BENGARUH PROVENANSI DAN KONDISI POHON SENGON (Paraserianthes falcatoria (L.) Nielsen) TERHADAP BIOLOGI HAMA BOKTOR (Xystrocera festiva Pascoe) PADA ARTIFICIAL DIET

RATIH LISTYORINI

DEPARTEMEN SILVIKULTUR
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2007
PENGARUH PROVENANSI DAN KONDISI POHON SENGON
(Paraserianthes falcataria (L.) Nielsen) TERHADAP BIOLOGI
HAMA BOKTOR (Xyroscera festiva Pascoe) PADA
ARTIFICIAL DIET

Skripsi
Sebagai Salah Satu Syarat
Untuk Memperoleh Gelar Sarjana Kehutanan
Pada Fakultas Kehutanan Institut Pertanian Bogor

OLEH:
RATIHK LISTYORINI
E14202022

DEPARTEMEN SILVIKULTUR
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2007
SUMMARY

RATIH LISTYORINI. The Effects of Provenance and Tree Condition of Sengon (Paraserianthes falcataria (L) Nielsen) in Artificial Diet on Boktor Larvae (Xylocopa festiva Pascoe) Biology. Under supervision of ULFAH JUNIARTI SIREGAR and NOOR FARIAKAH HANEDA.

Recently, Sengon tree (Paraserianthes falcataria (L) Nielsen) cultivation in the form of monoculture has been increasing with the increase of demand and price of sengon timber. Sengon tree has also been used extensively in the rehabilitation effort of degraded forest and land. Sengon cultivation in the form of monoculture, however, has faced serious problem of insect attack, especially stem borer, namely Boktor (Xylocopa festiva Pascoe). The pest problem requires an appropriate control measures, because it can destroy a plantation. An effective and efficient control method has not been developed, however, due to lack of knowledge on insect biology and Its biology. This report describes a study on boktor larvae conducted in Forest Entomology Laboratory, Faculty of Forestry, IPB, starting February to April 2006. The purposes of the study were to investigate the effect of different provenance and tree condition in an artificial diet on the growth and preference of boktor larvae. Results of this study could give information on the biology and behavior of boktor larvae, as well as the possible resistant provenance against the pest.

Artificial diet composition consisted of sucrose, cellulose, agar, yeast extract, ascorbic acid, streptomycin, benzoic acid, added with either powdered wood or bark from sengon tree, cooked in aquadest. The sengon trees were from 3 provenances, i.e. White Kediri CSO, Solomon and Sumedang, having 2 conditions, i.e. healthy or attacked by stem borer. Two types of larvae used, i.e. small and big size. The experiment was conducted as follows: 1) Preparation of artificial diet and insect feeding on the diet, 2) Measurement of parameters, i.e. larvae weight, length, diameter of larva head, and weight of consumed artificial diet, 3) Data analysis using Randomized Factorial Design, with the model formula $Y = \mu + \alpha + \beta + \gamma + \epsilon$, 4) Ranking of the artificial diet according to larva preference. For each set of experiment, repetition was made 3 times.

Overall analysis of variance showed that the weight of consumed diet was the most sensitive parameter, as it gave significant differences among treatments in 3 sets of experiment, i.e. bark powder for small larvae, wood powder for small larvae, and wood powder for big larvae. The most no-sensitive parameter was larvae length, as it was not able to differentiate among treatments. For small larvae, the most sensitive parameter was larva head diameter. In the experiment of incorporating bark powder for small larvae, different provenances did not have effect on all parameters observed, except on larva head diameter, which was highly significant. Also in this experiment interaction between provenance and tree condition had significant effect on the weight of consumed diet. In the experiment of incorporating wood powder for small larvae, different provenances gave significant effect on the weight of consumed diet. For big larvae, the most sensitive parameter was larva weight. In the experiment of incorporating bark powder for big larvae, all treatments did not give significant effect on all parameters. Meanwhile, incorporating wood powder for big larvae, different provenances gave significant effects on the weight of consumed diet and larva weight. Different tree conditions had significant effect on larva weight.

At the sixth week, one larvae was undergone a transitional phase towards cocoon, as it showed formation of legs, wings and different coloring, which was paler than ordinary larvae. Boring pattern of larvae in vitro was similar to that in vivo; starting from edge, then gradually move into inside of the test tube. Gradually healthy tree was better as artificial diet ingredient than attacked tree. Artificial diet containing White Kediri CSO provenance was apparently disliked by boktor larvae, while diet containing Sumedang provenance was preferred by boktor larvae. Therefore, it was suggested to use White Kediri CSO provenance for monoculture cultivation to reduce attack from stem borer.

Key words: sengon, artificial diet, stem borer, boktor
PERNYATAAN

Dengan ini saya menyatakan bahwa skripsi berjudul Pengaruh Provenansi dan Kondisi Pohon Sengon (Paraserianthes falcataria (L) Nielsen) Terhadap Biologi Hama Boktor (Xystrocerca festiva Pascoe) Pada Artificial Diet adalah benar-benar hasil karya saya sendiri dengan bimbingan dosen pembimbing dan belum pernah digunakan sebagai karya ilmiah pada perguruan tinggi atau lembaga lain apun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan apapun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan cantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Bogor, Mei 2007

Ratih Listyorini
NRP E14202022
Judul Skripsi : Pengaruh Provenansi dan Kondisi Pohon Seagon (Paraserianthes falcatoria (L) Nielsen) Terhadap Biologi Hama Boktor (Xystrocera festiva Pascoe) Pada Artificial Diet
Nama : Ratih Listyorini
NIM : E 14202022

Menyetujui,
Komisi Pembimbing

Ketua,

Anggota,

Dr. Ir. Ulfah Junarti Siregar, M.Agr
NIP. 131 289 336

Dr. Ir. Noor Farikhah Haneda, MS
NIP. 131 902 368

Mengetahui,
Dekan Fakultas Kehutanan IPB,

Tanggul Lulus : 21 MAY 2007
KATA PENGANTAR

Hasil penelitian tersebut memberikan informasi mengenai perilaku dan kladus hidup hama boktor, serta informasi provenan pohon sengon yang resisten terhadap hama boktor sehingga diharapkan dapat digunakan sebagai salah satu pertimbangan dalam pengembangan program pengendalian hama pada pemuliaan pohon sengon. Pada akhirnya, hasil penelitian ini mampu memberikan sedikit kontribusi ilmiah dalam menjawab permasalahan riil Kehutanan Indonesia.

Dengan segenap rasa hormat penulis mengucapkan terimakasih kepada semua pihak yang turut membantu dalam penyelesaian skripsi ini, terutama seluarga Besar penulis di Pati dan Padang, Ibu Dr. Ir. Ulfah Juniarti Siregar, M.Agr dan Ibu Dr. Ir. Noor Farikhah Haneda, MS., selaku dosen pembimbing, dan Bapak Dr. Ir. Muh. Yusram Massijaya, MS dan Bapak Dr. Ir. Abdul Haris Mustari, M.Sc., selaku dosen penguji.

Bogor, Mei 2007
Penulis
RIWAYAT HIDUP

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Kehutanan, penulis telah menyelesaikan penelitian dengan judul Pengaruh Provenansi dan Kondisi Pohon Sengon (Paraserianthes falcatoria (L) Nielsen) Terhadap Biologi Hama Boktor (Xylostrocerus festiva Pascoe) Pada Artificial Diet, dibawahi bimbingan Dr. Ir. Ulfah Juniarti Siregar, M.Agr., dan Dr. Ir. Noor Farikhah Haneda, MS.
UCAPAN TERIMA KASIH

Special thanks to “Abang” atas cinta, kasih sayang, harapan, pengorbanan, perjuangan, dan kesabaran nnya (I’ll always loving U). My little angel “Najla”, makacih ya dah nemin mama belajar n “Fata”, I love U so much...

Bagi n Ibu, de Sanusi n Warman yang telah melimpahkan kasih sayang, doa, nasihat, harapan dan dukungannya selama ini.

Keluarga besar di Padang (Bulek Mur, Om Lisik, Mbah dan semua yang baik bisa disebutkan satu persatu) dan Keluarga di Pari, makacih banyak atas doa dan dukungannya.

My bestfriends “Butterfly crews” (Loka, Lisna, Dewi, Jenk, Me, Ifda, Nian), thanx buat doa, kebersamaan, canda tawa, air mata, semangat, dukungan dan bantuanmu. Juga, Pak Gaek Ony, Ngge, Kotim, Nten makacih ya buat semangat n doangnya.

We wish u all future success and fortune. Yehi ada di aks rumah kampung adat, akhriya sarjana juga...

Keluarga Besar Rimpala jembatan hidupku - yang pernah mengisi hari-hari penuh kebersamaan (in memories). Dea, Pacul, Anjar n khusfi - buruan dunks...

Temen2 Bdh 39 (Heri, Eka Cucan, Iyo, Bongkreng, Ikhsan, Ucup dan temen2 yang nggak bisa disebutkan satu persatu), makacih atas kebersamannya. Temen2 Bdh 40, Erna (makacih buat pinjaman bahan kulinya), Mpiet, Bintang, Liong, Aries, Desman dan temen2 yang lain yang nggak bisa disebutkan satu persatu

Temen2 abang di Yayasan Kekal Indonesia (Om Bayu, Pakde Gembong, Om Wilson, Om Votqha, Om Koje, Mbah Awit, Gajah) atas fasilitas rakyatnya - terus berjuang!!

Buat segenap civitas akademika IPB umumnya dan Fakultas ususnya (dosen, pegawai, dan mahasiswa) serta masyarakat lingkar kampus atas pembelajaran, pengalaman dan pergaulannya.

Be all the good you can, At the least you can, In all times you can. For all the creatures you eat. - Ernest
DAFTAR ISI

JUDUL PENELITIAN ... i
RINGKASAN ... ii
PERNYATAAN .. iv
GAMBAR PENGESAHAN .. v
DATA PENGANTAR .. vi
PENYATA HIDUP .. vii
DAFTAR ISI .. ix
DAFTAR TABEL .. xi
DAFTAR GAMBAR ... xii
DAFTAR LAMPIRAN ... xiii

PENDAHULUAN ... 1
 1.1. Latar Belakang ... 1
 1.2. Tujuan Penelitian ... 3
 1.3. Manfaat Penelitian .. 3

TINJAUAN PUSTAKA ... 4
 2.1. Tanaman Sengon .. 4
 2.1.1. Botani Sengon ... 4
 2.1.2. Habitat Sengon ... 5
 2.1.3. Keragaman Penggunaan Sengon 5
 2.2. Hama Boktor ... 6
 2.2.1. Taksonomi ... 6
 2.2.2. Morfologi ... 7
 2.2.3. Biologi ... 7
 2.2.4. Siklus Hidup ... 8
 2.2.5. Daerah Penyebaran .. 8
 2.3. Makanan Buatan .. 8

BAHAN DAN METODE ... 11
 3.1. Tempat dan Waktu ... 11
 3.2. Bahan dan Alat ... 11
3.2.1. Bahan .. 11
3.2.2. Alat .. 12
3.3. Metode Penelitian .. 12
3.3.1. Persiapan dan Pembuatan Artificial Diet 12
3.3.2. Parameter Pengamatan 13
3.4. Rancangan Penelitian 13
3.5. Penentuan Kualitas 15

HASIL DAN PEMBAHASAN

4.1. Pertumbuhan Larva dalam Artificial Diet 17
 4.1.1. Serbuk Kulit untuk Larva Kecil 20
 4.1.2. Serbuk Kayu untuk Larva Kecil 23
 4.1.3. Serbuk Kulit untuk Larva Besar 24
 4.1.4. Serbuk Kayu untuk Larva Besar 25
4.2. Perilaku Larva Boktor 30
4.3. Penentuan Kualitas 31

KESIMPULAN ..

5.1. Kesimpulan ... 35
5.2. Saran .. 35

DAFTAR PUSTAKA ... 36
LAMPIRAN .. 38
<table>
<thead>
<tr>
<th>No</th>
<th>Judul Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Komposisi Artificial Diet</td>
<td>11</td>
</tr>
<tr>
<td>2.</td>
<td>Rekapitulasi Sidik Ragam Pengaruh Provenansi dan Kondisi Pohon Sengon (P. falcata) terhadap Pertumbuhan Larva Boktor (X. festiva) Pada Minggu Terakhir Pengamatan.</td>
<td>18</td>
</tr>
<tr>
<td>3.</td>
<td>Berat Artificial Diet dengan Komposisi Serbuk Kayu yang Dimakan Larva Kecil</td>
<td>23</td>
</tr>
<tr>
<td>4.</td>
<td>Berat Makanan dan Berat Larva Boktor pada Serbuk Kayu untuk Larva Besar</td>
<td>25</td>
</tr>
<tr>
<td>5.</td>
<td>Penentuan Kualitas Provenan Terhadap Parameter Pertumbuhan Larva X. festiva</td>
<td>33</td>
</tr>
<tr>
<td>No</td>
<td>Gambar</td>
<td>Halaman</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>(a) Larva Boktor Kecil, (b) Larva Boktor Besar</td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>Artificial Diet Larva Boktor Di Dalam Tabung Reaksi</td>
<td>13</td>
</tr>
<tr>
<td>3.</td>
<td>Rata-Rata Pertumbuhan Diameter Kepala Larva pada Serbuk Kulit untuk Larva Kecil dengan Kondisi Pohon Sehat dan Sakit</td>
<td>21</td>
</tr>
<tr>
<td>4.</td>
<td>Rata-Rata Pertambahan Berat Makanan Larva pada Serbuk Kulit untuk Larva Kecil dengan Kondisi Pohon Sehat dan Sakit Kegiatan Pengamatan</td>
<td>22</td>
</tr>
<tr>
<td>5.</td>
<td>Rata-Rata Berat Makanan yang Dikonsumsi pada Serbuk Kayu untuk Larva Kecil</td>
<td>24</td>
</tr>
<tr>
<td>6.</td>
<td>Rata-Rata Berat Makanan yang Dikonsumsi Larva pada Berbagai Provenan Serbuk Kayu untuk Larva Besar</td>
<td>26</td>
</tr>
<tr>
<td>7.</td>
<td>Rata-Rata Pertumbuhan Berat Larva pada Serbuk Kayu untuk Larva Besar</td>
<td>27</td>
</tr>
<tr>
<td>8.</td>
<td>Perubahan Stadium Larva Menjadi Stadium Pupa</td>
<td>28</td>
</tr>
<tr>
<td>9.</td>
<td>Pertambahan Rata-Rata Berat Larva pada Serbuk Kayu untuk Larva Besar dengan Kondisi Pohon Sehat dan Sakit</td>
<td>29</td>
</tr>
<tr>
<td>No</td>
<td>Halaman</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Rekapitulasi Data Hasil Pengamatan Larva Kecil</td>
<td>39</td>
</tr>
<tr>
<td>2.</td>
<td>Rekapitulasi Data Hasil Pengamatan Larva Besar</td>
<td>43</td>
</tr>
<tr>
<td>3.</td>
<td>Analisis Deskriptif Berat Makanan Pada Serbuk Kulit untuk Larva Kecil</td>
<td>47</td>
</tr>
<tr>
<td>4.</td>
<td>Analisis Sidik Ragam Berat Makanan Pada Serbuk Kulit untuk Larva Kecil</td>
<td>47</td>
</tr>
<tr>
<td>5.</td>
<td>Analisis Deskriptif Berat Larva Pada Serbuk Kulit untuk Larva Kecil</td>
<td>47</td>
</tr>
<tr>
<td>6.</td>
<td>Analisis Sidik Ragam Berat Larva Pada Serbuk Kulit untuk Larva Kecil</td>
<td>48</td>
</tr>
<tr>
<td>7.</td>
<td>Analisis Deskriptif Panjang Larva Pada Serbuk Kulit untuk Larva Kecil</td>
<td>48</td>
</tr>
<tr>
<td>8.</td>
<td>Analisis Sidik Ragam Panjang Larva Pada Serbuk Kulit untuk Larva Kecil</td>
<td>48</td>
</tr>
<tr>
<td>9.</td>
<td>Analisis Deskriptif Diameter Kepala Larva Pada Serbuk Kulit untuk Larva Kecil</td>
<td>49</td>
</tr>
<tr>
<td>10.</td>
<td>Analisis Sidik Ragam Diameter Kepala Larva Pada Serbuk Kulit untuk Larva Kecil</td>
<td>49</td>
</tr>
<tr>
<td>11.</td>
<td>Analisis Deskriptif Berat Makanan Pada Serbuk Kayu untuk Larva Kecil</td>
<td>49</td>
</tr>
<tr>
<td>12.</td>
<td>Analisis Sidik Ragam Berat Makanan Pada Serbuk Kayu untuk Larva Kecil</td>
<td>50</td>
</tr>
<tr>
<td>13.</td>
<td>Analisis Deskriptif Berat Larva Pada Serbuk Kayu untuk Larva Kecil</td>
<td>50</td>
</tr>
<tr>
<td>15.</td>
<td>Analisis Deskriptif Panjang Larva Pada Serbuk Kayu untuk Larva Kecil</td>
<td>51</td>
</tr>
</tbody>
</table>
Analisis Sidik Ragam Panjang Larva Pada Serbuk Kayu untuk Larva Kecil .. 51

