SKRIPSI

UJI KINERJA DAN MODIFIKASI ALAT PENGERING (ROTARY DRYER) PADA PENGERINGAN SAWUT UBI JALAR (Ipomoea batatas L.) DI UNIT PENGOLAHAN BADAN USAHA MILIK PETANI (BUMP) CIBUNGKULANG

Oleh:

NOVILIA SANTRI
F24102026

2006
FAKULTAS TEKNOLOGI PERTANIAN
INSTITUT PERTANIAN BOGOR
BOGOR
UJI KINERJA DAN MODIFIKASI ALAT PENGERING (ROTARY DRYER) PADA PENGERINGAN SAWUT UBI JALAR (Ipomoea batatas L.) DI UNIT PENGOLAHAN BADAN USAHA MILIK PETANI (BUMP) CIBUNGBULANG

SKRIPSI
Sebagai salah satu syarat untuk memperoleh gelar
SARJANA TEKNOLOGI PERTANIAN
Pada Departemen Ilmu dan Teknologi Pangan,
Fakultas Teknologi Pertanian,
Institut Pertanian Bogor

Oleh:

NOVILIA SANTRI
F24102026

2006
DEPARTEMEN ILMU DAN TEKNOLOGI PANGAN
FAKULTAS TEKNOLOGI PERTANIAN
INSTITUT PERTANIAN BOGOR
BOGOR
Indonesia merupakan negara pengimpor beras dan gandum dalam jumlah yang cukup tinggi. Oleh karena itu diperlukan usaha untuk menanggulangi masalah impor ini, salah satunya adalah dengan adanya program diversifikasi pangan. Komoditas ubi jalar sangat layak untuk dipertimbangkan dalam menjalankan program diversifikasi pangan berdasarkan kandungan nutrisi, umur tanaman yang relatif pendek, produktivitasnya yang tinggi, dan potensi lainnya (Widodo, 1995). Ubi jalar merupakan tanaman penghasil karbohidrat yang paling produktif dan untuk memproduksinya membutuhkan air lebih sedikit dibandingkan dengan kebun tanaman jagung atau kentang. Daya hasilnya sangat luas sehingga ubi jalar dapat berfungsi sebagai sumber pangan alternatif yang murah pada masa penceklik. Apabila konsumsi ubi jalar per kapita dapat ditingkatkan menjadi 60 kg/tahun, permintaan beras akan menurun, sehingga dapat mengurangi ketergantungan terhadap beras (Zuraida, 2005).

Salah satu potensi pengembangan ubi jalar adalah dengan diolah menjadi sawut yang dapat digunakan sebagai bahan substitusi terigu sebagai bahan baku industri pangan olahan. Salah satu tahapan dalam pembuatan tepung ubi jalar adalah pengolahan umbi ubi jalar segar sampai menjadi sawut kering. Proses pengeringan sawut ini menjadi salah satu faktor yang menentukan kualitas tepung ubi jalar yang dihasilkan. Faktor-faktor yang mempengaruhi pengeringan terdiri antara lain faktor-faktor yang berhubungan dengan alat pengering seperti suhu, kelembaban udara, kecepatan dan arah aliran udara, serta lama waktu pengeringan dan faktor-faktor yang berhubungan dengan sifat-sifat bahan yang dikerikan.

Unit pengolahan ubi jalar segar sampai menjadi sawut kering salah satunya adalah unit pengolahan BUMP di Cibungbulang. Rotary dryer yang digunakan pada unit pengolahan ini merupakan prototipe yang belum teruji kinerjanya, maka perlu dilakukan uji kinerja dan modifikasi agar rotary dryer ini bisa menghasilkan sawut kering dengan kualitas yang baik. Penelitian ini bertujuan untuk melakukan uji kinerja alat pengering (rotary dryer) yang akan digunakan pada proses pengeringan sawut ubi jalar dan memodifikasinya untuk mendapatkan sawut kering dengan kadar air yang diinginkan.

Penelitian yang dilakukan meliputi penelitian utama dan penelitian penunjang. Pada penelitian utama dilakukan identifikasi dan pengcecekan kondisi asal mesin rotary dryer, dilanjutkan dengan uji kinerja dan modifikasi rotary dryer dalam mengeringkan sawut ubi jalar. Berdasarkan uji coba pengeringan, modifikasi yang dilakukan antara lain adalah penggantian burner, penggantian motor blower, pengatur kecepatan putar rotary dryer, dan pengaturan suhu kering atau sudut elevasi rotary dryer, dan penambah berbagai jumlah flight dalam mesin pengering. Penelitian penunjang dilakukan untuk mengetahui pengaruh kondisi tanah dalam menunjang uji jalar sebelum penyawutan dengan larutan klorin 1000 ppm yang digunakan untuk mengeringkan mikroba sawut kering yang dihasilkan.

Percobaan pengerikan dengan suhu yang berbeda tapi kondisi lainnya sama menunjukkan hasil bahwa penggunaan suhu yang lebih tinggi akan mempercepat penurunan kadar air atau bobot bahan yang dikerikin. Pengerikan dengan jumlah dan ukuran flights yang lebih besar menghasilkan penurunan bobot bahan yang dikerikin lebih cepat. Pengeringan dengan kecepatan putar yang berbeda tapi kondisi yang lainnya sama menunjukkan bahwa kecepatan putar yang lebih besar menghasilkan penurunan bobot bahan yang dikerikin lebih cepat.

Percobaan pengerikan setelah penambahan flights pada ruang pengerikan, dengan menggunakan suhu 135° C, kecepatan putar ruang pengerikan 5 rpm, kemiringan ataupun sudut elevasi 0.2574 menghasilkan sawut dengan kadar air yang lebih rendah (2.17% bb) dalam waktu yang lebih cepat (5.9 jam).

Efisiensi pemanasan, efisiensi penggunaan panas, dan efisiensi pengerikan untuk rotary dryer yang diperoleh dari percobaan pengerikan masih menunjukkan nilai yang bervariasi. Hal ini menunjukkan bahwa nilai efisiensi dipengaruhi oleh beberapa faktor seperti jumlah dan ukuran flights, kecepatan putar ruang pengerikan, bobot bahan yang dikerikin, dan masalah pada burner, blower, serta heat exchanger. Oleh karena itu diperlukan modifikasi lebih lanjut pada burner, ruang pembakaran, heat exchanger, pipa udara panas, dan blower agar nilai efisiensi yang dihasilkan lebih baik dan untuk meningkatkan kapasitas pengerikan yang masih rendah.

Sawut ubi jalar yang dihasilkan memiliki nilai parameter warna L, a, dan b berturut-turut sebesar +72.40, -7.58, dan +53.50, ini berarti warnanya mengarah ke putih kecoklatan. Hal ini disebabkan karena proses pencoklatan yang terjadi selama pengerikan berlangsung. Nilai ini masih bisa ditingkatkan lagi sehingga warna sawut menjadi lebih putih dan cerah dengan memperbaiki perlakuan pra pengerikan seperti perbaikan rangkaian proses sehingga selang waktu setelah penyawutan dengan pengerikan dapat dipercepat (mencegah terjadinya browning embritis).

Kandungan mikroba sawut ubi jalar yang dicuci dengan larutan klorin 1000 ppm pada perlakuan pencucian kedua lebih rendah dengan sawut yang tidak dicuci dengan larutan klorin 1000 ppm. Namun jumlahnya tidak berbeda jauh. Sawut dengan kadar air yang lebih rendah juga menunjukkan kandungan mikroba yang lebih sedikit dibandingkan dengan sawut dengan kadar air yang lebih tinggi.
INSTITUT PERTANIAN BOGOR
FAKULTAS TEKNOLOGI PERTANIAN

UJI KINERJA DAN MODIFIKASI ALAT PENGERING (ROTARY DRYER) PADA PENGERINGAN SAWUT UBI JALAR (Ipomoea batatas L.) DI UNIT PENGOLAHAN BADAN USAHA MILIK PETANI (BUMP) CIBUNGKULANG

SKRIPSI

Sebagai salah satu syarat untuk memperoleh gelar
SARJANA TEKNOLOGI PERTANIAN

Pada Departemen Ilmu dan Teknologi Pangan,
Fakultas Teknologi Pertanian,
Institut Pertanian Bogor

Oleh:

NOVILIA SANTRI
F24102026

Dilahirkan di Lampung pada tanggal 17 Juli 1984
Tanggal lulus: 21 Desember 2006
Menyetujui,

Bogor, 2006

Ir. Yadi Haryadi, MSc
Dosen Pembimbing I

Ir. Subarna, MSi
Dosen Pembimbing II

Dr. Ir. Dahrul Syah, MSc., Agr.
Ketua Departemen Ilmu dan Teknologi Pangan
RIWAYAT HIDUP

Sebagai tugas akhir untuk meraih gelar sarjana, penulis menyusun skripsi dengan judul uji kinerja alat pengering (rotary dryer) pada pengeringan sawut ubi (Ipomoea batatas L.) di unit pengolahan BUMP Cibungbulang.
KATA PENGANTAR

Alhamdulillahi robbil’alamin, puji dan syukur penulis panjatkan kehadirat Allah SWT atas rahmat dan karunianya sehingga penulis dapat menyelesaikan skripsi ini. Shalawat beserta salam tak lupa penulis panjatkan kepada junjungan Rasulullah SAW.

Penulisan skripsi ini tidak terlepas dari bantuan baik moril maupun material berbagai pihak. Oleh karena itu dalam kesempatan ini, penulis ingin mencapkan terima kasih kepada:

1. Ibu, Papa, dan Adik-adikku (Ani, Ayeng, dan Uni), serta keluarga besarku. Terima kasih atas doa yang tulus dan dukungan tiada henti yang diberikan kepada penulis.

2. Apap Dr. Ir. Yadi Haryadi, MSc. selaku dosen pembimbing akademik yang selalu memberikan bimbingan, nasihat-nasihat, dan motivasi selama kuliah sampai penulisan skripsi.

3. Apap Ir. Subarna, MSi selaku dosen pembimbing kedua yang telah membimbing dan banyak membantu dalam pelaksanaan penelitian dan penulisan skripsi.

4. Apap Dr. Ir. Dahrul Syah, MSc. selaku ketua departemen ITP dan dosen penguji. Terima kasih atas bantuan yang diberikan selama penelus menempuh pendidikan di Departemen ITP dan atas kesempatan yang diberikan untuk bergabung dengan RUSNAS (Riset Unggul Strategis Nasional).

5. Pihak Kantor Kementerian Negara Riset dan Teknologi melalui program RUSNAS Diversifikasi Pangan Pokok, yang telah mendanai penelitian sehingga penelitian dapat berjalan dengan lancar.

6. Seluruh Dosen dan Staff Departemen ITP atas bantuan dan bimbingan yang diberikan selama penelus menempuh pendidikan di Departemen ITP.

7. Laboran-laboran TPG khususnya pak Sobirin, pak Wahid, ibu Rubyiah, teh sada, dan pak Rozak serta para teknisi Pilot Plan dan SEAFAST PAU (pak Nur dan pak Yas) yang telah banyak membantu selama penelitian.

8. Apap-bapak pustakawan di LSI, PAU, dan Fateta khususnya pak Dunung, pak Muchlis, pak Kosasih, dan pak Marga yang telah membantu dalam pencarian literatur untuk penyusunan skripsi ini.
1. Sembunyikan mungkin asupan bantuan kecil yang ada di kelompok halaqoh (ibu Gindi, ibu Tita, ibu Yani, ibu Yanti, ibu Ora, ibu Heni, dan ibu Wina), serta Teh Erna dan Bu Dina. Terimakasih atas pembagian silaturahmi yang telah terjalin selama ini.

13. Keluarga besar MSC Education (Ka Opick, Ka Syam, Big Brother, Engkus, bak Dede, Nuqi, Walida, dan Staff pengajar lainnya). Terima kasih atas bersamaan dan pengalaman berharga yang penulis dapatkan selama penulis mengabung bersama MSC.

15. Pihak-pihak yang tidak dapat disebutkan satu per satu.

Penulis menyadari skripsi ini jauh dari kesempurnaan dan tidak lepas dari kesalahan. Namun demikian, penulis berharap tulisan ini dapat memberikan kontribusi bagi perkembangan ilmu pengetahuan. Akhir kata, penulis juga mengharapkan kritik dan saran yang membangun dari berbagai pihak.

Bogor, Desember 2006

Penulis
DAFTAR ISI

Halaman

KATA PENGANTAR .. i

DAFTAR ISI .. iii

DAFTAR TABEL .. vi

DAFTAR GAMBAR .. vii

DAFTAR LAMPIRAN ... viii

I. PENDAHULUAN... 1
 A. LATAR BELAKANG ... 1
 B. TUJUAN PENELITIAN ... 2

II. UNTUKAN PUSTAKA ... 4
 A. UBI JALAR .. 4
 1. Botani Ubi Jalar .. 4
 2. Produksi Ubi Jalar .. 5
 3. Komposisi Kimia Ubi Jalar ... 7
 4. Pemanfaatan Ubi Jalar .. 10
 B. PENGERINGAN ... 11
 1. Kandungan Air .. 11
 2. Mekanisme Pengerengan .. 12
 3. Faktor-Faktor yang Mempengaruhi Pengerengan ... 13
 4. Metode Pengerengan ... 14
 5. Pengelompokan Mesin Pengereng ... 15
 C. ROTARY DRYER .. 16
 1. Bagian-Bagian Rotary Dryer ... 16
 2. Residence time .. 17
 3. Uji Kinerja Rotary Dryer .. 18
 D. BAHAN BAKAR MINYAK TANAH .. 19
 E. MUTU SAWUT UBI JALAR .. 19
 1. Warna ... 19
 2. Total Plate Count (TPC) ... 20
III. BAHAN DAN METODOLOGI

A. BAHAN DAN ALAT ... 23

B. METODOLOGI PENELITIAN ... 23

1. Penelitian Utama ... 23
 a. Tahap Persiapan .. 23
 a. 1. Identifikasi Mesin ... 23
 a. 2. Pemeriksaan Kondisi Mesin 24
 b. Uji Kinerja Pengerjaan dan Modifikasi yang Dilakukan 24

2. Penelitian Penunjang .. 25

C. PROSEDUR PENGUKURAN DAN PENGAMATAN 26

1. Prosedur Pengukuran Parameter Pengerjaan 26
 a. Berat Bahan ... 26
 b. Kadar Air ... 26
 c. Suhu .. 27
 d. Kelembaban Udara ... 27
 e. Konsumsi Bahan Bakar \(\text{Uji Kinerja Blower} \) 27
 f. Laju Pemasukan Aliran Bahan (feeding rate) 27
 g. Residu Time dan Waktu Pengerjaan 27

2. Perhitungan .. 27
 a. Laju Aliran Udara Pengerjaan .. 28
 b. Energi untuk Memanaskan Udara Pengerjaan 28
 c. Energi untuk Menguapkan Air Bahan 28
 d. Energi Panas dari Bahan Bakar .. 29
 e. Efisiensi Pengerjaan ... 29

