KANDUNGAN NUTRISI, FERMENTABILITAS, DAN KECERNAAN IN VITRO BUNGKIL BIJI JARAK PAGAR (Jatropha curcas L.) TERDETOKSIFIKASI

SKRIPSI
PENNY HASANAH

PROGRAM STUDI ILMU NUTRISI DAN MAKANAN TERNAK
FAKULTAS PETERNAKAN
INSTITUT PERTANIAN BOGOR
2007
RINGKASAN

Pembimbing Utama : Dr. Despal, S.Pt., MSc. Agr.
Pembimbing Anggota : Dr. Ir. Nuri Aeni Sigit, MS.

Bungkil biji jarak pagar yang digunakan berasal dari Lampung (L), Kalimantan (K), dan Lombok Timur (LT) dan masing-masing didetoksifikasi dengan bahan perakuan yaitu BBJP + 0% tepung kuniu (P1), BBJP + 0,5% tepung kuniu (P2), BBJP + 1% tepung kuniu (P3), BBJP + 1,5% tepung kuniu (P4), BBJP + 4% NaOH + 10% NaOCl (P5). Seluruh perlakuan disertai pemanasan basal pada autoclave bersuhu 121 °C selama 30 menit. Peubah yang diukur pada bungkil biji jarak pagar terdetoksifikasi (BBJP-T) antara lain komposisi proksimat (bahan kering, protein kasar, lemak, dan serat kasar) dan curcin menurut AOAC (1999), phorbolester diukur dengan metode yang sama seperti yang digunakan Makkar et al. (1998), konsentrasi NH3 dan VFA total berdasarkan General Laboratory Procedures (1966), produksi gas serta kecernaan bahan kering dan energi metabolis estimasi menurut Menke et al. (1979). Metode Tilley dan Terry (1963) yang telah mengalami modifikasi digunakan untuk pengukuran kecernaan bahan kering dan bahan organik.

Hasil penelitian menunjukkan bahwa proses detoksifikasi menimbalkan perubahan terhadap kandungan nutrisi dan racun BBJP. Peningkatan terjadi pada kandungan abu dan protein kasar semua perlakuan. Kandungan lemak mengalami peningkatan pada P1 – P4 sedangkan pada P5 terjadi penurunan. Seluruh perlakuan menyebabkan penurunan kandungan serat kasar. Proses detoksifikasi mampu menurunkan 58,66% unit kandungan curcin dan 30,37% unit kandungan phorbolester BBJP, dimana P1 lebih efektif menurunkan kandungan curcin sedangkan P5 lebih efektif menurunkan kandungan phorbolester. Baik penggunaan anti tumor (kuniu) maupun penambahan alkali (NaOH dan NaOCl) yang dicobakan dalam penelitian ini baik mampu menurunkan phorbolester sampai taraf aman untuk dikonsumsi oleh ternak (phorbolester < 0,09 mg/g). Proses detoksifikasi BBJP menimbalkan peningkatan tingkat degradasi yang terlihat pada produksi NH3, VFA total, dan produksi gas, namun tidak menimbalkan perbedaan kecernaan in vitro. Asal daerah yang berbeda pada BBJP-T menunjukkan tingkat degradasi yang relatif sama, namun mengalami nilai kecernaan in vitro.

Kata-kata kunci: bungkil biji jarak pagar, curcin, phorbolester, metode detoksifikasi, kandungan nutrisi, kecernaan.
ABSTRACT

Nutrition Composition, Fermentability, and In Vitro Digestibility of Detoxified Jatropha curcas Meal

P. Hasanah, Despal, and N. Sigit

Jatropha curcas meal has a great potential as animal feedstuff. So far, there are no appropriate detoxification methods available. Curcin and phorbolester are the main toxic compounds that could be eliminated by physical, chemical and biological methods. However, the treatment is economically not feasible. Alternative detoxification method using turmeric and alkali had been done. Three origins of Indonesia Jatropha curcas (Lampung = L, Kebumen = K, and Lombok Timur = LT) were used to investigate the effect of five levels detoxification methods. They were 0% (T1), 0.5% (T2), 1.0% (T3), and 1.5% (T4) turmeric and 4% NaOH + 10% NaCl (T5). All treatments were followed by wet heat treatment at 121 °C for 30 minutes. Nutrition and anti-nutrition composition as well as fermentability and digestibility changed had been investigated. The proximate composition included dry matter (DM), ash, crude protein (CP), lipid, and crude fiber (CF) had been determined according to AOAC (1999). Curcin had been detected with AOAC (1999) procedure. Phorbolester had been determined according to Makkar et al. (1998). The concentration NH3 and VFA were measured according to General Laboratory Procedures (1966), while the rate of organic matter fermentation to form gas, estimated organic matter and metabolizable energy was measured following Manke et al. (1979) procedure. Tilley and Terry (1963) method were used to examine dry matter (DMD) and organic matter digestibility (OMD). Detoxification process increased CP and ash, but reduced CF contents. T1 - T4 increased lipid contents, while T5 reduced the lipid content. Detoxification process could be reduced 58.66% unit of curcin and 30.37% unit of phorbolester contents. T1 was more effective in reducing curcin content than other treatments, while T5 was the most efficient in reducing phorbolester content among the treatments. Detoxified Jatropha curcas meal after addition of anti tumor agent and alkali followed by wet treatment could not be categorized as a safety feed for animal (phorbolester < 0.09 mg/g). Detoxification process made different in NH3 and VFA concentrations as well as gas production rate, but did not influenced in vitro rumen digestibility. Origin of Jatropha curcas meal showed the rate of degradation was same, but influenced in vivo rumen digestibility.

Keywords: Jatropha curcas meal, curcin, phorbolester, detoxification methods, nutrition composition, digestibility
KANDUNGAN NUTRISI, FERMENETABILITAS, DAN KECERNAAN IN VITRO BUNGKIL BIJI JARAK PAGAR (Jatropha curcas L.) TERDETOKSIFIKASI

PENNY HASANAH
D24103046

Skripsi ini merupakan salah satu syarat untuk memperoleh gelar Sarjana Peternakan pada Fakultas Peternakan Institut Pertanian Bogor

PROGRAM STUDI ILMU NUTRISI DAN MAKANAN TERNAK
FAKULTAS PETERNAKAN
INSTITUT PERTANIAN BOGOR
2007
KANDUNGAN NUTRISI, FERMENTABILITAS, DAN KECERNAAN IN VITRO BUNGKIL BIJI JARAK PAGAR (Jatropha curcas L.) TERDETOKSIFIKASI

Oleh
PENNY HASANAH
D24163046

Skripsi ini telah disetujui dan disidangkan di hadapan Komisi Ujian Lisan pada tanggal 8 Agustus 2007

Pembimbing Utama

Dr. Despal, S.Pt., MSc. Agr.
NIP. 132 146 238

Pembimbing Anggota

Dr. Ir. Nur Aeni Sigit, MS.
NIP. 130 350 065

Bogor Agricultural University
RIWAYAT HIDUP

KATA PENGANTAR

Puji dan syukur penulis panjatkan ke hadirat Allah SWT atas rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi yang berjudul “Kandungan Nutrisi, Fermentabilitas, dan Kecernaan In Vitro Bungkil Biji Jarak Pagar (Jatropha curcas L.) Terdetoksifikasi”. Skripsi ini merupakan salah satu syarat untuk memperoleh gelar sarjana peternakan.

Tulisan ini memuat informasi mengenai potensi bungkil biji jarak pagar (BBJP) sebagai bahan pakan sumber protein, kandungan racun curcin dan phorbolester yang terdapat pada BBJP, usaha detoksifikasi BBJP, dan penggunaan BBJP pada ternak ruminansia secara in vitro. Tujuan dari penelitian ini adalah menghasilkan BBJP terdetoksifikasi yang dapat digunakan oleh ternak dengan melakukan penurunan kandungan curcin melalui pemanasan basah, penurunan kandungan phorbolester melalui penambahan kunyit, serta menjaga penurunan kualitas nutrisi yang dinilai dari kandungan nutrisi, fermentabilitas dan kecernaan in vitro BBJP terdetoksifikasi.

Penulis memahami bahwa dalam penulisan skripsi ini masih banyak terdapat kekurangan. Besar harapan penulis adanya sumbangan pemikiran dari berbagai pihak yang akan perbaikan skripsi ini. Semoga skripsi ini bermanfaat bagi pembaca.

Bogor, Agustus 2007

Penulis
DAFTAR ISI

<table>
<thead>
<tr>
<th>RINGKASAN</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>iii</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LEMBAR PERNYATAAN</th>
<th>iv</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LEMBAR PENGESAHAN</th>
<th>v</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>KATA PENGANTAR</th>
<th>vi</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FTAR ISI</th>
<th>viii</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FTAR TABEL</th>
<th>x</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FTAR GAMBAR</th>
<th>xi</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FTAR LAMPIRAN</th>
<th>xii</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PENDAHULUAN</th>
<th>1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Latar Belakang</th>
<th>1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Perumusan Masalah</th>
<th>3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tujuan</th>
<th>3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TUJUAN PUSTAKA</th>
<th>4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tanaman Jarak</th>
<th>4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Jarak Pagar (Jatropha curcas L.)</th>
<th>4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bungkil Biji Jarak Pagar (BBJP)</th>
<th>6</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Curcin</th>
<th>7</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Phorbolester</th>
<th>7</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kurkumin</th>
<th>8</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Detoksifikasi Bungkil Biji Jarak Pagar (BBJP)</th>
<th>9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fermentabilitas dan Kecernaan Pakan</th>
<th>10</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>METODE</th>
<th>13</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Waktu dan Lokasi</th>
<th>13</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Materi</th>
<th>13</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Rancangan</th>
<th>13</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prosedur</th>
<th>15</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>KESIL DAN PEMBAHASAN</th>
<th>21</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kandungan Nutrisi dan Racun Bungkil Biji Jarak Pagar (BBJP)</th>
<th>21</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fermentabilitas Bungkil Biji Jarak Pagar Terdetoksifikasi (BBJP-T)</th>
<th>24</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Konsentrasi NH₃</th>
<th>24</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Konsentrasi VFA (Volatile Fatty Acid) Total</th>
<th>25</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Produksi Gas</th>
<th>26</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kecernaan Bungkil Biji Jarak Pagar Terdetoksifikasi (BBJP-T)</th>
<th>27</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kecernaan Bahan Kering (KCBK)</th>
<th>27</th>
</tr>
</thead>
</table>
Kecernaan Bahan Organik (KCBO) .. 27
Energi Metabolis (EM) ... 29