Analisis Deskriptif Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Kecil .. 51

Analisis Sidik Ragam Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Kecil .. 52

Analisis Deskriptif Berat Makanan Pada Serbuk Kulit untuk Larva Besar .. 52

Analisis Sidik Ragam Berat Makanan Pada Serbuk Kulit untuk Larva Besar .. 52

Analisis Deskriptif Berat Larva Pada Serbuk Kulit untuk Larva Besar .. 53

Analisis Sidik Ragam Berat Larva Pada Serbuk Kulit untuk Larva Besar .. 53

Analisis Deskriptif Panjang Larva Pada Serbuk Kulit untuk Larva Besar .. 53

Analisis Sidik Ragam Panjang Larva Pada Serbuk Kulit untuk Larva Besar .. 54

Analisis Deskriptif Diameter Kepala Larva Pada Serbuk Kulit untuk Larva Besar .. 54

Analisis Sidik Ragam Diameter Kepala Larva Pada Serbuk Kulit untuk Larva Besar .. 54

Analisis Deskriptif Berat Makanan Pada Serbuk Kayu untuk Larva Kecil .. 55

Analisis Sidik Ragam Berat Makanan Pada Serbuk Kayu untuk Larva Kecil .. 55

Analisis Deskriptif Berat Larva Pada Serbuk Kayu untuk Larva Kecil .. 55

Analisis Sidik Ragam Berat Larva Pada Serbuk Kayu untuk Larva Kecil .. 56

Analisis Deskriptif Panjang Larva Pada Serbuk Kayu untuk Larva Kecil .. 56
Analisis Sidik Ragam Panjang Larva Pada Serbuk Kayu untuk Larva Kecil... 56

Analisis Deskriptif Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Kecil ... 57

Analisis Sidik Ragam Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Kecil ... 57

Rata-Rata Berat Makanan pada Serbuk Kulit untuk Larva Kecil pada Berbagai Provenan ... 58

Rata-Rata Berat Larva pada Serbuk Kulit untuk Larva Kecil pada Berbagai Provenan ... 58

Rata-Rata Panjang Larva pada Serbuk Kulit untuk Larva Kecil pada Berbagai Provenan ... 59

Rata-Rata Diameter Kepala Larva pada Serbuk Kulit untuk Larva Kecil pada Berbagai Provenan ... 59

Rata-Rata Pertumbuhan Berat Larva Pada Serbuk Kulit untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit... 60

Rata-Rata Pertumbuhan Panjang Larva Pada Serbuk Kulit untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit... 60

Rata-Rata Berat Larva pada Serbuk Kayu untuk Larva Kecil pada Berbagai Provenan ... 61

Rata-Rata Panjang Larva pada Serbuk Kayu untuk Larva Kecil pada Berbagai Provenan ... 61

Rata-Rata Diameter Kepala Larva pada Serbuk Kayu untuk Larva Kecil pada Berbagai Provenan ... 62

Rata-Rata Pertumbuhan Berat Makanan Pada Serbuk Kayu untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit... 62

Rata-Rata Pertumbuhan Berat Larva Pada Serbuk Kayu untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit... 63
Rata-Rata Pertumbuhan Panjang Larva Pada Serbuk Kayu untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit

Rata-Rata Pertumbuhan Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit

Rata-Rata Berat Makanan pada Serbuk Kulit untuk Larva Besar pada Berbagai Provenan

Rata-Rata Berat Larva pada Serbuk Kulit untuk Larva Besar pada Berbagai Provenan

Rata-Rata Panjang Larva pada Serbuk Kulit untuk Larva Besar pada Berbagai Provenan

Rata-Rata Diameter Kepala Larva pada Serbuk Kulit untuk Larva Besar pada Berbagai Provenan

Rata-Rata Pertumbuhan Berat Makanan Pada Serbuk Kulit untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit

Rata-Rata Pertumbuhan Berat Larva Pada Serbuk Kulit untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit

Rata-Rata Pertumbuhan Panjang Larva Pada Serbuk Kulit untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit

Rata-Rata Pertumbuhan Diameter Kepala Larva Pada Serbuk Kulit untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit

Rata-Rata Panjang Larva pada Serbuk Kayu untuk Larva Besar pada Berbagai Provenan

Rata-Rata Diameter Kepala Larva pada Serbuk Kayu untuk Larva Besar pada Berbagai Provenan

Rata-Rata Pertumbuhan Berat Makanan Pada Serbuk Kayu untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit
Rata-Rata Pertumbuhan Panjang Larva Pada Serbuk Kayu untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit ... 70

Rata-Rata Pertumbuhan Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit ... 70
I. PENDAHULUAN

1.1. Latar Belakang

Kondisi pengelolaan sumberdaya hutan Indonesia saat ini berada ditengah kontradiksi, yaitu disatu sisi sumberdaya hutan diharapkan tetap terjamin keberadaannya namun disisi lain sumberdaya hutan Indonesia diharapkan dapat digunakan untuk memenuhi kebutuhan ekonomi. Sementara itu, kondisi hutan Indonesia saat ini telah mengalami penurunan yang cukup signifikan dan mencapai taraf yang sangat mengkhawatirkan. Hal ini disebabkan oleh kebakaran hutan, konversi hutan menjadi lahan pertanian, pertambangan, perladangan, transmigrasi dan penggunaan lain, serta adanya penebangan baik secara legal maupun ilegal.

Dalam rangka kegiatan penyelaman hutan dan penyediaan pasokan kayu dalam jumlah mencukupi, serta rehabilitasi lahan hutan yang terdegradasi, pemerintah menetapkan program pembangunan Hutan Tanaman Industri (HTI), penanaman, penghijauan dan pembangunan hutan kemasyarakatan sebagai bentuk penghijauan pemerintah untuk mengurangi tekanan terhadap hutan alam. Lahan hutan yang terdegradasi, baik oleh pembalakan ilegal dan legal, pertambangan, pemukiman dan konversi lahan hutan lainnya, diharapkan dapat dikelola kembali untuk mendapatkan hasil hutan kayu dan non kayu, jasa ekosistem dan lain sebagainya, serta dapat digunakan untuk memenuhi kebutuhan dan kepentingan masyarakat sekitar hutan.

Pada pelaksanaan kegiatan tersebut, dilakukan penanaman jenis pohon yang cepat tumbuh dengan syarat hidup minimal dan mampu tumbuh di tempat yang miskin hara (marjinal). Salah satu jenis pohon yang diprioritaskan dalam pembangunan HTI adalah jenis pohon *Paraserianthes falcatoria* (L) Nielsen (sengon). Sengon merupakan jenis pohon yang mampu memenuhi syarat dengan cepat dan tujuan diatas. Menurut Santos (1992), sengon dapat tumbuh pada embarang tanah, bahkan pada tanah-tanah yang baru dibuka, serta mampu bertahan hidup di tanah yang tandus sekalipun.

Dengan demikian, sengon sangat tepat untuk hutan kemasyarakatan. Bahkan jenis pohon ini telah lama ditanam rakyat di Jawa baik dalam bentuk
Hutan rakyat sebagai investasi ataupun untuk memenuhi kebutuhan hidup masyarakat. Kayu sengon dimanfaatkan untuk berbagai keperluan seperti, kayu bakar, bahan baku pembuat peti, papan penyekat, pengecoran semen dalam konstruksi, industri korek api, pensil, papan partikel bahkan bahan baku industri pulp kertas. Sementara itu, bagian tanaman yang lain dapat dipakai untuk makanan ternak.

Dewasa ini, penanaman sengon dalam skala HTI semakin gencar dilakukan seiring dengan peningkatan harga kayu sengon yang cukup menggiurkan dan meningkatnya permintaan kayu sengon. Tetapi usaha penanaman pohon sengon dalam bentuk hutan monokultur ternyata menghadapi kendala yang besar yakni adanya serangan hama penggerek batang *Xystrocera testiva* Pascoe (hama boktor). Hal tersebut memerlukan penanganan pengendalian hama yang efektif dan efisien.

Sampai saat ini pengendalian hama boktor yang efektif dan efisien secara masal masih belum ditemukan. Metode yang dilakukan adalah pengendalian secara konvensional yaitu dengan cara menyatukan kulit batang sengon dan membuang larva boktor yang ada di dalamnya. Tindakan ini akan merusak proses fisioligis tanaman sengon sehingga dapat menurunkan kualitas dan harga kayu sengon. Pengendalian dengan bahan kimia tidak populer mengingat dampaknya yang merugikan terhadap lingkungan. Metode lain adalah dengan jalan menyebarakan musuh alami hama boktor. Metode secara biologi ini juga mengalami kendala yakni sulitnya menyebaran musuh alami hama boktor dalam jumlah dan posisi serta waktu yang tepat. Hasil pengendalian yang selama ini dilakukan pada tanaman sengon yang berumur lebih dari 3 (tiga) tahun juga tidak efektif sehingga perlu diupayakan cara lain untuk pengendaliannya, yaitu dengan penanaman pohon sengon yang resisten.

Belum efisiennya pengendalian hama boktor adalah kurangnya pengetahuan tentang serangga boktor, khususnya dari segi fisiologi dan biologi. Untuk itu dilakukan penelitian secara in-vitro yaitu hama boktor dibiasakan dan diamati di dalam laboratorium dengan menggunakan makanan buatan (*artificial diet*). Makanan buatan dibuat dari serbuk kayu sengon dan bahan-bahan lain. Serbuk kayu diambil dari provenan pohon sengon. Bila makanan buatan
yang mengandung serbuk kayu sengon dari provenan tertentu tidak disukai oleh larva boktor, berarti bahwa pohon sengon dari provenan tersebut paling resisten terhadap serangan hama boktor.

1.2. Tujuan Penelitian

Tujuan penelitian ini adalah:

Mengembangkan makanan buatan untuk hama boktor, sehingga dapat diibakkan secara in-vitro (di laboratorium).

Mempelajari pengaruh provenansi dan kondisi pohon sengon terhadap pertumbuhan larva boktor dan preferensi larva boktor melalui penggunaan makanan buatan.

3. Manfaat Penelitian

Hasil penelitian ini diharapkan dapat memberikan informasi mengenai perilaku dan siklus hidup hama boktor secara in-vitro. Selain itu, pengaruh berbagai jenis provenan terhadap pola makan larva boktor sangat berguna bagi pengembangan program pengendalian hama boktor, sehingga informasi dasar ini dapat digunakan dalam program pemuliaan tanaman sengon untuk mendapatkan pohon sengon yang resisten terhadap hama boktor.
II. TINJAUAN PUSTAKA

2.1. Tanaman Sengon (*Paraserianthes falcatoria* (L) Nielsen)

2.1.1. Botani Sengon

Sengon dalam bahasa latin disebut *P. falcatoria* (L) Nielsen Syn dan sebelumnya dikenal dengan nama *Albizia falcatoria* (L) Fosberg dan *A. falcatoria* (L) Backer, termasuk famili Mimosaceae, keluarga petai-petaian. Di Indonesia, sengon memiliki beberapa nama daerah seperti berikut:

- Jawa : jeunjing, jeunjing laut (Sunda), kalbi, sengon landi, sengon laut, atau sengon sabrang (Jawa).
- Maluku : seja (Ambon), sikat (Banda), tawa (Ternate), dan gosui (Tidore).

Pohon sengon dapat mencapai tinggi sekitar 30 - 45 m dengan diameter batang sekitar 70 - 80 cm. Bentuk batang sengon bulat dan tidak berbanir. Kulit batangnya berwarna putih atau kelabu, tidak beralur dan tidak mengelupas. Berat dasis kayu rata-rata 0,33 dan termasuk kelas awet IV - V.

Tajuk tanaman sengon berbentuk menyerupai payung dengan rimbun daun yang tidak terlalu lebat. Daun tersusun majemuk menirip ganda dengan anak daunnya kecil-kecil dan mudah rotonk. Warna daun hijau pupus, berfungsi untuk fotosintesis dan sekalius sebagai penyerap nitrogen dan karbondioksida dari udara bebas.

Tanaman sengon memiliki akar tunggang yang cukup kuat menembus kedalam tanah, akar rambutnya tidak terlalu besar, tidak rimbun dan tidak menonjol kepermukaan tanah. Akar rambut tersebut berfungsi untuk mengikat zat nitrogen dengan bintil akar, oleh karena itu tanah disekitar pohon sengon menjadi subur.

Bunga tanaman sengon tersusun dalam bentuk malai berukuran sekitar 0,5 - 1 cm, berwarna putih kekuning-kuningan dan sedikit berbulu. Setiap kuntum bunga mekar terdiri dari bunga jantan dan bunga betina. Cara penyerbukan bantu oleh angin atau serangga.

Buah sengon berbentuk polong, pipih, tipis, dan panjangnya sekitar 6 - 12 cm. Setiap polong buah berisi 15 - 30 biji. Bentuk biji mirip perisai kecil dan jika
1. Dilarang mengulang atau menyalin karya tulis ini tanpa ijin dari penerbit.
2. Penyampian karya tulis ini bertujuan memajukan ilmu pengetahuan dan pemikiran, penulisan karya tulis ini bertujuan memberikan informasi kepada pelajar dan masyarakat.

...sudah tua biji akan berwarna coklat kehitaman, agak keras dan berliilin (Anonim, 2001).

2.1.2. Habitat Sengon

Tanaman sengon dapat tumbuh baik pada tanah regosol, aluvial dan latosol yang bertekstur lempung berpasir atau lempung berdebu dengan kemasaman tanah sekitar pH 6 - 7.

Sengon termasuk jenis tanaman tropis, sehingga untuk tumbuh memerlukan suhu sekitar 18° - 27°C. Ketinggian tempat yang optimal untuk tanaman sengon antara 0 - 800 m dpl. Walaupun demikian tanaman sengon ini masih dapat tumbuh sampai ketinggian 1.500 m dpl.

Tanaman sengon membutuhkan batas curah hujan minimum yang sesuai, yaitu 15 hari hujan dalam 4 (empat) bulan terkering, namun juga tidak terlalu lebat, dan memiliki curah hujan tahunan yang berkisar antara 2000 - 4000 mm. Curah hujan mempunyai beberapa fungsi untuk tanaman sengon. Antara lain sebagai pelarut zat nutrisi, pembentuk gula dan pati, sarana transport hara dalam tanaman, pertumbuhan sel dan pembentukan enzim, dan menjaga stabilitas suhu.

Kelembaban juga mempengaruhi setiap tanaman sengon. Reaksi setiap tanaman terhadap kelembaban tergantung pada jenis tanaman itu sendiri. Tanaman sengon membutuhkan kelembaban sekitar 50% - 75% (Anonim, 2001).

2.1.3. Keragaman Penggunaan dan Manfaat Kayu Sengon

Pohon sengon merupakan pohon yang serba guna. Mulai dari daun hingga perakarannya dapat dimanfaatkan untuk beragam keperluan, antara lain (Anonim, 2001):

Daun Sengon, sebagaimana famili *Mimosaceae* lainnya merupakan pakan ternak yang sangat baik dan mengandung protein tinggi. Jenis ternak seperti sapi, kerbau dan kambing menyukai daun sengon tersebut.

Sistem perakaran sengon banyak mengandung nodul akar sebagai hasil simbiosis dengan bakteri *Rhizobium*. Hal ini menguntungkan bagi akar dan sekitarnya. Keberadaan nodul akar dapat membantu porositas tanah dan penyediaan unsur nitrogen dalam tanah. Dengan demikian pohon sengon dapat
membuat tanah disekitarnya menjadi lebih subur. Selanjutnya tanah ini dapat ditanami dengan tanaman palawija sehingga mampu meningkatkan pendapatan petani penggarapnya.

