.505
8	0.313	0.699	144.706	144.706

Hak cipta milik IPB (Institut Pertanian Bogor)

Bogor Agricultural University
8. Hasil analisa statistik untuk seluruh indikator kualitas arang aktif kayu sengon dan tempurung kelapa.

<table>
<thead>
<tr>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>387.6755000</td>
<td>20.40375579</td>
<td>125.81</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>114.51955000</td>
<td>114.51955000</td>
<td>706.10</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>50.45195600</td>
<td>50.45195600</td>
<td>311.04</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>66.66653750</td>
<td>16.67159375</td>
<td>100.80</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>57.07321000</td>
<td>57.07321000</td>
<td>351.91</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>36.35356500</td>
<td>9.08789125</td>
<td>56.04</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38.35356500</td>
<td>9.63302075</td>
<td>59.40</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24.06856500</td>
<td>6.01714125</td>
<td>37.10</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.24260000</td>
<td>0.16218000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>390.9112000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>1051.82938750</td>
<td>55.35944145</td>
<td>119.56</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>585.30150250</td>
<td>585.30150250</td>
<td>1264.06</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7.47360250</td>
<td>7.47360250</td>
<td>16.34</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>105.10692500</td>
<td>26.27740625</td>
<td>56.75</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>149.57562500</td>
<td>149.57562500</td>
<td>323.03</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>35.82183500</td>
<td>8.95548375</td>
<td>19.34</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>85.20335300</td>
<td>21.30888375</td>
<td>46.00</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>83.34362500</td>
<td>20.83590625</td>
<td>45.00</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9.26065000</td>
<td>0.46303250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1061.0903750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>450.73359750</td>
<td>23.72294461</td>
<td>72.14</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>82.68502500</td>
<td>82.68502500</td>
<td>251.45</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>138.34680250</td>
<td>138.34680250</td>
<td>420.72</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>96.49743500</td>
<td>24.12435875</td>
<td>73.36</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>58.92756250</td>
<td>58.92756250</td>
<td>179.20</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>27.63203500</td>
<td>6.90800875</td>
<td>21.01</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>42.91733500</td>
<td>10.72933375</td>
<td>32.63</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.72977500</td>
<td>0.93244375</td>
<td>2.84</td>
<td>0.0517</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>457.31259750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>1250.36681000</td>
<td>65.80877947</td>
<td>54.30</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>228.00625000</td>
<td>228.00625000</td>
<td>187.44</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>81.51025000</td>
<td>81.51025000</td>
<td>67.01</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>325.10487500</td>
<td>78.7763125</td>
<td>64.76</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>396.27025000</td>
<td>396.27025000</td>
<td>325.76</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>59.42087500</td>
<td>14.85321875</td>
<td>21.21</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>83.72637500</td>
<td>20.9319375</td>
<td>17.21</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>86.32732500</td>
<td>21.5818375</td>
<td>17.74</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>24.32870000</td>
<td>1.27643500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1224.69551000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>1688813.77174750</td>