3. Prosedur Pengukuran Mutu Sawut Hasil Pengerjaan 30
 a. Warna ... 30
 b. Uji Total Plate Count (TPC) ... 30

HASIL DAN PEMBAHASAN

A. DESKRIPSI ALAT ... 31

1. Burner .. 31
2. Ruang pembakaran .. 34
3. Pemindah Panas .. 34
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 1.</td>
<td>Data produksi, areal tanam, dan produktivitas ubi jalar di Indonesia tahun 2001</td>
<td>4</td>
</tr>
<tr>
<td>Tabel 2.</td>
<td>Data perkembangan produksi ubi kayu dan ubi Jalar di Indonesia dari tahun 2001 hingga tahun 2004</td>
<td>5</td>
</tr>
<tr>
<td>Tabel 3.</td>
<td>Komposisi Kimia Ubi Jalar per 100 Gram</td>
<td>6</td>
</tr>
<tr>
<td>Tabel 4.</td>
<td>Komposisi umum karbohidrat ubi jalar yang telah diolah dengan pemanasan (pemasakan)</td>
<td>8</td>
</tr>
<tr>
<td>Tabel 5.</td>
<td>Pengelompokan mesin pengering</td>
<td>15</td>
</tr>
<tr>
<td>Tabel 6.</td>
<td>Diameter puli motor listrik, puli gearbox, gear pada gearbox dan roda untuk menggerakan ruang pengering</td>
<td>36</td>
</tr>
<tr>
<td>Tabel 7.</td>
<td>Tinggi inlet dan outlet rotary dryer dari lantai</td>
<td>37</td>
</tr>
<tr>
<td>Tabel 8.</td>
<td>Pengaruh flights, sudut elevasi, dan kecepatan putar terhadap residen time</td>
<td>40</td>
</tr>
<tr>
<td>Tabel 9.</td>
<td>Daftar percobaan yang dilakukan pada penelitian</td>
<td>42</td>
</tr>
<tr>
<td>Tabel 10.</td>
<td>Efisiensi pemanasan, efisiensi penggunaan-panas, dan efisiensi pengeringan total setiap tahapan pengeringan</td>
<td>48</td>
</tr>
<tr>
<td>Tabel 11.</td>
<td>Perubahan nilai rata-rata parameter L, a, b sawut ubi jalar sebelum dikeringkan</td>
<td>53</td>
</tr>
<tr>
<td>Tabel 12.</td>
<td>Perubahan nilai rata-rata parameter L, a, b sawut ubi jalar kering sebelum dan setelah digiling</td>
<td>54</td>
</tr>
<tr>
<td>Tabel 13.</td>
<td>Total Plate count (TPC) sawut hasil pengeringan</td>
<td>55</td>
</tr>
<tr>
<td>Gambar</td>
<td>Deskripsi</td>
<td>Halaman</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Gambar skematik rotary dryer</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>Burner sebelum dan setelah diganti</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Mekanisme pergerakan ruang pengeringan</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>Grafik kenaikan suhu bagian input</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>Ruang pengering sebelum dan sesudah Flights ditambah</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>Grafik penurunan kadar air rata-rata terhadap waktu pengeringan</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>Grafik pengaruh suhu terhadap penurunan bobot bahan</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>Grafik pengaruh flights terhadap penurunan bobot bahan</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>Grafik pengaruh bobot bahan yang dikeringkan</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>Grafik pengaruh kecepatan putar ruang pengering terhadap penurunan bobot bahan</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>Grafik pengaruh Flights terhadap efisiensi pengeringan total</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>Grafik pengaruh bobot bahan yang dikeringkan terhadap efisiensi pengeringan total</td>
<td>51</td>
</tr>
<tr>
<td>13</td>
<td>Grafik pengaruh kecepatan putar ruang pengering terhadap efisiensi pengeringan total</td>
<td>51</td>
</tr>
<tr>
<td>14</td>
<td>Penyawut milik BUMP (a), dan Penyawut milik pilot plant (b)</td>
<td>53</td>
</tr>
<tr>
<td>Lampiran</td>
<td>Judul</td>
<td>Halaman</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Lampiran 1</td>
<td>Data perkembangan suhu bagian input rotary dryer</td>
<td>63</td>
</tr>
<tr>
<td>Lampiran 2</td>
<td>Perhitungan kebutuhan energi listrik dan bahan bakar minyak tanah pada pemanasan awal</td>
<td>64</td>
</tr>
<tr>
<td>Lampiran 3</td>
<td>Psychrometric chart</td>
<td>65</td>
</tr>
<tr>
<td>Lampiran 4</td>
<td>Data hasil perhitungan pada proses pengeringan</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>pecobaan 1</td>
<td></td>
</tr>
<tr>
<td>Lampiran 5</td>
<td>Data hasil perhitungan pada proses pengeringan</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>pecobaan 2</td>
<td></td>
</tr>
<tr>
<td>Lampiran 6</td>
<td>Data hasil perhitungan pada proses pengeringan</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>pecobaan 3</td>
<td></td>
</tr>
<tr>
<td>Lampiran 7</td>
<td>Data hasil perhitungan pada proses pengeringan</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>pecobaan 4</td>
<td></td>
</tr>
<tr>
<td>Lampiran 8</td>
<td>Data hasil perhitungan pada proses pengeringan</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>pecobaan 5</td>
<td></td>
</tr>
<tr>
<td>Lampiran 9</td>
<td>Data hasil perhitungan pada proses pengeringan</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>pecobaan 6</td>
<td></td>
</tr>
<tr>
<td>Lampiran 10</td>
<td>Data hasil perhitungan pada proses pengeringan</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>pecobaan 7</td>
<td></td>
</tr>
<tr>
<td>Lampiran 11</td>
<td>Data hasil perhitungan pada proses pengeringan</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>pecobaan 8</td>
<td></td>
</tr>
<tr>
<td>Lampiran 12</td>
<td>Data hasil perhitungan pada proses pengeringan</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>pecobaan 9</td>
<td></td>
</tr>
<tr>
<td>Lampiran 13</td>
<td>Gambar ubi jalar, sawut basah, sawut kering, dan tepung ubi jalar</td>
<td>85</td>
</tr>
</tbody>
</table>
I. PENDAHULUAN

A. LATAR BELAKANG

Ketergantungan akan konsumsi beras menjadikan Indonesia sebagai negara pengimpor beras dalam jumlah yang cukup tinggi. Selain itu, kebutuhan Indonesia terhadap terigu yang merupakan produk impor juga sangat besar sehingga menambah ketergantungan pangan terhadap negara lain. Oleh karena itu diperlukan suatu usaha untuk menurunkan ketergantungan tersebut. Salah satu alternatif cara untuk menanggulangi masalah ini adalah dengan adanya program diversifikasi pangan.

Diversifikasi pangan merupakan suatu usaha penataan kembali pemanfaatan komoditas dalam sistem produksi, baik yang belum pemanfaatan, maupun yang terbatas pemanfaatannya yang meliputi pengolahan dan pemanfaatan produk pertanian dan hasil sampingnya di dalam suatu sistem produksi dengan maksud untuk meningkatkan kualitas dan nilai umbah sehingga memperoleh harga dan keunggulan yang lebih tinggi dari komoditas tersebut. Komoditas ubi jalar sangat layak untuk dipertimbangkan dalam menunjang program diversifikasi pangan berdasarkan kandungan nutrisi, umur tanam yang relatif pendek, produktivitas yang tinggi dan potensi lainnya. Apabila ditangani secara sungguh-sungguh ubi jalar akan dapat menjadi sumber devisa yang potensial (Widodo, 1995).

Pemanfaatan komoditas ubi jalar dapat digunakan sebagai bahan pangan sumber karbohidrat non beras. Ubi jalar merupakan tanaman penghasil karbohidrat yang paling produktif dan untuk memproduksinya diperlukan pengairan yang lebih sedikit dibanding padi, jagung atau kentang. Daya adaptasinya sangat luas sehingga ubi jalar dapat berfungsi sebagai sumber pangan alternatif pada masa pascaklik. Apabila konsumsi ubi jalar per kapita di Indonesia dapat ditingkatkan menjadi 60 kg/tahun, permintaan beras akan menurun, sehingga dapat mengurangi ketergantungan pada beras (Zuraida, 2005).

Salah satu potensi pengembangan ubi jalar adalah dengan diolah menjadi tepung. Hal ini diharapkan dapat meningkatkan peran komoditas ubi jalar. Tepung ubi jalar dapat digunakan sebagai bahan substitusi terigu sebagai
bahan baku industri pangan olahan seperti

bakery, pancakes, puddings, dan produk lainnya.

Pensubstitusian tepung terigu dengan tepung ubi jalar pada pembuatan produk olahan akan meningkatkan biaya produksi sehingga harga produknya menjadi lebih mahal. Meskipun demikian, penggunaan tepung ubi jalar dalam pembuatan produk olahan dapat meningkatkan nilai gizi produk karena ubi jalar banyak mengandung komponen kalori, vitamin A, vitamin C, kalsium, zat besi dan serat pangan (Taylor, 1982).

- Salah satu tahapan dalam pembuatan tepung ubi jalar adalah pengolahan umbi ubi jalar segar sampai menjadi sawut kering. Selanjutnya, sawut kering ubi jalar ini dapat digiling menjadi tepung ubi jalar. Sawut kering ini dapat disimpan terlebih dahulu untuk waktu yang lebih lama jika kegiatan produksi penggilingan tepung) belum bisa dilaksanakan. Hal ini dikarenakan sawut memiliki kadar air yang rendah sehingga tidak mudah rusak selama penyimpanan.

Proses pengeringan sawut menjadi salah satu faktor yang menentukan mutu tepung ubi jalar yang dihasilkan. Faktor-faktor yang mempengaruhi pengeringan terdiri atas faktor yang berhubungan dengan alat pengering, faktor yang berhubungan dengan sifat-sifat bahan yang dikerlingkan, dan perlakuan pra pengeringan. Menurut Mujumdar dan Devastin (2001), agar pengeringan dapat menghasilkan produk dengan mutu yang baik secara efisien maka diperlukan pengering dengan kinerja yang baik, dan pengaturan serta pengendalian kondisi proses pengeringan seperti suhu yang digunakan, kelembaban udara, kecepatan dan arah aliran udara, serta waktu pengeringan.

Rotary dryer yang akan digunakan pada unit pengolahan di KUD Cibungbulang ini merupakan prototipe yang belum terujikinerjanya, maka perlu dilakukan uji kinerja dan modifikasi agar rotary dryer ini bisa menghasilkan sawut kering dengan kualitas yang baik.

BUJUAN PENELITIAN

Tujuan dari penelitian ini adalah mengetahui kinerja alat pengering rotary dryer pada pengolahan sawut ubi jalar, melakukan modifikasi,
menentukan perlakuan pra pengeringan dan kondisi pengeringan untuk mendapatkan sawut kering sesuai dengan mutu yang diinginkan.
umbinya sangat tergantung dari jumlah dan proporsi berbagai macam pigmen karotenoid yang terkandung di dalam bahan. Daging umbinya dapat berwarna putih, krem, merah muda, jingga, sampai keungu-unguan (Steinbauer dan Kushman, 1971).

Ubi jalar memiliki keistimewaan dibandingkan dengan tanaman pangan lainnya. Ubi jalar termasuk salah satu tanaman yang paling tinggi daya penyesuaianannya terhadap kondisi lingkungan yang buruk seperti angin kencang dan musim kering yang panjang. Dalam musim pacilik dan bencana alam, peran ubi jalar sebagai makanan alternatif telah terbukti. Dengan daya adaptasi yang luas, tanaman ini dapat ditanam sepanjang tahun asalkan kebutuhan air pada awal pertumbuhannya cukup.

2. Produksi Ubi Jalar

Tabel 1. Data produksi, areal tanam, dan produktivitas ubi jalar di Indonesia tahun 2001

<table>
<thead>
<tr>
<th>Daerah</th>
<th>Produksi (ton)</th>
<th>Luas areal (ha)</th>
<th>Produktivitas (ton/ha)</th>
<th>Produktivitas tertinggi (ton/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jawa</td>
<td>686.940</td>
<td>63.032</td>
<td>10.90</td>
<td>43</td>
</tr>
<tr>
<td>Sumatra</td>
<td>311.431</td>
<td>33.959</td>
<td>9.17</td>
<td>29</td>
</tr>
<tr>
<td>Maluku dan Papua</td>
<td>308.659</td>
<td>33.782</td>
<td>9.14</td>
<td>25</td>
</tr>
<tr>
<td>Bali, NTB dan NTT</td>
<td>217.860</td>
<td>23.086</td>
<td>9.44</td>
<td>30</td>
</tr>
<tr>
<td>Sulawesi</td>
<td>147.097</td>
<td>17.558</td>
<td>8.38</td>
<td>30</td>
</tr>
<tr>
<td>Kalimantan</td>
<td>77.083</td>
<td>9.609</td>
<td>8.02</td>
<td>25</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1.749.070</td>
<td>181.026</td>
<td>9.66</td>
<td></td>
</tr>
</tbody>
</table>

Menurut catatan Badan Pusat Statistik (2005), produksi ubi jalar dari tahun ke tahun tidak mengalami kenaikan yang signifikan dan jumlah produksinya jauh di bawah tanaman umbi-umbian lain seperti ubi kayu. Ubi jalar mempunyai prospek yang baik bila dikelola dengan pola agribisnis dan agroindustri yang baik. Data perkembangan produksi ubi kayu dan ubi jalar di Indonesia dari tahun 2001 hingga tahun 2004 dapat dilihat pada Tabel 2. berikut,

Tabel 2. Data perkembangan produksi ubi kayu dan ubi Jalar di Indonesia dari tahun 2001 hingga tahun 2004

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Ubi kayu (ton)</th>
<th>Ubi jalar (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>17.054.648</td>
<td>1.749.070</td>
</tr>
<tr>
<td>2002</td>
<td>16.913.104</td>
<td>1.771.642</td>
</tr>
<tr>
<td>2003</td>
<td>18.523.810</td>
<td>1.991.478</td>
</tr>
<tr>
<td>2004</td>
<td>19.263.978</td>
<td>1.889.222</td>
</tr>
</tbody>
</table>

Sumber: Badan Pusat Statistik (2005)

Menurut Hasanuddin dan Wargiono (2002), -hambatan-hambatan dalam mengembangkan pemanfaatan ubi jalar disebabkan oleh faktor teknis dan faktor sosio - ekonomi. Beberapa faktor teknis diantaranya adalah: (1) bulkiness, yaitu rasio antara berat dan volume ubi jalar tidak sebanding dengan harganya yang murah; (2) ubi jalar termasuk ke dalam bahan pangan yang mudah rusak karena lapisan kulitnya tipis kadar airnya tinggi; (3) ubi jalar mudah terserang hama; dan (4) cara perkembangbiakan dengan cara stek membutuhkan waktu hingga panen yang lama, sedangkan untuk
mempercepat waktu panen dapat menggunakan biji, tetapi membutuhkan biaya yang lebih besar.

Faktor sosio – ekonomi yang dapat menghambat perkembangan dan pemanfaatan ubi jalar antara lain: (1) status ubi jalar yang rendah di mata masyarakat (adanya persepsi masyarakat bahwa ubi jalar merupakan makanan untuk kalangan masyarakat yang kurang mampu); (2) kurangnya sumber daya (petani yang menanam ubi jalar umumnya adalah petani dengan sumber daya yang serba kekurangan, baik lahan maupun keuangan); dan (3) kurangnya akses untuk mencapai masyarakat (ubi jalar umumnya hanya ditemui di pasar-pasar tradisional saja sehingga distribusinya tidak menyebar luas).

Kenyataan di atas merupakan suatu tantangan bagi pemerintah dan kalangan akademis untuk dapat mengembangkan dan memasyarakatkan ubi jalar sebagai bahan pangan yang bernilai gizi serta terjangkau oleh semua masyarakat. Salah satu usaha untuk meningkatkan konsumsi ubi jalar adalah melakukan pengangkaran produk pangan berbasis ubi jalar.

2. Komposisi Kimia Ubi Jalar

Komposisi kimia ubi jalar bervariasi tergantung dari jenis, usia, keadaan tumbuh, dan tingkat kematangan. Ubi jalar merupakan sumber energi yang baik dalam bentuk karbohidrat. Komposisi kimia ubi jalar seperti tercantum pada Tabel 3.

<table>
<thead>
<tr>
<th>Nilai Gizi</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energi</td>
<td>123 kkal</td>
</tr>
<tr>
<td>Karbohidrat</td>
<td>27.38 gram</td>
</tr>
<tr>
<td>Protein</td>
<td>1.8 gram</td>
</tr>
<tr>
<td>Lemak</td>
<td>0.7 gram</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>60-7700 SI</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>22 mg</td>
</tr>
<tr>
<td>Kalsium</td>
<td>30 mg</td>
</tr>
<tr>
<td>Pospor</td>
<td>49 mg</td>
</tr>
<tr>
<td>Fe</td>
<td>0.7 mg</td>
</tr>
<tr>
<td>Air</td>
<td>68.5%</td>
</tr>
</tbody>
</table>

Karotenoid dapat digolongkan atas empat golongan, yaitu karotenoid hidrokarbon CₙH₂₄, xantofil yaitu karoten yang mengandung oksigen dan hidrosil, ester xantofil, dan asam karotenoida yaitu turunan karoten yang mengandung gugus hidroksil. Karotenoid yang umum dikenal sebagai sumber vitamin A adalah β-karoten (100 %), α-karoten (53%), dan γ-karoten. (Iwasaki dan Murakashi, 1992).