KESIMPULAN DAN SARAN.. 31
 Kesimpulan ... 31
 Saran ... 31

UCAPAN TERIMA KASIH... 32

DAFTAR PUSTAKA .. 33

IMPORAN ... 38
DAFTAR TABEL

Nomor	Halaman
1. Kandungan Zat Anti Nutrisi dan Racun BBJP | 6
2. Kandungan Nutrisi dan Racun BBJP Sebelum Didetoksifikasi | 21
3. Kandungan Nutrisi dan Racun BBJP Setelah Didetoksifikasi | 22
4. Rataan Konsentrasi NH₃ BBJP-T (mM) | 24
5. Rataan Konsentrasi VFA Total BBJP-T (mM) | 25
6. Rataan Kecernaan Bahan Kering BBJP-T (%) | 27
7. Rataan Kecernaan Bahan Organik BBJP-T (%) | 28
8. Rataan Kecernaan Bahan Organik Estimasi BBJP-T (%) | 29
9. Rataan Energi Metabolis Estimasi BBJP-T (MJ/kg BK) | 29
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Gambar/Isi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tanaman Jarak Pagar</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Skema Pemanfaatan Tanaman Jarak Pagar</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Struktur Kimia Curcina</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>Struktur Kimia Phorbolester</td>
<td>8</td>
</tr>
<tr>
<td>5.</td>
<td>Struktur Kimia Kurkumin</td>
<td>9</td>
</tr>
<tr>
<td>6.</td>
<td>Proses Pembuatan Bungkil Biji Jarak Pagar (BBJP)</td>
<td>15</td>
</tr>
<tr>
<td>7.</td>
<td>Proses Detoksifikasi Bungkil Biji Jarak Pagar (BBJP)</td>
<td>16</td>
</tr>
<tr>
<td>8.</td>
<td>Grafik Produksi Gas BBJP-T</td>
<td>26</td>
</tr>
<tr>
<td>Nomor</td>
<td>Deskripsi</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Analisa Sidik Ragam Konsentrasi NH₃</td>
<td>39</td>
</tr>
<tr>
<td>2.</td>
<td>Uji Tukey Konsentrasi NH₃</td>
<td>39</td>
</tr>
<tr>
<td>3.</td>
<td>Analisa Sidik Ragam Konsentrasi VFA Total</td>
<td>39</td>
</tr>
<tr>
<td>4.</td>
<td>Analisa Sidik Ragam Kecernaan Bahan Kering (KCBK)</td>
<td>40</td>
</tr>
<tr>
<td>5.</td>
<td>Uji Tukey Kecernaan Bahan Kering (KCBK)</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>Analisa Sidik Ragam Kecernaan Bahan Organik (KCBO)</td>
<td>40</td>
</tr>
<tr>
<td>7.</td>
<td>Uji Tukey Kecernaan Bahan Organik (KCBO)</td>
<td>41</td>
</tr>
<tr>
<td>8.</td>
<td>Analisa Sidik Ragam Kecernaan Bahan Organik Estimasi</td>
<td>41</td>
</tr>
<tr>
<td>9.</td>
<td>Uji Tukey Estimasi Kecernaan Bahan Organik Estimasi</td>
<td>41</td>
</tr>
<tr>
<td>10.</td>
<td>Analisa Sidik Ragam Energi Metabolis Estimasi</td>
<td>42</td>
</tr>
<tr>
<td>11.</td>
<td>Uji Tukey Energi Metabolis Estimasi</td>
<td>43</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar Belakang

Tanaman jarak pagar (Jatropha curcas L.) telah menjadi primadona pada saat ini karena dapat dijadikan sumber bahan baku untuk pembuatan biodiesel yang bersifat non-edible oil, sehingga tidak bersaing dengan kebutuhan manusia. Seiring dengan peningkatan penggunaan biji jarak pagar sebagai penghasil biodiesel, akan dihasilkan produk ikutan berupa bungkil biji jarak pagar (BBJP) yang merupakan komponen terbesar (> 50%) dari biomasa biji jarak (Staubmann et al., 1997). Bungkil ini mengandung protein sebesar 53 - 58% (Areghoe et al., 2003), sehingga berpotensi sebagai pakan ternak sumber protein.

Namun sangat disayangkan, potensi besar tersebut belum dapat dimanfaatkan karena adanya kandungan racun, diantaranya adalah curcin dan phorbolester (Makkar et al., 1998) yang dapat menyebabkan kematian pada ternak yang mengkonsumsinya. Bungkil biji jarak pagar (BBJP) perlu didetoksifikasi terlebih dahulu agar dapat dimanfaatkan oleh ternak (Areghoe et al., 2003).

Beberapa metode detoksifikasi yang sudah dilaporkan antara lain: pemanasan (Makkar dan Becker, 1997; Gross et al., 1997; Aderibigbe et al., 1997; Areghoe et al., 1998), irradiiasi atau penyinaran dengan mineral cobalt (Herrera et al., 2006), ekstraksi dengan metanol (Gross et al., 1997; Areghoe et al., 2003), ekstraksi dengan etanol yang disertai 0,07% NaHCO₃ (Herrera et al., 2006), pengolahan kimia dengan NaOH dan tanpa NaOCl (Areghoe et al., 2003), serta fermentasi dengan Rhizopus oryzae (Trabi et al., 1997) atau Rhizopus oligosporus (Nurbaeti, 2007; Istichomah, 2007).

Pengolahan dengan pemanasan dapat menurunkan aktivitas curcin dan protein inhibitor (Makkar and Becker, 1997; Aderibigbe et al., 1997; Areghoe et al., 1998) dan meningkatkan keceraan nitrogen rumen in vitro dari 38 menjadi 65% (Makkar and Becker, 1997), namun penggunaannya pada ikan menyebabkan 100% kematian (Gross et al., 1997). Pengolahan dengan ekstraksi alkohol 92% yang diikuti dengan pemanasan dapat menurunkan kadar phorbolester ke taraf yang dapat diterima ternak, percobaan pemberiannya pada mencit dan tikus tidak menunjukkan gangguan pertumbuhan (Gross et al., 1997; Areghoe et al., 2003).
Pengolahan kiinia dengan 4% NaOH dan 10% NaOCl diikuti dengan pemanasan berhasil menurunkan kadar phorbolester varietas Cape Verde dari 1,78 mg/g menjadi 0,13 mg/g. Pengolahan dengan 3,5% NaOH tanpa NaOCl berhasil menurunkan phorbolester menjadi 0,18 mg/g. Percobaan BBJP terdetoksifikasi (16%) dalam ransum menunjukkan respon tikus yang kurang baik yaitu konsumsi dan pertumbuhan rendah sehingga disimpulkan bahwa kandungan phorbolester lebih dari 0,16 mg/g belum dapt ditoleransi oleh ternak (Aregheore et al., 2003). Pengolahan dengan 0,07% NaHCO₃ yang didahului ekstraksi etanol berhasil menurunkan kandungan phorbolester BBJP varietas Coatzacoalcos dari Meksiko yang sangat bervariasi dari 3,85 mg/g menjadi 0,97 mg/g (Herrera et al., 2006).

Pengolahan secara biologis menggunakan Rhizopus oligosporus menunjukkan produktivitas ayam broiler lebih baik dibandingkan BBJP yang diolah secara fisik dan kimia, dilihat dari retensi protein, energi metabolis, palatabilitas, dan tingkat konsumsi (Nurbaeti, 2007). Namun, penggunaan 3% BBJP terdetoksifikasi tersebut dalam ransum menunjukkan gangguan pada ternak yang dibuktikan dari histopatologi hati dan ginjal, disimpulkan bahwa BBJP terdetoksifikasi belum aman untuk dikonsumsi (Istichomah, 2007).

Hingga saat ini belum ditemukan metode detoksifikasi yang efisien. Walaupun ekstraksi alkohol yang disertai pemanasan berhasil menurunkan kandungan curcin dan phorbolester hingga taraf aman untuk ternak, namun metode ini belum ekonomis. Penggunaan alkali yang dapat menyabunkan (saponifikasi) phorbolester yang diikuti dengan pemanasan juga berhasil menurunkan kadar phorbolester walaupun tidak seefektif ekstraksi alkohol, namun secara ekonomis lebih aplikatif terutama untuk varietas yang kandungan phorbolester lebih rendah dibanding kandungan phorbolester yang terdapat di Cape Verde yaitu 2,79 mg/g (Makkar et al., 1998).

Permana et al. (2007) sudah mengkaji kandungan nutrisi dan racun BBJP yang berasal dari tiga wilayah yang terdapat di Indonesia. Disimpulkan bahwa kandungan nutrisi BBJP sebanding dengan bungkil kedele dan mengandung phorbolester berkisar 0,99 – 1,33 mg/g. Kandungan phorbolester yang lebih rendah, ditolakkan BBJP dari Indonesia lebih mudah didetoksifikasi.
Penggunaan kurkumin baik preparat murni maupun komersial untuk menghambat aktivitas phorbolester sudah banyak diteliti dalam bidang kedokteran karena sifat kurkumin yang bertentangan dengan phorbolester sebagai anti tumor (Huang et al., 1995; Zhang et al., 1999; Ireson et al., 2001; Chun et al., 2003). Penggunaan kurkumin yang disertai pemanasan basah untuk detoksifikasi BBJP belum pernah dikaji.

Perumusan Masalah

Bungkil biji jarak pagar (BBJP) merupakan produk ikutan dari pengolahan biodiesel yang berpotensi sebagai pakan alternatif sumber protein. Namun, BBJP mengandung racun, seperti curcin dan phorbolester yang dapat menyebabkan kematian jika diberikan kepada ternak secara langsung.

Metode detoksifikasi yang sudah dikaji belum sampai pada suatu penemuan metode yang efisien dan ekonomis. Penelitian ini mengkaji kemungkinan penggunaan kunyit yang mengandung kurkumin pada berbagai taraf disertai pemanasan basah untuk mendetoksifikasi BBJP. Perlakuan alkali (NaOH dan NaCl) yang disertai pemanasan basah digunakan sebagai kontrol.

Pemanasan basah diharapkan dapat menurunkan kandungan curcin, sedangkan penambahan kunyit diharapkan dapat menghambat aktivitas phorbolester. Pengolahan yang dilakukan secara keseluruhan diharapkan tidak menurunkan kualitas nutrisi BBJP terdetoksifikasi.

Tujuan

Tujuan yang ingin dicapai dari pelaksanaan penelitian ini adalah memfasilitasi BBJP terdetoksifikasi yang dapat digunakan oleh ternak dengan metode: a) penurunan kandungan curcin melalui pemanasan basah, b) penurunan kandungan phorbolester melalui penambahan kunyit dan penambahan basah, serta c) menyegarkan penurunan kualitas nutrisi yang dinilai dari kandungan nutrisi, fermentabilitas dan kecerahan in vitro BBJP terdetoksifikasi.
TINJAUAN PUSTAKA

Tanaman Jarak

Jarak Pagar (Jatropha curcas L.)

Tanaman jarak pagar (Gambar 1) memiliki berbagai macam nama sebutan antara lain physic mut, purging nut, pinoncillo, habb-el-meluk, black vomit nut, American purging mut, barbados purging mut, big purge nut (Makkar, et al., 1998).

Tanaman jarak pagar termasuk kedalam klasifikasi:

Divisi : Spermatophyta
Subdivisi : Angiospermae
Kelas : Dicotyledone
Ordo : Euphorbiales
Famili : Euphorbiaceae
Genus : Jatropha
Species : Jatropha curcas Linn

Gambar 1. Tanaman Jarak Pagar

Tanaman jarak pagar berupa perdu dengan tinggi 1 - 7 m, bercabang tidak teratur. Batangnya berkayu, silindris, dan bila terluka mengeluarkan getah. Daunnya berada daun tunggal, berlekat, bersudut tiga atau lima, tulang daun menjadi dengan 5-6 tulang utama, warna daun hijau (permukaan bagian bawah lebih pucat dibanding bagian atas), dan panjang tangkai daun antara 4 - 15 cm. Bunga berwarna kuning kekuningan, berupa bunga majemuk berbentuk malai, berumah satu. Bunga jantan dan
bunga betina tersusun dalam rangkaian berbentuk cawan, muncul di ujung batang atau ketiak daun. Buah berupa buah kotak berbentuk bulat telur, diameter 2 - 4 cm, berwarna hijau ketika masih muda dan kuning jika masak. Buah jarak terbagi tiga ruang yang masing-masing ruang diisi tiga biji. Biji berbentuk bulat lonjong, warna coklat kehitaman (Hambali et al., 2006).