<td>88884.93251300</td>
<td>30.81</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5353.90182250</td>
<td>5353.90182250</td>
<td>1.86</td>
<td>0.1882</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4720.40802250</td>
<td>4720.40802250</td>
<td>1.64</td>
<td>0.2155</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>15117.30435100</td>
<td>377932.53087500</td>
<td>121.02</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>72693.52860250</td>
<td>72693.52860250</td>
<td>25.20</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>36598.30904000</td>
<td>9149.5776000</td>
<td>3.17</td>
<td>0.0359</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3550.60460000</td>
<td>8887.95117250</td>
<td>3.08</td>
<td>0.0396</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>22166.92260001</td>
<td>5441.73051000</td>
<td>1.92</td>
<td>0.1462</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>57692.23350000</td>
<td>2884.61168750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1746505.95149750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td>JK</td>
<td>KT</td>
<td>F Hitung</td>
<td>P > F</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>608.83852750</td>
<td>32.04431303</td>
<td>146.72</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.97580250</td>
<td>9.395625</td>
<td>7.25</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>409.58286500</td>
<td>102.39571625</td>
<td>468.84</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>56.81072250</td>
<td>56.81072250</td>
<td>260.12</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.36478500</td>
<td>2.34139625</td>
<td>10.72</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>44.63905650</td>
<td>11.15976625</td>
<td>51.30</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>76.83186500</td>
<td>19.20796625</td>
<td>87.95</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>8.36609000</td>
<td>0.21840250</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ragam daya serap formalin (y_1) arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>878.36608750</td>
<td>46.22984145</td>
<td>253.51</td>
<td>0.0001</td>
</tr>
<tr>
<td>1</td>
<td>13.03022250</td>
<td>13.03022250</td>
<td>71.45</td>
<td>0.0001</td>
</tr>
<tr>
<td>1</td>
<td>26.00156250</td>
<td>26.00156250</td>
<td>142.58</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>73.94105000</td>
<td>183.73526525</td>
<td>1007.53</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>40.94552250</td>
<td>40.94552250</td>
<td>224.53</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>1.94774000</td>
<td>0.48929350</td>
<td>2.67</td>
<td>0.0621</td>
</tr>
<tr>
<td>4</td>
<td>37.36875000</td>
<td>9.34218750</td>
<td>51.23</td>
<td>0.0001</td>
</tr>
<tr>
<td>20</td>
<td>24.13224100</td>
<td>6.03302500</td>
<td>33.08</td>
<td>0.0001</td>
</tr>
<tr>
<td>39</td>
<td>3.64723500</td>
<td>0.18236250</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>882.01423750</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ragam daya serap kloroform (y_2) arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>1068.95351000</td>
<td>56.26808579</td>
<td>70.70</td>
<td>0.0001</td>
</tr>
<tr>
<td>1</td>
<td>10.00000000</td>
<td>10.00000000</td>
<td>12.57</td>
<td>0.0020</td>
</tr>
<tr>
<td>2</td>
<td>0.27555000</td>
<td>0.27555000</td>
<td>0.35</td>
<td>0.5628</td>
</tr>
<tr>
<td>4</td>
<td>891.46336600</td>
<td>222.86584000</td>
<td>280.06</td>
<td>0.0001</td>
</tr>
<tr>
<td>1</td>
<td>7.44769000</td>
<td>7.44769000</td>
<td>9.36</td>
<td>0.0062</td>
</tr>
<tr>
<td>4</td>
<td>11.50154000</td>
<td>2.87536250</td>
<td>3.61</td>
<td>0.0726</td>
</tr>
<tr>
<td>4</td>
<td>24.13668060</td>
<td>8.34216000</td>
<td>10.73</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>114.09861000</td>
<td>28.52465250</td>
<td>35.84</td>
<td>0.0001</td>
</tr>
<tr>
<td>20</td>
<td>15.91585000</td>
<td>0.79579000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1084.87111000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ragam daya serap metanol (y_3) arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>455.77374750</td>