Ubi jalar juga mengandung vitamin B1 (thiamin) dan potasium dalam jumlah yang cukup, yaitu sekitar dua kali lipat dari jumlah yang dibutuhkan manusia. Potasium merupakan mineral utama yang terkandung pada komoditas ini. Kandungan zat besi ubi jalar (0.8 mg/100 g) dapat memenuhi kebutuhan zat besi bila ubi jalar dikonsumsi setidaknya 2 kg per hari (Huang, 1982).

Kandungan karbohidrat yang banyak terdapat pada ubi jalar adalah pati, gula, dan serat makanan. Komposisi umum karbohidrat ubi jalar yang telah diolah dengan pemanasan (pemasakan) dapat dilihat pada Tabel 4.

<table>
<thead>
<tr>
<th>Karbohidrat</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pati</td>
<td>3.2-5.0</td>
</tr>
<tr>
<td>Pektin</td>
<td>0.8-1.0</td>
</tr>
<tr>
<td>Hemiselulosa</td>
<td>0.4-1.0</td>
</tr>
<tr>
<td>Selulosa</td>
<td>1.1-1.9</td>
</tr>
<tr>
<td>Total gula</td>
<td>10.7-15.7</td>
</tr>
<tr>
<td>Total karbohidrat</td>
<td>17.3-23.6</td>
</tr>
</tbody>
</table>

Sumber: Palmer (1982)

Selain kandungan gizinya yang cukup tinggi, ubi jalar juga memiliki kekurangan, yaitu dapat menyebabkan flatulensi atau pembentukan gas-gas
dalam usus besar. *Flatulensi* disebabkan oleh beberapa jenis gula oligosakarida seperti stakiosa, rafinosa, dan verbaskosa yang tidak dapat dicerna oleh pencernaan karena tidak adanya enzim galaktosidase, tetapi dapat dicerna oleh bakteri pada usus bagian bawah. Komponen gas dominan yang keluar adalah gas CO₂, H₂, dan senyawa metan.

Pemanfaatan Ubi Jalar

Salah satu potensi pengembangan ubi jalar adalah dengan diolah menjadi tepung. Tepung ubi jalar dapat digunakan sebagai bahan baku dalam industri perekat, industri tekstil, dan industri kertas (Antarlin, 1994). Di Indonesia, penggunaan ubi jalar sebagai bahan baku industri mulai berkembang. Banyak produk makanan seperti saus, sambal, kue kering (*dried cake*), kue basah (*spongy cake*), dan biskuit menggunakan ubi jalar sebagai bahan bakunya. Hasil survey menunjukkan bahwa 60% bahan baku yang digunakan dalam pembuatan saus tomat adalah ubi jalar (*Suismono et al., 1994*).

Proses pembuatan tepung ubi jalar cukup sederhana dan dapat dilakukan dalam skala rumah tangga maupun industri kecil. Tepung dari ubi jalar dapat dibuat dengan dua cara: yang pertama ubi jalar diiris tipis lalu dikeringkan (*chip/sawut kering*) kemudian ditepungkan dan yang kedua ubi jalar diparut atau dibuat pasta lalu dikeringkan (*drum dryer*) dan ditepungkan.

Hasil penelitian Irfansyah (2001) menunjukkan bahwa tepung ubi jalar yang dibuat dari *chip/sawut kering* lebih baik. Tepung ubi jalar yang
dihasilkan dari proses penyawutan memiliki konsistensi gel dan kandungan karotenoid yang lebih tinggi dibandingkan tepung ubi jalar yang dihasilkan dari pembuatan tepung ubi jalar melalui cara pellet.

B. PENGERINGAN

Pengeringan bahan pangan mempunyai beberapa keuntungan yaitu bahan dapat menjadi lebih awet sehingga lebih tahan selama penyimpanan, volume bahan menjadi lebih kecil (sehingga mempermudah dan menghemat ruang pengepakan dan pengangkutan), serta berat bahan berkurang (sehingga lebih memudahkan pengangkutan) (Sutijahartini, 1985).

1. Kandungan Air

Kandungan air yang terdapat dalam bahan terutama hasil pertanian terbagi menjadi dua bagian yaitu air yang terdapat dalam keadaan bebas (free water) dan air yang terdapat dalam keadaan terikat (bound water). Air bebas adalah selisih antara kadar air suatu bahan pada suhu dan kelembaban tertentu dengan kadar air kesetimbangan pada suhu dan kelembaban yang sama. Air bebas umumnya terdapat pada bagian permukaan bahan. Air terikat adalah air yang diikandung oleh suatu bahan yang berada dalam kesetimbangan tekanan uap kurang dari cairan murni pada suhu yang sama.
Air terikat terdapat pada bahan dalam keadaan terikat secara fisis dan kimia (Sutijahartini, 1985).

Untuk menguapkan air dari bahan pangan diperlukan energi penguapan. Besarnya energi penguapan untuk air bebas paling rendah dibandingkan energi penguapan untuk air terikat secara fisis, dan energi penguapan yang paling besar adalah energi penguapan untuk air terikat secara kimia. Pada proses pengeritingan, air yang pertama kali diuapkan adalah air bebas, dilanjutkan dengan air terikat. Air yang dapat diuapkan tersebut dinamakan vaporable water (Sutijahartini, 1985).

Kadar air suatu bahan merupakan persentase berat air yang terdapat di dalamnya terhadap berat bahan keseluruhan. Kadar air dapat dinyatakan dengan dua cara yaitu kadar air berdasarkan bahan kering (dry basis), dan kadar air berdasarkan bahan basah (wet basis). Dalam proses pengeritingan suatu bahan kadar air memegang peranan penting karena sangat berpengaruh terhadap lama pengeritingan, jalannya proses pengeritingan, perubahan yang terjadi pada bahan dan alat pengeriting selama proses pengeritingan berlangsung (Hall, 1957 dan Richey et al., 1961). Kecepatan pengeritingan dari suatu bahan adalah banyaknya kandungan air yang dapat dipindahkan atau diuapkan tiap satuan waktu pengeritingan (Richey et al., 1961).

Mekanisme pengeritingan

Ada dua proses yang bersifat dasar dalam pengeritingan, yaitu pemindahan panas dan pemindahan massa. Panas dari sumber permanas dibawa oleh bahan pengantar misalnya aliran udara kepada bahan sehingga terjadi penguapan air yang terdapat pada bahan. Hasil penguapan berupa uap air akan- dibawa oleh aliran udara yang meninggalkan bahan (pemindahan massa uap air ke luar bahan).

Pemindahan cairan terjadi juga di dalam bahan. Pemindahan cairan di dalam bahan tersebut dapat terjadi secara difusi yaitu karena adanya perbedaan kadar air di permukaan dan di bagian dalam bahan, dan secara
Faktor-faktor yang mempengaruhi pengeringan

Faktor-faktor yang mempengaruhi pengeringan terdiri atas faktor yang berhubungan dengan alat pengering, faktor yang berhubungan dengan sifat-sifat bahan yang dikerlingkan, dan perlakuan pra pengeringan. Menurut Mujumdar dan Devastin (2001), untuk menghasilkan produk kering yang baik mutunya, ada beberapa faktor kendali pada alat pengering yang harus dipertimbangkan yaitu: 1) suhu yang digunakan, 2) kelembaban relatif udara, 3) kecepatan dan arah aliran udara, dan 4) waktu pengeringan.

Kemampuan untuk menguapkan air akan bertambah cepat dengan naiknya suhu dan panas yang diperlukan untuk menguapkan air. Suhu udara pada proses pengeringan tidak hanya berpengaruh pada waktu pengeringan tetapi juga berpengaruh pada kualitas hasil pengeringan. Untuk mendapatan biaya pengeringan yang rendah pada kapasitas pengeringan yang tinggi biasanya digunakan suhu setinggi-tingginya dengan catatan pada suhu ini sifat bahan tidak berubah. Suhu pada keadaan ini disebut sebagai suhu kritis (Sutijahartini, 1985).

Kelembaban udara pengering berpengaruh terhadap pemindahan cairan atau uap air dari dalam ke permukaan bahan, karena uap sangat tergantung pada kelembaban. Kecepatan aliran udara pengering mempunyai pengaruh yang besar untuk memindahkan massa uap air dari bahan ke atmosfir. Tanpa penggunaan aliran udara untuk membawa uap air tersebut, perbedaan tekanan uap antara bagian dalam dan permukaan bahan tersebut sangat kecil sehingga menjadi penghalang terjadinya pemindahan uap air dari bahan bagian dalam ke permukaan. Hal ini akhirnya berpengaruh terhadap waktu yang dibutuhkan untuk pengeringan bahan.

Media pengering mengalir secara aksial melewati drum searah atau berlawanan arah dengan aliran produk. Aliran berlawanan lebih disukai bila bahan yang dikerlingkan tidak sensitif terhadap panas dan harus dikerlingkan sampai tingkat kadar air yang sangat rendah. Mode aliran searah umumnya
lebih disukai untuk bahan yang sensitif terhadap panas dan untuk laju pengerinan tinggi (Mujumdar dan Devastin, 2001).

Faktor-faktor yang berhubungan dengan bahan yang dikerlngkan yaitu sifat-sifat bahan seperti bentuk dan ukuran bahan, sifat higroskopis bahan, jumlah dan tebal lapisan bahan yang dikerlngkan. Faktor lain yang berpengaruh terhadap pengerinan adalah peletakan dan pengadukan bahan selama pengerinan berlangsung, sifat-sifat penghantar panas dari bahan alat pengerinan serta cara pemindahan panas dari sumber alat pemanas ke bahan yang dikerlngkan (Richey et al., 1961 dan Hall, 1957).

Metode pengerinan

Pengeringan buatan adalah pengerinan dengan menggunakan alat pengerin, dimana suhu, kelembaban udara, kecepatan aliran udara dan waktu pengeringan dapat diatur dan diawasi. Pengeringan dengan alat pengering buatan akan mendapatkan hasil seperti yang diharapkan asalkan kondisi pengerinan dipilih dengan benar dan selama pengerinan dikontrol dengan baik. Umumnya pengerinan buatan berlangsung lebih cepat dibandingkan dengan penjemuran dan dapat lebih mempertahankan warna bahan yang dikerlngkan.

Pengerinan buatan dapat dibagi menjadi dua kelompok yaitu pengerinan diabatik dan pengerinan isothermik. Pengerinan diabatik
1. Diketemukan sebukti atau seluruh bongkahan itu dilengkapi dengan boks kontak dan berada di luar manajemen atau mengganggu karena kematangan yang telah jatuh. Penggunaan boks kontak yang tidak memenuhi pengetahuan penekan dalam pelaksanaan pengeringan (Sutijahartini, 1985).

5. Pengelompokkan Mesin Pengering

Ada beberapa kriteria yang digunakan untuk mengelompokkan mesin pengering, seperti terlihat pada Tabel 5. berikut,

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Jenis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modus operasi</td>
<td>1. Batch. Contohnya: try and compartment dryer, through circulation dryer, vacuum rotary dryer, vacuum tray dryer.</td>
</tr>
<tr>
<td>Metode pindah panas</td>
<td>1. Konveksi. Contohnya: belt conveyor dryer, rotary dryer, flash dryer, spray dryer, tray dryer, fluidized bed dryer, through dryer.</td>
</tr>
<tr>
<td></td>
<td>3. Radiasi. Contohnya: microwave</td>
</tr>
<tr>
<td>Tekanan operasi</td>
<td>1. Vacum. Contohnya: vacuum rotary dryer, vacuum tray dryer, freeze dryer.</td>
</tr>
<tr>
<td>Waktu bahan dalam mesin pengering</td>
<td>1. Singkat (< 1 menit). Contohnya: flash dryer, drum dryer, spray dryer.</td>
</tr>
<tr>
<td></td>
<td>2. Sedang (1 – 60 menit). Contohnya: belt conveyor dryer, fluidized bed dryer, rotary dryer, steam jacket rotary dryer, tray dryer (continuous).</td>
</tr>
<tr>
<td></td>
<td>3. Panjang (> 60 menit). Contohnya: tray dryer (batch).</td>
</tr>
</tbody>
</table>

Sumber: Mujumdar dan Menon, 1995

Jenis bahan yang akan dikerkingan, mutu hasil akhir yang dikerlingkan dan pertimbangan ekonomi mempengaruhi pemilihan alat dan kondisi pengering yang akan digunakan misalnya untuk jenis bahan padatan atau yang berbentuk lempeng maka alat yang sesuai untuk mengerlingan...
bahan tersebut adalah pengering cabinet atau *tray dryer*, *oven*, dan *rotary dryer*, sedangkan untuk bahan yang berbentuk pasta atau *puree* alat yang sesuai untuk mengeringkan adalah pengering drum (Brennan et al., 1974).

C. ROTARY DRYER

1. Bagian- Bagian Rotary Dryer

a. *Burner*

Burner berfungsi sebagai tempat untuk menghasilkan panas dengan bahan bakar minyak tanah atau bahan bakar lainnya.

b. Ruang Pembakaran

Ruang pembakaran adalah tempat terjadinya proses pembakaran untuk menghasilkan panas.
c. Pemindah Panas

Pemindah panas adalah tempat terjadinya pemanasan udara lingkungan yang akan digunakan sebagai udara pengering pada proses pengeringan.

d. Cerobong asap

Cerobong asap digunakan untuk membuang sisa hasil pembakaran sehingga tidak mengganggu pembakaran.

e. Blower

Blower berfungsi menarik udara lingkungan untuk masuk ke ruang pemindah panas dan mengembuskannya melalui pipa udara panas menuju ke ruang pengeringan.

f. Ruang pengeringan

Ruang pengeringan adalah ruang terjadinya proses pengeringan bahan dengan menggunakan panas secara kontak langsung yang dihasilkan dari ruang pembakaran dan merupakan tempat untuk menempatkan komoditas yang dikerkingan.

g. Rangka

Rangka berfungsi sebagai tempat untuk menyangga bagian-bagian dari alat pengering.

2. Residence Time

Dalam merancang sebuah rotary dryer ada beberapa ciricir utama yang harus diperhatikan, antara lain: laju aliran bahan, kadar air awal bahan yang akan dikerkingan, diameter dan panjang rotary dryer, kemiringan drum, kecepatan putar atau rotasi, jumlah dan disain flights, arah aliran udara pengering (co-current atau counter-current) dan kecepatannya melewati drum. (Kelly, 1995).

Pindah panas dan pindah massa secara bersamaan merupakan tujuan dasar dari proses pengeringan. Analisis kecepatan masing-masing membutuhkan pemahaman mengenai pergerakan partikel melewati drum.

Menurut Kelly (1995), residence time rotary dryer dapat dihitung dengan menggunakan berbagai persamaan diantaranya adalah persamaan (1) dan persamaan (2) sebagai berikut,

\[T = \frac{H}{F} \](1)
\[T = \frac{kL}{ND \tan \alpha} \](2)

Persamaan (1) menunjukkan bahwa residence time (T) dipengaruhi oleh drum holdup (H), dan laju aliran bahan (F). Sedangkan dari persamaan (2) menunjukkan bahwa residence time dipengaruhi oleh konstanta (k = 0.13), panjang drum (L), kecepatan putar drum (N), diameter drum (D), dan kemiringan drum (α).