Bagian yang memberikan manfaat yang paling besar dari pohon sengon adalah batang kayunya. Dengan harga yang cukup menggiurkan saat ini sengon banyak diusahakan untuk berbagai keperluan dalam bentuk kayu olahan berupa papan papan dengan ukuran tertentu sebagai bahan baku pembuatan peti, papan penyekat, pengecoran semen dalam konstruksi, industri korek api, pensil, papan partikel, bahan baku industri pulp kertas dan lain-lain.

2. Hama Boktor (Xylocrocerus festiva Pascoe)

2.1. Taksonomi

Hama boktor (X. festiva Pascoe) dapat diklasifikasikan sebagai berikut:

- phylum : Animalia
- classe : Insecta
-ordo : Coleoptera
-familia : Cerambycidae
-subsfamilia : Cerambycinae
-genus : Xylocrocerus
-species : X. festiva
-nama lokal : Boktor, Uter-uter (Sunda), Wowolan (Jawa)

2.2. Morfologi

Menurut Matsumoto, 1994 dalam Huaeni, 2001., telur berbentuk lonjong dengan ukuran 2,16 x 1,22 mm, warna putih kekuningan dan berdinding tebal. Setiap telur berkelompok dengan jumlah sekitar 41 - 237 butir. Telur-telurnya mulai menebuk satu sama lain, karena direkat oleh semacam zat perekat tak berwarna yang dihasilkan oleh serangga betina sehingga membentuk kelompok telur.

Larva yang baru menetas berwarna putih kekuningan dengan kepala berwarna coklat kehitaman. Bentuk tubuh larva silindris dengan ukuran bagian bawah semakin dekat toraks semakin membesar dan tubuhnya bersegmen-segmen.
Larva dewasa mendekati pupasi dan dapat mencapai panjang 5,5 cm (Suharti et al., 1994).

Menurut Husaeni (2001), panjang tubuh pupa 3 cm dan besarnya 1 cm, berwarna kuning gading. Warna ini berangsur-angsur berubah menjadi coklat seiring dengan perkembangan pupanya.

Imago berwarna coklat kemerahan, sisi-sisi elytra dan protoraksnya berwarna hijau kebiruan, panjang tubuh 3,3 cm dan lebar 0,7 - 0,9 cm. Ukuran tubuh kumbang jantan agak lebih kecil dibandingkan ukuran tubuh kumbang betina. Panjang antena kumbang jantan adalah 1,5 kali panjang tubuh dengan kaki lebih panjang dan lebih kokoh dibandingkan kumbang betina. Panjang antena kumbang betina kurang lebih sama dengan panjang tubuh (Husaeni, 2001).

2.3. Biologi

2.2.4. Siklus hidup

2.2.5. Daerah Penyebaran dan Pohon Inang

2.3. Makanan Buatan (Artificial Diet)

Menurut Singh (1977), artificial diet untuk serangga dapat dibagi menjadi tiga kelompok besar, yaitu:

Artificial diet yang semua komponennya berasal dari bahan kimia. Artificial diet ini dibuat dengan menggunakan pendekatan kimia, tetapi biaya pembuatannya mahal dan teknik pembuatannya sulit.

Artificial diet yang didalamnya mengandung satu atau lebih bagian tanaman atau hewan, seperti yeast, serbuk hati, dan lain-lain. Keberadaan bahan alami dalam artificial diet ini masih terbatas.

Artificial diet yang terdiri dari komponen-komponen besar (kasar). Di dalam artificial diet ini banyak terdapat bahan-bahan alami sehingga tidak memerlukan bahan kimia dan dapat mengurangi biaya pembuatannya. Karena itulah artificial diet ini adalah yang paling ekonomis.

Ascorbic acid merupakan sumber vitamin C yang sangat dibutuhkan serangga dalam pertumbuhannya. Yeast extract merupakan sumber protein yang sangat dibutuhkan serangga dalam melengkapi kebutuhan nutrisinya (Singh, 1977).

Protein sangat penting bagi pertumbuhan serangga, khususnya dalam reproduksi sel, jaringan tubuh dan pembentukan enzim-enzim oleh serangga. Bahan kimia yang sering digunakan dalam artificial diet adalah yeast extract yang didalamnya terdapat kandungan protein yang cukup banyak. Kehadiran sumber
protein ini memberikan respon yang sangat berarti bagi serangga dalam pertumbuhannya dan juga merangsang metabolisme dalam tubuh serangga (Chapman, 1971 dalam Wibisono, 1999).

Keuntungan yang didapatkan dalam memelihara serangga pada artificial diet adalah didapatkannya gambaran yang jelas akan perilaku dan sifat hidup hama boktor tersebut serta dapat juga digunakan untuk menghasilkan musuh alami hama tersebut untuk tindakan pengendalian hama. Dengan artificial diet ini juga dimungkinkan suatu penyelamatan terhadap jenis serangga yang langka untuk menghindari kepunahan jenis tersebut. Empat prinsip yang harus perhatikan untuk mendapatkan artificial diet yang sempurna adalah:

Faktor fisik, mencakup tekstur, kekerasan, kandungan air dan ukuran artificial diet.

Faktor kimia, meliputi nutrisi dan kandungan bahan organik.

Keseimbangan nutrisi; Nutrisi-nutrisi yang ada dalam artificial diet harus mempunyai peran masing-masing dan mempunyai hubungan antar nutrisi sehingga keseimbangan nutrisi harus tepat.

Kontaminasi mikroba; Keberadaan mikroba dalam bahan makanan akan mempengaruhi kualitas dan umur suatu artificial diet. Mikroba dapat menjadi parasit bagi serangga yang akan dikembangkan dan juga dapat merusak artificial diet. Jadi artificial diet harus bebas dari mikroba tersebut.

Adanya artificial diet memungkinkan dan memudahkan untuk menguji produk-produk serta bahan aktif tanaman yang bersifat anti-metabolik terhadap serangga hama (Allsop, 1994).
III. BAHAN DAN METODE

3.1. Tempat dan Waktu

3.2. Bahan dan Alat
3.2.1. Bahan
Bahan yang digunakan dalam penelitian ini adalah bahan dasar artificial diet untuk larva boktor (Tabel 1).

<table>
<thead>
<tr>
<th>No</th>
<th>Bahan 1</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aquades</td>
<td>50 ml</td>
</tr>
<tr>
<td>2</td>
<td>Sukrosa</td>
<td>5 g</td>
</tr>
<tr>
<td>3</td>
<td>Streptomycin</td>
<td>0,5 g</td>
</tr>
<tr>
<td>4</td>
<td>Benzoat</td>
<td>0,5 g</td>
</tr>
<tr>
<td>5</td>
<td>Serbuk Kayu Sengon</td>
<td>5 g</td>
</tr>
<tr>
<td>6</td>
<td>Serbuk Kayu Sengon</td>
<td>5 g</td>
</tr>
<tr>
<td>7</td>
<td>Yeast extract</td>
<td>0,75 g</td>
</tr>
<tr>
<td>8</td>
<td>Asam askorbik</td>
<td>0,5 g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Bahan 2</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aquades</td>
<td>50 ml</td>
</tr>
<tr>
<td>2</td>
<td>agar</td>
<td>1,75 g</td>
</tr>
</tbody>
</table>

Tanaman yang digunakan adalah serbuk sengon dengan kondisi pohon sehat dan sakit yang terdiri atas serbuk kulit dan serbuk kayu dari 3 (tiga) jenis provenan sengon, yaitu: Solomon, Sumedang dan Kediri CSO Putih. Sedangkan larva boktor yang digunakan untuk penelitian adalah larva boktor ukuran kecil (panjang larva 1,0 – 2,5 cm) dan larva boktor ukuran besar (panjang larva 3,5 – 5,0 cm).
Gambar 1 (a) Larva Boktor Kecil, (b) Larva Boktor Besar

2.2. Alat

Alat yang digunakan dalam penelitian ini adalah erlenmeyer, gelas piala, kain kasa, pengaduk, neraca elektrik, tabung reaksi, kaliper dan kompor listrik.

3. Metode Penelitian

3.1. Persiapan dan Pembuatan Artificial Diet

Dari Tabel 1 dapat dijelaskan yaitu, Bahan 1 dibuat dengan cara memasukkan aquades kedalam erlenmeyer dan sukrosa dilarutkan kedalamnya. Setelah itu, ditambahkan streptomycin dan benzoat kemudian diaduk hingga rata. Kemudian larutan tersebut dicampur dengan serbuk kayu sengon yang telah di freeze dry dan diaduk kembali hingga rata. Bahan 2 dibuat dengan cara memasukkan agar dan aquades kedalam gelas piala, kemudian dipanaskan hingga mendidih (± 5 menit) sambil diaduk. Setelah itu, Bahan 2 dicampurkan dengan Bahan 1 di dalam erlenmeyer dan diaduk hingga rata. Selanjutnya ransum tersebut memasukkan ke dalam tabung reaksi yang telah disiapkan dan dibiarankan hingga suhunya sama dengan suhu kamar.

Percobaan dilakukan dengan memasukkan satu larva boktor kedalam satu tabung reaksi yang berisi artificial diet, kemudian ditutup dengan kain kasa. Tabung-tabung reaksi ini disimpan di rak dengan suhu kamar dan memperoleh larva yang cukup.
Gambar 2 *Artificial Diet* Larva Boktor Di Dalam Tabung Reaksi
a) Serbuk Kulit, (b) Serbuk Kayu

3.2. Parameter Pengamatan

Pengamatan yang dilakukan adalah dengan mengukur berat larva, panjang larva, diameter kepala larva, serta berat *artificial diet* yang dikonsumsi oleh larva boktor. Sebagai data awal penelitian, parameter-parameter tersebut diukur sebelum larva boktor diberi perlakuan. Pengukuran dilakukan 2 (dua) minggu kali selama 8 (delapan) minggu.

3.4. Rancangan Penelitian

Percobaan dibagi menjadi 2 (dua), yaitu untuk larva kecil dan larva besar. Hal tersebut dilakukan karena berdasarkan penelitian sebelumnya, perilaku memakan pada larva kecil dan larva besar berbeda. Larva ukuran kecil lebih banyak dalam memakan *artificial diet* dibandingkan larva ukuran besar dan kebutuhan nutrisi yang berbeda pada setiap ukuran larva (Marta, 2005).

Selanjutnya untuk setiap ukuran larva kecil dan larva besar, *artificial diet* bedakan menjadi dua, yaitu untuk serbuk kulit sengon dan serbuk kayu sengon. Dengan demikian terdapat 4 set percobaan, yaitu serbuk kulit untuk larva kecil, serbuk kayu untuk larva kecil, serbuk kulit untuk larva besar dan serbuk kayu untuk larva besar.

Rancangan percobaan yang digunakan dalam penelitian ini adalah rancangan Acak Faktorial (RAF) dengan pola percobaan faktorial yang terdiri dari 2 (dua) faktor.
Faktor pertama adalah 3 (tiga) jenis provenan sengon yang direkomendasikan, yaitu:

A1 = Sengon Solomon
A2 = Sengon Sumedang
A3 = Sengon Kediri CSO Putih
dimana untuk masing-masing provenan diambil kulit dan kayunya.

Sebagai faktor kedua adalah asal serbuk sengon dengan kondisi pohon yang berbeda pada setiap jenis provenan, yaitu:

1 = Kondisi Sehat
2 = Kondisi Sakit (terinfeksi berat)

Dari kedua faktor diatas, dilakukan ulangan sebanyak 3 (tiga) kali. Dengan demikian, banyaknya unit satuan percobaan adalah; 3 (tiga) jenis provenan x 2 (dua) kondisi pohon x 2 (dua) macam ukuran larva x 2 (dua) macam bahan serbuk = 3 (tiga) ulangan. Total pengamatan adalah sebanyak 72 unit percobaan.

Pengolahan data diberikan atas 4 (empat) kelompok, yaitu:

1) Serbuk Kulit untuk Larva Kecil,
2) Serbuk Kayu untuk Larva Kecil,
3) Serbuk Kulit untuk Larva Besar,
4) Serbuk Kayu untuk Larva Besar.

Untuk menguji pengaruh perlakuan terhadap parameter pengamatan, digunakan Analisa Sidik Ragam dengan model rancangan:

\[Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk} \]

dimana:

\(\alpha \), \(\beta \), \(\epsilon \) = Parameter yang diukur
= Rataan umum
= Pengaruh tetap dari jenis provenan, \(i = 1,2,3 \)
= Pengaruh tetap dari kondisi kayu sengon, \(j = 1,2 \)
= Pengaruh jenis provenan pengamatan ke-i dan kondisi kayu sengon ke-j
= Pengaruh galat perlakuan setiap satuan percobaan pada ulangan ke-k

Data hasil percobaan penelitian di analisa dengan menggunakan SPSS 2.0 for windows. Untuk mengetahui pengaruh interaksi antara berbagai
komposisi perlakuan yang diberikan maka dilakukan Analisis Sidik Ragam dengan Uji F terhadap variabel yang diamati dengan hipotesa sebagai berikut:

- **H₀**: Perlakuan tidak berpengaruh nyata terhadap pertumbuhan larva
- **H₁**: Perlakuan berpengaruh nyata terhadap pertumbuhan larva

sedangkan kriteria pengambilan keputusan dari hipotesa yang di uji adalah:

- **Fₜₘᵤₙₜ < Fₜₑₜₑᵦ** ; terima H₀
- **Fₜₘᵤₜ > Fₜₑₜₑᵦ** ; terima H₁

Jika Analisis Sidik Ragam (Uji F) menunjukkan perbedaan nyata (P<0.05), maka dilanjutkan dengan Uji Duncan untuk mengetahui beda rata-rata tiap perlakuan.

5. Penentuan Kualitas (Skoring)

Penentuan kualitas komposisi artificial diet tersebut dimaksudkan untuk mengetahui jenis provenan yang disukai dan tidak disukai oleh larva boktor, mengingat diperoleh metode pengendalian serangan hama boktor, yaitu pengendalian secara silvikultur dengan penanaman tanaman sengon dari jenis provenan yang tidak disukai larva boktor.

Menurut Puspito (2002), nilai skor berkisar antara 1 - 10. Dalam penelitian ini, skoring menggunakan pola modifikasi sebagai berikut:

\[Xₛ = \frac{Xₜ - Xᵣ}{10} \]

dimana:

- \(Xᵣ\) = Nilai rata-rata tertinggi suatu perlakuan
- \(Xₜ\) = Nilai rata-rata terendah suatu perlakuan
- \(Xₛ\) = Nilai yang digunakan untuk menentukan skor

Penentuan nilai kualitas (skor), sebagai berikut:

Skor 1 \(Xᵣ\) → \(Xᵣ + Xₛ\) = A
Skor 2 A → A + Xₛ = B
Skor 3 B → B + Xₛ = C
Skor 4 C → C + Xₛ = D
Skor 5 D → D + Xₛ = E
Skor 6 E → E + Xₛ = F
Skor 7 F → F + Xₛ = G
Skor 8 G → G + Xₜ H
Skor 9 H → H + Xₜ I
Skor 10 I → I + Xₜ Xₜ

Semakin tinggi nilai skoring suatu komposisi artificial diet menunjukkan bahwa komposisi artificial diet tersebut paling tidak disukai oleh larva boktor, hal ini berarti bahwa tanaman sengon dari jenis provenan tersebut memiliki kecenderungan resisten terhadap serangan hama boktor. Sebaliknya, semakin rendah nilai skoring suatu komposisi artificial diet menunjukkan bahwa komposisi artificial diet tersebut paling disukai oleh larva boktor yang berarti juga bahwa tanaman sengon dari jenis provenan tersebut memiliki kecenderungan lebih rentan terhadap serangan hama boktor.
IV. HASIL DAN PEMBAHASAN

4.1. Pertumbuhan Larva dalam Artificial Diet

Berdasarkan hasil pengamatan selama 8 (delapan) minggu dengan periode pengamatan setiap 2 (dua) minggu sekali dapat diperoleh hasil bahwa tanaman sengon dari berbagai provenan dengan kondisi pohon sehat dan sakit serta jenis serbuk kulit dan kayu pada artificial diet ternyata memberi pengaruh yang berbeda-beda terhadap pertumbuhan larva boktor.