<td>23.98809197</td>
<td>81.50</td>
<td>0.0001</td>
</tr>
<tr>
<td>1</td>
<td>86.99550250</td>
<td>86.99550250</td>
<td>295.57</td>
<td>0.0001</td>
</tr>
<tr>
<td>1</td>
<td>6.47220250</td>
<td>6.47220250</td>
<td>21.99</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>225.96898500</td>
<td>56.49224265</td>
<td>191.54</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>41.10756250</td>
<td>41.10756250</td>
<td>139.68</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>22.35653500</td>
<td>5.58956875</td>
<td>18.99</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>27.07039125</td>
<td>6.91733750</td>
<td>23.50</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>45.19992500</td>
<td>11.2999125</td>
<td>38.39</td>
<td>0.0001</td>
</tr>
<tr>
<td>20</td>
<td>5.88665000</td>
<td>0.29433250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>461.66039750</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ragam daya serap kamper (y_4) arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>480.03582750</td>
<td>25.26504355</td>
<td>108.58</td>
<td>0.0001</td>
</tr>
<tr>
<td>1</td>
<td>118.50086250</td>
<td>118.50086250</td>
<td>509.30</td>
<td>0.0001</td>
</tr>
<tr>
<td>1</td>
<td>109.85910250</td>
<td>109.85910250</td>
<td>472.32</td>
<td>0.0001</td>
</tr>
<tr>
<td>1</td>
<td>146.44186500</td>
<td>36.61046625</td>
<td>157.34</td>
<td>0.0001</td>
</tr>
<tr>
<td>1</td>
<td>24.53922250</td>
<td>24.53922250</td>
<td>105.46</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>45.04367500</td>
<td>11.25091875</td>
<td>48.40</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>16.64988500</td>
<td>4.16247125</td>
<td>17.29</td>
<td>0.0001</td>
</tr>
<tr>
<td>4</td>
<td>18.59041250</td>
<td>4.74850375</td>
<td>20.41</td>
<td>0.0001</td>
</tr>
<tr>
<td>20</td>
<td>4.63750500</td>
<td>0.23268750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>484.68957750</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ragam daya serap UF (y_10) arang aktif kayu sengon dan tempurung kelapa

<table>
<thead>
<tr>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>1173.23265000</td>
<td>61.74908684</td>
<td>49.09</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Unggah oleh: [Namen des Twitter]
| Kelas | Klasifikasi | Aku | Buku | Saku | Keter | Klasifikasi | Aku | Buku | Saku | Keter | Klasifikasi | Aku | Buku | Saku | Keter | Klasifikasi | Aku | Buku | Saku | Keter | Klasifikasi | Aku | Buku | Saku | Keter | Klasifikasi | Aku | Buku | Saku | Keter |
|-------|-------------|-----|------|------|-------|
| B | 13.60 | B | 10.12 | A | 73.73 | B | 18.24 | A | 50.70 | A | 50.70 | A | 13.63 | A | 11.72 | A | 19.17 | A | 9.27 | A |
| C | 15.50 | C | 7.72 | B | 78.01 | A | 11.35 | B | 17.00 | C | 11.04 | D | 7.42 | D | 10.98 | C | 9.24 | A |
| B | 16.30 | A | 18.16 | B | 73.15 | B | 18.87 | C | 57.49 | B | 33.34 | C | 19.26 | C | 13.81 | B | 9.76 | B | 9.48 | A |
| A | 18.59 | C | 11.87 | A | 74.83 | B | 16.15 | B | 31.21 | B | 15.38 | N | 13.21 | B | 8.91 | C | 30.73 | A | 9.56 | A |
| B | 19.91 | B | 10.79 | A | 79.31 | B | 19.75 | B | 32.36 | A | 53.35 | A | 15.43 | A | 12.23 | A | 31.53 | A | 9.40 | A |

Keterangan: Huruf dalam klasifikasi Tukey menunjukkan perbedaan antar perlakuan. Perlakuan dengan huruf yang berbeda untuk setiap indikator kualitas berarti terdapat perbedaan secara nyata untuk indikator tersebut, sedangkan perlakuan dengan huruf yang sama tidak berbeda nyata untuk setiap indikator.
Daftar Perkara: 10. Rekapitulasi hasil Uji Tukey interaksi 2 faktor perlakuan untuk seluruh indikator kualitas arang aktif

<table>
<thead>
<tr>
<th>Keterangan</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Huruf dalam klasifikasi Tukey menunjukkan pembedaan antar parcel. Perlu diingat bahwa huruf yang berbeda untuk setiap indikator kualitas air menunjukkan bahwa indikator tersebut secara nyata berbeda.

<table>
<thead>
<tr>
<th>Huruf</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Catatan: Huruf dalam klasifikasi Tukey menunjukkan pembedaan antar parcel.