Drum holdup menunjukkan jumlah partikel yang ada di dalam drum selama berlangsung keadaan steady-state. Drum holdup suatu rotary dryer di industri pada umumnya berkisar 10-15% volume total drum. Porter (1963) seperti yang dikutip oleh Kelly (1995), menunjukkan bahwa drum holdup sangat dipengaruhi oleh flight holdup (h), jumlah flight (n), dan panjang drum (L). Hubungan matematis tersebut dapat ditulis dalam bentuk persamaan (3) berikut,

\[H = \frac{1}{2} (n \times h \times L) \](3)

Flights berfungsi mengangkat bahan yang dikeringkan ke bagian atas drum dan mencurahkannya kembali ke bagian bawah drum seperti air terjun. Ukuran dan sudut dari flights ini akan mempengaruhi distribusi dan pergerakan partikel atau bahan yang dikeringkan.

3. Uji Kinerja Rotary Dryer

Kinerja suatu alat pengering akan sangat mempengaruhi proses pengeringan dan kualitas produk hasil pengeringan. Beberapa data yang pada umumnya dihasilkan dari uji kinerja suatu alat pengering antara lain :
lama dan laju pengeringan, konsumsi bahan bakar, laju udara pengering, efisiensi penggunaan panas, efisiensi pemanasan, dan efisiensi pemanasan total.

9. BAHAN BAKAR MINYAK TANAH

Pembakaran adalah kombinasi kimia antara oksigen dengan elemen bahan bakar. Minyak tanah merupakan salah satu bahan bakar cair yang diperoleh dari hasil destilasi minyak bumi. Beberapa kelemahan dari bahan bakar ini yaitu memiliki sifat letupan yang besar, penguapannya membutuhkan air yang cukup tinggi serta mudah berjelaga.

Nilai panas bahan bakar menyatakan besarnya energi potensial yang dimiliki oleh suatu bahan bakar, dan merupakan jumlah panas yang dihasilkan dari sejumlah bahan bakar yang terbakar sempurna. Menurut Hall (1957), nilai as minyak tanah adalah sebesar 10374.96 kkal/kg atau setara dengan 482.06 kJ/liter jika menggunakan berat jenis minyak 0.822 g/ml.

F. UTU SAWUT UBI JALAR

Warna

Warna merupakan salah satu atribut penting untuk produk pangan. Pengukuran warna pada bahan pangan dapat menggunakan sistem visual, tristimulus colorimetry, spektrofotometri, dan instrumen yang dikhususkan untuk komoditi tertentu. Pada dasarnya warna diukur dengan menganalisa cahaya yang dipantulkan dari permukaan atau ditransmisikan melalui
bahan. Cahaya yang digunakan sebagai dasar mengukur adalah cahaya putih.

Dalam sistem Hunter, terdapat tiga atribut warna yaitu kecerahan (Brightness or Lightness), Hue (proporsi merah, kuning, hijau dan biru), serta Colourfulness. Kecerahan yang dilambangkan dengan parameter L menunjukkan kecerahan objek relatif terhadap cahaya putih. L didefinisikan sebagai cahaya pantul yang menghasilkan warna akromatis putih, abu-abu, dan hitam. L memiliki kisaran 0 sampai 100. Nilai 0 untuk bahan yang hitam mutlak dan 100 untuk putih mutlak. Peningkatan pada nilai L menunjukkan peningkatan nilai putih atau terang.

Parameter a menunjukkan nilai warna merah-hijau. Warna merah diberi nilai antara 0 sampai +100, sedangkan warna hijau diberi nilai antara 0 sampai -80. Semakin positif nilai a menunjukkan warna merah yang semakin tinggi, sebaliknya semakin negatif nilai a menunjukkan warna hijau yang semakin tinggi. Parameter b menunjukkan nilai warna kuning-biru. Warna kuning diberi nilai antara 0 sampai +70, sedangkan warna biru diberi nilai antara 0 sampai -70. Sama halnya dengan parameter a, nilai yang semakin positif menunjukkan warna kuning yang kuat, demikian juga sebaliknya.

Total Plate Count (TPC)

Sanitasi merupakan bagian yang tidak dapat dipisahkan dalam industri pengolahan pangan. Penerapan sanitasi ini dimaksudkan agar tercipta kondisi yang higienis yang memungkinkan dihasilkan produk pangan yang bermutu tinggi. Dalam proses pengolahan pangan, sanitasi
adalah penciptaan keadaan yang mampu mencegah terjadinya kontaminasi makanan. Sanitasi pangan adalah suatu usaha pencegahan yang menjamin keamanan bahan pangan mulai dari bahan baku, pengolahan, pengemasan sampai makanan siap untuk dikonsumsi (Purnawijayanti, 2001).

Makanan untuk dikonsumsi, haruslah terjamin kesehatannya, bebas dari mikroorganisme berbahaya, bahan kimia dan bahan-bahan asing yang akan mengontaminasinya (Dorothy dan Panel, 1985). Sumber kontaminasi makanan yang utama berasal dari air, peralatan, pekerja, sampah, serangga dan tikus, serta faktor lingkungan seperti udara dan lantai (Marriott dan Norman, 1999).

Mutu mikrobiologis dari suatu produk makanan ditentukan oleh jumlah dan jenis mikroba yang terdapat dalam bahan pangan. Mutu mikrobiologis ini akan menentukan ketahanan simpan dari produk tersebut ditinjau dari kerusakan mikroba dan keamanan produk dari mikroba ditentukan oleh jumlah spesies patogenik yang terdapat dalam bahan pangan (Bukle et al., 1981).

Perlakuan pendahuluan pada makanan yang akan dikerlingkan memiliki pengaruh penting terhadap populasi mikroba pada produk hasil pengeringan. Perlakuan pendahuluan tersebut meliputi perendaman, pencucian, seleksi, sortasi dan trimming, pemotongan atau reduksi ukuran bahan, pencelupan dalam alkali, blanching, dan sulfurisasi (Syarief, 1995).

Air dapat merupakan medium pembawa mikroorganisme patogenik yang berbahaya bagi kesehatan. Untuk mereduksi Jumlah mikroorganisme di dalam air bisa direduksi maka perlu ditambahkan desinfektan seperti penggunaan klorin. Tujuan utama penambahan klorin terhadap air adalah melakukan desinfeksi air dengan kontaminasi yang tidak terlalu berat. Efek desinfeksi didapatkan melalui in-aktivasi organisme-organisme bakteri dan virus patogenik yang dapat dipindahkan melalui air (Jenie, 1988).

Analisis kuantitatif mikrobiologis pada bahan pangan penting dilakukan untuk mengetahui mutu bahan pangan dan menghitung proses
pengawetan yang akan diterapkan pada bahan pangan tersebut (Fardiaz, 1992). Metode yang dapat digunakan untuk menentukan jumlah mikroba di dalam bahan pangan terdiri dari metode hitungan cawan (HC), "Most Probable Number" (MPN), dan metode mikroskopik langsung (Direct Microscopik Count). Metode lain yang dapat digunakan untuk menghitung jumlah mikroba di dalam suatu larutan adalah metode turbiditi (kekeruhan) menggunakan spektrofotometer. Tetapi metode ini sukar diterapkan pada bahan pangan karena membutuhkan medium yang bening, sedangkan ekstrak bahan pangan, misalnya sari buah biasanya mengandung komponen-komponen yang menyebabkan kekeruhan, sehingga kekeruhan larutan tidak sebanding dengan mikroba yang terkandung di dalamnya (Jay, 2000).

Prinsip metode cawan adalah jika sel jasad renik yang masih hidup ditumbuhkan pada medium agar, maka sel jasad renik tersebut akan berkembang biak dan membentuk koloni yang dapat dilihat langsung dan dihitung dengan mata tanpa menggunakan mikroskope. Metode ini merupakan cara yang paling sensitif untuk menghitung jumlah jasad renik karena beberapa hal yaitu: (1) hanya sel yang masih hidup yang dapat dihitung, (2) beberapa jenis jasad renik dapat dihitung sekaligus dan (3) dapat digunakan untuk isolasi dan identifikasi jasad renik karena koloni yang terbentuk mungkin berasal dari suatu jasad renik yang mempunyai penampilan pertumbuhan spesifik. Selain keuntungan-keuntungan tersebut metode ini juga memiliki kelemahan yaitu (1) hasil perhitungan tidak menunjukkan jumlah sel yang sebenarnya, karena beberapa sel yang berdekat mungkin membentuk satu koloni, (2) medium dan kondisi inkubasi berbeda mungkin memberikan nilai yang berbeda, (3) jasad renik yang ditumbuhkan harus dapat tumbuh pada medium padat dan membentuk koloni yang kompak dan jelas, tidak menyebbar, (4) memerlukan persiapan dan waktu inkubasi relatif lama sehingga pertumbuhan dapat dihitung (Fardiaz, 1992).
III. BAHAN DAN METODE PENELITIAN

A. BAHAN DAN ALAT

Bahan yang digunakan pada penelitian ini adalah ubi jalar yang telah dasawut menggunakan mesin penyawut dan siap untuk dikeringkan. Ubi jalar ini diambil dari petani ubi jalar yang berada di daerah Bogor. Bahan lainnya adalah bahan-bahan untuk analisis mikrobiologi sawut kering meliputi: xades, Plate Count Agar (PCA), alkohol, larutan pengencer (larutan garam fisiole 0.85%). Peralatan yang digunakan pada pengolahan ubi jalar menjadi sawut kering adalah bak pencucian, mesin penyawut, alat pengering rotary dryer, dan timbangan, serta peralatan yang digunakan dalam pengembilan data yaitu lain meteran, kamera digital, termometer air raksa, termometer thermocouple, stop watch, gelas ukur 1 liter, plastik kedap udara, neraca analitik, cawan aluminium, oven, dan desikator, inkubator, penangas air, otrometer, flow meter, aluminium foil, bunsen, pipet mhor, pipet mikro 100-1000 μL, cawan petri, plastik tahan panas, autoklav, stomacher, tips, dan bung reaksi bertutup.

B. METODE PENELITIAN

Penelitian yang dilakukan meliputi penelitian utama dan penelitian penunjang.

1. Penelitian Utama

a. Tahap Persiapan

Tahap persiapan merupakan tahap awal yang dilakukan dalam penelitian uji kinerja mesin rotary dryer, meliputi identifikasi mesin dan pemeriksaan kondisi mesin.

a.1. Identifikasi Mesin

Pada langkah ini dilakukan pengukuran bagian-bagian utama (dimensi) mesin dan pencatatan spesifikasi teknis dari alat pengering

2. Pemeriksaan Kondisi Mesin

Pada langkah ini dilakukan pengecekan kondisi awal rotary dryer meliputi burner, blower, dan kecepatan rotasi pada silinder pengering. Hasil pemeriksaan yang diperoleh digunakan sebagai pertimbangan untuk modifikasi yang perlu dilakukan.

1). Uji kinerja burner

Uji kinerja burner meliputi konsumsi bahan bakar dan suhu maksimal yang bisa dicapai. Pengukuran jumlah bahan bakar yang dibutuhkan per satuan waktu berfungsi untuk mengetahui jumlah potensi energi panas yang dihasilkan dari pembakaran bahan bakar tersebut.

2). Uji kinerja blower

Uji kinerja blower dilakukan dengan mengukur kecepatan aliran udara yang menuju ke ruang pengering sehingga bisa diketahui laju volumetrik udara pemanas dan laju aliran udara disepanjang ruang pengering.

3). Uji kinerja putaran silinder

Pengukuran putaran silinder dilakukan dengan menghitung banyaknya putaran silinder dalam satu menit. Beberapa komponen yang berkaitan dengan putaran silinder adalah motor penggerak, pulley, gear box, dan rantai transmisi.

b. Tahap Uji Kinerja Pengering dan Modifikasi yang Dilakukan

Pada tahap uji kinerja pengering dilakukan pengujian alat tanpa bahan dan pengujian alat menggunakan bahan. Pengujian alat tanpa
bahan dilakukan untuk mengetahui karakteristik suhu alat pengering dan menghitung jumlah energi yang dibutuhkan untuk pemanasan awal sebelum pengeringan. Sedangkan pada pengujian menggunakan bahan, dilakukan percobaan pengeringan sawut ubi jalar sampai menghasilkan sawut kering. Percobaan ini bertujuan untuk mengetahui kinerja rotary dryer secara keseluruhan.

Parameter yang diukur adalah suhu, konsumsi bahan bakar dan kadar air. Pengukuran suhu meliputi suhu udara di bagian input, suhu udara di bagian output, suhu udara lingkungan. Pengukuran suhu dilakukan rata-rata setiap 10 menit, sedangkan pengukuran konsumsi bahan bakar dan kadar air dilakukan pada setiap tahap pengeringan. Dari data yang diperoleh dapat dihitung kelembaban udara, laju aliran udara, dan laju penguapan sehingga besarnya efisiensi pengeringan dapat dihitung.

Berdasarkan uji coba pengeringan, modifikasi yang dilakukan antara lain adalah penggantian burner, penggantian motor blower, pengaturan kecepatan putar rotary dryer, dan pengaturan kemiringan atau sudut elevasi rotary dryer, dan penambahan jumlah flight dalam ruang pengering.

2. Penelitian Penunjang

Ubi jalar yang akan dikeringkan terlebih dahulu dibersihkan dari tanah dan kotoran yang menempel pada kulit secara manual dengan menggunakan sikat. Setelah selesai dibersihkan, selanjutnya ubi jalar ini dicuci kembali. Pencucian kedua ini ada yang dilakukan dengan air biasa dan ada yang dilakukan dengan menggunakan larutan klorin 1000 ppm. Penelitian penunjang ini dilakukan untuk mengetahui pengaruh perendaman ubi jalar dengan larutan klorin 1000 ppm sebelum penyawutan terhadap kandungan mikroba sawut kering yang dihasilkan.
PROSEDUR PENGUKURAN DAN PENGAMATAN

Pengukuran parameter dilakukan dari awal hingga akhir proses pengeringan sehingga kinerja dari mesin pengering dapat diketahui.