![Diagram tanaman jarak pagar](attachment:diagram.png)

Bungkil Biji Jarak Pagar (BBJP)

Bungkil biji jarak pagar (BBJP) merupakan produk ikutan dari pengolahan jarak pagar yang berjumlah lebih dari 50% biomasa biji jarak (Staubmann et al., 1997). Menurut McDonald et al. (2002) terdapat dua cara untuk menghasilkan bungkil yaitu pengepresan dan penggunaan pelarut organik (solvent extraction). Bungkil biji jarak pagar (BBJP) memiliki kandungan nutrisi yang berbeda-beda tergantung varietas dan geografis tumbuhnya serta metode ekstraksi yang digunakan. Bungkil biji jarak pagar (BBJP) asal Cape Verde yang terkenal beracun mengandung 56,8% protein kasar, 1,5% lemak, dan 9,6% abu. Untuk BBJP asal Meksiko yang tidak beracun mengandung 63,8% protein kasar, 1% lemak, dan 9,8% abu. (Makkar et al., 1998). Hal ini menunjukkan bahwa BBJP mengandung zat nutrisi yang baik untuk ternak. Namun, pada pemberianannya BBJP memiliki kendala utama berupa zat anti nutrisi dan racun. Kandungan zat anti nutrisi dan racun pada biji jarak pagar dapat dilihat pada Tabel 1.

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Jarak Pagar Varietas Cape Verde</th>
<th>Jarak Pagar Varietas Meksiko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanin (% setara tannic acid)</td>
<td>0,04</td>
<td>0,02</td>
</tr>
<tr>
<td>Atracypsin (mg/g bungkil)</td>
<td>21,3</td>
<td>26,5</td>
</tr>
<tr>
<td>Sapogenin (% setara diosgenin)</td>
<td>2,6</td>
<td>3,4</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>9,4</td>
<td>8,9</td>
</tr>
<tr>
<td>Lechin (1/mg bungkil)</td>
<td>102</td>
<td>51</td>
</tr>
<tr>
<td>Phenol esters (mg/g biji)</td>
<td>2,79</td>
<td>0,11</td>
</tr>
</tbody>
</table>

Sumber: Makkar et al. (1998)
Curcin

Gambar 3. Struktur Kimia Curcin

Phorbolster

Awalnya curcin diduga sebagai satu-satunya racun utama yang terdapat dalam biji jarak pagar, hingga Aregheore et al. (1998) berhasil membuktikan melalui penelitian dua varietas jarak pagar yang berbeda dan menyimpulkan bahwa kandungan senyawa beracun baik pada varietas toksik (Cape Verde) maupun non toksik (Meksiko) terdapat dalam konsentrasi yang relatif sama, kecuali pada

Gambar 4. Struktur Kimia Phorbolester

Menurut Makkar dan Becker (1997), phorbolester stabil terhadap panas dan dapat bertahan pada pemanggangan hingga suhu 160 °C selama 30 menit sehingga masyarakat Indonesia, berasal dari pengolahan secara kimia. Penurunan kandungan phorbolester BBJP melalui pengolahan kimia telah banyak dilakukan seperti ekstraksi dengan metanol (Gross et al., 1997; Areghore et al., 2003) atau ekstraksi etanol 92% disertai 0,07% NaHCO₃ (Herrera et al., 2006), penambahan NaOH dan tanpa NaOCl (Areghore et al., 2003). Namun, belum ada metode ini yang ekonomis dan efisien.

Phorbolester mempunyai sifat cocarcinogens atau tumor promoters seperti percobaan pada tikus (Heller, 1996). Aktivitas phorbolester untuk mempromosikan tumor dapat dihambat oleh zat kurkumin yang berfungsi sebagai anti tumor (Huang et al., 1995; Zhang et al., 1999; Ireson et al., 2001; Chun et al., 2003).

Kurkumin

setiap spesies yang berkisar antara 2,5 - 6% pada kunyit (Taryono, 2001), 1,5 - 3,5%, pada temu putih, dan 1,4 - 4% pada temu lawu (Wientarsih, 2000). Struktur kimia kurkumin dapat dilihat pada Gambar 5.

Gambar 5. Struktur Kimia Kurkumin

Kurkumin merupakan serbuk kristal berwarna kuning jingga dan tidak larut dalam air dengan titik lebur 183 °C (Taryono, 2001). Kurkumin juga tidak stabil terhadap sinar matahari, tapi tahan terhadap perluasan panas (Culson, 1980).

Kurkumin memiliki efekfitas terhadap anti inflamasi yang bekerja menghambat metabolisme asam arachidonat, bekerja mengurangi lemak peroksidasi, bekerja terhadap perbaikan fungsi kardiovaskuler, anti mikroba, mengurangi zat karsinogenik, dan anti tumor (Mills dan Bone, 2000). Penggunaan kurkumin baik preparat murni maupun komersial untuk menghambat aktivitas phorbolister sudah banyak diteliti dalam bidang kedokteran karena sifat kurkumin yang bertentangan dengan phorbolister sebagai anti tumor (Huang et al., 1995; Zhang et al., 1999; Ireson et al., 2001; Chun et al., 2003).

Detoksifikasi Bungkil Biji Jarak Pagar (BBJP)

Detoksifikasi BBJP telah banyak dilakukan dengan berbagai cara, antara lain secara fisik, kimia, dan biologi. Detoksifikasi secara fisik dapat dilakukan dengan cara pemanasan (Makkar dan Becker, 1997; Aderbigbe et al., 1997; Areghoere et al., 1998) dan irradiasi atau penyinaran (Herrera et al., 2006). Pemanasan basah pada suhu 121°C selama 30 menit dapat menurunkan aktivitas curcin dan trypsin inhibitor (Makkar dan Becker, 1997; Aderbigbe et al., 1997; Areghoere et al., 1998) dan meningkatkan keceraan nitrogen rumen in vitro dari 38 menjadi 65% (Makkar dan Becker, 1997), namun penggunaannya pada ikan menyebabkan kematian ikan 100% (Gross et al., 1997). Irradiasi atau penyinaran dengan mineral cobalt pada 10 kGy
mampu menurunkan kandungan phytat pada BBJP asal Meksiko (Herrera et al., 2006).

Detoksifikasi secara kimia dapat dilakukan dengan pencucian metanol 92% sebanyak 4 kali yang disertai pemanasan dapat menurunkan phorbolester sampai 0,09 mg/g dan kadar ini dapat ditoleransi oleh ternak (Aregeheore et al., 2003). Pencucian etanol 92% yang ditambah dengan 0,07% NaHCO₃ dan disertai pemanasan pada autoclave bersuhu 121 °C selama 20 menit mampu menurunkan kandungan curcin dan phorbolester BBJP varietas Coatzacoalcos dari Meksiko yang sangat beracun dari 3,85 mg/g menjadi 0,97 mg/g (Herrera et al., 2006). Detoksifikasi kimia lainnya adalah penambahan bahan kimia, seperti NaOH dan tanpa NaOCl. Metode ini memiliki kemampuan yang berbeda dalam menurunkan phorbolester. Detoksifikasi dengan penambahan 4% NaOH dan 10% NaOCl berhasil menurunkan kadar phorbolester BBJP varietas toksik dari 1,78 mg/g menjadi 0,13 mg/g (Aregeheore et al., 2003). Detoksifikasi dengan 3,5% NaOH tanpa NaOCl berhasil menurunkan phorbolester menjadi 0,18 mg/g. Percobaan BBJP terdetoksifikasi (16% dalam ransum) menunjukkan respon tikus yang kurang baik yang konsumsi dan pertumbuhan rendah sehingga disimpulkan bahwa kandungan phorbolester lebih dari 0,13 mg/g belum dapat ditoleransi oleh ternak (Aregeheore et al., 2003).

Pengolahan secara biologis menggunakan Rhizopus oligosporus menunjukkan produktivitas ayam broiler lebih baik dibandingkan BBJP yang diolah secara fisik dan kimia, dilihat dari retensi protein, energi metabolis, palatabilitas, dan tingkat konsumsi (Nurbaeti, 2007). Namun, penggunaan 3% BBJP-T tersebut dalam ransum menunjukkan gangguan pada ternak yang dibuktikan dari histopatologi organ hati dan ginjal, disimpulkan bahwa BBJP-T belum aman untuk dikonsumsi (Kochomah, 2007).

Fermentabilitas dan Kecernaan Pakan

Proses pencernaan pada ruminansia dapat terjadi secara mekanis di mulut, fermentatif oleh mikroba rumen, dan secara enzimatik oleh enzim-enzim pencernaan. Mikroba rumen khususnya bakteri dan protozoa akan merombak zat makanan secara fermentatif, sehingga menjadi senyawa lain yang berbeda dari molekul zat makanan awalnya, misalnya protein dirombak menjadi amonia (NH₃) dan volatile fatty acid
(VFA) dan karbohidrat dirombak menjadi VFA (Sutardi, 1980). Pengujian fermentabilitas pakan dapat menggunakan pengukuran produksi NH₃ dan VFA.

Mikroba membutuhkan kerangka karbon yang dapat disuplai dari VFA untuk pertumbuhannya. Melalui bantuan enzim-enzim yang dihasilkan mikroba terutama bakteri, karbohidrat (polisakarida) dihidrolisis menjadi monosakarida, terutama glukosa yang kemudian difermentasikan menjadi VFA, terutama asetat, propionat, butyrat, serta gas-gas terutama CH₄ dan CO₂. Volatile fatty acid (VFA) selain disintesis dari karbohidrat, juga dapat disintesis dari protein walaupun dalam jumlah yang sedikit (Preston dan Leng, 1987). Produksi VFA total dipengaruhi oleh pakan dan rasa waka setelah makan, normal produksi VFA rata - rata adalah 70 - 150 mM (McDonald et al., 2002).

Tinggi rendahnya keceraaan bahan pakan dipengaruhi oleh jenis hewan, jenis pakan, komposisi kimia bahan pakan, tingkat pemberian pakan, dan temperatur lingkungan (Ranjhan dan Pathak, 1979). Menurut Sutardi (1977) keceraaan dalam batas normal adalah berkisar antara 50 - 60%.
METODE

Waktu dan Lokasi

Materi

Bahan

Bahan yang digunakan pada penelitian ini adalah biji jarak pagar yang bebas dari tiga daerah, yaitu Lampung, Kebumen, dan Lombok Timur sebanyak masing-masing 30 kg yang kemudian dijadikan bungkil. Ketiga daerah asal biji jarak ini mewakili kondisi klimatologis yang berbeda, yaitu Lampung mewakili daerah basah dengan curah hujan rata-rata 2.500-3.000 mm, Kebumen mewakili daerah dataran rendah dengan lahan kering sebesar 68,98%, dan Lombok Timur mewakili daerah kering dengan curah hujan rata-rata kurang dari 1.500 mm (Dephut, 2002; Weipedia, 2007; Balitklimat, 2005).