<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P > F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Sidik ragam asam lemak (y) arang aktif kayu sengon dan tempurung kelapa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perkaraan</td>
<td>19</td>
<td>0.17658950</td>
<td>0.009279418</td>
<td>1.88</td>
<td>0.0846</td>
</tr>
<tr>
<td>JENIS</td>
<td>1</td>
<td>0.00428490</td>
<td>0.00428490</td>
<td>0.87</td>
<td>0.3626</td>
</tr>
<tr>
<td>SA</td>
<td>1</td>
<td>0.05126550</td>
<td>0.05126550</td>
<td>10.38</td>
<td>0.0043</td>
</tr>
<tr>
<td>KAA</td>
<td>4</td>
<td>0.034132725</td>
<td>0.00853431</td>
<td>1.73</td>
<td>0.1832</td>
</tr>
<tr>
<td>JENIS*SA</td>
<td>1</td>
<td>0.00057760</td>
<td>0.00057760</td>
<td>0.12</td>
<td>0.7359</td>
</tr>
<tr>
<td>JENIS*KAA</td>
<td>4</td>
<td>0.03984735</td>
<td>0.00996184</td>
<td>2.02</td>
<td>0.1306</td>
</tr>
<tr>
<td>SA*KAA</td>
<td>4</td>
<td>0.03198013</td>
<td>0.00790504</td>
<td>1.62</td>
<td>0.2084</td>
</tr>
<tr>
<td>JENISSAKAA</td>
<td>4</td>
<td>0.01449665</td>
<td>0.00362416</td>
<td>0.73</td>
<td>0.5795</td>
</tr>
<tr>
<td>Galat</td>
<td>20</td>
<td>0.09873800</td>
<td>0.00493680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>0.2732550</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>OB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P > F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Sidik ragam bilangan peroksida (y) arang aktif kayu sengon dan tempurung kelapa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perkaraan</td>
<td>19</td>
<td>1.53700388</td>
<td>0.08089494</td>
<td>3.39</td>
<td>0.0047</td>
</tr>
<tr>
<td>JENIS</td>
<td>1</td>
<td>0.16913002</td>
<td>0.16913002</td>
<td>7.08</td>
<td>0.0150</td>
</tr>
<tr>
<td>SA</td>
<td>1</td>
<td>0.16809122</td>
<td>0.16809122</td>
<td>7.04</td>
<td>0.0153</td>
</tr>
<tr>
<td>KAA</td>
<td>4</td>
<td>0.32195125</td>
<td>0.08048781</td>
<td>3.37</td>
<td>0.0291</td>
</tr>
<tr>
<td>JENIS*SA</td>
<td>1</td>
<td>0.06408036</td>
<td>0.06408036</td>
<td>2.68</td>
<td>0.1171</td>
</tr>
<tr>
<td>JENIS*KAA</td>
<td>4</td>
<td>0.17317035</td>
<td>0.04329259</td>
<td>1.81</td>
<td>0.0166</td>
</tr>
<tr>
<td>SA*KAA</td>
<td>4</td>
<td>0.24726065</td>
<td>0.06060916</td>
<td>2.54</td>
<td>0.0718</td>
</tr>
<tr>
<td>JENISSAKAA</td>
<td>4</td>
<td>0.39782035</td>
<td>0.09945509</td>
<td>4.16</td>
<td>0.0130</td>
</tr>
<tr>
<td>Galat</td>
<td>20</td>
<td>0.47770750</td>
<td>0.02308537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>2.01471137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>OB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P > F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Sidik ragam bilangan penyabun (y) arang aktif kayu sengon dan tempurung kelapa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perkaraan</td>
<td>19</td>
<td>8552.59640527</td>
<td>450.13665291</td>
<td>2.32</td>
<td>0.0343</td>
</tr>
<tr>
<td>JENIS</td>
<td>1</td>
<td>215.75560530</td>
<td>215.75560530</td>
<td>1.11</td>
<td>0.3040</td>
</tr>
<tr>
<td>SA</td>
<td>1</td>
<td>348.61765622</td>
<td>19.81478522</td>
<td>0.10</td>
<td>0.9525</td>
</tr>
<tr>
<td>KAA</td>
<td>4</td>
<td>4006.16613298</td>
<td>1001.5415298</td>
<td>5.77</td>
<td>0.0050</td>
</tr>
<tr>
<td>JENIS*SA</td>
<td>1</td>
<td>1482.80546703</td>
<td>1482.80546703</td>
<td>2.65</td>
<td>0.0119</td>
</tr>
<tr>
<td>JENIS*KAA</td>
<td>4</td>
<td>1216.1391270</td>
<td>304.03479302</td>
<td>1.57</td>
<td>0.2212</td>
</tr>
<tr>
<td>SA*KAA</td>
<td>4</td>
<td>599.58202909</td>
<td>49.90205023</td>
<td>0.77</td>
<td>0.5552</td>
</tr>
<tr>
<td>JENISSAKAA</td>
<td>4</td>
<td>1012.23322310</td>