1. Prosedur Pengukuran Parameter Pengeringan meliputi:
 a. Bobot bahan

 Penimbangan bobot bahan awal dilakukan sebelum bahan dikeringkan. Setelah pengeringan selesai dilakukan penimbangan kembali untuk menentukan bobot bahan kering.

 b. Kadar air

 Pengukuran kadar air meliputi kadar air awal bahan (sebelum dikeringkan) dan kadar air setelah pengeringan dilakukan dengan metode oven (AOAC, 1995). Mula-mula cawan kosong dikeringkan dengan oven selama 15 menit dan didinginkan dalam desikator, kemudian ditimbang. Sebanyak 4 – 5 gram contoh dimasukkan dalam cawan yang telah ditimbang dan selanjutnya dikeringkan dalam oven bersuhu 100 – 105 °C selama 6 jam. Cawan yang telah berisi contoh tersebut dipindahkan ke desikator, didinginkan, dan ditimbang. Pengeringan dilakukan kembali sampai diperoleh bobot konstan. Kadar air dihitung berdasarkan kehilangan bobot yaitu selisih bobot awal dengan bobot akhir. Penentapan kadar air berdasarkan perhitungan:

 \[
 \text{Kadar air (\% bb)} = \frac{(a - b)}{a} \times 100\% \\
 \text{\% bk) = \frac{(a - b)}{b} \times 100\%}
 \]

 dimana : \(a\) = bobot bahan awal \(b\) = bobot bahan akhir

 Jumlah air yang dikeluarkan bahan dapat dihitung dengan menggunakan rumus :

 \[
 Wa = \text{bobot basah} \times \frac{m_1 - m_2}{100 - m_2}
 \]
Wa = jumlah uap air yang dikeluarkan bahan (kg)

\[m_1 = \text{kadar air awal bahan (\% bb)} \]
\[m_2 = \text{kadar air akhir bahan (\% bb)} \]

c. Suhu

Pengukuran suhu dilakukan dengan menggunakan termometer air raksa dan termometer termocouple. Suhu yang diukur meliputi:
1. Suhu bola basah dan bola kering lingkungan
2. Suhu udara yang digunakan untuk pengeringan
3. Suhu bola basah dan bola kering yang keluar dari alat pengering

d. Kelembaban udara

Kelembaban udara didapatkan dengan mengukur suhu bola basah dan bola kering yang kemudian diplotkan pada psychrometric chart.

e. Konsumsi bahan bakar

Untuk menentukan jumlah bahan bakar yang dibutuhkan selama proses pengeringan, dilakukan pengukuran volume minyak tanah pada tangki bahan bakar sebelum dan sesudah proses pengeringan. Selisih pengukuran merupakan jumlah bahan bakar yang dikonsumsi.

f. Laju pemasukan aliran bahan (feeding rate)

Laju pemasukan aliran bahan dihitung dengan membandingkan bobot bahan yang dikeringkan dengan waktu yang dibutuhkan untuk memasukkan bahan tersebut di bagian input.

g. Residence time dan lama pengeringan

Residence time suatu alat pengering diperoleh dengan menghitung waktu yang diperlukan mulai dari awal dimasukkan bahan sampai pertama kali bahan keluar dari alat pengering. Lama pengeringan merupakan total waktu yang diperlukan selama proses pengeringan, yaitu waktu mulai dari awal bahan dimasukkan sampai semua bahan keluar dari alat pengering. Penghitungan waktu ini dilakukan dengan menggunakan stopwatch.
2 Perhitungan Hasil Pengukuran

Data hasil pengukuran digunakan untuk menentukan kinerja rotary dryer yang meliputi:

a. Laju aliran udara pengering

Laju aliran udara pengering yang dibutuhkan untuk pengeringan bahan dihitung dengan menggunakan rumus sebagai berikut:

\[Q = \frac{W_a \times \nu}{(H_d - H_o) \times t} \]

- \(Q \) = laju aliran udara, \(m^3 \)/jam
- \(W_a \) = jumlah air yang diuapkan, kg
- \(H_d \) = kelembaban mutlak udara yang keluar dari pengering, kg/kg udara kering
- \(H_o \) = kelembaban mutlak udara lingkungan, kg/kg udara kering
- \(t \) = waktu pengeringan
- \(\nu \) = volume spesifik udara, \(m^3 \)/kg udara kering

b. Energi untuk memanaskan udara pengering

Energi panas yang digunakan untuk memanaskan udara pengering dapat dihitung dengan persamaan berikut:

\[q_1 = \frac{\bar{Q} (h_d - h_o)}{\nu} \]

- \(q_1 \) = energi yang dibutuhkan untuk memanaskan udara pengering, kJ/jam
- \(\bar{Q} \) = laju aliran udara, \(m^3 \)/jam
- \(h_d \) = entalpi udara pengering, kJ/kg udara kering
- \(h_o \) = entalpi udara lingkungan, kJ/kg-udara kering
- \(\nu \) = volume spesifik udara, \(m^3 \)/kg udara kering

c. Energi untuk menguapkan air dari bahan

Energi yang digunakan untuk menguapkan air dari bahan yang dikeringkan dapat dihitung dengan asumsi panas laten yang dikandung
bahan sama dengan panas laten penguapan dari air. Energi ini dihitung dengan menggunakan rumus berikut:

\[q_2 = w \times h_g \]

- \(q_2 \) = energi yang dibutuhkan untuk menguapkan air dari bahan, kJ/jam
- \(w \) = laju penguapan air dari bahan, kg/jam
- \(h_g \) = panas laten penguapan air, kJ/kg

d. Energi panas dari bahan bakar minyak

Panas yang diberikan bahan bakar selama proses berlangsung dapat dihitung dengan mengetahui jumlah pemakaian bahan bakar tersebut. Energi ini dihitung dengan menggunakan rumus berikut:

\[q_m = F_m \times U \]

- \(q_m \) = panas yang diberikan bahan bakar, kJ/jam
- \(F_m \) = jumlah pemakaian bahan bakar, liter/jam
- \(U \) = nilai panas bahan bakar (10374.96 kcal/kg atau 35682.06 kJ/liter)

e. Efisiensi pengeringan

Efisiensi pengeringan dapat dibedakan atas efisiensi penggunaan panas, efisiensi pemanasan, dan efisiensi pengeringan total, yang dirumuskan sebagai berikut:

\[E_g = \frac{q_2}{q_1} \times 100\% \quad E_p = \frac{q_1}{q_m} \times 100\% \quad E_k = \frac{q_2}{q_m} \times 100\% \]

- \(E_g \) = efisiensi penggunaan panas, %
- \(E_p \) = efisiensi pemanasan, %
- \(E_k \) = efisiensi pengeringan total, %

- \(q_1 \) = energi yang digunakan untuk memanaskan udara pengering, kJ/jam
- \(q_2 \) = energi untuk menguapkan air bahan, kJ/jam
- \(q_m \) = energi yang dihasilkan bahan bakar, kJ/jam
3. Pengukuran parameter sawut hasil pengeringan

a. Warna

Pengukuran untuk warna tepung dilakukan dengan menggunakan alat chromameter “Minolta CR-200”. Warna tepung dibaca dengan detektor digital halu angka hasil pengukuran akan terbaca pada layar. Pada alat ini yang terukur adalah nilai-nilai L, a, b, dan h° (hue).

Keterangan:

L = nilai yang menunjukkan kecerahan, berkurang antara 0-100
a = merupakan warna campuran merah-hijau
 a positif (+) antara 0-100 untuk warna merah
 a negatif (-) antara 0-(-80) untuk warna hijau
b = merupakan warna campuran biru-kuning
 b positif (+) antara 0-70 untuk warna kuning
 b negatif (-) antara 0-(-80) untuk warna biru

b. Uji total plate count (TPC) (AOAC, 1992)

Sampel ditimbang sebanyak 5 gram dan dimasukkan ke dalam 45 ml larutan pengencer. Sampel tersebut kemudian di stomacher selama 1 menit. Dari hasil hancurnya sampel tersebut dilakukan pengenceran dan pemupukan sampai tingkat yang dikehendaki. Larutan pengencer yang digunakan adalah NaCl 0.85 % (w/v).

IV. HASIL DAN PEMBAHASAN

A. DESKRIPSI ALAT

Alat pengering sawut ubi jalar yang digunakan dalam penelitian ini adalah jenis rotary. Pengering rotary bercascade adalah pengering yang beroperasi secara kontinyu dan terdiri atas cangkang silinder yang berputar perlahan serta biasanya dimiringkan beberapa derajat dari bidang horizontal untuk membantu perpindahan umpan basah yang dimasukkan pada ujung atas dan bahan kering dikeluarkan dari ujung bawah.

Udara lingkungan dihisap melalui pemindah panas menggunakan blower kemudian dihembuskan masuk ke dalam ruang pengering searah (co-current) dengan input bahan basah. Bahan yang dikerlingkan akan kontak dengan udara panas sehingga air dari dalam bahan pangan yang berada dalam fase cair akan meningkat suhunya dan akan berdifusi ke permukaan bahan. Selanjutnya air akan menguap (evaporasi) dan akan ditampung oleh udara kering. Udara yang membawa uap air akan keluar dari ruang pengering dalam keadaan yang lebih senguh (saturated). Alat pengering tipe rotari kontinyu ini dapat dilihat pada gambar 1.

Secara umum alat pengering sawut ubi jalar tipe rotari kontinyu ini terdiri dari bagian-bagian utama diantaranya adalah:

Burner

Burner berfungsi sebagai alat untuk mensuplai minyak tanah secara teratur dan mengabutkannya untuk pembakaran sehingga menghasilkan panas. Spesifikasi *burner* yang terpasang pertama kali pada unit pengering
Gambar 1. Alat pengering Rotary Dryer.
ini adalah tipe CH-2303 C, putaran motor 2800 rpm dan tegangan 200 V, 0.3 A, dan frekuensi 50 Hz. Kapasitas pompa bahan bakar dari burner ini adalah 2.5 liter/jam sehingga maksimum hanya akan menghasilkan energi sebesar 89,205.15 kJ/jam jika pembakarannya sempurna.

Proses pengeringan sawut ubi jalar yang akan dilakukan bertujuan menurunkan kadar air sawut awal (rata-rata 65%) hingga mencapai kadar air 6% berdasarkan berat basah. Ini berarti, jumlah air yang harus diuapkan setiap 100 kg ubi jalar segar adalah rata-rata 62.76 kg. Jika efisiensi pengeringan sebesar 25% dengan panas laten pada suhu rata-rata dalam ruang pengering (60°C) adalah 2610 kJ/kg, maka kapasitas pengering hanya bisa menguapkan 8.54 kg uap air/jam atau setara dengan 13.61 kg ubi segar/jam. Untuk meningkatkan kapasitas pengeringan, burner ini diganti dengan burner baru.

Spesifikasi burner yang baru adalah tipe SD55Y2JJJ-4989 CAT, dengan putaran motor 2850 rpm, tegangan 220 V, 1.17 A, dan frekuensi 50 Hz. Kapasitas bahan bakar untuk burner ini adalah 2.5 Gph atau setara dengan 9.25 liter/jam sehingga bisa menghasilkan energi sebesar 330,059.05 kJ/jam jika pembakarannya sempurna. Jika efisiensi pengeringan sebesar 25% dengan panas laten pada suhu rata-rata dalam ruang pengering (60°C) adalah 2610 kJ/kg, maka kapasitas pengering bisa menguapkan 31.61 kg uap air/jam atau setara dengan 50.37 kg ubi segar/jam. Burner sebelum dan sesudah diganti dapat dilihat pada Gambar 2 dibawah ini.

Gambar 2. Burner sebelum dan setelah diganti.
Ruang Pembakaran

Ruang pembakaran adalah tempat terjadinya proses pembakaran untuk menghasilkan panas. Panas yang dihasilkan dari pembakaran ini kemudian digunakan untuk memanaskan udara dari lingkungan. Ruang pembakaran berbentuk silinder mempunyai ukuran diameter 76.4 cm dan tinggi 65 cm.

3. Pemindah Panas

Pemindah panas adalah tempat terjadinya pemanasan udara lingkungan yang akan digunakan sebagai udara pengering pada proses pengeringan. Ruang pemindah panas ini berbentuk silinder dengan diameter 54 cm dan tinggi 1 meter. Di dalam ruang pemindah panas ini terdapat tabung-tabung yang mengalirkan gas dan udara panas hasil pembakaran. Tabung-tabung pemindah panas ini akan memanaskan udara lingkungan yang mengalir di sekitar tabung. Tabung-tabung yang berhubung dengan ruang pembakaran ini berjumlah 24 buah dengan diameter 2.54 cm dan tinggi 1 meter. Semakin banyak jumlah tabung ini maka semakin luas permukaan panas yang dapat memanaskan udara.

4. Gerobong Asap

Gerobong asap merupakan perpanjangan dari pipa pemindah panas. Gerobong asap digunakan untuk membuang sisa hasil pembakaran sehingga tidak mengganggu pembakaran. Gerobong asap yang digunakan berbentuk pipa dan terbuat dari besi dengan diameter 19 cm dan panjang 4.8 meter.

5. Udara Panas

Udara panas dari ruang pemindah panas akan bergerak melalui pipa udara panas menuju blower. Pipa udara panas yang digunakan terbuat dari besi dengan diameter 19 cm dan ukuran panjang dari pemindah panas menuju blower adalah horizontal 90 cm, lalu naik 50 cm, kemudian horizontal 45 cm. Bentuk pipa akan mempengaruhi kecepatan aliran udara panas. Bentuk pipa yang lurus akan menghasilkan aliran yang lebih cepat bandingkan pipa yang membentuk sudut.
6. Blower

Blower berfungsi menarik udara lingkungan untuk masuk ke ruang pemindah panas dan mengembuskaninya melalui pipa udara panas menuju ke ruang pengeringan. Blower digerakkan dengan menggunakan motor. Spesifikasi motor yang terpasang pertama kali pada blower adalah tipe JY1A-U, 1 phase, 750 watt, 220 volt, 4.2 A, 1420 rpm, dan frekuensi 50 Hz. Laju aliran udara pada bagian pipa saluran udara panas yang menuju ruang pengeringan setelah diukur dengan menggunakan anemometer ternyata hanya 4.8 m/s. Hal ini berarti laju aliran udara rata-rata pada ruang pengeringan hanya 679 m³/jam. Jika 1 m³ udara dapat menyerap 0.02 kg air, maka kapasitas blower ini hanya sebesar 13.58 kg uap air/jam. Karena kapasitas blower ini masih rendah, seharusnya seluruh blower diganti. Namun, untuk sementara hanya motor yang menggerakkan blower yang diganti dengan motor yang baru.

Spesifikasi motor blower yang baru adalah AEERK-040003 YU, 2200 watt, 3 phase, 380 volt, 5.08 A, 1425 rpm, dan frekuensi 50 Hz. Motor ini menghasilkan laju aliran udara pada bagian pipa saluran udara panas yang menuju ruang pengeringan sebesar 11.5 m/s. Hal ini berarti laju aliran udara rata-rata pada ruang pengeringan sebesar 1602.12 m³/jam, sehingga bisa memiliki kapasitas sebesar 32.04 kg uap air/jam.

7. Ruang Pengeringan

Ruang pengeringan adalah ruangan tempat terjadinya proses pengeringan bahan dengan menggunakan udara panas yang ditiupkan blower dari ruang pemindah panas. Ruang pengeringan ini terbuat dari bahan stainless steel dengan ketebalan 2 mm, berbentuk silinder tak pejal, panjang 1363 cm, dengan diameter luar 106 cm dan diameter dalam 98 cm. Untuk menghindari kehilangan panas yang berlebihan, maka pada bagian luar dinding pengering dilapisi dengan isolator panas “glass wool” dan aluminium.

Ruang pengeringan ini diputar dengan menggunakan motor listrik serial No R/1/62183 JK, 3 phase, 11000 watt, frekuensi 50 Hz, dan 1460

Perputaran ruang pengeringan diatur untuk berputar sebanyak 2 rpm, 5 rpm, atau 10 rpm dengan merubah diameter pulley pada motor listrik, pulley gearbox, dan diameter gear pada gearbox dan roda seperti pada Tabel 6

<table>
<thead>
<tr>
<th>Perputaran Ruang Pengering</th>
<th>Diameter Pulley Motor</th>
<th>Diameter Pulley Gearbox</th>
<th>Diameter Gear pada Gearbox</th>
<th>Diameter Gear pada Roda</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 rpm</td>
<td>13 cm</td>
<td>35 cm</td>
<td>18 cm</td>
<td>18 cm</td>
</tr>
<tr>
<td>5 rpm</td>
<td>13 cm</td>
<td>13 cm</td>
<td>18 cm</td>
<td>18 cm</td>
</tr>
<tr>
<td>10 rpm</td>
<td>13 cm</td>
<td>13 cm</td>
<td>18 cm</td>
<td>9 cm</td>
</tr>
</tbody>
</table>

Rangka

Rangka berfungsi sebagai tempat untuk menyangga bagian-bagian dari alat pengering. Rangka yang menyangga ruang pengeringan berukuran panjang 1113 cm, tinggi pada bagian inlet dan outletnya dari lantai bisa diatur untuk memperoleh kemiringan dari rotary dryer. Tinggi pada bagian inlet dan outlet rotary dryer ini diatur sehingga diperoleh kemiringan seperti pada Tabel 7.
Tabel 7. Tinggi inlet dan outlet rotary dryer dari lantai

<table>
<thead>
<tr>
<th>Tinggi inlet (cm)</th>
<th>Tinggi outlet (cm)</th>
<th>Kemiringan(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.5</td>
<td>6.50</td>
<td>2.0583</td>
</tr>
<tr>
<td>46.5</td>
<td>36.5</td>
<td>0.5147</td>
</tr>
<tr>
<td>46.5</td>
<td>41.5</td>
<td>0.2574</td>
</tr>
</tbody>
</table>

B. KINERJA PENGERING ROTARY DRYER

1. Pengujian Alat Tanpa Bahan

![Grafik kenaikan suhu bagian input](image)

Gambar 4. Grafik kenaikan suhu bagian input

Alat pengering ini menggunakan sumber energi listrik untuk menggerakkan motor listrik dan bahan bakar minyak tanah untuk memanaskan udara. Jumlah energi listrik yang digunakan dapat dibilitung dengan mengetahui kuat arus listrik dan tegangan yang digunakan serta waktu pemakaian. Energi listrik diperlukan untuk menggerakkan motor listrik penggerak ruang pengering dan blower. Energi listrik total yang diperlukan untuk menggerakkan ruang pengering dan blower pada
pemanasan awal hingga mencapai suhu 135°C adalah sebesar 28 512 kJ, yang terdiri atas energi listrik untuk menggerakkan ruang pengering sebesar 23 760 kJ dan untuk menggerakkan blower sebesar 4 752 kJ. Jika pada pemanasan awal ruang pengering tidak digerakkan, maka akan menghemat energi listrik sebesar 23 760 kJ.