Bahan yang digunakan untuk detoksifikasi adalah tepung kunyit, NaOH, NaOCl, dan akuades. Bahan yang digunakan untuk analisa fermentabilitas dan kecernaan in vitro diperinci lebih lengkap pada prosedur.

Alat

Peralatan yang digunakan untuk pembuatan bungkil adalah mesin kemper Hok Cipta Dinding dan blender. Timbangan digital, gelas ukur, pengaduk, plastik tahan panas dan autoclave digunakan untuk proses detoksifikasi BBP. Peralatan untuk analisa fermentabilitas dan kecernaan in vitro lebih detail dijelaskan pada masing-masing prosedur.

Rancangan

Penelitian ini menggunakan statistika deskriptif untuk parameter kandungan nutrisi dan racun. Untuk parameter fermentabilitas dan kecernaan in vitro menggunakan rancangan acak kelompok (RAK) pola faktorial 3 x 5 dengan tiga
periode pengambilan cairan rumen sebagai kelompok. Faktor yang diamati dalam penelitian terdiri dari dua faktor yaitu:

1. Faktor A (Daerah asal BBQP)
 \[L = \text{Lampung} \]
 \[K = \text{Kebumen} \]
 \[LT = \text{Lombok Timur} \]

2. Faktor B (Metode detoksifikasi)
 \[P1 = \text{BBJP + 0\% tepung kunyit} \]
 \[P2 = \text{BBJP + 0,5\% tepung kunyit} \]
 \[P3 = \text{BBJP + 1\% tepung kunyit} \]
 \[P4 = \text{BBJP + 1,5\% tepung kunyit} \]
 \[P5 = \text{BBJP + 4\% NaOH + 10\% NaOCl} \]

Model matematika yang digunakan adalah:

\[Y_{ijk} = \mu + \alpha_i + \beta_j + \tau_k + (\alpha\beta)_{ij} + \epsilon_{ijk} \]

Keterangan:
- \(Y_{ijk} \) = Pengaruh daerah asal BBQP ke-i, metode detoksifikasi ke-j, dan kelompok ke-k
- \(\mu \) = Rataan umum
- \(\alpha_i \) = Pengaruh daerah asal BBQP ke-i
- \(\beta_j \) = Pengaruh metode detoksifikasi ke-j
- \(\tau_k \) = Pengaruh kelompok ke-k
- \((\alpha\beta)_{ij} \) = Pengaruh interaksi daerah asal BBQP ke-i dengan metode detoksifikasi ke-j
- \(\epsilon_{ijk} \) = Pengaruh galat daerah asal BBQP ke-i, metode detoksifikasi ke-j, dan kelompok ke-k

Data yang diperoleh dalam penelitian dianalisa dengan sidik ragam (ANOVA) dilanjutkan dengan uji Tukey (Steel dan Torrie, 1993).

Perubah

Perubah yang diamati adalah:
1. Kandungan nutrisi (AOAC, 1999)
2. Kandungan curcin (AOAC, 1999)
3. Kandungan phorbolester (Makkar et al., 1998)
4. Konsentrasi NH₃ (General Laboratory Procedures, 1966)
5. Konsentrasi VFA (General Laboratory Procedures, 1966)
6. Produksi gas serta kecerea bahan organik dan energi metabolisme estimasi (Menke et al., 1979)
7. Kecerea bahan kering dan bahan organik (Tilley dan Terry, 1963)

Prosedur

Pembuatan Bungkil Biji Jarak Pagar (BBJP)

Gambar 6. Proses Pembuatan Bungkil Biji Jarak Pagar (BBJP)
Detoksifikasi Bungkil Biji Jarak Pagar (BBJP)

1. Perlakuan tanpa tepung kunyit (P1). Bungkil biji jarak pargar (BBJP) sebanyak 250 gram dimasukkan ke dalam plastik tahan panas dan ditambahkan 550 ml akuades untuk mencapai kandungan moisture bahan 66%, lalu diaduk sampai homogen. Selanjutnya dipanaskan pada autoclave suhu 121 °C selama 30 menit, kemudian dikeringkan pada oven bersuhu 70 °C selama dua hari dan digiling hingga menjadi saringan 0,5 μm. Bungkil biji jarak pargar terdetoksifikasi (BBJP-T) tanpa kunyit (P1) disimpan untuk pengujian lebih lanjut.

Proses detoksifikasi dapat dilihat pada Gambar 7.

Gambar 7. Proses Detoksifikasi Bungkil Biji Jarak Pagar (BBJP)

Perlakuan tepung kunyit (P2 - P4). Bungkil biji jarak pargar (BBJP) sebanyak masing-masing 250 gram dimasukkan ke dalam plastik tahan panas, ditambahkan masing-masing 1,25; 2,5 atau 3,75 g tepung kunyit atau 0,5; 1,0 atau 1,5% w/w untuk berturut-turut perlakuan P2, P3 dan P4. Sebanyak 550 ml akuades ditambahkan pada masing-masing BBP untuk mencapai kandungan moisture bahan 66%, lalu diaduk sampai homogen. Bungkil tersebut dipanaskan pada autoclave
bersuhu 121 °C selama 30 menit, dilanjutkan dengan pengeringan pada oven bersuhu 70 °C selama dua hari, digiling hingga melalui saringan 0,5 μm. Bungkil biji jarak pagar terdetoksifikasi (BBJP-T) dengan tepung kunyit (P2, P3 dan P4) disimpan untuk pengujian lebih lanjut.

c. Perlakuan 4% NaOH dan 10% NaOCl (P5). Bungkil biji jarak pagar (BBJP) sebanyak 250 gram dimasukkan ke dalam plastik tahan panas, ditambahkan 10 g NaOH yang sebelumnya dilarutkan dalam 525 ml akuades. Selanjutnya, ditambahkan 25 ml NaOCl secara bertahap hingga campuran tersebut homogen. Bungkil dimasukkan pada autoclave bersuhu 121 °C selama 30 menit dilanjutkan dengan pengeringan pada oven bersuhu 70 °C selama dua hari dan digiling hingga melalui saringan 0,5 μm. Bungkil biji jarak pagar terdetoksifikasi (BBJP-T) dengan perlakuan kimia (P5) disimpan untuk pengujian lebih lanjut.

Pengukuran Kandungan Nutrisi dan Racun

Fermentasi In Vitro

Bungkil biji jarak pagar terdetoksifikasi (BBJP-T) dimasukkan ke dalam tabung fermentor volume 50 ml sebanyak satu gram. Kemudian ditambahkan 12 ml larutan McDougall (19,6 NaHCO3, 9,265 NaHPO4, 2H2O, 1,14 HCl, 0,94 NaCl, 0,24 MgCl2, 7H2O, 0,08 CaCl2, dan 2000 ml aquades) dan delapan milliliter cairan rumen sapi. Tabung dikocok dengan gas CO₂ selama 30 detik dan ditutup dengan karet berentilasi. Tabung selanjutnya dimasukkan ke dalam shaker waterbath dengan suhu 39 °C dan difermentasi selama tiga jam. Setelah difermentasi tutup karet dibuka dan ditambahkan 0,2 ml HgCl2 jenuh untuk menghentikan fermentasi. Tabung diferensifase pada kecepatan 3000 rpm selama 15 menit untuk memisahkan supranatan dan endapan. Supernatant digunakan untuk analisa konsentrasi NH₃ dan VFA total.
Pengukuran konsentrasi \(\text{NH}_3 \) Konsentrasi \(\text{NH}_3 \) diukur dengan metode mikrodifusi conway (General Laboratory Produce, 1966). Cawan Conway diberi vaselin pada kedua bibirnya, kemudian satu mililiter supernatan ditempatkan pada salah satu sisi seket cawan dan pada posisi seket lainnya diletakkan satu mililiter larutan \(\text{Na}_2\text{CO}_3 \) jenuh. Cawan diletakkan miring ke arah seket sehingga keduanya tidak tercampur sebelum cawan ditutup rapat. Bagian tengah cawan diletakkan satu mililiter larutan asam borat berindikator \textit{brom cresol green-methyl red}. Cawan lalu ditutup rapat dan \(\text{Na}_2\text{CO}_3 \) dicampurkan dengan supernatan. Amonia dibebaskan dari reaksi dan ditangkap oleh asam borat yang diperlihatkan dengan adanya perubahan warna.

Setelah 24 jam, amonium borat dititrasi dengan larutan \(\text{H}_2\text{SO}_4 \) 0,005 N sampai warna berubah dari biru menjadi kemerahan. Kadar amonia dihitung dengan rumus:

\[
\text{NH}_3 \text{ (mM)} = \frac{(V_t - V_o) \times N \text{H}_2\text{SO}_4 \times 1000}{\text{gr sampel} \times \text{BK sampel}}
\]

Keterangan:

\(V_t = \) volume titrasi akhir
\(V_o = \) volume titrasi awal

Pengukuran konsentrasi VFA total. Konsentrasi VFA total ditentukan dengan menggunakan teknik destilasi uap (General Laboratory Procedure, 1966). Supernatan sebanyak lima mililiter dimasukan ke dalam tabung destilasi. Kemudian ditambahkan satu mililiter \(\text{H}_2\text{SO}_4 \) 15% dan tabung segera ditutup. Tabung destilasi dihubungkan dengan labu berisi air mendidih dan dipanaskan terus menerus selama proses destilasi. Uap air panas akan mendesak VFA dan akan berkondensasi dengan pendingin. Larutan yang terbentuk ditampung dalam erlenmeyer yang berisi lima mililiter \(\text{NaOH} \) 0,5 N sampai volumenya 300 ml. Setelah itu, ditambahkan indikator \textit{phenolphthalein} sebanyak dua tetes dan kemudian dititrasi dengan \(\text{HCl} \) 0,5 N sampai warna titran berubah dari merah jambu menjadi bening. Produksi VFA total dihitung dengan rumus:

\[
\text{VFA Total (mM)} = \frac{(a - b) \times N \text{HCl} \times 1000/5}{\text{gr sampel} \times \text{BK sampel}}
\]

Keterangan:

\(a = \) volume titran blanko; \(b = \) volume titran sampel
Pengukuran produksi gas. Produksi gas diukur menggunakan metode Menke et al. (1979). Sampel sebanyak 230 mg ditimbang, kemudian dimasukkan ke dalam syringe bervolume 100 ml. Larutan media disiapkan dengan mencampur 400 ml aquades, 0,1 ml larutan mikromineral (13,2 g CaCl₂, 10,0 g MnCl₂, 4 H₂O, 1,0 g CoCl₂, 6H₂O, 8,0 g FeCl₂ 6 H₂O, dan 100 ml akuades), 200 ml larutan buffer rumen (4,0 g NH₄CO₃, 35,0 g NaHCO₃, dan 1000 ml akuades), 200 ml larutan makromineral (5,7 g Na₂HPO₄ anhydrous, 6,2 g KHPO₄ anhydrous, 0,6 g MgSO₄.7 H₂O, dan 1000 ml akuades), 1 ml larutan resazurine (0,1 g resazurine dan 100 ml akuades), dan 40 ml larutan reduksi (4,0 ml NaOH 1 N, 0,625 g Na₂S. 9H₂O, dan 95 ml akuades). Selanjutnya larutan media dicampur dengan cairan rumen pada suhu 39°C dengan perbandingan 1:2. Sebanyak 30 ml campuran cairan rumen dan larutan makromineral ditambahkan ke dalam syringe yang sudah berisi sampel. Kemudian diincubasi secara anaerob selama 24 jam. Pengamatan produksi gas dilakukan pada 0, 4, 8, 12, 16, dan 24 jam. Produksi gas dapat dihitung menggunakan rumus:

\[
\text{PG (ml/200mg BK) } = \frac{[\text{PG}_t - \text{PG}_0]*200}{\text{gr sampel x BK sampel}}
\]