<table>
<thead>
<tr>
<th>Faktor Keragaman</th>
<th>Parameter Pengamatan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Berat Makanan</td>
</tr>
<tr>
<td>Serbuk kulit untuk larva kecil</td>
<td></td>
</tr>
<tr>
<td>Provenan</td>
<td>t</td>
</tr>
<tr>
<td>Kondisi</td>
<td></td>
</tr>
<tr>
<td>Provenan*Kondisi</td>
<td></td>
</tr>
<tr>
<td>Serbuk kayu untuk larva kecil</td>
<td></td>
</tr>
<tr>
<td>Provenan</td>
<td>t</td>
</tr>
<tr>
<td>Kondisi</td>
<td></td>
</tr>
<tr>
<td>Provenan*Kondisi</td>
<td>t</td>
</tr>
<tr>
<td>Serbuk kulit untuk larva besar</td>
<td></td>
</tr>
<tr>
<td>Provenan</td>
<td>t</td>
</tr>
<tr>
<td>Kondisi</td>
<td></td>
</tr>
<tr>
<td>Provenan*Kondisi</td>
<td>t</td>
</tr>
<tr>
<td>Serbuk kayu untuk larva besar</td>
<td></td>
</tr>
<tr>
<td>Provenan</td>
<td>t</td>
</tr>
<tr>
<td>Kondisi</td>
<td></td>
</tr>
<tr>
<td>Provenan*Kondisi</td>
<td>t</td>
</tr>
</tbody>
</table>

Pemeriksaan:
- $= $ = Berpengaruh nyata pada selang kepercayaan 95%
- **= $ = Berpengaruh nyata pada selang kepercayaan 99%
- _Tidak berpengaruh nyata pada selang kepercayaan 95%

Hasil rekapitulasi sidik ragam dari 4 (empat) parameter pengamatan pada Tabel 2 menunjukkan bahwa berat makanan yang dimakan larva merupakan parameter pengamatan yang paling sensitif. Dari 4 (empat) set rancangan percobaan, terdapat 3 (tiga) set rancangan percobaan yang menunjukkan bahwa parameter berat makanan memberi pengaruh nyata pada selang kepercayaan 95% tertinggi, serbuk kulit untuk larva kecil, serbuk kayu untuk larva kecil, dan serbuk kayu untuk larva besar.

Berdasarkan hal tersebut, dapat diasumsikan bahwa berat makanan merupakan parameter pengamatan termasuk yang dapat digunakan untuk mengetahui efek perbedaan provenan. Pada artificial diet tersebut terdapat komponen-komponen yang dibutuhkan oleh larva untuk kelangsungan hidup larva. Artificial diet tersebut mengandung nutrisi yang dibutuhkan larva boktor yang memerlukan unsur alam dan unsur kimia dengan komposisi dan dosis...
yang tepat. Kondisi ini mampu menggantikan inang dalam memberikan nutrisi agar larva boikot tetap hidup. Artificial diet dengan karakteristik yang serupa dan faktor lingkungan yang seragam dapat menghasilkan adaptasi yang serupa (Slansky dan Rodriguez, 1987).

Kondisi tersebut juga diduga karena adanya perbedaan kebutuhan nutrisi pada larva ukuran kecil dengan larva ukuran besar. Larva ukuran kecil lebih banyak membutuhkan nutrisi untuk pertumbuhannya sehingga jumlah artificial diet yang dimakan lebih banyak. Sedangkan larva ukuran besar dikategorikan larva yang telah mendekati tahap akhir larva. Pada tahap ini, artificial diet butuhkan hanya untuk mempertahankan hidup larva tetapi tidak lagi untuk pertumbuhan larva sehingga kebutuhan nutrisi larva lebih sedikit.

Berdasarkan Tabel 2 juga diketahui bahwa parameter panjang larva merupakan parameter pengamatan yang tidak sensitif, dimana tidak memberi pengaruh nyata pada keseluruhan rancangan percobaan. Pada percobaan dengan terbuk kulit untuk larva besar, tidak memberi pengaruh nyata pada semua parameter pengamatan. Hal ini diduga karena pada larva ukuran besar siklus dupunya lebih dominan berkembang didalam batang, yaitu pada bagian kayu. Sehingga pemberian artificial diet dengan komposisi serbuk kulit memberi pengaruh tidak nyata terhadap pertumbuhan larva ukuran besar.

Pada larva ukuran kecil, parameter pengamatan yang paling sensitif terhadap 4 (empat) set rancangan percobaan yang dilakukan adalah parameter pengamatan pertumbuhan diameter kepala larva. Kemungkinan perkembangan ukuran kepala sangat stabil pada larva besar. Kondisi ini juga disebabkan oleh kecenderungan pertambahan diameter kepala larva berbeda pada 2 (dua) ukuran larva yang berbeda. Pertambahan diameter kepala larva ukuran kecil lebih jelas bandingkan dengan larva ukuran besar yang kemungkinan telah mencapai ukuran maksimum (Marta, 2005).

Untuk larva ukuran besar, parameter pengamatan yang paling sensitif pada (empat) set rancangan percobaan adalah parameter berat larva. Hal ini diduga karena pada larva ukuran besar memiliki perilaku memakan artificial diet yang lebih sedikit. Selain itu, pada larva ukuran besar juga mengalami proses ganti kulit sehingga larva tidak makan selama beberapa waktu dan proses pergantian dari

Dari Tabel 2 juga dapat dilihat bahwa untuk serbuk kulit sebagai makanan larva kecil, jenis provenan tidak memberi pengaruh nyata pada semua parameter pengamatan kecuali pada parameter diameter kepala larva, dimana memberi pengaruh sangat nyata pada selang kepercayaan 99%. Interaksi antara provenan dan kondisi pohon memberi pengaruh nyata pada selang kepercayaan 95% pada parameter berat makanan. Sedangkan untuk serbuk kayu sebagai makanan larva kecil, jenis provenan memberi pengaruh nyata pada selang kepercayaan 95% pada parameter berat makanan. Dalam percobaan ini, interaksi antara provenan dan kondisi pohon tidak memberi pengaruh nyata pada semua parameter pengamatan.

Pada serbuk kulit untuk larva besar, jenis provenan dan kondisi pohon mengenai tidak memberi pengaruh nyata pada semua parameter pengamatan. Sedangkan pada serbuk kayu untuk larva besar, jenis provenan memberi pengaruh nyata pada selang kepercayaan 95% pada parameter berat makanan dan berat larva. Sedangkan kondisi pohon memberi pengaruh nyata pada selang kepercayaan 95% pada parameter berat larva.

4.1.1. Serbuk Kulit untuk Larva Kecil

Untuk larva ukuran kecil pada artificial diet dengan komposisi serbuk kulit, jenis provenan tidak memberi pengaruh nyata pada semua parameter pengamatan, sedangkan kondisi memberi pengaruh sangat nyata pada selang kepercayaan 99% pada parameter diameter kepala larva. Interaksi antara provenan dan kondisi pohon memberi pengaruh nyata pada selang kepercayaan 95% untuk parameter pengamatan berat makanan. Hal tersebut dapat dilihat pada Gambar 3.
Gambar 3 Rata-Rata Pertumbuhan Diameter Kepala Larva pada Serbuk Kulit untuk Larva Kecil dengan Kondisi Pohon Sehat dan Sakit

Dari Gambar 3 dapat dilihat bahwa rata-rata pertumbuhan diameter kepala larva ukuran kecil pada serbuk kulit sangat dipengaruhi oleh kondisi pohon sengon. Kondisi pohon sengon sehat memberi pengaruh yang lebih baik dibandingkan kondisi pohon sengon sakit terhadap pertumbuhan diameter kepala, yaitu rata-rata pertumbuhan diameter kepala pada sengon sehat sebesar 0,022 cm dan pada pohon sengon sakit sebesar -0,001 cm. Hal ini dapat diduga bahwa artificial diet dengan kondisi provenan pohon sengon sakit tidak memenuhi kebutuhan nutrisi yang dibutuhkan larva boktor dalam pertumbuhan diameter kepala larva. Selain itu, kondisi pohon sakit juga mempengaruhi kandungan nutrisinya untuk hama. Stress pada pohon biasanya disebabkan oleh adanya faktor biotik (hama, penyakit, dan persaingan antar pohon) dan faktor biotik (suhu, kelembaban, dan kebakaran) (Barbosa dan Wagner, 1989).

Gambar 4 Rata-Rata Berat Makanan yang Dimakan Larva pada SerbuK Kulit untuk Larva Kecil dengan Kondisi Pohon Sehat dan Sakit Kegiatan Pengamatan

4.1.2. Serbuk Kayu untuk Larva Kecil

Hasil analisis sidik ragam menunjukkan bahwa pada larva ukuran kecil pada artificial diet dengan komposisi serbuk kayu sengon, jenis provenan memberi pengaruh nyata pada selang kepercayaan 95% di parameter berat makanan. Hasil uji Duncan parameter berat makanan disajikan pada Tabel 3. Sedangkan interaksi antara provenan dan kondisi pohon tidak memberi pengaruh nyata pada semua parameter pengamatan.

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Berat Makanan (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holomen</td>
<td>6,783 b</td>
</tr>
<tr>
<td>Medang</td>
<td>10,367 a</td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>6,633 b</td>
</tr>
</tbody>
</table>

Catatan: Angka yang diikuti huruf yang sama pada kolom yang sama, tidak berbeda nyata pada taraf signifikan 0,05 dengan uji Duncan.

Berdasarkan hasil uji lanjut Duncan, menunjukkan bahwa artificial diet dengan komposisi serbuk kayu sengon dari provenan Sumedang memberi pengaruh paling besar pada berat makanan buatan (artificial diet) yang dimakan oleh larva boktor (10,367 gram). Sedangkan artificial diet dengan komposisi serbuk kayu sengon dari provenan Kediri CSO Putih memberi pengaruh paling sedikit dimakan oleh larva boktor (6,633 gram).

Gambar 5 Rata-Rata Berat Makanan yang Dikonsumsi pada Serbuk Kayu untuk Larva Kecil

Dari Gambar 5, secara umum pada pengamatan pertama larva boktor pengkonsumsi artificial diet lebih banyak dan terus menurun pada pengamatan kedua. Selanjutnya pada pengamatan ketiga pola konsumsi cenderung lebih stabil dan teratur. Tetapi pada kondisi tertentu mengalami kenaikan yang tidak terlalu besar. Artificial diet yang paling banyak dikonsumsi oleh larva boktor secara berurutan untuk setiap waktu pengamatan adalah pada pengamatan pertama yaitu provenan sengon Sumedang (4,417 gram), Kediri CSO Putih (2,217 gram) dan Solomon (2,033 gram). Selanjutnya, pada pengamatan kedua yaitu Sumedang (2,217 gram), Solomon (1,533 gram) dan Kediri CSO Putih (1,383 gram). Pada pengamatan ketiga yaitu Sumedang (2,460 gram), Kediri CSO Putih (1,980 gram) dan Solomon (1,617 gram). Sedangkan pada pengamatan keempat adalah Kediri CSO Putih (2,075 gram), Sumedang (2,020 gram) dan Solomon (1,600 gram).

1.3. Serbuk Kulit untuk Larva Besar

Larva ukuran besar pada artificial diet dengan komposisi serbuk sengon agian kulit, jenis provenan dan kondisi pohon sengon tidak memberi pengaruh yata pada semua parameter pengamatan. Kondisi ini diduga disebabkan oleh karena sebagian besar hidup larva ukuran besar berada di dalam batang yaitu pada bagian kayu sengon. Hal ini sejalan dengan Notoatmodjo (1963), larva yang sudah
dewasa membuat lubang gerek kedalam bagian kayu yang lebih dalam dengan mengarah keatas. Berdasarkan hal tersebut, dapat diduga bahwa pemberian serbuk kulit tidak memberi pengaruh nyata pada larva ukuran besar.

1.4. Serbuk Kayu untuk Larva Besar

Berdasarkan hasil analisis sidik ragam, dapat diketahui bahwa untuk larva ukuran besar pada artificial diet dengan serbuk kayu jenis provenan memberi pengaruh nyata pada selang kepercayaan 95% pada parameter berat makanan dan parameter berat larva. Hasil uji Duncan parameter berat makanan untuk larva ukuran besar pada artificial diet dengan serbuk kayu disajikan pada Tabel 4.

Tabel 4 Berat Makanan dan Berat Larva Boktor Pada Percobaan Serbuk Kayu untuk Larva Besar

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Berat Makanan (gram)</th>
<th>Berat Larva (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solumon</td>
<td>6.683 b</td>
<td>-0.742 b</td>
</tr>
<tr>
<td>Sumedang</td>
<td>10.400 a</td>
<td>0.088 a</td>
</tr>
<tr>
<td>CSD Putih</td>
<td>6.830 ab</td>
<td>-0.367 ab</td>
</tr>
</tbody>
</table>

Catatan: Angka yang diikuti huruf yang sama pada kolom yang sama, tidak berbeda nyata pada taraf pengujian 0.05 dengan uji duncan.

Hasil uji Duncan pada Tabel 4 menunjukkan bahwa untuk parameter berat makanan, artificial diet dengan serbuk dari provenan sengon Sumedang paling banyak dimakan oleh larva boktor (10,400 gram) dan provenan sengon Solumon paling sedikit dimakan oleh larva boktor (6,683 gram). Untuk parameter berat
larva boktor, hasil uji lanjut Duncan menunjukkan bahwa artificial diet dengan serbuk sengon dari provenan Sumedang memberi pengaruh paling besar terhadap penambahan berat larva boktor sebesar 0,088 gram. Sedangkan artificial diet dengan serbuk kayu sengon dari provenan Solomon memberi pengaruh paling kecil terhadap berat larva boktor, yaitu berat larva mengalami penurunan paling banyak sebesar -0,742 gram.

Gambar 6 Rata-Rata Berat Makanan yang Dikonsumsi Larva pada Berbagai Provenan Serbuk Kayu untuk Larva Besar
Dari Gambar 6, rata-rata berat makanan pada serbuk kayu untuk larva besar menunjukkan bahwa jenis *artificial diet* dengan komposisi serbuk kayu sengon provenan Sumedang memiliki rata-rata berat makanan yang paling besar. Sedangkan *artificial diet* dengan komposisi serbuk kayu sengon provenan Solomon memiliki rata-rata berat makanan paling rendah. Hal ini menunjukkan bahwa preferensi untuk setiap larva boktor berbeda-beda.

Secara berurutan dapat dijelaskan rata-rata berat makanan yang konsumsi oleh larva besar pada berbagai provenan serbuk kayu, yaitu pengamatan pertama adalah provenan Sumedang (4,333 gram), Solomon (1,933 gram) dan Kediri CSO Putih (1,650 gram). Pengamatan kedua adalah provenan Sumedang (2,350 gram), Kediri CSO Putih (1,233 gram) dan Solomon (0,800 gram). Pengamatan ketiga yaitu provenan Sumedang (2,600 gram), Solomon (0,533 gram) dan Kediri CSO Putih (1,513 gram). Sedangkan pada pengamatan empat adalah Kediri CSO Putih (2,433 gram), Solomon (2,413 gram) dan Sumedang (1,860 gram).

Pengaruh provenan terhadap pertumbuhan rata-rata berat larva disajikan pada Gambar 7. Dapat dilihat bahwa walaupun nilainya berbeda, tetapi pola pertumbuhan larva besar pada ketiga provenan adalah sama.

![Gambar 7 Rata-Rata Pertumbuhan Berat Larva pada Serbuk Kayu untuk Larva Besar](image-url)
Rata-rata berat larva pada serbuk kayu untuk larva besar menunjukkan bahwa *artificial diet* dengan komposisi serbuk kayu sengon dari provenan Sumedang memberi pengaruh paling besar terhadap berat larva besar. Sedangkan *artificial diet* dengan komposisi serbuk kayu sengon dari provenan Solomon memberi pengaruh paling rendah terhadap rata-rata pertumbuhan berat larva boktor.

Dari Gambar 7 dapat juga diketahui rata-rata pertumbuhan berat larva pada setiap waktu pengamatan. Secara berurutan rata-rata pertumbuhan berat larva pada serbuk kayu untuk larva besar adalah sebagai berikut; Pengamatan pertama adalah provenan Sumedang (-0,142 gram), Kediri CSO Putih (-0,233 gram) dan Solomon (-0,483 gram). Pengamatan kedua adalah provenan Sumedang (-0,350 gram), Kediri CSO Putih (1,233 gram) dan Solomon (0,800 gram). Pengamatan ketiga yaitu provenan Sumedang (0,072 gram), Kediri CSO Putih (0,050 gram) dan Solomon (-0,145 gram). Sedangkan pengamatan keempat adalah provenan Sumedang (0,072 gram), Kediri CSO Putih (0,050 gram) dan Solomon (0,000 gram).