Energi bahan bakar minyak yang digunakan dapat dihitung dengan mengukur konsumsi minyak dikalikan dengan nilai panas minyak tanah. Konsumsi bahan bakar minyak tanah untuk pemanasan awal hingga mencapai suhu 135°C adalah 5 liter, sehingga energi bahan bakar minyak tanah yang dihasilkan adalah 178 410,3 kJ. Perhitungan energi listrik dan energi bahan bakar minyak tanah yang digunakan ini terdapat pada Lampiran 2.

Penguajian Alat Menggunakan Bahan

Rotary dryer yang akan digunakan terlebih dahulu dihidupkan untuk mencapai suhu pengerangan yang diinginkan. Setelah suhu tercapai, sawut yang telah siap dikeringkan dimasukkan ke dalam rotary dryer.

Penguajian kinerja rotary dryer dilakukan dengan cara percobaan pengerangan sawut ubi jalar hingga diperoleh sawut ubi jalar kering dengan kadar air ≤ 6 % berat basah. Telah dicoba berbagai kondisi pengerangan seperti suhu, kecepatan putar silinder ruang pengerangan,
kemiringan atau sudut elevasi rotary dryer, dan flights atau sirip-sirip yang ada di dalam ruang pengering. Parameter-parameter ini mempengaruhi proses pengeringan dalam hal residence time dan waktu pengeringan, penurunan kadar air, serta efisiensi proses pengeringan.

Faktor-faktor yang mempengaruhi pengeringan terdiri atas faktor yang berhubungan dengan alat pengering, faktor yang berhubungan dengan sifat-sifat bahan yang dikeringkan, dan perlakuan pra pengeringan. Menurut Mujumdar dan Devastin (2001), untuk menghasilkan produk kering yang baik mutunya, ada beberapa faktor kendali pada alat pengering yang harus dipertimbangkan yaitu: 1) suhu yang digunakan, 2) kelembaban relatif udara, 3) kecepatan dan arah aliran udara, dan 4) waktu pengeringan.

a. Residence time dan waktu pengeringan

Residence time suatu alat pengering diperoleh dengan menghitung waktu yang diperlukan mulai dari awal dimasukkan bahan sampai pertama kali bahan keluar dari alat pengering. Lama pengeringan merupakan total waktu yang diperlukan selama proses pengeringan, yaitu waktu mulai dari awal bahan dimasukkan sampai semua bahan keluar dari alat pengering. Semakin lama residence time, semakin lama waktu pengeringan berlangsung dalam satu kali lewat dan semakin banyak terjadi proses pindah panas dan pindah massa. Hal ini akan berpengaruh terhadap kadar air produk hasil pengeringan (Kelly, 1995).

Kemiringan drum rotary dryer juga sangat mempengaruhi kecepatan pergerakan partikel melewati ruang pengering. Semakin besar kemiringan atau perbedaan tinggi antara bagian input dan bagian output maka akan semakin singkat residence time karena gerak jatuhnya partikel akibat kemiringan semakin besar. Sebaliknya, untuk memperlama waktu tinggal atau untuk memperpanjang residence time maka elevasi diperkecil dengan menaikkan ketinggian ujung output.

Pada saat awal, rotary dryer yang digunakan memiliki pengambang (flights) sebanyak 80 buah dengan ukuran 4.5 cm x 4.5 cm dan panjang 40 cm yang dibuat membentuk sudut >90°, dengan kemiringan drum 2.0583° dan kecepatan putar 10 rpm. Percobaan ini menghasilkan residence time sebesar 15 menit. Residence time yang dihasilkan ini dapat ditingkatkan dengan mengurangi kemiringan drum atau sudut elevasi, mengurangi kecepatan putaran rotary dryer, dan menambah jumlah flights. Hasil percobaan untuk memperpanjang residence time dapat dilihat pada Tabel 8.

<table>
<thead>
<tr>
<th>Flights</th>
<th>Sudut Elevasi</th>
<th>Kecepatan putar (rpm)</th>
<th>Residence time (menit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal</td>
<td>2.0583°</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Awal</td>
<td>0.5147°</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Awal</td>
<td>0.2574°</td>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td>Baru</td>
<td>0.2574°</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>Baru</td>
<td>0.2574°</td>
<td>2</td>
<td>90</td>
</tr>
</tbody>
</table>

Pengurangan sudut elevasi menjadi 0.5147° dan kecepatan putar menjadi 5 rpm menghasilkan residence time sebesar 25 menit. Pengurangan sudut elevasi menjadi 0.2574° dan kecepatan putar menjadi 2 rpm menghasilkan residence time sebesar 39 menit. Karena
pengurangan sudut elevasi dan kemiringan masih menghasilkan residence time yang singkat, maka dilakukan penambahan flights.

Menurut Kelly (1995), salah satu cara untuk memperlama residence time adalah dengan memperbesar drum holdup. Drum holdup menunjukkan jumlah partikel yang ada di dalam drum selama berlangsung keadaan steady-state. Porter (1963) seperti yang dikutip oleh Kelly (1995), menyatakan bahwa drum holdup sangat dipengaruhi oleh flight holdup \((h) \), jumlah flight \((n) \), dan panjang drum \((L) \).

Flights berfungsi mengangkat bahan yang dikeringkan ke bagian atas drum dan menurunkannya kembali ke bagian bawah drum seperti air terjun. Ukuran dan sudut dari flights ini akan mempengaruhi distribusi dan pergerakan partikel atau bahan yang dikeringkan. Jumlah dan besarnya ukuran flight yang semakin besar akan meningkatkan flight holdup sehingga drum holdup pun akan meningkat. Selain itu, dengan memperbanyak jumlah flight penyebaran bahan dalam ruang pengering lebih baik sehingga kontak dengan udara panas lebih intensif.

Flights dalam ruang pengering ditambah sebanyak 82 buah dengan ukuran 10 cm \(\times \) 10 cm dan panjang 50 cm yang dibuat membentuk sudut 90°. Residence time yang dihasilkan setelah penambahan flights, dengan sudut elevasi 0.2574° dan kecepatan putar 5 rpm adalah sebesar 45 menit, sedangkan jika diputar dengan kecepatan 2 rpm residence time yang dihasilkan adalah 90 menit. Flights sebelum dan setelah penambahan dapat dilihat pada Gambar 5.

Hasil percobaan ini menunjukkan bahwa residence time sangat dipengaruhi oleh kemiringan drum, kecepatan putar atau rotasi, dan jumlah dan disain flight. Semakin besar kemiringan dan kecepatan putar rotary dryer maka semakin singkat residence time yang dihasilkan. Jumlah flights juga mempengaruhi residence time. Semakin banyak jumlah flights, pergerakan partikel semakin merata dan hold-up semakin besar sehingga residence time yang dihasilkan menjadi lebih besar.
b. Penurunan kadar air

Pengeringan adalah suatu cara untuk mengurangi kadar air suatu bahan, sehingga diperoleh hasil akhir yang kering. Dalam proses pengeringan suatu bahan kadar air memegang peranan penting karena sangat berpengaruh terhadap lama pengeringan, jalannya proses pengeringan, perubahan yang terjadi pada bahan dan alat pengering selama proses pengeringan berlangsung (Hall, 1957 dan Richey et al., 1961). Kecepatan pengeringan dari suatu bahan adalah banyaknya kandungan air yang dapat dipindahkan atau diuapkan tiap satuan waktu pengeringan (Richey et al., 1961).

Pada penelitian ini, percobaan dilakukan sebanyak sembilan kali seperti yang terlihat pada Tabel 9

Tabel 9. Daftar percobaan yang dilakukan pada penelitian

<table>
<thead>
<tr>
<th>Percobaan</th>
<th>Flights</th>
<th>Sudut elevasi</th>
<th>Rpm</th>
<th>Suhu inlet</th>
<th>kadar air (%)</th>
<th>waktu (jam)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>awal</td>
<td>akhir</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>awal</td>
<td>2.0583</td>
<td>10</td>
<td>80</td>
<td>64.74 58.3</td>
<td>2.09</td>
</tr>
<tr>
<td>2</td>
<td>awal</td>
<td>2.0583</td>
<td>10</td>
<td>100</td>
<td>65.73 47.47</td>
<td>4.26</td>
</tr>
<tr>
<td>3</td>
<td>awal</td>
<td>0.5147</td>
<td>5</td>
<td>120</td>
<td>66.12 53.96</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>awal</td>
<td>0.2574</td>
<td>2</td>
<td>100</td>
<td>69.84 24.86</td>
<td>4.55</td>
</tr>
<tr>
<td>5</td>
<td>awal</td>
<td>0.2574</td>
<td>2</td>
<td>130</td>
<td>67.23 20.73</td>
<td>5.51</td>
</tr>
<tr>
<td>6</td>
<td>baru</td>
<td>0.2574</td>
<td>2</td>
<td>135</td>
<td>61.92 10.29</td>
<td>7.83</td>
</tr>
<tr>
<td>7</td>
<td>baru</td>
<td>0.2574</td>
<td>2</td>
<td>135</td>
<td>64.15 5.37</td>
<td>7.4</td>
</tr>
<tr>
<td>8</td>
<td>baru</td>
<td>0.2574</td>
<td>5</td>
<td>135</td>
<td>64.22 2.84</td>
<td>5.9</td>
</tr>
<tr>
<td>9</td>
<td>baru</td>
<td>0.2574</td>
<td>5</td>
<td>135</td>
<td>64.72 2.49</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Kurva hubungan antara waktu pengeringan dengan penurunan kadar air pada percobaan pertama sampai kesembilan dapat dilihat pada Gambar 6.

![Grafik penurunan kadar air rata-rata terhadap waktu pengeringan](image)

Gambar 6. Grafik penurunan kadar air rata-rata terhadap waktu pengeringan

Penurunan kadar air bahan dapat dilihat dengan penurunan bobot bahan yang dikeringkan. Kurva hubungan antara waktu pengeringan dengan penurunan bobot bahan hasil percobaan 4 dan percobaan 5 dapat dilihat pada Gambar 7. Pada percobaan 4 dan percobaan 5 dengan kondisi flights, kemiringan, dan kecepatan putar ruang pengering yang sama dapat dilihat pengaruh suhu terhadap penurunan bobot bahan.

Dari gambar 7 dapat dilihat bahwa penurunan bobot bahan yang dikeringkan hasil percobaan 5 dengan menggunakan suhu 130°C lebih besar dibandingkan hasil percobaan ke 4 yang menggunakan suhu 100°C. Kemampuan untuk menguapkan air akan bertambah besar dengan naiknya suhu dan panas yang diperlukan untuk menguapkan air. Hal ini menunjukkan bahwa semakin tinggi suhu yang digunakan, semakin besar pula penurunan kadar air yang terjadi.
Gambar 7. Grafik pengaruh suhu terhadap penurunan bobot bahan

Pada percobaan 5 dan percobaan 6 dengan kondisi kemiringan dan kecepatan putar ruang pengering yang sama, serta suhu yang tidak jauh berbeda, maka dapat dilihat pengaruh jumlah flights terhadap kecepatan penurunan bobot bahan yang dikerlingkan. Kurva hubungan antara waktu pengeringan dengan penurunan bobot bahan hasil percobaan 5 dan percobaan 6 dapat dilihat pada Gambar 8.

Gambar 8. Grafik pengaruh flights terhadap penurunan bobot bahan

Flights berfungsi mengangkat bahan yang dikerlingkan ke bagian atas drum dan mencurahkannya kembali ke bagian bawah drum seperti air terjun. Ukuran dan sudut dari *flights* ini akan mempengaruhi
distribusi dan pergerakan partikel atau bahan yang dikerlingkan. Jumlah dan besarnya ukuran flights yang semakin besar akan memperbesar penyebaran bahan dalam ruang pengering sehingga kontak dengan udara panas lebih intensif (Kelly, 1995).

Percobaan 6 dengan jumlah dan ukuran flights yang lebih besar seharusnya menunjukkan kecepatan penurunan bobot bahan yang lebih cepat dibandingkan percobaan 5. Pada awal pengeringan dapat dilihat bahwa penurunan bobot bahan pada percobaan 6 lebih cepat dibandingkan percobaan 5. Hal ini dapat dilihat dari kurva penurunan bobot bahan pada percobaan 6 yang lebih curam. Namun pada tahap selanjutnya, kurva penurunan bobot bahan pada percobaan 5 lebih curam dibandingkan pada percobaan 6. Hal ini disebabkan bobot bahan yang dikerlingkan pada percobaan 6 lebih besar dibandingkan percobaan 5 sehingga beban pengeringanpun lebih besar. Selain itu, laju konsumsi bahan bakar yang berbeda akan memberikan supply energi yang berbeda sehingga kecepatan pengeringanpun akan berbeda.

Dari Lampiran 8 dan Lampiran 9 dapat dilihat bahwa laju konsumsi bahan bakar pada percobaan 5 lebih besar dibandingkan percobaan 6.

Pengeringan pada percobaan 6 dan percobaan 7 dilakukan dengan kondisi flights, kemiringan, kecepatan putar ruang pengering, dan suhu yang sama sehingga dapat dianggap sebagai ulangan. Kurva hubungan antara waktu pengeringan dengan penurunan bobot bahan hasil percobaan 6 dan percobaan 7 dapat dilihat pada Gambar 9.

Gambar 9 menunjukkan bahwa kecepatan penurunan bobot bahan pada percobaan 6 tidak berbeda jauh dengan percobaan 7. Hal ini dapat dilihat dari kemiringan kurva yang hampir sama. Perbedaan kecepatan pengeringan percobaan 6 dengan percobaan 7 disebabkan beberapa faktor seperti bobot bahan yang dikerlingkan percobaan 6 berbeda dengan percobaan 7, kadar air awal bahan yang dikerlingkan pada percobaan 6 berbeda dengan percobaan 7, dan laju konsumsi bahan bakar yang bervariasi, maupun faktor lain yang tidak diukur dan tidak diketahui.
Gambar 9. Grafik pengaruh bobot bahan yang dikerikan

Pada percobaan 7 dan percobaan 8 dilakukan proses pengeringan pada kondisi flights, kemiringan, dan suhu yang sama tetapi kecepatan putar ruang pengering yang berbeda. Pengaruh kecepatan putar ruang pengering terhadap kecepatan penurunan bobot bahan yang dikerikan dapat dilihat Gambar 10.

Gambar 10. Grafik pengaruh kecepatan putar ruang pengering terhadap penurunan bobot bahan

Proses pindah panas dan massa terutama berlangsung ketika pergerakan partikel dari atas ke bawah secara gravitasi saat terjadi
sentuhan antara partikel yang dikerlingkan dengan udara panas. Ketika partikel menempel pada dinding drum dan dibawa ke atas oleh cangkang yang berputar, berlangsung periode 'tempering' yang mana medan suhu dan kadar air dalam partikel cenderung merata sebelum partikel dipaparkan kembali pada kondisi pengeringan konvektif (Mujumdar dan Devastin, 2001).