<td>253.05383577</td>
<td>1.31</td>
<td>0.3017</td>
</tr>
<tr>
<td>Galat</td>
<td>20</td>
<td>3876.20568150</td>
<td>193.81028408</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>12428.80208678</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>OB</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>P > F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Sidik ragam bilangan ester (y) arang aktif kayu sengon dan tempurung kelapa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perkaraan</td>
<td>19</td>
<td>8589.87439127</td>
<td>452.0865217</td>
<td>2.35</td>
<td>0.0326</td>
</tr>
<tr>
<td>JENIS</td>
<td>1</td>
<td>217.69238363</td>
<td>217.69238363</td>
<td>1.13</td>
<td>0.3003</td>
</tr>
<tr>
<td>SA</td>
<td>1</td>
<td>17.84495223</td>
<td>17.84495223</td>
<td>0.09</td>
<td>0.7639</td>
</tr>
<tr>
<td>KAA</td>
<td>4</td>
<td>4028.59780940</td>
<td>1007.14945235</td>
<td>5.23</td>
<td>0.0047</td>
</tr>
<tr>
<td>JENIS*SA</td>
<td>1</td>
<td>1480.95513302</td>
<td>1480.95513302</td>
<td>7.69</td>
<td>0.0017</td>
</tr>
<tr>
<td>JENIS*KAA</td>
<td>4</td>
<td>1292.7037500</td>
<td>307.4268300</td>
<td>1.60</td>
<td>0.2140</td>
</tr>
<tr>
<td>SA*KAA</td>
<td>4</td>
<td>602.70484440</td>
<td>150.67521110</td>
<td>0.78</td>
<td>0.5496</td>
</tr>
<tr>
<td>JENISSAKAA</td>
<td>4</td>
<td>1012.37206960</td>
<td>253.09301740</td>
<td>1.31</td>
<td>0.2985</td>
</tr>
<tr>
<td>Galat</td>
<td>20</td>
<td>3849.90267530</td>
<td>192.49513397</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>12439.77707072</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 13. Hasil Uji Tukey untuk seluruh indikator kualitas hasil pengaruh setiap faktor

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Bilangan</th>
<th>Asam</th>
<th>Klasifikasi Tukey</th>
<th>Peroksida</th>
<th>Klasifikasi Tukey</th>
<th>Penyabunan</th>
<th>Klasifikasi Tukey</th>
<th>Ester</th>
<th>Klasifikasi Tukey</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>Rata-rata</td>
<td>0.344</td>
<td>A</td>
<td>0.713</td>
<td>A</td>
<td>153.639</td>
<td>A</td>
<td>153.395</td>
<td>A</td>
</tr>
<tr>
<td>a2</td>
<td>0.365</td>
<td>A</td>
<td>0.585</td>
<td>B</td>
<td>148.994</td>
<td>A</td>
<td>148.629</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>b1</td>
<td>0.390</td>
<td>A</td>
<td>0.714</td>
<td>A</td>
<td>152.020</td>
<td>A</td>
<td>151.63</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>b2</td>
<td>0.318</td>
<td>B</td>
<td>0.485</td>
<td>B</td>
<td>150.613</td>
<td>A</td>
<td>150.394</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>d0</td>
<td>0.409</td>
<td>A</td>
<td>0.350</td>
<td>A</td>
<td>133.883</td>
<td>B</td>
<td>133.485</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>d1</td>
<td>0.352</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
<td>156.125</td>
<td>A</td>
<td>155.773</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>0.338</td>
<td>A</td>
<td>0.650</td>
<td>A</td>
<td>148.376</td>
<td>AB</td>
<td>148.018</td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>d3</td>
<td>0.354</td>
<td>A</td>
<td>0.762</td>
<td>A</td>
<td>154.405</td>
<td>AB</td>
<td>154.051</td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>d4</td>
<td>0.308</td>
<td>A</td>
<td>0.737</td>
<td>A</td>
<td>163.791</td>
<td>A</td>
<td>163.483</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Catatan: Huruf dalam klasifikasi Tukey menunjukkan perbedaan antar perlakuan. Perlakuan dengan huruf yang berbeda untuk setiap indikator kualitas berarti terdapat perbedaan secara nyata untuk indikator tersebut, sedangkan perlakuan dengan huruf yang sama tidak berbeda nyata untuk setiap indicator.