Keterangan:
- PG = produksi gas (ml/200 mg BK)
- PGₜ = produksi gas akhir (ml/200 mg BK)
- PG₀ = produksi gas awal (ml/200 mg BK)

Produksi gas yang didapat, digunakan untuk mengestimasi keceraan bahan organik (OMD) dan energi metabolis (EM) yang dihitung dengan metode Menke et al. (1979):

OMD (%) = 14,88 + 0,889 PG + 0,045 PK + 0,065 XA
EM (MJ/kg BK) = 1,242 + 0,146 PG + 0,007 PK + 0,0224 XL

Keterangan:
- PK = produksi gas (ml/200 mg BK)
- PK = protein kasar (g/kg BK)
- XA = kadar abu (g/kg BK)
- XL = kadar lemak (g/kg BK).
Pengukuran kecerahan bahan kering dan bahan organik. Kecerahan bahan kering dan bahan organik ditentukan dengan menggunakan metode Tilley dan Terry (1963) yang telah dimodifikasi. Pengukuran dimulai dari pencernaan fermentatif. Pencernaan fermentatif mengikuti prosedur yang sama seperti fermentasi untuk pengukuran konsentrasi NH₃ dan VFA, tetapi tahapan fermentasi dilanjutkan hingga 24 jam dan setiap empat jam dikocok dengan mengalirkan gas CO₂ selama 30 detik. Setelah 24 jam, aktivitas fermentasi dihentikan dengan penambahan 0,2 ml HgCl₂ jenis Tabung disentrifuse pada kecepatan 3000 rpm selama 15 menit untuk membahaskan endapan dan supernatant. Supernatant dibuang dan endapan digunakan untuk pencernaan hidrolisis. Pencernaan hidrolisis dimulai dengan menambahkan endapan dengan 20 ml larutan pepsin-HCl 0,2%. Tabung diinkubasikan selama 24 jam secara aerob. Sisa pencernaan disaring dengan kertas saring Whatman no. 41 yang telah diketahui bobotnya dengan bantuan pompa vakum dan dicuci dengan air panas, hasil saringan dimasukkan ke dalam cawan porselin yang telah diketahui bobotnya. Bahan kering (BK) residu didapatkan dengan jalan menguapkan air di dalam oven dengan temperatur 105 °C selama 24 jam. Untuk memperoleh bahan organik (BO) residu, bahan dalam cawan diabukan dalam tanur bersuhu 600 °C selama enam jam. Bahan kering atau organik blanko diperoleh dengan membuat fermentasi cairan rumen tanpa bahan makanan dengan cara yang sama. Bahan kering atau bahan organik asal adalah bahan kering atau bahan organik sampel yang digunakan. Kecerahan bahan kering (KCBK) dan bahan organik (KCBO) dihitung dengan rumus:

\[
\text{KCBK} (%) = \frac{\text{BK sampel (g)} - (\text{BK residu (g)} - \text{BK blanko (g)})}{\text{BK sampel (g)}} \times 100\%
\]

\[
\text{CBO} (%) = \frac{\text{BO sampel (g)} - (\text{BO residu (g)} - \text{BO blanko (g)})}{\text{BO sampel (g)}} \times 100\%
\]
HASIL DAN PEMBAHASAN

Kandungan Nutrisi dan Racun Bungkil Biji Jarak Pagar (BBJP)

Bungkil biji jarak pagar terdetoksifikasi (BBJP-T) mengalami perubahan baik dari segi nutrisi maupun racun dibandingkan bahan asal yang dilaporkan oleh Pernama et al. (2007). Kandungan nutrisi dan racun BBJP sebelum dan setelah didetoksifikasi dapat dilihat pada Tabel 2 dan 3.

Tabel 2. Kandungan Nutrisi dan Racun BBJP Sebelum Didetoksifikasi

<table>
<thead>
<tr>
<th>Data Analitik</th>
<th>BK (%)</th>
<th>BO</th>
<th>Abu</th>
<th>PK</th>
<th>LK</th>
<th>SK</th>
<th>Curein (%)</th>
<th>Phorbolester (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>93,19</td>
<td>92,69</td>
<td>7,31</td>
<td>42,58</td>
<td>20,52</td>
<td>13,82</td>
<td>0,72</td>
<td>td</td>
</tr>
<tr>
<td>K</td>
<td>93,24</td>
<td>92,99</td>
<td>7,01</td>
<td>37,93</td>
<td>22,38</td>
<td>12,97</td>
<td>0,70</td>
<td>0,99</td>
</tr>
<tr>
<td>L</td>
<td>94,10</td>
<td>93,22</td>
<td>6,78</td>
<td>32,94</td>
<td>29,62</td>
<td>6,58</td>
<td>0,67</td>
<td>1,33</td>
</tr>
<tr>
<td>Total</td>
<td>93,51</td>
<td>92,97</td>
<td>7,03</td>
<td>37,82</td>
<td>24,17</td>
<td>11,12</td>
<td>0,70</td>
<td>1,16</td>
</tr>
</tbody>
</table>

Sumber : Pernama et al. (2007)

Bungkil biji jarak pagar terdetoksifikasi (BBJP-T) asal Lampung, Kebumen, dan Lombok Timur mengalami peningkatan kadar abu rata-rata sebesar 15,05% unit. Metode detoksifikasi BBIP meningkatkan kandungan abu berturut-turut 1,95; 7,78; 3,74; 5,30 dan 40,73% unit untuk P1–P5. Peningkatan kadar abu pada P1–P4 disebabkan oleh kehilangan sebagian bahan organik selama proses detoksifikasi, sedangkan peningkatan yang cukup tajam pada P5 disebabkan oleh adanya penambahan mineral Na dan Cl dari NaOH dan NaOCl. Menurut Despal (2007) kandungan abu meningkat signifikan pada penggunaan NaOH lebih dari 2% dari BK cococa pod.

Protein kasar (PK) pada BBJP-T asal Lampung meningkat dari 42,58% menjadi 48,08%, sedangkan BBJP-T asal Kebumen mengalami peningkatan kadar PK dari 37,93% menjadi 43,98%. Peningkatan PK juga dialami oleh BBJP-T asal Lombok Timur yang meningkat dari 32,94% menjadi 36,77%. Peningkatan PK yang terbesar dialami oleh BBJP-T asal Lombok Timur yaitu 20,35% unit dibandingkan 18,44 dan 13,76% unit pada BBJP-T asal Lampung dan Kebumen. Proses detoksifikasi BBJP pada masing-masing perlakuan (P1 - P5) juga meningkatkan kandungan PK berturut-turut sebesar 13,37; 16,25; 14,36; 18,19 dan 12,41% unit.
Tabel 3. Kandungan Nutrisi dan Racun BBJP Setelah Didetoksifikasi

<table>
<thead>
<tr>
<th>Faktor</th>
<th>BK (%)</th>
<th>BO (%)</th>
<th>Abu (%)</th>
<th>PK (%)</th>
<th>LK (%)</th>
<th>SK (%)</th>
<th>Curcin (%)</th>
<th>Phorbol ester (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>96.87</td>
<td>92.25</td>
<td>7.75</td>
<td>47.74</td>
<td>19.19</td>
<td>4.20</td>
<td>0.25</td>
<td>td</td>
</tr>
<tr>
<td>P2</td>
<td>92.21</td>
<td>92.04</td>
<td>7.96</td>
<td>49.80</td>
<td>22.78</td>
<td>3.76</td>
<td>0.23</td>
<td>td</td>
</tr>
<tr>
<td>P3</td>
<td>90.78</td>
<td>91.90</td>
<td>8.10</td>
<td>49.24</td>
<td>21.97</td>
<td>4.06</td>
<td>0.31</td>
<td>td</td>
</tr>
<tr>
<td>P4</td>
<td>92.98</td>
<td>92.33</td>
<td>7.67</td>
<td>49.27</td>
<td>22.88</td>
<td>3.54</td>
<td>0.3</td>
<td>td</td>
</tr>
<tr>
<td>P5</td>
<td>93.71</td>
<td>88.30</td>
<td>11.70</td>
<td>44.34</td>
<td>12.91</td>
<td>3.27</td>
<td>0.39</td>
<td>td</td>
</tr>
</tbody>
</table>

Rataan | 93.31 | 91.36 | 8.64 | 48.08 | 19.95 | 3.77 | 0.296 | td |

<table>
<thead>
<tr>
<th>LT (%)</th>
<th>94.45</th>
<th>91.75</th>
<th>8.25</th>
<th>43.98</th>
<th>23.32</th>
<th>5.05</th>
<th>0.298</th>
<th>0.78</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>94.82</td>
<td>93.29</td>
<td>6.71</td>
<td>41.56</td>
<td>32.24</td>
<td>3.63</td>
<td>0.1</td>
<td>td</td>
</tr>
<tr>
<td>P2</td>
<td>92.93</td>
<td>92.65</td>
<td>7.35</td>
<td>42.89</td>
<td>33.83</td>
<td>3.24</td>
<td>0.31</td>
<td>td</td>
</tr>
<tr>
<td>P3</td>
<td>93.66</td>
<td>93.28</td>
<td>6.72</td>
<td>40.84</td>
<td>33.82</td>
<td>2.72</td>
<td>0.19</td>
<td>td</td>
</tr>
<tr>
<td>P4</td>
<td>90.52</td>
<td>92.72</td>
<td>7.28</td>
<td>44.01</td>
<td>32.06</td>
<td>3.51</td>
<td>0.37</td>
<td>0.92</td>
</tr>
<tr>
<td>P5</td>
<td>91.67</td>
<td>88.29</td>
<td>11.71</td>
<td>37.49</td>
<td>18.51</td>
<td>4.32</td>
<td>0.38</td>
<td>0.746</td>
</tr>
</tbody>
</table>

| Rataan | 92.72 | 92.05 | 7.95 | 41.36 | 30.09 | 3.48 | 0.27 | 0.83 |

<table>
<thead>
<tr>
<th>Metode</th>
<th>95.89</th>
<th>92.83</th>
<th>7.17</th>
<th>43.65</th>
<th>26.07</th>
<th>4.04</th>
<th>0.22</th>
<th>td</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>92.74</td>
<td>92.37</td>
<td>7.63</td>
<td>45.16</td>
<td>27.79</td>
<td>4.08</td>
<td>0.24</td>
<td>td</td>
</tr>
<tr>
<td>P3</td>
<td>93.95</td>
<td>92.69</td>
<td>7.31</td>
<td>44.16</td>
<td>26.84</td>
<td>4.00</td>
<td>0.26</td>
<td>td</td>
</tr>
<tr>
<td>P4</td>
<td>92.31</td>
<td>92.57</td>
<td>7.43</td>
<td>46.22</td>
<td>26.78</td>
<td>4.19</td>
<td>0.35</td>
<td>0.97</td>
</tr>
<tr>
<td>P5</td>
<td>92.58</td>
<td>88.13</td>
<td>11.87</td>
<td>43.17</td>
<td>14.80</td>
<td>4.18</td>
<td>0.37</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Kandungan lemak pada BBJP-T asal Lampung mengalami penurunan sebesar 22% unit sedangkan BBJP-T asal Kebumen dan Lombok Timur mengalami
peningkatan masing-masing sebesar 4,05 dan 1,57% unit. Kandungan lemak meningkat sebagai akibat pengolahan pada P1 sampai P4 masing-masing sebesar 7,26; 13,01; 9,92 dan 9,73% unit sedangkan pada P5 terjadi penurunan sebesar 38,79% unit. Penurunan kandungan lemak pada P5 disebabkan oleh penyabunan sebagian lemak oleh larutan basa (NaOH dan NaOCl) yang ditambahkan. Penambahan 4% NaOH pada cocoa pod menyebabkan penurunan lemak dari 9,34 menjadi 7,33% (Despal, 2007).