Pada Gambar 11 dapat dilihat bahwa penurunan bobot bahan yang dihasilkan dari percobaan 7 dengan menggunakan kecepatan putar ruang pengering 2 rpm memberikan hasil yang berbeda dengan percobaan 8 dengan menggunakan kecepatan putar ruang pengering 5 rpm. Kecepatan penurunan bobot bahan pada percobaan 8 lebih cepat dibandingkan dengan percobaan 7. Hal ini disebabkan makin besar rpm yang digunakan, makin banyak putaran ruang pengering yang terjadi dalam waktu yang sama sehingga kontak antara udara panas dengan bahan yang dikerlingkan semakin banyak. Hal ini berarti pindah panas dan pindah massa semakin cepat terjadi.

c. Efisiensi pengeringan

Nilai efisiensi pemanasan rotary dryer pada umumnya berkisar antara 30 sampai 60 % (Mujumdar dan Devastin, 2001). Dari tabel 10 dapat dilihat bahwa besarnya nilai efisiensi pemanasan rotary dryer yang dihasilkan bervariasi dan mengalami fluktuasi. Besarnya nilai efisiensi yang dihasilkan masih banyak yang di bawah rata-rata efisiensi pemanasan rotary dryer pada umumnya. Hal ini menunjukkan adanya energi yang dihasilkan bahan bakar minyak yang tidak
digunakan untuk memanaskan udara pengering. Efisiensi pemanasan yang rendah ini disebabkan karena adanya kehilangan panas dan masalah yang terjadi pada burner.

<table>
<thead>
<tr>
<th>Tabel 10. Efisiensi pemanasan, efisiensi penggunaan panas, dan efisiensi pengeringan total setiap tahapan pengeringan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efisiensi Pemanasan (%)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>Efisiensi Penggunaan Panas (%)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>Efisiensi Pengeringan (%)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Keterangan: ‘-’ tidak dilakukan

Kehilangan panas dapat terjadi karena (1) kehilangan energi panas melalui lubang-lubang ventilasi pada ruang pembakaran sebelum energi panas ini diserap oleh tabung pemindah panas, (2) sebagian panas digunakan untuk memanaskan dinding ruang pembakaran yang tidak berfungsi sebagai pemindah panas, (3) kehilangan energi panas melalui dinding ke lingkungan, serta (4) kurang efisiennya tabung tabung pemindah panas (heat exchanger) pada proses pemanasan udara lingkungan di ruang pemindah panas.

Masalah pada burner seperti proses pembakaran yang kurang efisien dan tidak stabilnya laju konsumsi bahan bakar akibat tersumbatnya aliran bahan bakar yang masuk pada burner menyebabkan supply energi yang dihasilkan untuk memanaskan tabung heat exchanger bervariasi atau berfluktuasi. Akibatnya proses pemanasan udara di ruang pemindah panas inpun menjadi tidak stabil, sehingga nilai efisiensi pemanasan yang dihasilkan menjadi bervariasi.

Selain kehilangan panas dan masalah pada burner, berbedanya nilai efisiensi pemanasan pada setiap tahapan percobaan mungkin disebabkan
oleh faktor lain yang tidak diketahui dan tidak diukur. Salah satunya adalah blower. Blower berfungsi menarik udara lingkungan untuk masuk ke ruang pemindah panas dan mengembuskannya melalui pipa udara panas menuju ke ruang pengeringan. Jika blowernya mengalami masalah misalnya laju aliran yang dihasilkannya tidak konstan, maka kekuatan menarik udara lingkungan untuk masuk ke ruang pengering menjadi bervariasi sehingga pemanasan udara di dalam ruang pemindah panas terganggu.

Efisiensi penggunaan panas menunjukkan besarnya penggunaan panas efektif dalam pengeringan yang dapat digunakan untuk menguapkan air dari bahan yang dikerkingkan. Efisiensi penggunaan panas yang dihasilkan bervariasi antara 19.14 sampai 91.80 %. Nilai efisiensi penggunaan panas ini jauh lebih besar dibanding nilai efisiensi yang lain. Hal ini menunjukkan bahwa sebagian besar dari panas dalam pengeringan digunakan untuk menguapkan air dari bahan, sedangkan sebagian lagi hilang.

Kehilangan energi panas ini disebabkan oleh (1) terserapnya energi panas melalui dinding-dinding saluran udara panas, (2) terbuangnya energi panas melalui lubang pemasukan dan pengeluaran bahan, (3) sebagian panas digunakan untuk memanaskan bagian dari pengering seperti silinder pengering, dan (4) terbuangnya energi panas bersama udara yang keluar dari pengering. Nilai efisiensi penggunaan panas dari tahap awal ke tahap akhir cenderung menurun. Hal ini disebabkan karena bahan yang dikerkingkan mengalami penyesutan volume karena berkurangnya kadar air, sehingga pemakaian panaspun berkurang.

Efisiensi pengeringan total menunjukkan besarnya energi panas dari bahan bakar yang dapat digunakan untuk menguapkan air dari bahan yang dikerkingkan. Efisiensi pengeringan total yang dihasilkan bervariasi antara 0.91 sampai 34.21 %. Nilai efisiensi pengeringan total ini paling rendah dibanding nilai efisiensi yang lain. Hal ini menunjukkan bahwa hanya sebagian kecil energi panas dari bahan bakar yang digunakan untuk menguapkan air dari bahan yang dikerkingkan. Faktor-faktor yang mempengaruhi nilai efisiensi pemanasan dan penggunaan panas, juga merupakan faktor yang mempengaruhi nilai efisiensi pengeringan total.
Perpindahan panas dari ruang pembakaran ke tabung pemindah panas (heat exchanger) merupakan salah satu faktor yang menyebabkan energi panas hilang sebelum dapat dimanfaatkan untuk menguapkan air bahan.

Gambar 11. Grafik pengaruh Flights terhadap efisiensi pengeringan total

Pengaruh kecepatan putar ruang pengering terhadap nilai efisiensi pengeringan total dapat dilihat pada Gambar 13. Gambar 13 ini membandingkan rata-rata nilai efisiensi pengeringan total percobaan 7
(menggunakan kecepatan putar ruang pengering 2 rpm) dibandingkan dengan nilai rata-rata efisiensi pengeringan total percobaan 8 (menggunakan kecepatan putar ruang pengering 5 rpm).

![Grafik pengaruh bobot bahan yang dikeringkan terhadap efisiensi pengeringan total](image1)

Gambar 12. Grafik pengaruh bobot bahan yang dikeringkan terhadap efisiensi pengeringan total

![Grafik pengaruh kecepatan putar ruang pengering terhadap efisiensi pengeringan total](image2)

Gambar 13. Grafik pengaruh kecepatan putar ruang pengering terhadap efisiensi pengeringan total

Dari Gambar 13 dan Tabel 10 dapat dilihat bahwa nilai rata-rata efisiensi pengeringan total percobaan 8 lebih besar dibandingkan nilai rata-rata efisiensi pengeringan total percobaan 7. Ini menunjukkan bahwa semakin besar kecepatan putar ruang pengering, maka nilai efisiensi pengeringan total yang dihasilkan juga semakin besar. Hal ini disebabkan makin besar rpm yang digunakan, makin banyak putaran ruang pengering yang terjadi dalam waktu yang sama sehingga kontak antara udara panas...
dengan bahan yang dikeringkan semakin banyak. Hal ini berarti pindah panas dan pindah massa semakin cepat terjadi.

Data pada Tabel 10 menunjukkan bahwa nilai efisiensi pengeringan total pada umumnya meningkat dari tahap kesatu menuju tahap kedua, dan menurun pada tahap kedua menuju tahap ketiga dan tahap keempat. Hal ini disebabkan karena pada pengeringan tahap 1 dan tahap 2 masih merupakan periode pengeringan dengan laju konstan, sedangkan pengeringan pada tahap 3 dan tahap 4 sudah merupakan periode pengeringan dengan laju menurun.

MUJU SAWUT UBI JALAR

Proses pengeringan akan mempengaruhi mutu produk akhir. Selama pengeringan bahan pangan dapat terjadi perubahan kimia, fisika, dan biologi yang dapat mempengaruhi warna, tekstur, aroma dan nilai gizi. Penurunan nilai gizi terjadi karena pengaruh suhu dan dehidrasi vitamin dan protein. Perubahan tekstur berhubungan dengan sifat kelerutan (solubility) dan dehidrasi. Terjadinya off-colour disebabkan oleh reaksi browning baik enzimatis maupun reaksi browning non enzimatis (Valentas et al., 1997).

1. Warna

Warna merupakan salah satu atribut penting untuk produk pangan. Tahap persiapan dan proses pengeringan merupakan salah satu faktor yang mempengaruhi warna-produk hasil pengeringan. Hasil pengukuran warna sawut ubi jalar sebelum dikeringkan dapat dilihat pada Tabel 11.

Tabel 11. Perubahan nilai rata-rata parameter L, a, b sawut ubi jalar sebelum dikeringkan

<table>
<thead>
<tr>
<th>Waktu (menit)</th>
<th>Nilai rata-rata parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td>0</td>
<td>+79.43</td>
</tr>
<tr>
<td>10</td>
<td>+74.45</td>
</tr>
<tr>
<td>20</td>
<td>+70.30</td>
</tr>
<tr>
<td>30</td>
<td>+66.45</td>
</tr>
<tr>
<td>40</td>
<td>+63.42</td>
</tr>
<tr>
<td>50</td>
<td>+61.14</td>
</tr>
<tr>
<td>60</td>
<td>+60.09</td>
</tr>
</tbody>
</table>

Pada persiapan pengeringan, ubi jalar yang memenuhi persyaratan (lolos seleksi) dikecilkan ukurannya dengan mesin penyawut. Mesin penyawut yang ada di unit pengolahan BUMP Cibungbulang ini (gambar 7a) menghasilkan sawut ubi jalar yang ukurannya tidak seragam dan remuk. Karena itu, untuk uji coba pengeringan digunakan mesin penyawut milik pilot plant Departemen Ilmu dan Teknologi Pangan, IPB (gambar 7b).

Gambar 14. (a) Penyawut milik BUMP (b) Penyawut milik pilot plant

Mesin penyawut milik pilot plant yang digunakan memiliki kapasitas yang kecil, sehingga penyawutan ubi jalar untuk percobaan pengeringan memerlukan waktu yang lama. Sawut ubi jalar yang dihasilkan tidak langsung dikeringkan, tetapi ditampung terlebih dahulu untuk menunggu seluruh ubi jalar selesai disawut. Selama menunggu untuk dikeringkan inilah sawut ubi jalar mengalami perubahan warna karena proses pencoklatan atau browning enzimatis.
Menurut Hoover dan Miller (1973) seperti yang dikutip oleh Jenie et al. (1978), kerusakan warna pada produk ubi jalar disebabkan oleh adanya aktivitas enzim catechol oksidase jika terdapat tanin atau zat semacam tanin. Proses kerusakan tersebut disebabkan karena adanya reaksi antara besi bervalensi dua dengan o-dihidroksifenol dan pembentukan persenyawaan ferri yang berwarna gelap jika dibiarkan di udara terbuka. Telah lama diketahui bahwa reaksi browning ini dipengaruhi oleh oksigen, air dan suhu.

Untuk mengatasi hal ini perlu dilakukan perlakuan pendahuluan berupa blanching atau perendaman sebelum pengeringan dengan menggunakan bahan kimia anti pencoklatan seperti natrium-metasulfit 0.3% selama ± satu jam (Kadarisman dan Sulaeman, 1993). Perendaman bertujuan untuk menghilangkan kotoran dan getah yang masih menempel pada sawut ubi jalar serta menghindari terjadinya proses pencoklatan (browning).

Setelah dikeringkan dan digiling menjadi tepung ubi jalar, parameter warna L, a, dan b juga mengalami perubahan. Hasil pengukuran warna sawut ubi jalar sebelum dan setelah digiling dapat dilihat pada Tabel 12, sedangkan gambar ubi jalar, gambar sawut basah, gambar sawut kering, dan gambar tepung ubi jalar dapat dilihat pada Lampiran 13.

<table>
<thead>
<tr>
<th>Sawut ubi jalar kering</th>
<th>Nilai rata-rata parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td>Sebelum digiling</td>
<td>+72.40</td>
</tr>
<tr>
<td>Setelah digiling</td>
<td>+87.46</td>
</tr>
</tbody>
</table>

Tabel 12 menunjukkan nilai parameter L dan parameter b mengalami peningkatan, sedangkan parameter a mengalami penurunan. Adanya perbedaan parameter L, a, dan b sawut ubi jalar basah dengan sawut ubi jalar kering menunjukkan bahwa semakin rendah kadar air, warna sawut akan semakin cerah. Begitu juga dengan adanya perbedaan parameter L, a, dan b sawut ubi jalar kering sebelum dan setelah digiling menjadi tepung.
Hal ini menunjukkan bahwa semakin kecil ukuran partikel, semakin besar luas permukaan sehingga pemantulan cahaya semakin banyak.

Total Plate Count (TPC)

Mutu mikrobiologis dari suatu produk makanan ditentukan oleh jumlah dan jenis mikroba yang terdapat dalam bahan pangan. Perlakuan pendahuluan pada makanan yang akan dikeringkan memiliki pengaruh penting terhadap populasi mikroba pada produk hasil pengeringan. Perlakuan pendahuluan tersebut meliputi perendaman, pencucian, seleksi, sortasi dan trimming, pemotongan atau reduksi ukuran bahan, pencelupan dalam alkali, blanching, dan sulfursiasi (Syarief, 1995).

<table>
<thead>
<tr>
<th>Sawut kering</th>
<th>Kadar air (%)</th>
<th>Ulangan</th>
<th>Jumlah mikroba</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percobaan 6</td>
<td>10.29</td>
<td>1</td>
<td>6.7×10^3</td>
<td>6.6×10^3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6.4×10^3</td>
<td></td>
</tr>
<tr>
<td>Percobaan 7</td>
<td>5.37</td>
<td>1</td>
<td>5.6×10^2</td>
<td>4.3×10^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3.0×10^2</td>
<td></td>
</tr>
<tr>
<td>Percobaan 8</td>
<td>2.84</td>
<td>1</td>
<td>$\leq 2.5 \times 10^4$</td>
<td>$\leq 2.5 \times 10^4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>$\leq 2.5 \times 10^3$</td>
<td></td>
</tr>
<tr>
<td>Percobaan 9</td>
<td>2.49</td>
<td>1</td>
<td>$\leq 2.5 \times 10^4$</td>
<td>$\leq 2.5 \times 10^4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>$\leq 2.5 \times 10^3$</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 13 menunjukkan bahwa kandungan mikroba sawut kering hasil percobaan 8 dan percobaan 9 lebih rendah dibandingkan kandungan mikroba sawut kering hasil percobaan 6 dan percobaan 7. Tabel ini juga
menunjukkan bahwa semakin rendah kadar air sawut hasil pengeringan, semakin rendah kandungan mikrobanya. Hal ini disebabkan karena semakin rendah kadar air suatu bahan pangan, semakin kecil jumlah air yang tersedia untuk pertumbuhan mikroba. Dari Tabel 13 ini dapat disimpulkan bahwa kandungan mikroba sawut dengan atau tanpa perlakuan pencucian dalam larutan klorin tidak berbeda jauh. Kandungan mikroba sawut tanpa perlakuan pencucian dalam larutan klorin bisa diperkecil dengan semakin rendahnya kadar air sawut hasil pengeringan.
V. KESIMPULAN DAN SARAN

A. KESIMPULAN

Proses pengerkingan sawut menjadi salah satu faktor yang menentukan mutu tepung ubi jalar yang dihasilkan. Agar pengerkingan dapat menghasilkan produk dengan mutu yang baik secara efisien maka diperlukan pengerkingan dengan kinerja yang baik, dan pengaturan serta pengendalian kondisi proses pengerkingan. Rotary dryer yang digunakan pada unit pengolahan di BUMP Perkebunan sebagian besar terdiri atas bagian-bagian utama diantaranya adalah burner, ruang pembakaran, heat exchanger, cerobong asap, pipa udara panas, blower, ruang pengeringan, dan rangka.

Hasil percobaan ini menunjukkan bahwa residence time sangat pengaruhi oleh kemiringan drum, kecepatan putar atau rotasi, dan jumlah pada disain flight. Semakin besar kemiringan dan kecepatan putar rotary dryer maka semakin singkat residence time yang dihasilkan. Jumlah flights juga mempengaruhi residence time. Semakin banyak jumlah flights, pergerakan artikel semakin merata dan hold-up semakin besar sehingga residence time yang dihasilkan menjadi lebih besar.