Lampiran 14. Rekapitulasi hasil Uji Tukey interaksi 2 faktor perlakuan untuk seluruh indikator kualitas

<table>
<thead>
<tr>
<th>Perkalian</th>
<th>Asam</th>
<th>Rata-rata</th>
<th>Klasifikasi Tukey</th>
<th>Peroksida</th>
<th>Rata-rata</th>
<th>Klasifikasi Tukey</th>
<th>Penyabunan</th>
<th>Rata-rata</th>
<th>Klasifikasi Tukey</th>
<th>Ester</th>
<th>Rata-rata</th>
<th>Klasifikasi Tukey</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1b1</td>
<td>0.376</td>
<td>A</td>
<td>0.820</td>
<td>B</td>
<td>148.234</td>
<td>A</td>
<td>147.878</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a1b2</td>
<td>0.312</td>
<td>A</td>
<td>0.610</td>
<td>AB</td>
<td>159.024</td>
<td>A</td>
<td>158.712</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a2b1</td>
<td>0.404</td>
<td>A</td>
<td>0.609</td>
<td>AB</td>
<td>155.786</td>
<td>A</td>
<td>153.382</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a2b2</td>
<td>0.325</td>
<td>A</td>
<td>0.560</td>
<td>A</td>
<td>142.202</td>
<td>A</td>
<td>141.876</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a1d0</td>
<td>0.400</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
<td>133.885</td>
<td>A</td>
<td>133.485</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a1d1</td>
<td>0.398</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
<td>149.179</td>
<td>A</td>
<td>148.781</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a1d2</td>
<td>0.332</td>
<td>A</td>
<td>0.800</td>
<td>A</td>
<td>154.938</td>
<td>A</td>
<td>154.606</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a1d3</td>
<td>0.310</td>
<td>A</td>
<td>0.900</td>
<td>A</td>
<td>163.207</td>
<td>A</td>
<td>162.898</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a1d4</td>
<td>0.280</td>
<td>A</td>
<td>0.775</td>
<td>A</td>
<td>166.986</td>
<td>A</td>
<td>166.706</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a2d0</td>
<td>0.400</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
<td>133.885</td>
<td>A</td>
<td>133.485</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a2d1</td>
<td>0.306</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
<td>163.071</td>
<td>A</td>
<td>162.765</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a2d2</td>
<td>0.384</td>
<td>A</td>
<td>0.500</td>
<td>A</td>
<td>141.815</td>
<td>A</td>
<td>141.430</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a2d3</td>
<td>0.398</td>
<td>A</td>
<td>0.623</td>
<td>A</td>
<td>145.603</td>
<td>A</td>
<td>145.205</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a2d4</td>
<td>0.336</td>
<td>A</td>
<td>0.699</td>
<td>A</td>
<td>160.596</td>
<td>A</td>
<td>160.261</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1d0</td>
<td>0.400</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
<td>133.885</td>
<td>A</td>
<td>133.485</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1d1</td>
<td>0.378</td>
<td>A</td>
<td>0.575</td>
<td>A</td>
<td>153.098</td>
<td>A</td>
<td>152.720</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1d2</td>
<td>0.397</td>
<td>A</td>
<td>0.725</td>
<td>A</td>
<td>151.232</td>
<td>A</td>
<td>150.835</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1d3</td>
<td>0.440</td>
<td>A</td>
<td>0.974</td>
<td>A</td>
<td>151.087</td>
<td>A</td>
<td>150.647</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1d4</td>
<td>0.336</td>
<td>A</td>
<td>0.749</td>
<td>A</td>
<td>170.799</td>
<td>A</td>
<td>170.463</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2d0</td>
<td>0.400</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
<td>133.885</td>
<td>A</td>
<td>133.485</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2d1</td>
<td>0.326</td>
<td>A</td>
<td>0.523</td>
<td>A</td>
<td>159.151</td>
<td>A</td>
<td>158.825</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2d2</td>
<td>0.319</td>
<td>A</td>
<td>0.575</td>
<td>A</td>
<td>145.521</td>
<td>A</td>
<td>145.201</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2d3</td>
<td>0.267</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
<td>157.723</td>
<td>A</td>
<td>157.456</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2d4</td>
<td>0.280</td>
<td>A</td>
<td>0.723</td>
<td>A</td>
<td>156.783</td>
<td>A</td>
<td>156.503</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Huruf dalam klasifikasi Tukey menunjukkan perbedaan antar perlakuan. Perlakuan dengan huruf yang berbeda untuk setiap indikator kualitas berarti terdapat perbedaan secara nyata untuk indikator tersebut, sedangkan perlakuan dengan huruf yang sama tidak berbeda nyata untuk setiap indikator.