Bungkil biji jarak pagar terdetoksifikasi (BBJP-T) asal Lampung, Kebumen, dan Lombok Timur mengalami penurunan SK masing-masing sebesar 72,75; 61,09 dan 47,05% unit. Kandungan SK semua perlakuan (P1 - P5) juga mengalami penurunan berturut-turut sebesar 63,68; 63,29; 64,04; 62,30 dan 62,45% unit. Penurunan SK disebabkan oleh pemanasan yang melepaskan ikatan hidrogen molekuler selulosa dan hemiselulosa, sehingga terurai menjadi molekul karbohidrat sederhana (Winarno, 1992).

Phorbolerste merupakan racun paling berbahaya yang terkandung dalam BBJP. Proses detoksifikasi pada BBJP ditujukan juga untuk menurunkan kandungan phorbolester. Kandungan phorbolester BBJP asal Lombok Timur mengalami penurunan terbesar (37,37% unit) dibandingkan BBJP asal Kebumen (20,96% unit). Hasil ini menunjukkan proses detoksifikasi sangat efektif dilakukan pada BBJP Lombok Timur yang mengandung phorbolester awal lebih tinggi. Penurunan kandungan phorbolester juga terjadi pada P4 dan P5 masing-masing sebesar 16,81 dan 13,92% unit. Proses detoksifikasi dengan penambahan 1,5% tepung kunyit (P4)

Fermentabilitas Bungkil Biji Jarak Pagar Terdetoksifikasi (BBPJ-T)

Konsentrasi NH₃

Tabel 4. Rataan Konsentrasi NH₃ BBPJ-T (mM)

<table>
<thead>
<tr>
<th>Metode detoksifikasi</th>
<th>Daerah Asal</th>
<th>Rataan ± Sd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>K</td>
</tr>
<tr>
<td>P1</td>
<td>17,86 ± 2,41</td>
<td>15,80 ± 3,82</td>
</tr>
<tr>
<td>P2</td>
<td>10,98 ± 5,33</td>
<td>7,94 ± 1,43</td>
</tr>
<tr>
<td>P3</td>
<td>17,30 ± 7,62</td>
<td>17,35 ± 8,74</td>
</tr>
<tr>
<td>P4</td>
<td>19,67 ± 13,23</td>
<td>6,99 ± 0,23</td>
</tr>
<tr>
<td>P5</td>
<td>4,64 ± 0,15</td>
<td>6,86 ± 5,96</td>
</tr>
</tbody>
</table>

Rataan ± Sd: 14,09 ± 6,22, 10,99 ± 5,15, 11,65 ± 4,84

Keterangan: Superskrip yang berbeda pada kolom yang sama menunjukkan perbedaan yang sangat nyata (P<0,01).

L = Lampung, K = Kebumen, LT = Lombok Timur, P1 = BBPJ + 0% tepung kunyit, P2 = BBPJ + 0,5% tepung kunyit, P3 = BBPJ + 1% tepung kunyit, P4 = BBPJ + 1,5% tepung kunyit, P5 = BBPJ + 4% NaOH + 10% NaOCl

Bungkil biji jarak pagar terdetoksifikasi (BBPJ-T) memiliki konsentrasi NH₃ berisi 4,64 – 19,67 mM. Konsentrasi tersebut masih berada pada kisaran NH₃ yang membantu pertumbuhan mikroba, yaitu 4 - 12 mM (Sutardi, 1980). Konsentrasi NH₃ yang tinggi diduga karena proses degradasi protein pakan lebih cepat daripada
proses pembentukan protein mikroba, sehingga amonia yang dihasilkan terakumulasi dalam rumen (McDonald et al., 2002).

Daerah asal BBJP-T tidak mempengaruhi perbedaan konsentrasi NH₃. Hal ini menunjukkan bahwa protein BBJP-T didegradasi pada tingkat yang sama yang mampu mencukupi kebutuhan pertumbuhan mikroba seperti yang diuraikan oleh Sutardi (1980).

Konsentrasi amonia sangat nyata dipengaruhi oleh metode detoksifikasi (P<0,01). Penambahan alkali (P5) menyebabkan konsentrasi NH₃ lebih rendah dibandingkan dengan penambahan kunyit (P2 – P4) atau pemanasan (P1) saja.

Konsentrasi VFA (Volatile Fatty Acid) Total

Volatize fatty acid (VFA) merupakan produk akhir dari fermentasi bahan organik yang dimanfaatkan sebagai sumber energi utama ruminansia asal rumen.

Konsentrasi VFA total dari hasil penelitian diperlihatkan pada Tabel 5.

Tabel 5. Rataan Konsentrasi VFA Total BBJP-T (mM)

<table>
<thead>
<tr>
<th>Metode Detoksifikasi</th>
<th>Daerah Asal</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>K</td>
<td>LT</td>
</tr>
<tr>
<td>P1</td>
<td>130,39 ± 31,04</td>
<td>155,35 ± 38,45</td>
<td>141,51 ± 58,12</td>
<td>142,42 ± 12,51</td>
</tr>
<tr>
<td>P2</td>
<td>94,93 ± 22,67</td>
<td>79,27 ± 19,98</td>
<td>111,64 ± 13,72</td>
<td>95,28 ± 16,19</td>
</tr>
<tr>
<td>P3</td>
<td>134,54 ± 56,99</td>
<td>119,57 ± 47,86</td>
<td>90,41 ± 33,77</td>
<td>114,84 ± 22,44</td>
</tr>
<tr>
<td>P4</td>
<td>119,91 ± 30,67</td>
<td>102,03 ± 40,36</td>
<td>111,74 ± 44,78</td>
<td>111,23 ± 8,95</td>
</tr>
<tr>
<td>P5</td>
<td>114,20 ± 25,76</td>
<td>140,64 ± 14,37</td>
<td>93,34 ± 5,31</td>
<td>116,06 ± 23,70</td>
</tr>
<tr>
<td>Rataan ± Sd</td>
<td>118,79 ± 15,61</td>
<td>119,37 ± 30,23</td>
<td>109,73 ± 20,37</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: L = Lampung, K = Kebumen, LT = Lombok Timur, P1 = BBJP + 0% tepung kunyit, P2 = BBJP + 0,5% tepung kunyit, P3 = BBJP + 1% tepung kunyit, P4 = BBJP + 1,5% tepung kunyit, P5 = BBJP + 4% NaOH + 10% NaOCl

Hasil sidik ragam menunjukkan konsentrasi VFA total tidak dipengaruhi oleh perbaikan daerah asal dan metode detoksifikasi BBJP. Hal ini disebabkan oleh tingginya variasi antar ulangan, sehingga galat percobaan menjadi besar.

Produksi Gas

Produksi gas yang dihasilkan menunjukkan terjadinya proses fermentasi oleh mikroba rumen, yaitu menghidrolisis karbohidrat menjadi monosakarida dan disakarida yang kemudian difermentasi menjadi asam lemak terbang (VFA), terutama asam asetat, propionat dan butirat serta gas metan (CH₄) dan CO₂ (Mcdonald et al., 2002). Produksi gas BBJP-T dapat dilihat pada Gambar 8.

![Gambar 8. Grafik Produksi Gas BBJP-T](image)

Metode detoksifikasi mempengaruhi laju produksi gas. Detoksifikasi tanpa penambahan kunyit (P1) menunjukkan produksi gas paling tinggi. Hal ini kemungkinan disebabkan P1 lebih mudah didegradasi oleh mikroba rumen dibandingkan perlakuan lainnya. Adanya penambahan tepung kunyit, NaOH dan NaCl pada P2 sampai P5 menurunkan laju degradasi bahan dan memproteksi bahan
organik dari degradasi. Hal ini dapat beralih positif jika bahan organik dicerna pada pasca rumen (enzimatis).

Kecernaan Bungkil Biji Jarak Pagar Terdetoksifikasi (BBJP-T)

Kecernaan Bahan Kering (KCBK)

<table>
<thead>
<tr>
<th>Metode Detoksifikasi</th>
<th>Daerah Asal</th>
<th>Rataan ± Sd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>K</td>
</tr>
<tr>
<td>P1</td>
<td>58,55 ± 2,78</td>
<td>55,44 ± 8,11</td>
</tr>
<tr>
<td>P2</td>
<td>58,15 ± 3,60</td>
<td>73,46 ± 10,87</td>
</tr>
<tr>
<td>P3</td>
<td>58,39 ± 1,21</td>
<td>56,31 ± 5,73</td>
</tr>
<tr>
<td>P4</td>
<td>56,63 ± 8,78</td>
<td>64,57 ± 17,43</td>
</tr>
<tr>
<td>P5</td>
<td>57,15 ± 14,24</td>
<td>63,92 ± 10,02</td>
</tr>
</tbody>
</table>

| Rataan ± Sd | 57,77 ± 0,84^{a,b} | 62,74 ± 7,32^c | 53,23 ± 3,66^d |

Keterangan: Superskrip yang berbeda pada baris yang sama menunjukkan perbedaan yang nyata (P<0,05)

L = Lampung, K = Kebumen, LT = Lombok Timur, P1 = BBJP + 0% tepung kunyit, P2 = BBJP + 0,5% tepung kunyit, P3 = BBJP + 1% tepung kunyit, P4 = BBJP + 1,5% tepung kunyit, P5 = BBJP + 4% NaOH + 10% NaOCl

Metode detoksifikasi tidak mempengaruhi nilai KCBK. Perbedaan nilai KCBK BBJP-T nyata (P<0,05) dipengaruhi oleh daerah asal BBJP-T yang berbeda. Hal ini berhubungan dengan komposisi kimia yang dipengaruhi oleh kondisi alam dan kesuburan tanah. Bungkil biji jarak pagar terdetoksifikasi (BBJP-T) asal Kebumen memiliki nilai KCBK lebih tinggi dibandingkan BBJP-T asal Lombok Timur. Nilai KCBK BBJP-T asal Kebumen mendekati nilai KCBK bungkil kedele (60,24%) yang dilaporkan oleh Permana et al. (2007).