Pada penelitian ini terdapat larva yang mengalami masa transisi dari stadium larva menjadi stadium pupa dengan ciri-ciri mulai terbentuk kaki, bakal sayap dan warna lebih putih dibanding larva. Masa transisi ini terjadi pada minggu keenam (pengamatan ketiga). Proses transisi tersebut dapat dilihat pada Gambar 8. Bentuk pupa mirip serangga dewasa tetapi masih lunak, warnanya putih kecoklatan dengan ukuran 30 x 10 mm dan dilindungi oleh CaCO₃ sebagai dinding (Suratmo, 1974).

Gambar 8 Perubahan Stadium Larva Menjadi Stadium Pupa; (A) Larva Boktor Besar, (B) Pupa

Pada kondisi pohon sengon, serbuk kayu untuk larva besar ini memberi pengaruh nyata dengan selang kepercayaan 95% pada parameter berat larva. Perbandingan kondisi tersebut dapat dilihat pada Gambar 9.

Gambar 9: Pertambahan Rata-Rata Berat Larva Pada Serbuk Kayu untuk Larva Besar dengan Kondisi Pohon Sehat dan Sakit

Gambar 9 menunjukkan bahwa pertambahan rata-rata berat larva besar pada serbuk kayu sengon dengan kondisi pohon sehat memberi pengaruh yang lebih baik dibandingkan kondisi pohon sakit. Serbuk kayu sengon dengan kondisi sehat memberi pengaruh lebih besar terhadap rata-rata pertambahan berat larva (+0,100 gram), sedangkan serbuk sengon dengan kondisi sakit memberi pengaruh lebih kecil terhadap berat larva (-0,016 gram). Menurut Speight dan Wylie (2000), hama yang lebih menyukai pohon-pohon yang sehat (tumbuh subur) dari pohon-pohon yang mengalami stress. Hal ini juga diduga bahwa artificial diet dengan kondisi provenan pohon sengon sakit tidak memenuhi kebutuhan nutrisi dan dibutuhkan larva boktor dalam pertumbuhan diameter kepala larva, sedangkan kondisi stress pohon dapat mempengaruhi kandungan nutrisinya untuk hama. Sementara itu, pohon yang mengalami stress akibat hama dan penyakit
biasanya juga akan bertahan (defensif) terhadap serangan hama. Pada pohon-pohon yang mengalami stress tersebut diduga bertahan dengan jalan memproduksi bahan kimia tertentu yang tidak disukai larva.

4.2. Perilaku Larva Boktor dalam Artificial Diet

Pertumbuhan larva boktor berdasarkan parameter yang diamati pada kegiatan penelitian ini menunjukkan bahwa pada umumnya larva boktor mengalami pertumbuhan karena terdapat kondisi yang menguntungkan bagi larva tersebut, yaitu tersedianya jumlah makanan (artificial diet) yang cukup. Tetapi pada kondisi tertentu, larva juga mengalami kematian. Hal ini dapat diduga karena kebutuhan nutrisi yang kurang cocok, kelembaban, suhu sekeliling dan sinar utahari di dalam liang gerek yang sangat berbeda dengan kondisi di laboratorium atau ruang kamar biasa dengan ruang gerak larva yang terbatas. Larva pada ukuran besar merupakan dalam masa transisi antara stadium larva dan pupa dimana larva membutuhkan tempat yang berukuran lebih besar dan nantinya berfungsi sebagai ruang pupa (Hardi, 1998).

Perilaku larva boktor pada artificial diet ini juga tidak jauh berbeda pada perilaku larva yang menyerang tanaman sengon di lapangan. Menurut Gotoadmodjo (1963), larva yang sudah dewasa membuat lubang gerek kedalam
bagian kayu yang lebih dalam yang mengaruh keatas. Potongan melintang dari lubang ini berbentuk lonjong. Panjang lubang berkisar antara 6 – 18 cm dan garis tengahnya berukuran 15 – 20 x 7 mm, dan pada lubang gerek terdapat dua buah ruangan yang berisi kotoran dan sisa makanan.

4.3. Penentuan Kualitas (Skoring) Provenan Yang Resisten Terhadap Larva Boktor

Berdasarkan hasil penelitian ini dapat diperoleh bahwa berat makanan bagai parameter pengamatan yang paling sensitif dapat digunakan untuk mengetahui efek perbedaan pengaruh provenan terhadap perilaku biologi hama boktor. Berat artificial diet dapat digunakan sebagai parameter untuk menentukan jenis provenan yang paling tidak disukai atau diduga memiliki kemungkinan resisten terhadap serangan hama boktor. Pengendalian secara silvikultur yang dilakukan menurut Husaeni (2001), diantaranya adalah dengan penanaman bibit resisten, pengaturan jarak tanam, pembuatan tanaman campuran, dan penjarangan. Hasil analisis data yang telah dilakukan pada beberapa parameter pengukuran larva boktor selama waktu pengamatan, dilakukan penentuan kualitas terhadap komposisi artificial diet. Hasil analisis data penentuan kualitas tersebut disajikan pada Tabel 5.

Tabel 5 menunjukkan bahwa serbuk kulit dan serbuk kayu untuk larva kecil, artificial diet dengan komposisi serbuk sengon dari provenan Kediri CSO Putih memberikan pengaruh paling rendah dan memiliki peringkat pertama. Hal ini berarti juga bahwa jenis provenan dari Kediri CSO Putih memiliki kecenderungan resisten terhadap serangan hama boktor. Sedangkan artificial diet dengan komposisi serbuk sengon provenan Sumedang memberikan pengaruh paling besar dan memiliki peringkat ketiga. Hal ini berarti jenis provenan Sumedang memiliki kecenderungan rentan terhadap serangan hama boktor. Dalam hal ini, sebaiknya, artificial diet dengan komposisi serbuk kulit sengon dari provenan Kediri CSO Putih memperoleh skor paling rendah jumlahnya dan mendapat peringkat pertama. Hal ini berarti provenan Kediri CSO Putih memberikan pengaruh paling rendah terhadap pertumbuhan larva boktor yang berarti juga bahwa dari ketiga jenis provenan

Hasil penentuan kualitas (skoring) terhadap *artificial diet* dengan komposisi serbuk sengon dari berbagai provenan pada serbuk kulit dan serbuk kayu untuk larva kecil serta pada serbuk kulit dan serbuk kayu untuk larva besar, dapat disimpulkan bahwa *artificial diet* dengan komposisi serbuk sengon dari provenan Kediri CSO Putih memiliki peringkat pertama yang dapat diduga bahwa jenis provenan Kediri CSO Putih memiliki kecenderungan resisten terhadap serangan hama boktor. Sedangkan *artificial diet* dengan komposisi serbuk sengon dari provenan Sumedang memiliki peringkat terendah dan hal ini berarti bahwa jenis provenan ini dapat diduga memiliki kecenderungan rentan terhadap serangan hama boktor.

1. Diagram menunjukkan bagian dari alat-alat yang digunakan dalam penelitian.

2. Diagram menggambarkan bagian dari alat-alat yang digunakan dalam penelitian.

Tabel 5 Penentuan Kualitas Provenan Terhadap Parameter Pertumbuhan Larva X. festiva

<table>
<thead>
<tr>
<th>Provenan</th>
<th>BM</th>
<th>BL</th>
<th>PL</th>
<th>DK</th>
<th>% Hidup</th>
<th>Jml</th>
<th>Peringkat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serbuk Kulit untuk Larva Kecil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Solomen</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>Sunedang</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>41</td>
<td>3</td>
</tr>
<tr>
<td>Serbuk Kayu untuk Larva Kecil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Solomen</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>Sunedang</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>34</td>
<td>3</td>
</tr>
<tr>
<td>Serbuk Kulit untuk Larva Besar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Solomen</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>Sunedang</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>9</td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>Serbuk Kayu untuk Larva Besar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>10</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Solomen</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Sunedang</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>38</td>
<td>2</td>
</tr>
</tbody>
</table>
Selain hal-hal tersebut diatas, kandungan tripsin inhibitor pada serbuk kayu sengon juga mempengaruhi tingkat kesukaan larva terhadap serbuk kayu sengon. Zat inhibitor ini merupakan daya tahan alami suatu tanaman untuk melawan serangan hama (Winarni, 2003). Kandungan tripsin inhibitor yang tinggi pada serbuk kayu sengon, hal ini dapat diasumsikan bahwa larva tidak suka makan kayu tersebut. Sedangkan kandungan tripsin inhibitor yang rendah berarti larva boktor akan lebih suka makan serbuk kayu sengon tersebut. Hal ini dapat dijelaskan bahwa pada artificial diet dengan komposisi serbuk kayu sengon dari Balimom dan Kediri CSO Putih memiliki tripsin inhibitor yang lebih tinggi dibanding jenis serbuk kayu sengon dari provenan Sumedang. Selain itu serbuk sengon yang telah di freeze dry memiliki kandungan tripsin inhibitor yang lebih rendah dibandingkan serbuk sengon yang masih segar (Prasetya, 2006).

Berdasarkan data diatas, dapat juga diduga bahwa makanan yang disukai larva tidak disukai oleh larva boktor antara lain ditentukan oleh faktor-faktor kritter seperti bentuk (butiran atau mash/ tepung), warna dan ukuran (besar atau kecil), serta aroma. Dalam prakteknya, komposisi jenis provenan artificial diet yang disukai artinya adalah artificial diet lebih banyak dikonsumsi oleh larva boktor dalam satuan waktu tertentu, dan begitu juga sebaliknya.
V. KESIMPULAN DAN SARAN

5.1. Kesimpulan

1. Artificial diet dapat dikembangkan dengan mencampurkan serbuk sengon dari berbagai provenan dan kondisi pohon sengon bagi larva boktor yang dipelihara secara in-vitro.

2. Berdasarkan hasil rekapitulasi sidik ragam, parameter pengamatan yang paling sensitif adalah berat makanan, sedangkan parameter pengamatan yang tidak sensitif adalah panjang larva. Parameter pengamatan yang paling sensitif pada larva ukuran kecil adalah diameter kepala larva, sedangkan larva ukuran besar adalah berat larva. Kondisi pohon sengon sehat memberikan pengaruh yang lebih baik terhadap parameter pengamatan pertumbuhan larva dibandingkan kondisi pohon sengon sakit.

5.2. Saran

Melakukan tindakan pengendalian secara silvikultur untuk mengantisipasi serangan hama boktor pada kegiatan budidaya sengon dalam bentuk pengusahaan hutan monokultur dengan menanam jenis tanaman sengon yang resisten terhadap serangan larva boktor, yaitu provenan Kediri CSO Putih.
DAFTAR PUSTAKA

LAMPIRAN
Rekapitulasi Data Hasil Pengamatan Larva Kecil

<table>
<thead>
<tr>
<th>Jenis Provenan/</th>
<th>Pengamatan I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulangan</td>
<td>BM (gr)</td>
<td>BL (gr)</td>
<td>PL (cm)</td>
<td>Ø K (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>awal</td>
<td>akhir</td>
<td>Δ</td>
<td>awal</td>
<td>akhir</td>
<td>Δ</td>
<td>awal</td>
<td>akhir</td>
<td>Δ</td>
<td>awal</td>
<td>akhir</td>
<td>Δ</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>45,1</td>
<td>43,5</td>
<td>1,6</td>
<td>0,5</td>
<td>0,4</td>
<td>-0,1</td>
<td>2,38</td>
<td>2,55</td>
<td>0,17</td>
<td>0,2</td>
<td>0,24</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>45,1</td>
<td>43,5</td>
<td>1,6</td>
<td>0,5</td>
<td>0,4</td>
<td>-0,1</td>
<td>2,38</td>
<td>2,55</td>
<td>0,17</td>
<td>0,2</td>
<td>0,24</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>47</td>
<td>3</td>
<td>0,3</td>
<td>0,4</td>
<td>0,1</td>
<td>2,1</td>
<td>2,14</td>
<td>0,04</td>
<td>0,1</td>
<td>0,21</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>53,6</td>
<td>51,4</td>
<td>2,2</td>
<td>0,4</td>
<td>0,3</td>
<td>-0,1</td>
<td>2,17</td>
<td>2,25</td>
<td>0,08</td>
<td>0,3</td>
<td>0,35</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>58,9</td>
<td>56,4</td>
<td>2,5</td>
<td>0,4</td>
<td>0,52</td>
<td>0,12</td>
<td>1,9</td>
<td>2,52</td>
<td>0,62</td>
<td>0,34</td>
<td>0,34</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>62,1</td>
<td>59,3</td>
<td>2,8</td>
<td>0,4</td>
<td>0,4</td>
<td>0</td>
<td>2,1</td>
<td>2,67</td>
<td>0,57</td>
<td>0,28</td>
<td>0,3</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>52,3</td>
<td>51,9</td>
<td>0,4</td>
<td>0,4</td>
<td>0,5</td>
<td>0,1</td>
<td>2,17</td>
<td>2,5</td>
<td>0,33</td>
<td>0,27</td>
<td>0,29</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>50,2</td>
<td>47,1</td>
<td>3,1</td>
<td>0,4</td>
<td>0,6</td>
<td>0,2</td>
<td>2,16</td>
<td>2,5</td>
<td>0,34</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>56,1</td>
<td>53,8</td>
<td>2,3</td>
<td>0,2</td>
<td>0,4</td>
<td>0,2</td>
<td>2,17</td>
<td>2,16</td>
<td>0,99</td>
<td>0,11</td>
<td>0,26</td>
<td>0,15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>36,7</td>
<td>35,3</td>
<td>1,4</td>
<td>0,6</td>
<td>0,6</td>
<td>0</td>
<td>2,21</td>
<td>2,9</td>
<td>0,69</td>
<td>0,21</td>
<td>0,32</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>58,3</td>
<td>55</td>
<td>3,3</td>
<td>0,3</td>
<td>0,41</td>
<td>0,11</td>
<td>2,1</td>
<td>2,13</td>
<td>0,03</td>
<td>0,24</td>
<td>0,26</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>43,2</td>
<td>41,5</td>
<td>1,7</td>
<td>0,4</td>
<td>0,4</td>
<td>0</td>
<td>2,1</td>
<td>2,21</td>
<td>0,11</td>
<td>0,1</td>
<td>0,22</td>
<td>0,12</td>
<td></td>
</tr>
</tbody>
</table>

Lampiran I
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin PB.

Sumber dari Lampiran II

Bogor Agricultural University
<table>
<thead>
<tr>
<th>Daya Penyerap</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50,5</td>
<td>49,1</td>
<td>5,0</td>
<td>0,52</td>
<td>0,53</td>
<td>0,01</td>
<td>2,52</td>
<td>2,7</td>
<td>0,18</td>
<td>0,34</td>
<td>0,3</td>
<td>-0,04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50,3</td>
<td>49,3</td>
<td>1</td>
<td>0,4</td>
<td>0,4</td>
<td>0</td>
<td>2,67</td>
<td>2</td>
<td>-0,67</td>
<td>0,3</td>
<td>0,3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45,3</td>
<td>42,6</td>
<td>2,7</td>
<td>0,5</td>
<td>0,6</td>
<td>0,1</td>
<td>2,5</td>
<td>2,8</td>
<td>0,3</td>
<td>0,29</td>
<td>0,3</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45,6</td>
<td>44,2</td>
<td>1,4</td>
<td>0,6</td>
<td>0</td>
<td>0,6</td>
<td>2,5</td>
<td>2,5</td>
<td>0</td>
<td>0,3</td>
<td>0,3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>47,3</td>
<td>46</td>
<td>1,3</td>
<td>0,4</td>
<td>0,4</td>
<td>0</td>
<td>2,16</td>
<td>2,24</td>
<td>0,08</td>
<td>0,26</td>
<td>0,27</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26,3</td>
<td>25,3</td>
<td>1</td>
<td>0,6</td>
<td>0,5</td>
<td>-0,1</td>
<td>2,9</td>
<td>2,51</td>
<td>-0,39</td>
<td>0,32</td>
<td>0,3</td>
<td>-0,02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53,6</td>
<td>51,9</td>
<td>1,7</td>
<td>0,41</td>
<td>0,49</td>
<td>0,08</td>
<td>2,13</td>
<td>2,24</td>
<td>0,11</td>
<td>0,26</td>
<td>0,27</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27,4</td>
<td>26,3</td>
<td>1,1</td>
<td>0,4</td>
<td>0,4</td>
<td>0</td>
<td>2,21</td>
<td>2,39</td>
<td>0,18</td>
<td>0,22</td>
<td>0,3</td>
<td>0,08</td>
<td></td>
</tr>
</tbody>
</table>

Sengan Sumedang

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karangan ini dalam bentuk apapun tanpa izin PB.

b. Pengumuman hanya untuk memasyarakatkan perenungan dan pemahaman PB. Pustaka ini tidak untuk apapun tujuan komersial, penulisan, penyebaran, pemakaiannya atau pendidikan. Pustaka ini dibuat untuk memasyarakatkan perenungan mengenai mengembangkan alam semesta yang cocok untuk kehidupan dan belajar ilmu pengetahuan.