Lampiran 15. Rekapitulasi hasil Uji Tukey interaksi 3 faktor perlakuan untuk seluruh indikator kualitas

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Asam</th>
<th>Peroksida</th>
<th>Penyabuhan</th>
<th>Ester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rata-rata</td>
<td>Klasifikasi Tukey</td>
<td>Rata-rata</td>
<td>Klasifikasi Tukey</td>
</tr>
<tr>
<td>a1b1d0</td>
<td>0.400</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
</tr>
<tr>
<td>a1b1d1</td>
<td>0.444</td>
<td>A</td>
<td>0.500</td>
<td>A</td>
</tr>
<tr>
<td>a1b1d2</td>
<td>0.378</td>
<td>A</td>
<td>1.000</td>
<td>AB</td>
</tr>
<tr>
<td>a1b1d3</td>
<td>0.359</td>
<td>A</td>
<td>1.299</td>
<td>B</td>
</tr>
<tr>
<td>a1b1d4</td>
<td>0.300</td>
<td>A</td>
<td>0.750</td>
<td>AB</td>
</tr>
<tr>
<td>a1b2d0</td>
<td>0.400</td>
<td>A</td>
<td>0.350</td>
<td>A</td>
</tr>
<tr>
<td>a1b2d1</td>
<td>0.352</td>
<td>A</td>
<td>0.600</td>
<td>A</td>
</tr>
<tr>
<td>a1b2d2</td>
<td>0.287</td>
<td>A</td>
<td>0.600</td>
<td>A</td>
</tr>
<tr>
<td>a1b2d3</td>
<td>0.261</td>
<td>A</td>
<td>0.300</td>
<td>A</td>
</tr>
<tr>
<td>a1b2d4</td>
<td>0.261</td>
<td>A</td>
<td>0.800</td>
<td>AB</td>
</tr>
<tr>
<td>a2b1d0</td>
<td>0.400</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
</tr>
<tr>
<td>a2b1d1</td>
<td>0.312</td>
<td>A</td>
<td>0.650</td>
<td>A</td>
</tr>
<tr>
<td>a2b1d2</td>
<td>0.417</td>
<td>A</td>
<td>0.450</td>
<td>A</td>
</tr>
<tr>
<td>a2b1d3</td>
<td>0.521</td>
<td>A</td>
<td>0.650</td>
<td>A</td>
</tr>
<tr>
<td>a2b1d4</td>
<td>0.372</td>
<td>A</td>
<td>0.749</td>
<td>AB</td>
</tr>
<tr>
<td>a2b2d0</td>
<td>0.400</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
</tr>
<tr>
<td>a2b2d1</td>
<td>0.299</td>
<td>A</td>
<td>0.430</td>
<td>A</td>
</tr>
<tr>
<td>a2b2d2</td>
<td>0.332</td>
<td>A</td>
<td>0.550</td>
<td>A</td>
</tr>
<tr>
<td>a2b2d3</td>
<td>0.274</td>
<td>A</td>
<td>0.600</td>
<td>A</td>
</tr>
<tr>
<td>a2b2d4</td>
<td>0.300</td>
<td>A</td>
<td>0.650</td>
<td>A</td>
</tr>
</tbody>
</table>

Catatan: Huruf dalam klasifikasi Tukey menunjukkan perbedaan antar perlakuan. Perlakuan dengan huruf yang berbeda untuk setiap indikator kualitas berarti terdapat perbedaan secara nyata untuk indikator tersebut, sedangkan perlakuan dengan huruf yang sama tidak berbeda nyata untuk setiap indikator.