Kecernaan Bahan Organik (KCBO)

Nilai KCBO dapat digunakan sebagai indikator kualitas pakan. Nilai KCBO BBJP-T berkisar 45,54 – 71,99%, kisaran ini tidak jauh berbeda dengan nilai KCBK.

Tabel 7. Rataan Kecernaan Bahan Organik BBJP-T (%)

<table>
<thead>
<tr>
<th>Metode Detoksifikasi</th>
<th>Daerah Asal</th>
<th>Rataan ± Sd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>K</td>
</tr>
<tr>
<td>P1</td>
<td>56,30 ± 3,01</td>
<td>55,84 ± 5,59</td>
</tr>
<tr>
<td>P2</td>
<td>55,93 ± 3,71</td>
<td>71,99 ± 11,83</td>
</tr>
<tr>
<td>P3</td>
<td>56,73 ± 1,70</td>
<td>54,35 ± 5,26</td>
</tr>
<tr>
<td>P4</td>
<td>54,91 ± 8,50</td>
<td>62,93 ± 17,97</td>
</tr>
<tr>
<td>P5</td>
<td>53,70 ± 15,78</td>
<td>61,20 ± 10,79</td>
</tr>
</tbody>
</table>

Catatan: Superskrip yang berbeda pada baris yang sama menunjukkan perbedaan yang nyata (P<0,05).

Keterangan: L = Lampung, K = Kebumen, LT = Lombok Timur, P1 = BBJP + 0% tepung kunyit, P2 = BBJP + 2,5% tepung kunyit, P3 = BBJP + 1% tepung kunyit, P4 = BBJP + 1.5% tepung kunyit, P5 = BBJP + 4% NaOH + 10% NaOCl

Sama halnya dengan nilai KCBK, metode detoksifikasi tidak mempengaruhi nilai KCBO. Hasil uji sidik ragam menunjukkan KCBO BBJP-T nyata (P<0,05) dipengaruhi oleh daerah asal BBJP-T. Bungkil biji jarak pagar (BBJP) asal Kebumen memiliki nilai KCBO paling tinggi diantara kedua bungkil lainnya.

Daerah asal BBJP-T sangat nyata (P<0,01) mempengaruhi nilai kecernaan bahan organik estimasi BBJP-T. Perbedaan kondisi alam daerah akan mengakibatkan komposisi kimia BBJP berbeda. Bungkil biji jarak pagar terdetoksifikasi (BBJP-T) asal Lampung memiliki nilai kecernaan bahan organik estimasi lebih tinggi dibandingkan BBJP-T asal Kebumen dan Lombok Timur. Hal ini disebabkan oleh BBJP-T asal Lampung mempunyai kandungan nutrisi yang lebih baik diantara BBJP-T asal daerah lainnya, sehingga BBJP-T Lampung lebih mudah dicerna.
Tabel 8. Rataan Kecernaan Bahan Organik Estimasi BBP-T (%)

<table>
<thead>
<tr>
<th>Metode Detoksifikasi</th>
<th>Daerah Asal</th>
<th>Rataan ± Sd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>K</td>
</tr>
<tr>
<td>P1</td>
<td>70,71 ± 3,44</td>
<td>63,03 ± 5,68</td>
</tr>
<tr>
<td>P2</td>
<td>57,38 ± 2,75</td>
<td>52,64 ± 2,65</td>
</tr>
<tr>
<td>P3</td>
<td>66,54 ± 10,31</td>
<td>59,84 ± 11,58</td>
</tr>
<tr>
<td>P4</td>
<td>64,65 ± 6,30</td>
<td>51,10 ± 10,78</td>
</tr>
<tr>
<td>P5</td>
<td>56,25 ± 2,89</td>
<td>62,26 ± 10,31</td>
</tr>
</tbody>
</table>

Rataan ± Sd: 63,11 ± 6,16B 57,77 ± 5,55AB 52,05 ± 4,52A

Keterangan: Superskrip yang berbeda pada baris yang sama menunjukkan perbedaan yang sangat nyata (P<0,01); Superskrip yang berbeda pada kolom yang sama menunjukkan perbedaan yang nyata (P<0,05) L = Lampung, K = Kebumen, LT = Lombok Timur, P1 = BBP + 0% tepung kunyit, P2 = BBP + 0,5% tepung kunyit, P3 = BBP + 1% tepung kunyit, P4 = BBP + 1,5% tepung kunyit, P5 = BBP + 4% NaOH + 10% NaOCl

Nilai kecernaan bahan organik estimasi BBP-T dipengaruhi nyata (P<0,05) oleh metode detoksifikasi. Uji Tukey menunjukkan nilai kecernaan bahan organik estimasi P1 paling tinggi diantara perlakuan lainnya. Hal ini disebabkan oleh tidak adanya penanaman bahan lain pada P1, sehingga BBP-T lebih mudah dicerna. Hal ini didukung dengan data produksi gas, konsentrasi NH3 dan VFA yang paling tinggi pada P1.

Energi Metabolis (EM)

Energi metabolis pada ternak ruminansia dapat diestimasi dari produksi gas dan komposisi nutrisi (Menke et al., 1979), dipertahankan pada Tabel 9.

Tabel 9. Rataan Energi Metabolis Estimasi BBP-T (MJ/kg BK)

<table>
<thead>
<tr>
<th>Metode Detoksifikasi</th>
<th>Daerah Asal</th>
<th>Rataan ± Sd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>K</td>
</tr>
<tr>
<td>P1</td>
<td>13,70 ± 0,56</td>
<td>14,23 ± 0,93</td>
</tr>
<tr>
<td>P2</td>
<td>12,28 ± 0,45</td>
<td>12,46 ± 0,44</td>
</tr>
<tr>
<td>P3</td>
<td>15,59 ± 1,69</td>
<td>13,24 ± 1,90</td>
</tr>
<tr>
<td>P4</td>
<td>13,53 ± 1,03</td>
<td>10,87 ± 3,58</td>
</tr>
<tr>
<td>P5</td>
<td>9,64 ± 0,28</td>
<td>10,44 ± 1,69</td>
</tr>
</tbody>
</table>

Rataan ± Sd: 12,65 ± 1,72 12,25 ± 1,59 12,86 ± 2,16

Keterangan: Superskrip yang berbeda pada kolom yang sama menunjukkan perbedaan yang sangat nyata (P<0,01)
L = Lampung, K = Kebumen, LT = Lombok Timur, P1 = BBP + 0% tepung kunyit, P2 = BBP + 0,5% tepung kunyit, P3 = BBP + 1% tepung kunyit, P4 = BBP + 1,5% tepung kunyit, P5 = BBP + 4% NaOH + 10% NaOCl
Deret asal yang berbeda tidak mempengaruhi nilai EM estimasi BBP-T. EM estasi BBP-T sangat nyata dipengaruhi oleh metode deoksikasi.

Uji Tukey menunjukkan P1 dan P3 memiliki nilai EM paling tinggi dibandingkan P2, P4 dan P5. Energi metabolis yang tinggi pada P1 dan P3 menunjukkan bahwa makanan banyak tersedia untuk sistem metabolisme dan hanya sebagian kecil yang

Dikaitkan dengan fermentabilitas BBP-T dan kecemerlangan yang tinggi setelah energi makanan banyak tersedia untuk sistem metabolisme dan hanya sebagian kecil yang...
KESIMPULAN DAN SARAN

Kesimpulan

Proses detoksifikasi BBJP menimbulkan perubahan baik dari kandungan nutrisi dan racun. Kandungan abu dan protein semua perlakuan mengalami peningkatan masing-masing berkisar antara 1,95 – 40,73% unit dan 12,41 – 18,19% unit. Kandungan lemak menurun sebesar 9,38% unit untuk P5, namun meningkat pada P1 - P4 dengan rataan peningkatan sebesar 9,98% unit. Kandungan serat kasar P1 - P5 mengalami penurunan rata-rata sebesar 63,15% unit. Proses detoksifikasi juga dinampu menurunkan 58,66% unit kandungan curcin dan 30,37% unit kandungan phorbolester BBJP, dimana P1 lebih efektif menurunkan curcin sedangkan P5 lebih efektif menurunkan phorbolester. Penambahan tepung kunyit dan NaOH disertai NaCl belum mampu menurunkan phorbolester sampai taraf aman untuk dikonsumsi oleh ternak.

Saran

Disarankan untuk penelitian lebih lanjut dengan: (1) melakukan plant breeding agar menghasilkan tanaman jarak pagar yang rendah kandungan racun, (2) mengadakan metode detoksifikasi antara penambahan alkali dengan kunyit dan dilakukan pembaharuan alkali yang lebih murah, seperti alkali yang berasal dari merang (KH), serta (3) penggunaan teknologi biologi molekuler sebagai alternatif untuk menurunkan kandungan phorbolester pada biji jarak pagar.
UCAPAN TERIMA KASIH

Puji dan syukur ke hadirat Allah SWT atas segala limpahan nikmat, kasih sayang, dan pertolongan-Nya sehingga penulis dapat menyelesaikan skripsi ini yang merupakan salah satu syarat untuk mendapatkan gelar sarjana peternakan.

Penulis mengucapkan terima kasih kepada pembimbing utama penelitian Dr. Despal, S.Pt., MSc.Agr. dan Dr. Ir. Nur Aeni Sigit, MS. sebagai pembimbing anggota yang telah membimbing, memberikan arahan, perhatian, dan motivasi hingga terselesaikannya skripsi ini, Ir. Anita S. Tjakradidjaja, MRur.Sc. selaku penguji seminar dan pembimbing akademik, Dr. Ir. Kartiarso, MSc. dan Ir. Hj. Komariah, MSi. selaku penguji sidang atas segala masukannya selama ini.

Ucapan terima kasih yang teramat besar kepada bapak, ibu dan kedua kakak tercinta yang telah memberikan dukungan, kasih sayang serta doa. Bapak dan Ibu Djoko Nugroho atas kesempatan dan bantuan serta doa yang penulis dapat menyelesaikan kuliah di IPB. Semoga Allah SWT membalas segala kebaikannya.

Terakhir penulis ucapkan terima kasih kepada teman-teman sepejuangan yaitu Lydia, Novi, Gilang, Ulya, Evrin, Irma, Ninik, Wulan, Nun, Lil, Giant, Wahyu dan seluruh INTP 40 serta Mas Cas atas persahabatan dan bantuan dalam selama ini. Serta sahabat baikku Putri Chamissa, Dian Sagita, dan seluruh alumni HR 7 angkatan 9 atas persaudaraan, kasih sayang, dan keceriaannya serta semua pihak yang tidak dapat disebutkan satu per satu atas bantuan selama ini. Penulis berharap semoga skripsi ini bermanfaat bagi pembaca.

Bogor, Agustus 2007

Penulis
DAFTAR PUSTAKA

1. Dilacur menguap abdeg atau seluruh karya tuli at teruqntum dan menguap abdeg atau seluruh karya tuli in seden demtototan.topo.

2. Pencakapan tindakan abdeg atau seluruh karya tuli at teruqntum dan menguap abdeg atau seluruh karya tuli in seden demtototan.topo.