Kediri

O Putih

Sengan Solomon

Bogor Agricultural University

Pengamatan III

<p>	Daya Penyerap	46,3	44,8	1,5	0,4	0	2,56	2,72	0,16	0,28	0,3	0,02
	15,4	14,6	0,8	0,5	0	2,51	2,59	0,08	0,3	0	0	
	41,1	38,8	2,3	0,43	0,4	-0,4	2,3	2,51	0,21	0,3	0,31	0,01
	53,2	51,8	1,4	0,54	0,55	0,01	2,5	2,8	0,3	0,41	0,35	-0,06
	33,7	31,8	1,9	0,53	0,54	0,01	2,7	2,75	0,05	0,3	0,32	0,02
	43,8	41,3	2,5	0,4	0	0	2,2	2,01	0,01	0,3	0,1	-0,2
	50,1	48,5	1,6	0,6	0,63	0,03	2,8	2,8	0	0,3	0,4	0,1
	51,2	47,3	3,9	0	0,6	0,6	2,5	2,62	0,12	0,3	0	0
	43,4	42,9	0,5	0,4	0,5	0,1	2,24	2,32	0,08	0,27	0,27	0
	23,1	22,1	1	0,5	0,3	-0,2	2,51	1,75	-0,76	0,3	0	0
	43,4	41,8	1,6	0,49	0,47	-0,2	2,24	2,56	0,32	0,27	0,28	0,01
	21,1	20,1	1,1	0,4	0,4	0	2,39	2,42	0,03	0,3	0	0
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sengon Sumedang</td>
<td></td>
</tr>
<tr>
<td>AS1</td>
<td>37.5</td>
<td>35.2</td>
<td>2.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>2.6</td>
<td>2.82</td>
<td>0.22</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AS2</td>
<td>17.4</td>
<td>16.6</td>
<td>0.8</td>
<td>0.3</td>
<td>0.4</td>
<td>0.1</td>
<td>2.71</td>
<td>1.89</td>
<td>-0.82</td>
<td>0.27</td>
<td>0.3</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>AS3</td>
<td>17.2</td>
<td>15.8</td>
<td>1.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>2.53</td>
<td>2.7</td>
<td>0.17</td>
<td>0.64</td>
<td>0.35</td>
<td>-0.29</td>
<td></td>
</tr>
<tr>
<td>AP1</td>
<td>38.3</td>
<td>36.2</td>
<td>2.1</td>
<td>0.5</td>
<td>0.6</td>
<td>0.1</td>
<td>0.7</td>
<td>2.82</td>
<td>2.12</td>
<td>0.3</td>
<td>0.31</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>AP2</td>
<td>48.3</td>
<td>46.2</td>
<td>2.1</td>
<td>0.5</td>
<td>0.6</td>
<td>0.1</td>
<td>2.42</td>
<td>2.56</td>
<td>0.14</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AP3</td>
<td>19.6</td>
<td>17.2</td>
<td>2.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>1.83</td>
<td>1.88</td>
<td>0.05</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BS1</td>
<td>51.2</td>
<td>49.2</td>
<td>2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
<td>2.31</td>
<td>2.51</td>
<td>0.2</td>
<td>0.33</td>
<td>0.37</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>BS2</td>
<td>41.3</td>
<td>39.6</td>
<td>1.7</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
<td>2.2</td>
<td>2.53</td>
<td>0.33</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sengon Putih</td>
<td></td>
</tr>
<tr>
<td>AS1</td>
<td>44.9</td>
<td>40.7</td>
<td>4.2</td>
<td>0.6</td>
<td>0.7</td>
<td>0.1</td>
<td>3.01</td>
<td>3.21</td>
<td>0.2</td>
<td>0.32</td>
<td>0.33</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>AS2</td>
<td>42.9</td>
<td>40.3</td>
<td>2.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>2.46</td>
<td>2.82</td>
<td>0.36</td>
<td>0.22</td>
<td>0.24</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>AS3</td>
<td>18.3</td>
<td>16.5</td>
<td>1.8</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
<td>1.81</td>
<td>2.21</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sengon Solomon</td>
<td></td>
</tr>
<tr>
<td>AS1</td>
<td>48.9</td>
<td>45.2</td>
<td>3.7</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>2.72</td>
<td>3.01</td>
<td>0.29</td>
<td>0.3</td>
<td>0.32</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>AS2</td>
<td>37.2</td>
<td>34.6</td>
<td>2.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>2.59</td>
<td>2.51</td>
<td>-0.08</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AS3</td>
<td>48.8</td>
<td>45.2</td>
<td>3.6</td>
<td>0.4</td>
<td>0.4</td>
<td>0.04</td>
<td>2.51</td>
<td>2.55</td>
<td>0.04</td>
<td>0.31</td>
<td>0.33</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>AP1</td>
<td>47.7</td>
<td>44.5</td>
<td>3.2</td>
<td>0.55</td>
<td>0.56</td>
<td>0.01</td>
<td>2.8</td>
<td>3.1</td>
<td>0.3</td>
<td>0.35</td>
<td>0.22</td>
<td>-0.13</td>
<td></td>
</tr>
<tr>
<td>AP2</td>
<td>32.6</td>
<td>31.8</td>
<td>0.8</td>
<td>0.54</td>
<td>0.55</td>
<td>0.01</td>
<td>2.75</td>
<td>2.83</td>
<td>0.08</td>
<td>0.32</td>
<td>0.33</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>AP3</td>
<td>34.9</td>
<td>33.9</td>
<td>1.9</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>2.01</td>
<td>1.9</td>
<td>-0.11</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>BS1</td>
<td>48.2</td>
<td>46.7</td>
<td>1.5</td>
<td>0.63</td>
<td>0.64</td>
<td>0.01</td>
<td>2.6</td>
<td>2.6</td>
<td>-0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BS2</td>
<td>45.8</td>
<td>42.4</td>
<td>3.6</td>
<td>0.75</td>
<td>0.76</td>
<td>0.01</td>
<td>2.32</td>
<td>2.26</td>
<td>-0.11</td>
<td>0.27</td>
<td>0.28</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>BS3</td>
<td>40.5</td>
<td>38.1</td>
<td>1.9</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>1.75</td>
<td>2.02</td>
<td>0.27</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>47.4</td>
<td>0.6</td>
<td>0.47</td>
<td>0.5</td>
<td>0.03</td>
<td>2.56</td>
<td>2.81</td>
<td>0.25</td>
<td>0.28</td>
<td>0.29</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>47.1</td>
<td>45.3</td>
<td>1.8</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
<td>2.42</td>
<td>2.49</td>
<td>0.07</td>
<td>0.3</td>
<td>0.32</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Pengamatan IV

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sengon Sumedang</td>
<td></td>
</tr>
<tr>
<td>AS1</td>
<td>46.9</td>
<td>44.5</td>
<td>2.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>2.82</td>
<td>3.1</td>
<td>0.28</td>
<td>0.3</td>
<td>0.32</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>AS2</td>
<td>39.5</td>
<td>38.1</td>
<td>1.4</td>
<td>0.4</td>
<td>0.3</td>
<td>-0.1</td>
<td>1.89</td>
<td>2.11</td>
<td>0.22</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AS3</td>
<td>43.2</td>
<td>40.2</td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>2.7</td>
<td>2.76</td>
<td>0.06</td>
<td>0.35</td>
<td>0.35</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AP1</td>
<td>44.9</td>
<td>43.2</td>
<td>1.7</td>
<td>0.6</td>
<td>0.6</td>
<td>0</td>
<td>2.82</td>
<td>2.82</td>
<td>0</td>
<td>0.31</td>
<td>0.31</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AP2</td>
<td>34.8</td>
<td>32.3</td>
<td>2.5</td>
<td>0.6</td>
<td>0.5</td>
<td>-0.1</td>
<td>2.56</td>
<td>2.83</td>
<td>0.27</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AP3</td>
<td>35.7</td>
<td>33</td>
<td>2.7</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>1.88</td>
<td>1.9</td>
<td>0.02</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BS1</td>
<td>49.9</td>
<td>46.7</td>
<td>3.2</td>
<td>0.5</td>
<td>0.6</td>
<td>0.1</td>
<td>2.51</td>
<td>2.6</td>
<td>0.09</td>
<td>0.37</td>
<td>0.4</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>BS2</td>
<td>49.6</td>
<td>48.6</td>
<td>1</td>
<td>0.5</td>
<td>0.6</td>
<td>0.1</td>
<td>2.53</td>
<td>2.73</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BP1</td>
<td>BP2</td>
<td>BP3</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>49.9</td>
<td>48.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>49.4</td>
<td>47.4</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>45.3</td>
<td>42.5</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>39.9</td>
<td>38.3</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>47.9</td>
<td>45.6</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>43.6</td>
<td>41.1</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>47.2</td>
<td>45.4</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>48.9</td>
<td>46.6</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>48.4</td>
<td>46.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>46.4</td>
<td>44.2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>51.0</td>
<td>49.3</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>42.3</td>
<td>39.6</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

Keterangan:

A = Serbuk Kulit
B = Serbuk Kayu
S = Sehat
P = Penyakit
BM = Berat Makanan
BL = Berat Larva
PL = Panjang Larva
ØK = Diameter Kepala
<table>
<thead>
<tr>
<th>Jenis Provenan/ Ulangan</th>
<th>Pengamatan I</th>
<th>Pengamatan II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BM (gr)</td>
<td>BL (gr)</td>
</tr>
<tr>
<td></td>
<td>awal</td>
<td>akhir</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hohi Chibbi (Indonesia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>56,9</td>
<td>54,8</td>
</tr>
<tr>
<td>II</td>
<td>49,3</td>
<td>47,4</td>
</tr>
<tr>
<td>III</td>
<td>48,4</td>
<td>45,9</td>
</tr>
<tr>
<td>IV</td>
<td>45,7</td>
<td>42,4</td>
</tr>
<tr>
<td>V</td>
<td>49,8</td>
<td>48,0</td>
</tr>
<tr>
<td>VI</td>
<td>51,1</td>
<td>50,2</td>
</tr>
<tr>
<td>VII</td>
<td>42,6</td>
<td>41,5</td>
</tr>
<tr>
<td>VIII</td>
<td>43,9</td>
<td>41,8</td>
</tr>
<tr>
<td>IX</td>
<td>50,6</td>
<td>48,6</td>
</tr>
<tr>
<td>X</td>
<td>49,5</td>
<td>47,9</td>
</tr>
<tr>
<td>XI</td>
<td>56,0</td>
<td>53,3</td>
</tr>
<tr>
<td>XII</td>
<td>52,9</td>
<td>50,8</td>
</tr>
<tr>
<td>Senggigi (Indonesia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>54,0</td>
<td>50,8</td>
</tr>
<tr>
<td>II</td>
<td>55,0</td>
<td>47,4</td>
</tr>
<tr>
<td>III</td>
<td>54,5</td>
<td>52,2</td>
</tr>
<tr>
<td>IV</td>
<td>50,7</td>
<td>47,7</td>
</tr>
<tr>
<td>V</td>
<td>48,0</td>
<td>46,2</td>
</tr>
<tr>
<td>VI</td>
<td>54,8</td>
<td>52,1</td>
</tr>
<tr>
<td>VII</td>
<td>48,7</td>
<td>41,5</td>
</tr>
<tr>
<td>VIII</td>
<td>54,5</td>
<td>51,8</td>
</tr>
<tr>
<td>IX</td>
<td>53,6</td>
<td>48,6</td>
</tr>
<tr>
<td>X</td>
<td>49,6</td>
<td>44,7</td>
</tr>
<tr>
<td>XI</td>
<td>52,8</td>
<td>48,2</td>
</tr>
<tr>
<td>XII</td>
<td>58,5</td>
<td>56,9</td>
</tr>
</tbody>
</table>

Bogor Agricultural University

Pengamatan I

Pengamatan II
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP3</td>
<td>53.2</td>
<td>50.8</td>
<td>2.4</td>
<td>3.5</td>
<td>3.6</td>
<td>0.1</td>
<td>4.9</td>
<td>5.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>BS1</td>
<td>22.1</td>
<td>21.8</td>
<td>0.3</td>
<td>1.3</td>
<td>0.8</td>
<td>-0.5</td>
<td>3.4</td>
<td>2.6</td>
<td>-0.8</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>BS2</td>
<td>24.9</td>
<td>23.6</td>
<td>1.3</td>
<td>2.2</td>
<td>2.1</td>
<td>-0.1</td>
<td>4.8</td>
<td>4.9</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>BS3</td>
<td>22.1</td>
<td>21.7</td>
<td>0.4</td>
<td>1.3</td>
<td>1.1</td>
<td>-0.2</td>
<td>3.6</td>
<td>3.1</td>
<td>-0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>BS4</td>
<td>45.9</td>
<td>45.7</td>
<td>0.2</td>
<td>1.7</td>
<td>1.6</td>
<td>-0.1</td>
<td>3.2</td>
<td>3.4</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>BS5</td>
<td>45.0</td>
<td>43.2</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
<td>0.1</td>
<td>4.1</td>
<td>4.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>BS6</td>
<td>52.8</td>
<td>52.0</td>
<td>0.8</td>
<td>1.7</td>
<td>1.8</td>
<td>0.1</td>
<td>4.1</td>
<td>3.2</td>
<td>-0.8</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Pengamatan III

Pendahuluan

Pengamatan lebih lanjut untuk hal-hal yang perlu diuraikan selanjutnya. Pada pemantauan awal, penelitian ini menunjukkan adanya penurunan peningkatan yang signifikan. Selanjutnya, pembahasan akan menyelidiki ketersediaan dan perpindahan sumber lainnya.

Kediri

JO Putih

<table>
<thead>
<tr>
<th></th>
<th>27.9</th>
<th>27.0</th>
<th>0.9</th>
<th>1.7</th>
<th>1.1</th>
<th>-0.6</th>
<th>3.8</th>
<th>3.2</th>
<th>-0.7</th>
<th>0.4</th>
<th>0.4</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS1</td>
<td>50.2</td>
<td>48.3</td>
<td>1.9</td>
<td>2.6</td>
<td>2.7</td>
<td>0.1</td>
<td>4.4</td>
<td>4.6</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>AS2</td>
<td>22.4</td>
<td>21.9</td>
<td>0.5</td>
<td>1.8</td>
<td>0.4</td>
<td>-1.4</td>
<td>3.9</td>
<td>3.4</td>
<td>-0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>AS3</td>
<td>47.2</td>
<td>45.0</td>
<td>2.2</td>
<td>2.6</td>
<td>2.5</td>
<td>-0.1</td>
<td>4.3</td>
<td>3.9</td>
<td>-0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>AP1</td>
<td>24.9</td>
<td>24.2</td>
<td>0.7</td>
<td>2.0</td>
<td>2.1</td>
<td>0.1</td>
<td>4.1</td>
<td>4.3</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>AP2</td>
<td>17.1</td>
<td>16.6</td>
<td>0.5</td>
<td>2.3</td>
<td>1.5</td>
<td>-0.8</td>
<td>4.3</td>
<td>3.5</td>
<td>-0.8</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>AP3</td>
<td>24.9</td>
<td>24.3</td>
<td>0.6</td>
<td>2.3</td>
<td>1.4</td>
<td>-0.9</td>
<td>4.4</td>
<td>3.6</td>
<td>-0.8</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>BS1</td>
<td>45.6</td>
<td>43.0</td>
<td>2.6</td>
<td>2.8</td>
<td>2.9</td>
<td>0.1</td>
<td>4.2</td>
<td>4.2</td>
<td>0.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>BS2</td>
<td>23.5</td>
<td>22.8</td>
<td>0.7</td>
<td>1.6</td>
<td>1.4</td>
<td>-0.2</td>
<td>3.5</td>
<td>3.4</td>
<td>-0.1</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>BS3</td>
<td>20.0</td>
<td>17.3</td>
<td>2.7</td>
<td>1.9</td>
<td>2.0</td>
<td>0.1</td>
<td>4.2</td>
<td>4.3</td>
<td>0.1</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>BP1</td>
<td>18.6</td>
<td>18.0</td>
<td>0.6</td>
<td>3.1</td>
<td>2.8</td>
<td>-0.3</td>
<td>4.2</td>
<td>3.8</td>
<td>-0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>BP2</td>
<td>27.0</td>
<td>26.8</td>
<td>0.2</td>
<td>2.8</td>
<td>2.6</td>
<td>-0.2</td>
<td>4.6</td>
<td>4.6</td>
<td>-0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Bogor Agricultural University

Bogor Agricultural University

Lanjutan

Pengawasan mengenai kebutuhan dan mempertahankan kebenaran sebagian atau seluruh lahan tanpa IPB.
AS3	53.2	50.9	2.3	2.7	2.8	0.1	4.7	4.7	0.0	0.5	0.5	0.0
AS1	37.6	35.2	2.4	2.2	2.3	0.1	4.2	4.3	0.0	0.5	0.5	0.0
AS2	37.6	35.2	2.4	2.2	2.3	0.1	4.2	4.3	0.0	0.5	0.5	0.0
AS3	47.2	43.6	3.6	2.7	2.8	0.1	5.6	5.8	0.1	0.5	0.5	0.0
AS1	56.2	53.5	2.7	2.4	2.5	0.1	5.0	5.2	0.2	0.5	0.5	0.0
AS2	48.2	46.3	1.9	1.4	1.5	0.1	3.7	3.9	0.2	0.4	0.5	0.1
AS3	44.7	40.2	4.5	2.9	3.0	0.1	4.6	4.6	0.1	0.4	0.4	0.0
AS1	42.3	40.0	2.3	2.6	2.6	0.1	4.5	4.6	0.1	0.4	0.4	0.0
AS2	57.2	55.6	1.6	2.3	2.4	0.0	4.2	4.3	0.1	0.3	0.3	0.0

<table>
<thead>
<tr>
<th>O Putih</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
</tr>
<tr>
<td>20.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pengamatan IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.7</td>
</tr>
<tr>
<td>47.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pengamatan IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.8</td>
</tr>
<tr>
<td>53.7</td>
</tr>
<tr>
<td>52.0</td>
</tr>
<tr>
<td>42.9</td>
</tr>
<tr>
<td>42.2</td>
</tr>
<tr>
<td>38.4</td>
</tr>
<tr>
<td>48.2</td>
</tr>
<tr>
<td>49.0</td>
</tr>
<tr>
<td>45.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pengamatan IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.8</td>
</tr>
<tr>
<td>45.1</td>
</tr>
<tr>
<td>52.6</td>
</tr>
<tr>
<td>39.8</td>
</tr>
<tr>
<td>49.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pengamatan IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.2</td>
</tr>
<tr>
<td>48.9</td>
</tr>
<tr>
<td>47.2</td>
</tr>
<tr>
<td>49.1</td>
</tr>
<tr>
<td>50.2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Ket:
A = Serbuk Kulit
B = Serbuk Kayu
S = Sehat
P = Penyakit
BM = Berat Makanan
BL = Berat Larva
PL = Panjang Larva
ØK = Diameter Kepala
Lampiran 3 Analisis Deskriptif Berat Makanan Pada Serbuk Kulit untuk Larva Kecil

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon</td>
<td>Sehat</td>
<td>8.1667</td>
<td>2.05020</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>7.6667</td>
<td>.83865</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.9167</td>
<td>1.42747</td>
<td>6</td>
</tr>
<tr>
<td>Sembreng</td>
<td>Sehat</td>
<td>8.9000</td>
<td>3.05123</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>8.0667</td>
<td>1.05987</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>8.4833</td>
<td>2.09324</td>
<td>6</td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>Sehat</td>
<td>4.4333</td>
<td>1.61658</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>9.1333</td>
<td>.58595</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6.7833</td>
<td>2.79458</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sehat</td>
<td>7.1667</td>
<td>2.88704</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>8.2889</td>
<td>.98672</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.7278</td>
<td>2.17115</td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 4 Analisis Sidik Ragam Berat Makanan Pada Serbuk Kulit untuk Larva Kecil

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>8.991</td>
<td>2</td>
<td>4.496</td>
<td>1.474</td>
<td>.268</td>
</tr>
<tr>
<td>Kondisi</td>
<td>5.667</td>
<td>1</td>
<td>5.667</td>
<td>1.858</td>
<td>.198</td>
</tr>
<tr>
<td>Error</td>
<td>36.593</td>
<td>12</td>
<td>3.049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>1155.070</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>80.136</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 5 Analisis Deskriptif Berat Larva Pada Serbuk Kulit untuk Larva Kecil

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon</td>
<td>Sehat</td>
<td>-.0200</td>
<td>1.3856</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.1033</td>
<td>.08963</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0417</td>
<td>1.2432</td>
<td>6</td>
</tr>
<tr>
<td>Sembreng</td>
<td>Sehat</td>
<td>.1000</td>
<td>1.0000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.1667</td>
<td>1.5275</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.1333</td>
<td>1.2111</td>
<td>6</td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>Sehat</td>
<td>.1000</td>
<td>1.0000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.0333</td>
<td>.05774</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0667</td>
<td>.08165</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sehat</td>
<td>.0600</td>
<td>.11576</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.1011</td>
<td>.10960</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0806</td>
<td>.11138</td>
<td>18</td>
</tr>
</tbody>
</table>
Lampiran 6 Analisis Sidik Ragam Berat Larva Pada Serbuk Kulit untuk Larva Kecil

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>.027</td>
<td>2</td>
<td>.013</td>
<td>1.094</td>
<td>.366</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.008</td>
<td>1</td>
<td>.008</td>
<td>.618</td>
<td>.447</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.029</td>
<td>2</td>
<td>.014</td>
<td>1.159</td>
<td>.347</td>
</tr>
<tr>
<td>Error</td>
<td>.148</td>
<td>12</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.328</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>.211</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 7 Analisis Deskriptif Panjang Larva Pada Serbuk Kulit untuk Larva Kecil

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domemon</td>
<td>Sehat</td>
<td>.3600</td>
<td>.32450</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.5533</td>
<td>.65241</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.4567</td>
<td>.47285</td>
<td>6</td>
</tr>
<tr>
<td>Medang</td>
<td>Sehat</td>
<td>.8033</td>
<td>.49136</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.5567</td>
<td>.42852</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.6800</td>
<td>.43391</td>
<td>6</td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>Sehat</td>
<td>.5433</td>
<td>.61533</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.0700</td>
<td>.37749</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.2367</td>
<td>.56684</td>
<td>6</td>
</tr>
<tr>
<td>Medang</td>
<td>Sehat</td>
<td>.5689</td>
<td>.46751</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.3467</td>
<td>.53442</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.4578</td>
<td>.50032</td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 8 Analisis Sidik Ragam Panjang Larva Pada Serbuk Kulit untuk Larva Kecil

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>.590</td>
<td>2</td>
<td>.295</td>
<td>1.198</td>
<td>.336</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.222</td>
<td>1</td>
<td>.222</td>
<td>.903</td>
<td>.361</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.489</td>
<td>2</td>
<td>.245</td>
<td>.994</td>
<td>.399</td>
</tr>
<tr>
<td>Error</td>
<td>2.954</td>
<td>12</td>
<td>.246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.028</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>4.256</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 9: Analisis Deskriptif Diameter Kepala Larva Pada Serbu Kuit untuk Larva Kecil

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon</td>
<td>Sehat</td>
<td>.1467</td>
<td>.07371</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>-.0567</td>
<td>.04041</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0450</td>
<td>.12341</td>
<td>6</td>
</tr>
<tr>
<td>Sunmedang</td>
<td>Sehat</td>
<td>.0800</td>
<td>.07937</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.0133</td>
<td>.02309</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0467</td>
<td>.06377</td>
<td>6</td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>Sehat</td>
<td>.1633</td>
<td>.07095</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.0833</td>
<td>.06110</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.1233</td>
<td>.07367</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sehat</td>
<td>.1300</td>
<td>.07517</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.0133</td>
<td>.02176</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0717</td>
<td>.09319</td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 10: Analisis Sido Jarak Diameter Kepala Larva Pada Serbu Kuit untuk Larva Kecil

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>.024</td>
<td>2</td>
<td>.012</td>
<td>3.181</td>
<td>.078</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.061</td>
<td>1</td>
<td>.061</td>
<td>16.213</td>
<td>.002</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.017</td>
<td>2</td>
<td>.009</td>
<td>2.254</td>
<td>.147</td>
</tr>
<tr>
<td>Error</td>
<td>.045</td>
<td>12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.240</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>.148</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 11: Analisis Deskriptif Beta Makanan Pada Serbu Kuit untuk Larva Kecil

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon</td>
<td>Sehat</td>
<td>7.5000</td>
<td>2.87924</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>6.0667</td>
<td>1.00167</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6.7833</td>
<td>2.08175</td>
<td>6</td>
</tr>
<tr>
<td>Sunmedang</td>
<td>Sehat</td>
<td>8.9000</td>
<td>1.73494</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>11.8333</td>
<td>1.45029</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10.3667</td>
<td>2.15097</td>
<td>6</td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>Sehat</td>
<td>5.9333</td>
<td>2.61024</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>7.3333</td>
<td>2.34592</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6.6333</td>
<td>2.34833</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sehat</td>
<td>7.4444</td>
<td>2.48602</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>8.4111</td>
<td>3.00684</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.9278</td>
<td>2.72220</td>
<td>18</td>
</tr>
</tbody>
</table>
Lampiran 12 Analisis Sidik Ragam Berat Makanan Pada Serbuk Kayu untuk Larva Kecil

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>53.601</td>
<td>2</td>
<td>26.801</td>
<td>6.017</td>
<td>.015</td>
</tr>
<tr>
<td>Kondisi</td>
<td>4.205</td>
<td>1</td>
<td>4.205</td>
<td>.944</td>
<td>.350</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>14.723</td>
<td>2</td>
<td>7.362</td>
<td>1.653</td>
<td>.232</td>
</tr>
<tr>
<td>Error</td>
<td>53.447</td>
<td>12</td>
<td>4.454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1257.270</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>125.976</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 13 Analisis Deskriptif Berat Larva Pada Serbuk Kayu untuk Larva Kecil

<table>
<thead>
<tr>
<th>Provenan Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salomon Sehat</td>
<td>.2800</td>
<td>.03464</td>
<td>3</td>
</tr>
<tr>
<td>Sakit</td>
<td>.0667</td>
<td>.15275</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>.1733</td>
<td>.15319</td>
<td>6</td>
</tr>
<tr>
<td>Semedang Sehat</td>
<td>.2667</td>
<td>.05774</td>
<td>3</td>
</tr>
<tr>
<td>Sakit</td>
<td>.0333</td>
<td>.05774</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>.1500</td>
<td>.13784</td>
<td>6</td>
</tr>
<tr>
<td>Rejeki CSO Putih Sehat</td>
<td>.0333</td>
<td>.20817</td>
<td>3</td>
</tr>
<tr>
<td>Sakit</td>
<td>.1000</td>
<td>.45826</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>.0667</td>
<td>.32042</td>
<td>6</td>
</tr>
<tr>
<td>Total Sehat</td>
<td>.1933</td>
<td>.16248</td>
<td>9</td>
</tr>
<tr>
<td>Sakit</td>
<td>.0667</td>
<td>.24495</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>.1300</td>
<td>.21191</td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 14 Analisis Sidik Ragam Berat Makanan Pada Serbuk Kayu untuk Larva Kecil

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>.038</td>
<td>2</td>
<td>.019</td>
<td>.398</td>
<td>.680</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.072</td>
<td>1</td>
<td>.072</td>
<td>1.522</td>
<td>.241</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.084</td>
<td>2</td>
<td>.042</td>
<td>.890</td>
<td>.436</td>
</tr>
<tr>
<td>Error</td>
<td>.569</td>
<td>12</td>
<td>.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.068</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>.763</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 15 Analisis Deskriptif Panjang Larva Pada Serbuk Kayu untuk Larva Kecil

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon</td>
<td>Sehat</td>
<td>.6767</td>
<td>.32130</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.3033</td>
<td>.45622</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.4900</td>
<td>.40787</td>
<td>6</td>
</tr>
<tr>
<td>Sumedang</td>
<td>Sehat</td>
<td>.7967</td>
<td>.22030</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.4467</td>
<td>.30039</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.6217</td>
<td>.30374</td>
<td>6</td>
</tr>
<tr>
<td>Mediri CSO Putih</td>
<td>Sehat</td>
<td>.1200</td>
<td>.42000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.2267</td>
<td>.73214</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.1733</td>
<td>.53702</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>Sehat</td>
<td>.5311</td>
<td>.42404</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.3256</td>
<td>.46685</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.4283</td>
<td>.44538</td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 16 Analisis Sidik Ragam Panjang Larva Pada Serbuk Kayu untuk Larva Kecil

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>.637</td>
<td>2</td>
<td>.319</td>
<td>1.644</td>
<td>.234</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.190</td>
<td>1</td>
<td>.190</td>
<td>.981</td>
<td>.341</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.220</td>
<td>2</td>
<td>.110</td>
<td>.567</td>
<td>.582</td>
</tr>
<tr>
<td>Error</td>
<td>2.325</td>
<td>12</td>
<td>.194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6.675</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>3.372</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 17 Analisis Deskriptif Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Kecil

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon</td>
<td>Sehat</td>
<td>.1000</td>
<td>.08888</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.1200</td>
<td>.08888</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.1100</td>
<td>.08025</td>
<td>6</td>
</tr>
<tr>
<td>Sumedang</td>
<td>Sehat</td>
<td>.0367</td>
<td>.05508</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.1267</td>
<td>.04509</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0817</td>
<td>.06676</td>
<td>6</td>
</tr>
<tr>
<td>Mediri CSO Putih</td>
<td>Sehat</td>
<td>.1767</td>
<td>.12503</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.1333</td>
<td>.04163</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.1550</td>
<td>.08666</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>Sehat</td>
<td>.1044</td>
<td>.10163</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.1267</td>
<td>.05431</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.1156</td>
<td>.07987</td>
<td>18</td>
</tr>
</tbody>
</table>
Lampiran 18 Analisis Sidik Ragam Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Kecil

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>.016</td>
<td>2</td>
<td>.008</td>
<td>1.288</td>
<td>.311</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.002</td>
<td>1</td>
<td>.002</td>
<td>.349</td>
<td>.566</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.013</td>
<td>2</td>
<td>.007</td>
<td>1.047</td>
<td>.381</td>
</tr>
<tr>
<td>Error</td>
<td>.076</td>
<td>12</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.349</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>.108</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 19 Analisis Deskriptif Berat Makanan Pada Serbuk Kulit untuk Larva Besar

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolomos</td>
<td>Sehat</td>
<td>7.1000</td>
<td>1.21244</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>7.4667</td>
<td>1.16762</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.2833</td>
<td>1.08336</td>
<td>6</td>
</tr>
<tr>
<td>Sumedang</td>
<td>Sehat</td>
<td>9.9333</td>
<td>4.59601</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>8.1333</td>
<td>5.80460</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9.0333</td>
<td>4.78526</td>
<td>6</td>
</tr>
<tr>
<td>Pediri CSO Putih</td>
<td>Sehat</td>
<td>5.4000</td>
<td>2.85132</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>6.9000</td>
<td>3.36006</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6.1500</td>
<td>2.90568</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>Sehat</td>
<td>7.4778</td>
<td>3.40800</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>7.5000</td>
<td>3.44565</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.4889</td>
<td>3.32458</td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 20 Analisis Sidik Ragam Berat Makanan Pada Serbuk Kulit untuk Larva Besar

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>25.321</td>
<td>2</td>
<td>12.661</td>
<td>.986</td>
<td>.401</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.002</td>
<td>1</td>
<td>.002</td>
<td>.000</td>
<td>.990</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>8.434</td>
<td>2</td>
<td>4.217</td>
<td>.328</td>
<td>.726</td>
</tr>
<tr>
<td>Error</td>
<td>154.140</td>
<td>12</td>
<td>12.845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1197.400</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>187.898</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 21 Analisis Deskriptif Berat Larva Pada Serbuk Kulit untuk Larva Besar