LAMPIRAN
Lampiran 1. Analisa Sidik Ragam Konsentrasi NH₃

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F 0,05</th>
<th>F 0,01</th>
<th>Ket.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>257,98</td>
<td>128,99</td>
<td>3,14</td>
<td>3,34</td>
<td>5,45</td>
<td>tn</td>
</tr>
<tr>
<td>Daerah asal (A)</td>
<td>2</td>
<td>80,09</td>
<td>40,05</td>
<td>0,98</td>
<td>3,34</td>
<td>5,45</td>
<td>tn</td>
</tr>
<tr>
<td>Detoksifikasi (B)</td>
<td>4</td>
<td>856,05</td>
<td>214,01</td>
<td>5,22</td>
<td>2,71</td>
<td>4,07</td>
<td>**</td>
</tr>
<tr>
<td>Interaksi (A x B)</td>
<td>8</td>
<td>207,56</td>
<td>25,94</td>
<td>0,63</td>
<td>2,29</td>
<td>3,23</td>
<td>tn</td>
</tr>
<tr>
<td>Galat</td>
<td>28</td>
<td>1148,51</td>
<td>41,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>2550,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 2. Uji Tukey Konsentrasi NH₃

\[
W_{ij} = q_{a(p, fe)} \times \sqrt{\frac{KTG}{r}} = q_{0,05(5,28)} \times \sqrt{\frac{41,02}{9}} = 4,12 \times 2,13 = 8,78
\]

\[
W_{ij} = q_{a(p, fe)} \times \sqrt{\frac{KTG}{r}} = q_{0,01(5,28)} \times \sqrt{\frac{41,02}{9}} = 5,09 \times 2,13 = 10,84
\]

Hasil perbandingan:

<table>
<thead>
<tr>
<th>P5</th>
<th>P2</th>
<th>P4</th>
<th>P1</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,64</td>
<td>8,87</td>
<td>13,50</td>
<td>16,05</td>
<td>17,15</td>
</tr>
</tbody>
</table>

Lampiran 3. Analisa Sidik Ragam Konsentrasi VFA Total

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F 0,05</th>
<th>F 0,01</th>
<th>Ket.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>11616,33</td>
<td>5808,16</td>
<td>6,04</td>
<td>3,34</td>
<td>5,45</td>
<td>**</td>
</tr>
<tr>
<td>Daerah asal (A)</td>
<td>2</td>
<td>877,85</td>
<td>438,93</td>
<td>0,46</td>
<td>3,34</td>
<td>5,45</td>
<td>tn</td>
</tr>
<tr>
<td>Detoksifikasi (B)</td>
<td>4</td>
<td>10364,05</td>
<td>2591,01</td>
<td>2,69</td>
<td>2,71</td>
<td>4,07</td>
<td>tn</td>
</tr>
<tr>
<td>Interaksi (A x B)</td>
<td>8</td>
<td>8505,79</td>
<td>1063,22</td>
<td>1,11</td>
<td>2,29</td>
<td>3,23</td>
<td>tn</td>
</tr>
<tr>
<td>Galat</td>
<td>28</td>
<td>26940,25</td>
<td>962,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>58304,27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

39
Lampiran 4. Analisa Sidik Ragam Kecernaan Bahan Kering (KCBK)

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F 0,05</th>
<th>F 0,01</th>
<th>Ket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>352,80</td>
<td>176,40</td>
<td>2,09</td>
<td>3,34</td>
<td>5,45</td>
<td>tn</td>
</tr>
<tr>
<td>Daerah asal (A)</td>
<td>2</td>
<td>679,15</td>
<td>339,57</td>
<td>4,03</td>
<td>3,34</td>
<td>5,45</td>
<td>*</td>
</tr>
<tr>
<td>Detoksifikasi (B)</td>
<td>4</td>
<td>256,40</td>
<td>64,10</td>
<td>0,76</td>
<td>2,71</td>
<td>4,07</td>
<td>tn</td>
</tr>
<tr>
<td>Interaksi (A x B)</td>
<td>8</td>
<td>555,60</td>
<td>69,45</td>
<td>0,82</td>
<td>2,29</td>
<td>3,23</td>
<td>tn</td>
</tr>
<tr>
<td>Galon</td>
<td>28</td>
<td>2360,55</td>
<td>84,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>4204,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 5. Uji Tukey Kecernaan Bahan Kering (KCBK)

\[
W_e = q_{a(p, f)} \times \frac{K_{TG}}{r} = q_{0,05 (3,23)} \times \frac{84,31}{15} = 3,5 \times 2,37 = 8,30
\]

\[
W_o = q_{a(p, f)} \times \frac{K_{TG}}{r} = q_{0,01 (3,23)} \times \frac{84,31}{15} = 4,48 \times 2,37 = 10,62
\]

Hasil perbandingan:

<table>
<thead>
<tr>
<th>LT</th>
<th>L</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>53,23</td>
<td>57,77</td>
<td>62,74</td>
</tr>
</tbody>
</table>

Lampiran 6. Analisa Sidik Ragam Kecernaan Bahan Organik (KCBO)

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F 0,05</th>
<th>F 0,01</th>
<th>Ket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>420,64</td>
<td>210,32</td>
<td>2,30</td>
<td>3,34</td>
<td>5,45</td>
<td>tn</td>
</tr>
<tr>
<td>Daerah asal (A)</td>
<td>2</td>
<td>934,86</td>
<td>467,43</td>
<td>5,11</td>
<td>3,34</td>
<td>5,45</td>
<td>*</td>
</tr>
<tr>
<td>Detoksifikasi (B)</td>
<td>4</td>
<td>232,30</td>
<td>58,08</td>
<td>0,64</td>
<td>2,71</td>
<td>4,07</td>
<td>tn</td>
</tr>
<tr>
<td>Interaksi (A x B)</td>
<td>8</td>
<td>484,67</td>
<td>60,58</td>
<td>0,66</td>
<td>2,29</td>
<td>3,23</td>
<td>tn</td>
</tr>
<tr>
<td>Galon</td>
<td>28</td>
<td>2559,28</td>
<td>91,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>4631,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 7. Uji Tukey Kecamana Bahan Organik (KCBO)

\[q \alpha (p, f_e) \times \sqrt{\frac{KTG}{r}} = q_{0.05} (3,28) \times \sqrt{\frac{91.40}{15}} = 3.5 \times 2.47 = 8.65 \]

\[q \alpha (p, f_e) \times \sqrt{\frac{KTG}{r}} = q_{0.01} (3,28) \times \sqrt{\frac{91.40}{15}} = 4.48 \times 2.47 = 11.07 \]

Hasil perbandingan:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>L</td>
<td>K</td>
</tr>
<tr>
<td>50,10</td>
<td>55,52</td>
<td>61,26</td>
</tr>
</tbody>
</table>

Lampiran 8. Analisa Sidik Ragam Kecamana Bahan Organik Estimasi

<table>
<thead>
<tr>
<th>Sumber eragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F 0,05</th>
<th>F 0,01</th>
<th>Ket.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kampok</td>
<td>2</td>
<td>217,18</td>
<td>108,59</td>
<td>2,35</td>
<td>3,34</td>
<td>5,45</td>
<td>tn</td>
</tr>
<tr>
<td>Daerah asal (A)</td>
<td>2</td>
<td>904,92</td>
<td>452,46</td>
<td>9,81</td>
<td>3,34</td>
<td>5,45</td>
<td>**</td>
</tr>
<tr>
<td>Detoksifikasi (B)</td>
<td>4</td>
<td>653,35</td>
<td>163,34</td>
<td>3,54</td>
<td>2,71</td>
<td>4,07</td>
<td>*</td>
</tr>
<tr>
<td>Interaksi (A x B)</td>
<td>8</td>
<td>374,90</td>
<td>46,86</td>
<td>1,02</td>
<td>2,29</td>
<td>3,23</td>
<td>tn</td>
</tr>
<tr>
<td>Galat</td>
<td>28</td>
<td>1291,65</td>
<td>46,13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>3442,01</td>
<td>78,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 9. Uji Tukey Kecamana Bahan Organik Estimasi

\[q \alpha (p, f_e) \times \sqrt{\frac{KTG}{r}} = q_{0.05} (3,28) \times \sqrt{\frac{46,13}{15}} = 3.5 \times 1.75 = 6,13 \]

\[q \alpha (p, f_e) \times \sqrt{\frac{KTG}{r}} = q_{0.01} (3,28) \times \sqrt{\frac{46,13}{15}} = 4.48 \times 1.75 = 7,84 \]
Hasil perbandingan:

<table>
<thead>
<tr>
<th></th>
<th>LT</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52,05</td>
<td>57,77</td>
<td>63,11</td>
</tr>
</tbody>
</table>

Deskripsi:

\[W_{O1} = q_0 \times \sqrt{\frac{K TG}{r}} \]
\[W_{O2} = q_1 \times \sqrt{\frac{K TG}{r}} \]
\[W_{O3} = q_1 \times \sqrt{\frac{K TG}{r}} \]

Hasil perbandingan:

<table>
<thead>
<tr>
<th></th>
<th>P2</th>
<th>P4</th>
<th>P5</th>
<th>P3</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>53,76</td>
<td>54,01</td>
<td>56,01</td>
<td>60,94</td>
<td>63,49</td>
</tr>
</tbody>
</table>

Lampiran 10.
Analisa Sidik Ragam Energi Metabolis Estimasi

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Kembang</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F 0,05</th>
<th>F 0,01</th>
<th>Ket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>3,84</td>
<td>1,92</td>
<td>1,52</td>
<td>3,34</td>
<td>5,45</td>
<td>tn</td>
</tr>
<tr>
<td>Daerah asal (A)</td>
<td>2</td>
<td>1,11</td>
<td>0,55</td>
<td>0,45</td>
<td>3,34</td>
<td>5,45</td>
<td>tn</td>
</tr>
<tr>
<td>Daerah asal (B)</td>
<td>4</td>
<td>101,89</td>
<td>25,47</td>
<td>20,67</td>
<td>2,71</td>
<td>4,07</td>
<td>**</td>
</tr>
<tr>
<td>Interaksi (A x B)</td>
<td>8</td>
<td>13,38</td>
<td>1,67</td>
<td>1,36</td>
<td>2,29</td>
<td>3,23</td>
<td>tn</td>
</tr>
<tr>
<td>Galat</td>
<td>28</td>
<td>34,50</td>
<td>1,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>154,73</td>
<td>3,52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

tn = tidak signifikan
** = signifikan
Lampiran 11. Uji Tukey Energi Metabolis Estimasi

\[W_{0.05} = q_a (p, f_e) \times \sqrt{\frac{K_{TG}}{r}} = q_{0.05} (5, 28) \times \sqrt{\frac{1.23}{9}} = 4.12 \times 0.37 = 1.52 \]

\[W_{0.01} = q_a (p, f_e) \times \sqrt{\frac{K_{TG}}{r}} = q_{0.01} (5, 28) \times \sqrt{\frac{1.23}{9}} = 5.09 \times 0.37 = 1.88 \]

Hasil perbandingan:

<table>
<thead>
<tr>
<th></th>
<th>P5</th>
<th>P4</th>
<th>P2</th>
<th>P1</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.77</td>
<td>12.37</td>
<td>12.88</td>
<td>13.86</td>
<td>13.87</td>
</tr>
</tbody>
</table>