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon</td>
<td>Sehat</td>
<td>-0.667</td>
<td>0.30551</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>0.667</td>
<td>0.40415</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.000</td>
<td>0.43359</td>
<td>6</td>
</tr>
<tr>
<td>Sumedang</td>
<td>Sehat</td>
<td>-0.667</td>
<td>0.64291</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>-0.033</td>
<td>0.61101</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-0.050</td>
<td>0.56125</td>
<td>6</td>
</tr>
<tr>
<td>Kidiri CSO Putih</td>
<td>Sehat</td>
<td>-0.800</td>
<td>0.81854</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>-0.533</td>
<td>1.04083</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-0.311</td>
<td>0.65468</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sehat</td>
<td>-0.333</td>
<td>0.76974</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>-0.172</td>
<td>0.70778</td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 22 Analisis Sidik Ragam Berat Larva Pada Serbuk Kulit untuk Larva Besar

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>2.388</td>
<td>2</td>
<td>1.194</td>
<td>2.561</td>
<td>.118</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.347</td>
<td>1</td>
<td>.347</td>
<td>.745</td>
<td>.405</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.188</td>
<td>2</td>
<td>.094</td>
<td>.201</td>
<td>.820</td>
</tr>
<tr>
<td>Error</td>
<td>5.593</td>
<td>12</td>
<td>.466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9.050</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>8.516</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 23 Analisis Deskriptif Panjang Larva Pada Serbuk Kulit untuk Larva Besar

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon</td>
<td>Sehat</td>
<td>0.3067</td>
<td>0.54903</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.8533</td>
<td>0.48045</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.5800</td>
<td>0.55005</td>
<td>6</td>
</tr>
<tr>
<td>Sumedang</td>
<td>Sehat</td>
<td>-0.1367</td>
<td>0.73928</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>0.3000</td>
<td>1.28059</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.0817</td>
<td>0.96529</td>
<td>6</td>
</tr>
<tr>
<td>Kidiri CSO Putih</td>
<td>Sehat</td>
<td>-0.8600</td>
<td>0.59152</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>-0.4733</td>
<td>0.90046</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-0.3667</td>
<td>0.71355</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sehat</td>
<td>-0.2300</td>
<td>0.74805</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>0.2267</td>
<td>1.00171</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-0.0017</td>
<td>0.88923</td>
<td>18</td>
</tr>
</tbody>
</table>
Lampiran 24 Analisis Sidik Ragam Panjang Larva Pada Serbuk Kulit untuk Larva Besar

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>4.725</td>
<td>2</td>
<td>2.363</td>
<td>3.654</td>
<td>.058</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.938</td>
<td>1</td>
<td>.938</td>
<td>1.451</td>
<td>.252</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.020</td>
<td>2</td>
<td>.010</td>
<td>.016</td>
<td>.985</td>
</tr>
<tr>
<td>Error</td>
<td>7.759</td>
<td>12</td>
<td>.647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13.443</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>13.442</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 25 Analisis Deskriptif Diameter Kepala Larva Pada Serbuk Kulit untuk Larva Besar

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domoni</td>
<td>Sehat</td>
<td>.0933</td>
<td>.09074</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.1233</td>
<td>.16442</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.1083</td>
<td>.11990</td>
<td>6</td>
</tr>
<tr>
<td>Semedang</td>
<td>Sehat</td>
<td>.0500</td>
<td>.05196</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.0700</td>
<td>.06083</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0600</td>
<td>.05177</td>
<td>6</td>
</tr>
<tr>
<td>Medan CSO Putih</td>
<td>Sehat</td>
<td>.0300</td>
<td>.06083</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>-.5800</td>
<td>1.06532</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-.2750</td>
<td>.75304</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sehat</td>
<td>.0578</td>
<td>.06667</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>-.1289</td>
<td>.63750</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-.0356</td>
<td>.45007</td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 26 Analisis Sidik Ragam Diameter Kepala Larva Pada Serbuk Kulit untuk Larva Besar

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>.523</td>
<td>2</td>
<td>.262</td>
<td>1.329</td>
<td>.301</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.157</td>
<td>1</td>
<td>.157</td>
<td>.797</td>
<td>.390</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.403</td>
<td>2</td>
<td>.202</td>
<td>1.025</td>
<td>.388</td>
</tr>
<tr>
<td>Error</td>
<td>2.361</td>
<td>12</td>
<td>.197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.466</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>3.444</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 27 Analisis Deskriptif Berat Makanan Pada Serbu Kayu untuk Larva Besar

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon</td>
<td>Sehat</td>
<td>5.1000</td>
<td>.60828</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>8.2667</td>
<td>2.69506</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6.6833</td>
<td>2.46205</td>
<td>6</td>
</tr>
<tr>
<td>Samedang</td>
<td>Sehat</td>
<td>11.1333</td>
<td>1.45717</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>9.6667</td>
<td>3.40196</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10.4000</td>
<td>2.47467</td>
<td>6</td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>Sehat</td>
<td>8.0600</td>
<td>1.90337</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>5.6000</td>
<td>2.78747</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6.8300</td>
<td>2.52440</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sehat</td>
<td>8.0978</td>
<td>2.89051</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>7.8444</td>
<td>3.13891</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7.9711</td>
<td>2.93008</td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 28 Analisis Sidik Ragan Berat Makanan Pada Serbu Kayu untuk Larva Besar

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kondisi</td>
<td>.289</td>
<td>1</td>
<td>.289</td>
<td>.053</td>
<td>.822</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>27.057</td>
<td>2</td>
<td>13.528</td>
<td>2.481</td>
<td>.125</td>
</tr>
<tr>
<td>Error</td>
<td>65.446</td>
<td>12</td>
<td>5.454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1289.646</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>145.951</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 29 Analisis Deskriptif Berat Larva Pada Serbu Kayu untuk Larva Besar

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon</td>
<td>Sehat</td>
<td>-1.2000</td>
<td>.43589</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>-2.833</td>
<td>.62517</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-7.417</td>
<td>.69600</td>
<td>6</td>
</tr>
<tr>
<td>Samedang</td>
<td>Sehat</td>
<td>-1.000</td>
<td>.62450</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.2767</td>
<td>.06807</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.883</td>
<td>.44768</td>
<td>6</td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>Sehat</td>
<td>-5.000</td>
<td>.43589</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>-2.333</td>
<td>.45092</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-3.667</td>
<td>.42269</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sehat</td>
<td>-6.900</td>
<td>.65192</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>-0.800</td>
<td>.47088</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-3.400</td>
<td>.61312</td>
<td>18</td>
</tr>
</tbody>
</table>
Lampiran 30 Analisis Sidik Ragam Berat Larva Pada Serbuk Kayu untuk Larva Besar

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>2.073</td>
<td>2</td>
<td>1.037</td>
<td>4.544</td>
<td>.034</td>
</tr>
<tr>
<td>Kondisi</td>
<td>1.217</td>
<td>1</td>
<td>1.217</td>
<td>5.334</td>
<td>.040</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.363</td>
<td>2</td>
<td>.182</td>
<td>.796</td>
<td>.474</td>
</tr>
<tr>
<td>Error</td>
<td>2.738</td>
<td>12</td>
<td>.228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.471</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>6.391</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 31 Analisis Deskriptif Panjang Larva Pada Serbuk Kayu untuk Larva Besar

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komoni</td>
<td>Sehat</td>
<td>-1.1233</td>
<td>.72418</td>
<td>3</td>
</tr>
<tr>
<td>Sakit</td>
<td>-.2700</td>
<td>.66573</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>-.6967</td>
<td>.77814</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Semarang</td>
<td>Sehat</td>
<td>.3000</td>
<td>.96628</td>
<td>3</td>
</tr>
<tr>
<td>Sakit</td>
<td>.3933</td>
<td>1.07010</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>.3467</td>
<td>.62263</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Bedirı CSO Putih</td>
<td>Sehat</td>
<td>-.1567</td>
<td>.22546</td>
<td>3</td>
</tr>
<tr>
<td>Sakit</td>
<td>-.1500</td>
<td>1.19879</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>-.1533</td>
<td>.77148</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>-.3267</td>
<td>.87940</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Sakit</td>
<td>-.0089</td>
<td>.75565</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>-.1678</td>
<td>.81202</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 32 Analisis Sidik Ragam Panjang Larva Pada Serbuk Kayu untuk Larva Besar

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>3.268</td>
<td>2</td>
<td>1.634</td>
<td>2.868</td>
<td>.096</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.454</td>
<td>1</td>
<td>.454</td>
<td>.798</td>
<td>.389</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.651</td>
<td>2</td>
<td>.325</td>
<td>.571</td>
<td>.579</td>
</tr>
<tr>
<td>Error</td>
<td>6.836</td>
<td>12</td>
<td>.570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11.716</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>11.209</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 33 Analisis Deskriptif Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Besar

<table>
<thead>
<tr>
<th>Provenan</th>
<th>Kondisi</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon</td>
<td>Sehat</td>
<td>.0967</td>
<td>.00577</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.0600</td>
<td>.03464</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0783</td>
<td>.02994</td>
<td>6</td>
</tr>
<tr>
<td>Sumedang</td>
<td>Sehat</td>
<td>.0700</td>
<td>.15100</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.0733</td>
<td>.04726</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0717</td>
<td>.10008</td>
<td>6</td>
</tr>
<tr>
<td>Kediri CSO Putih</td>
<td>Sehat</td>
<td>.0433</td>
<td>.09292</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.0733</td>
<td>.06429</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0583</td>
<td>.07333</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sehat</td>
<td>.0700</td>
<td>.09165</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sakit</td>
<td>.0689</td>
<td>.04400</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0694</td>
<td>.06975</td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 34 Analisis Sidik Ragam Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Besar

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenan</td>
<td>.001</td>
<td>2</td>
<td>.001</td>
<td>.096</td>
<td>.909</td>
</tr>
<tr>
<td>Kondisi</td>
<td>.000</td>
<td>1</td>
<td>.000</td>
<td>.001</td>
<td>.977</td>
</tr>
<tr>
<td>Provenan * Kondisi</td>
<td>.003</td>
<td>2</td>
<td>.002</td>
<td>.260</td>
<td>.776</td>
</tr>
<tr>
<td>Error</td>
<td>.078</td>
<td>12</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.170</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>.083</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 35 Rata-Rata Berat Makanan pada Serbuk Kulit untuk Larva Kecil pada Berbagai Provenan

![Diagram 1: Berat Makanan (gr) vs Waktu Pengamatan](image1)

- Solomon
- Samedung
- Kediri CSO Putih

Lampiran 36 Rata-Rata Berat Larva pada Serbuk Kulit untuk Larva Kecil pada Berbagai Provenan

![Diagram 2: Berat Larva (gr) vs Waktu Pengamatan](image2)

- Solomon
- Samedung
- Kediri CSO Putih
Lampiran 37 Rata-Rata Panjang Larva pada Serbuk Kulit untuk Larva Kecil pada Berbagai Provenan

Hak Cipta Dilindungi Undang-Undang
3. Jika penggunaan untuk kepentingan pendidikan, penelitian, pendukung hukum lainnya, penyusunan laporan, pendukung kritik atau tribun maka tidak dibayar.

Lampiran 38 Rata-Rata Diameter Kepala Larva pada Serbuk Kulit untuk Larva Kecil pada Berbagai Provenan
Lampiran 39 Rata-Rata Pertumbuhan Berat Larva Pada Serbuk Kulit untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit

![Graph showing comparison of mean larva weight growth between healthy and sick trees.]

Lampiran 40 Rata-Rata Pertumbuhan Panjang Larva Pada Serbuk Kulit untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit

![Graph showing comparison of mean larva length growth between healthy and sick trees.]
Lampiran 41 Rata-Rata Berat Larva pada Serbuk Kayu untuk Larva Kecil pada Berbagai Provenan

![Diagram Berat Larva](image)

Waktu Pengamatan

- Solomon
- Samedng
- Kodri CSO Puth

Lampiran 42 Rata-Rata Panjang Larva pada Serbuk Kayu untuk Larva Kecil pada Berbagai Provenan

![Diagram Panjang Larva](image)

Waktu Pengamatan

- Solomon
- Samedng
- Kodri CSO Puth
Lampiran 43 Rata-Rata Diameter Kepala pada Serbuk Kayu untuk Larva Kecil pada Berbagai Provenan

Lampiran 44 Rata-Rata Pertumbuhan Berat Makanan Pada Serbuk Kayu untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit
Lampiran 45 Rata-Rata Pertumbuhan Berat Larva Pada Serbuk Kayu untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit

Lampiran 46 Rata-Rata Pertumbuhan Panjang Larva Pada Serbuk Kulit untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit
Lampiran 47 Rata-Rata Pertumbuhan Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Kecil Dengan Kondisi Pohon Sehat dan Sakit

![Graph showing average head diameter growth of caterpillars on healthy and sick trees.](image)

Pengamatan IV

□ Sengon Sehat *□* Sengon Sakit

Lampiran 48 Rata-Rata Berat Makanan pada Serbuk Kulit untuk Larva Besar pada Berbagai Provenan

![Graph showing average weight of food consumption by large caterpillars on various provenances.](image)

Berga.png
Lampiran 49 Rata-Rata Berat Larva pada Serbuk Kulit untuk Larva Besar pada Berbagai Provenan

Pertumbuhan kebutuhan akan kebijakan pendidikan dan peningkatan kualitas pendidikan, penelitian, penguatan kualitas pendidikan, pengembangan ilmu pengetahuan, keterampilan kritis, atau tingkat kebutuhan akan miskin.

Lampiran 50 Rata-Rata Panjang Larva pada Serbuk Kulit untuk Larva Besar pada Berbagai Provenan

Pertumbuhan kebutuhan akan kebijakan pendidikan dan peningkatan kualitas pendidikan, penelitian, penguatan kualitas pendidikan, pengembangan ilmu pengetahuan, keterampilan kritis, atau tingkat kebutuhan akan miskin.
Lampiran 51 Rata-Rata Diameter Kepala Larva pada Serbuk Kulit untuk Larva Besar pada Berbagai Provenan

![Graph showing diameter of larva heads over time for different provenances.]

Lampiran 52 Rata-Rata Pertumbuhan Berat Makanan Pada Serbuk Kulit untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit

![Bar chart showing the weight gain per period for different conditions.]

- **Solomon Sehat**
- **Solomon Sakit**
- **Sumedang Sehat**
- **Sumedang Sakit**
- **Kediri CSO Putih Sehat**
- **Kediri CSO Putih Sakit**
Lampiran 53
Rata-Rata Pertumbuhan Berat Larva Pada Serbuk Kebutuhan
Larva Besar Dengan Kondisi Pohon Sehat dan Sakit

Lampiran 54
Rata-Rata Pertumbuhan Panjang Larva Pada Serbuk Kulit untuk
Larva Besar Dengan Kondisi Pohon Sehat dan Sakit
Lampiran 55 Rata-Rata Pertumbuhan Diameter Kepala Larva Pada Serbuk Kulit untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit

Pengamatan IV

- Sengon Sehat
- Sengon Sakit

Lampiran 56 Rata-Rata Panjang Larva pada Serbuk Kayu untuk Larva Besar pada Berbagai Provenan

Waktu Pengamatan

- Solomen
- Sumedang
- Kodri CSD Purba
Lampiran 57 Rata-Rata Diameter Kepala pada Serbuk Kayu untuk Larva Besar pada Berbagai Provenan

Gampiran 58 Rata-Rata Pertumbuhan Berat Makanan Pada Serbuk Kayu untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit
Lampiran 59 Rata-Rata Pertumbuhan Panjang Larva Pada Serbuk Kayu untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit

Pengamatan IV

-0,02

-0,05

0,00

0,05

0,10

0,15

0,20

Rata-Rata Pertumbuhan Panjang Larva (cm)

Sengon Sehat Sengon Sakit

Lampiran 60 Rata-Rata Pertumbuhan Diameter Kepala Larva Pada Serbuk Kayu untuk Larva Besar Dengan Kondisi Pohon Sehat dan Sakit

Pengamatan IV

0,006

0,014

0,016

Rata-Rata Pertumbuhan Diameter Kepala Larva (cm)

Sengon Sehat Sengon Sakit