Percobaan pengerkingan dengan suhu yang berbeda tapi kondisi lainnya sama menunjukkan hasil bahwa penggunaan suhu yang lebih besar akan mempercepat penurunan kadar air atau bobot bahan yang dikerikingkan. Pengerkingan dengan jumlah dan ukuran flights yang lebih besar menghasilkan penurunan bobot bahan yang dikerikingkan lebih cepat. Pengerkingan dengan kecepatan putar yang berbeda tapi kondisi yang lainnya sama menunjukkan bahwa kecepatan putar yang lebih besar menghasilkan penurunan bobot bahan yang dikerikingkan lebih cepat. Percobaan pengerkingan setelah penambahan flights pada ruang pengerking, dengan menggunakan suhu 135° C, kecepatan putar ruang pengerking 5 rpm, kemiringan atau sudut elevasi 0.2574 menghasilkan sawut dengan kadar air yang lebih rendah (2.84% bb) dalam aktu yang lebih cepat (5.9 jam).

Efisiensi pemanasan, efisiensi penggunaan panas, dan efisiensi pengerkingan total rotary dryer yang diperoleh dari percobaan pengerkingan
masih menunjukkan nilai yang bervariasi. Hal ini menunjukkan bahwa nilai efisiensi dipengaruhi oleh beberapa faktor seperti jumlah dan ukuran flights, kecepatan putar ruang pengerining, bobot bahan yang dikeringkan, dan masalah pada burner, blower, serta heat exchanger. Oleh karena itu diperlukan modifikasi lebih lanjut pada burner, ruang pembakaran, heat exchanger, pipa udara panas, dan blower agar nilai efisiensi yang dihasilkan lebih baik dan untuk meningkatkan kapasitas pengerining yang masih rendah.

Sawut ubi jalar yang dihasilkan memiliki nilai parameter warna L, a, dan b berturut-turut sebesar +72.40, -7.58, dan +53.50, ini berarti warnanya mengarah ke putih kecoklatan. Hal ini disebabkan karena proses pencoklatan yang terjadi sebelum pengeriningan berlangsung.

Kandungan mikroba sawut ubi jalar yang dicuci dengan larutan klorin 1000 ppm pada perlakuan pencucian kedua lebih rendah dibandingkan dengan sawut yang tidak dicuci dengan larutan klorin 1000 ppm. Sawut dengan kadar air yang lebih rendah juga menunjukkan kandungan mikroba yang lebih sedikit dibandingkan dengan sawut dengan kadar air yang lebih tinggi.

BAGAN

Permasalahan yang muncul pada proses pengeriningan sawut ubi jalar ini adalah jika pengeriningan dilakukan dalam kapasitas yang lebih besar. Perlu penelitian lebih lanjut untuk memperbesar residence time sehingga pengeriningan dapat berlangsung hanya dalam sekali lewat. Penelitian dan modifikasi juga diperlukan untuk memperbaiki kinerja rotary dryer sehingga bisa beroperasi lebih efisien dan stabil.

Selain itu, penelitian lebih lanjut mengenai perlakuan pra pengeriningan juga masih diperlukan untuk memperbaiki kualitas sawut kering yang dihasilkan. Untuk menjaga mutu sawut hasil pengeriningan khususnya warna sawut diperlukan perbaikan rangkaian proses sehingga selang waktu setelah penyawutan dengan pengeriningan dapat dipercepat (mencegah terjadinya browning enzimatis).
DAFTAR PUSTAKA

Bogor Agricultural University
1. Data perkembangan suhu bagian input rotary dryer

<table>
<thead>
<tr>
<th>Menit ke</th>
<th>Suhu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35.0</td>
</tr>
<tr>
<td>2</td>
<td>49.0</td>
</tr>
<tr>
<td>4</td>
<td>64.7</td>
</tr>
<tr>
<td>6</td>
<td>78.5</td>
</tr>
<tr>
<td>8</td>
<td>86.5</td>
</tr>
<tr>
<td>10</td>
<td>93.2</td>
</tr>
<tr>
<td>12</td>
<td>100.5</td>
</tr>
<tr>
<td>14</td>
<td>108.7</td>
</tr>
<tr>
<td>16</td>
<td>113.1</td>
</tr>
<tr>
<td>18</td>
<td>116.0</td>
</tr>
<tr>
<td>20</td>
<td>118.3</td>
</tr>
<tr>
<td>22</td>
<td>120.5</td>
</tr>
<tr>
<td>24</td>
<td>123.0</td>
</tr>
<tr>
<td>26</td>
<td>127.0</td>
</tr>
<tr>
<td>28</td>
<td>128.5</td>
</tr>
<tr>
<td>30</td>
<td>130.0</td>
</tr>
<tr>
<td>32</td>
<td>131.4</td>
</tr>
<tr>
<td>34</td>
<td>133.0</td>
</tr>
<tr>
<td>36</td>
<td>135.0</td>
</tr>
<tr>
<td>38</td>
<td>134.6</td>
</tr>
<tr>
<td>40</td>
<td>135.0</td>
</tr>
<tr>
<td>42</td>
<td>136.1</td>
</tr>
<tr>
<td>44</td>
<td>135.4</td>
</tr>
<tr>
<td>46</td>
<td>135.0</td>
</tr>
<tr>
<td>48</td>
<td>134.7</td>
</tr>
<tr>
<td>50</td>
<td>135.2</td>
</tr>
<tr>
<td>52</td>
<td>135.3</td>
</tr>
<tr>
<td>54</td>
<td>134.6</td>
</tr>
<tr>
<td>56</td>
<td>135.2</td>
</tr>
<tr>
<td>58</td>
<td>135.0</td>
</tr>
<tr>
<td>60</td>
<td>134.8</td>
</tr>
</tbody>
</table>
2. Perhitungan kebutuhan energi listrik dan bahan bakar minyak tanah pada pemanasan awal

1. Energi listrik:

Motor listrik penggerak *rotary dryer*

<table>
<thead>
<tr>
<th>Daya (watt)</th>
<th>= 11 000 watt (joule/detik)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lama penggunaan (jam)</td>
<td>= 36 menit (0.6 jam)</td>
</tr>
<tr>
<td>Energi yang dibutuhkan detik/jam</td>
<td>= 11 000 watt x 0.6 jam x 3600 detik/jam</td>
</tr>
<tr>
<td></td>
<td>= 23 760 000 joule</td>
</tr>
<tr>
<td></td>
<td>= 23 760 kJ</td>
</tr>
</tbody>
</table>

Motor listrik penggerak *blower*

<table>
<thead>
<tr>
<th>Daya (watt)</th>
<th>= 2 200 watt (joule/detik)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lama penggunaan (jam)</td>
<td>= 36 menit (0.6 jam)</td>
</tr>
<tr>
<td>Energi yang dibutuhkan detik/jam</td>
<td>= 2 200 watt x 0.6 jam x 3600 detik/jam</td>
</tr>
<tr>
<td></td>
<td>= 4 752 000 joule</td>
</tr>
<tr>
<td></td>
<td>= 4 752 kJ</td>
</tr>
</tbody>
</table>

Total energi listrik yang dibutuhkan untuk menjalankan motor listrik yang akan menggerakkan *rotary dryer* dan *blower* adalah pada pemanasan awal adalah 28 512 kJ

2. Energi bahan bakar minyak tanah

<table>
<thead>
<tr>
<th>Konsumsi minyak tanah</th>
<th>= 5 liter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilai panas minyak tanah</td>
<td>= 35 682.06 kJ/liter</td>
</tr>
<tr>
<td>Energi yang dibutuhkan</td>
<td>= 5 liter x 35 682.06 kJ/liter</td>
</tr>
<tr>
<td></td>
<td>= 178 410.3 kJ</td>
</tr>
</tbody>
</table>
Tabel 1. Tabel kadar air rata-rata pada proses pengeringan

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Ulangan</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal</td>
<td>1</td>
<td>2.6578</td>
<td>0.4384</td>
<td>4.5291</td>
<td>1.8713</td>
<td>3.5671</td>
<td>65.5909</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.6336</td>
<td>0.52209</td>
<td>4.3494</td>
<td>1.7158</td>
<td>3.5051</td>
<td>67.1359</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.559</td>
<td>0.52326</td>
<td>4.3667</td>
<td>1.8077</td>
<td>3.4249</td>
<td>65.4531</td>
</tr>
<tr>
<td></td>
<td>Rata-rata</td>
<td>2.5939</td>
<td>0.53782</td>
<td>4.6657</td>
<td>2.1264</td>
<td>3.7464</td>
<td>63.7924</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5666</td>
<td>0.57001</td>
<td>4.7001</td>
<td>2.1335</td>
<td>3.5666</td>
<td>62.5708</td>
</tr>
</tbody>
</table>

Kelompok	1	2.5516	0.815	4.7357	2.1841	3.6309	62.4402
	2	2.5265	0.6302	4.638	2.1115	3.5187	62.4969
	3	2.4992	0.5132	4.404	1.9048	3.2272	62.8838
	Rata-rata	2.5862	0.7961	4.9607	2.3745	3.4216	59.0328
		2.5903	0.5675	5.0313	2.441	3.2348	56.9998
		2.5278	0.5654	4.8527	2.3249	3.3295	58.8833
	Rata-rata	2.5862	0.7961	4.9607	2.3745	3.4216	59.0328

Keterangan

- Bobot cawan kosong
- Bobot sampel basah
- Bobot cawan + sampel kering
- Bobot sampel kering
- Bobot air dalam sampel
- Kadar air

Tabel 2. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di output

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK (°C)</td>
<td>BB (°C)</td>
</tr>
<tr>
<td>55.0</td>
<td>38.0</td>
</tr>
<tr>
<td>48.0</td>
<td>37.0</td>
</tr>
<tr>
<td>44.0</td>
<td>36.0</td>
</tr>
<tr>
<td>43.0</td>
<td>35.5</td>
</tr>
<tr>
<td>42.8</td>
<td>35.0</td>
</tr>
<tr>
<td>42.0</td>
<td>35.0</td>
</tr>
<tr>
<td>42.0</td>
<td>35.0</td>
</tr>
<tr>
<td>45.25</td>
<td>35.92</td>
</tr>
</tbody>
</table>
Lampiran 4. Data hasil perhitungan pada proses pengeringan pecobaan 1 (lanjutan)

3. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) lingkungan

<table>
<thead>
<tr>
<th></th>
<th>Tahap 1</th>
<th>Tahap 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK (°C)</td>
<td>32.0</td>
<td>32.0</td>
</tr>
<tr>
<td>BB (°C)</td>
<td>30.0</td>
<td>31.0</td>
</tr>
<tr>
<td>BK (°C)</td>
<td>31.0</td>
<td>33.0</td>
</tr>
<tr>
<td>BB (°C)</td>
<td>30.0</td>
<td>31.0</td>
</tr>
<tr>
<td>BK (°C)</td>
<td>30.5</td>
<td>33.0</td>
</tr>
<tr>
<td>BB (°C)</td>
<td>29.0</td>
<td>31.0</td>
</tr>
<tr>
<td>BK (°C)</td>
<td>30.0</td>
<td>31.0</td>
</tr>
<tr>
<td>BB (°C)</td>
<td>28.0</td>
<td>31.0</td>
</tr>
<tr>
<td>BK (°C)</td>
<td>30.0</td>
<td>33.0</td>
</tr>
<tr>
<td>BB (°C)</td>
<td>29.0</td>
<td>31.0</td>
</tr>
<tr>
<td>BK (°C)</td>
<td>30.0</td>
<td>34.0</td>
</tr>
<tr>
<td>BB (°C)</td>
<td>29.0</td>
<td>31.0</td>
</tr>
</tbody>
</table>

4. Tabel hasil perhitungan

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berat awal bahan</td>
<td>135.0000</td>
<td>127.3016</td>
<td>Kg</td>
</tr>
<tr>
<td>Berat bahan akhir</td>
<td>127.3016</td>
<td>114.1614</td>
<td>Kg</td>
</tr>
<tr>
<td>Kadar air awal</td>
<td>64.73934</td>
<td>62.607</td>
<td>%</td>
</tr>
<tr>
<td>Kadar air akhir</td>
<td>62.607</td>
<td>58.303</td>
<td>%</td>
</tr>
<tr>
<td>Lama pengeringan</td>
<td>1.07</td>
<td>1.02</td>
<td>Jam</td>
</tr>
<tr>
<td>Kapasumsi bahan bakar</td>
<td>6.3</td>
<td>6.2</td>
<td>Liter</td>
</tr>
<tr>
<td>Masa bahan sebelum dimasukkan</td>
<td>7.6984</td>
<td>13.14019</td>
<td>Kg</td>
</tr>
<tr>
<td>Masa bahan kering rata-rata</td>
<td>30.5</td>
<td>33</td>
<td>°C</td>
</tr>
<tr>
<td>Masa bahan basah rata-rata</td>
<td>29.0</td>
<td>31</td>
<td>°C</td>
</tr>
<tr>
<td>Kadar bahan mutlak</td>
<td>0.0250</td>
<td>0.0285</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Volume spesifik</td>
<td>0.8950</td>
<td>0.9069</td>
<td>m³/kg udara kering</td>
</tr>
<tr>
<td>Entalpi</td>
<td>95</td>
<td>105</td>
<td>kJ/kg udara kering</td>
</tr>
<tr>
<td>Volume spesifik pada suhu (120°C)</td>
<td>1.0410</td>
<td>1.044</td>
<td>m³/kg udara kering</td>
</tr>
<tr>
<td>Panas laten pada suhu (120°C)</td>
<td>2308.79</td>
<td>2308.79</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>Entalpi pada suhu (120°C)</td>
<td>148</td>
<td>158</td>
<td>kJ/kg udara kering</td>
</tr>
<tr>
<td>Udara pengering di output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhu bola kering rata-rata</td>
<td>45.2</td>
<td>41</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola basah rata-rata</td>
<td>35.9</td>
<td>34.8</td>
<td>°C</td>
</tr>
<tr>
<td>Kelembaban mutlak</td>
<td>0.0345</td>
<td>0.034</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Luas penguapan air</td>
<td>7.1947</td>
<td>12.8825</td>
<td>Kg/jam</td>
</tr>
<tr>
<td>Luas udara pengering</td>
<td>788.39</td>
<td>2445.34</td>
<td>m²/jam</td>
</tr>
<tr>
<td>Energi memanaskan udara pengering</td>
<td>40138.97</td>
<td>124149.82</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi mengepaskan udara bahan</td>
<td>16611.05</td>
<td>29742.98</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi bahan bakar</td>
<td>210990.63</td>
<td>216980.95</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi pemanasan</td>
<td>19.11</td>
<td>57.21</td>
<td>%</td>
</tr>
<tr>
<td>Energi penggunaan panas</td>
<td>41.38</td>
<td>23.96</td>
<td>%</td>
</tr>
<tr>
<td>Energi total</td>
<td>7.91</td>
<td>13.71</td>
<td>%</td>
</tr>
<tr>
<td>Rendam time</td>
<td>15</td>
<td>15</td>
<td>Menit</td>
</tr>
<tr>
<td>Firing rate</td>
<td>6</td>
<td>6</td>
<td>Kg/menit</td>
</tr>
</tbody>
</table>
Lampiran 4. Data hasil perhitungan pada proses pengeringan pecobaan 1 (lanjutan)

5. Contoh perhitungan pengeringan tahap 1

a. Jumlah air yang diuapkan:

 \[
 135 \times \frac{64.7393 - 62.607}{100 - 62.607} \times 7.69839 \text{ kg}
 \]

b. Laju penguapan air:

 \[
 \frac{7.69839}{1.07} = 7.1947 \text{ kg/jam}
 \]

c. Laju udara pengering:

 \[
 \frac{7.69839 \times 1.041}{0.0345 - 0.025 \times 1.07} = 788.39 \text{ m}^3 / \text{jam}
 \]

d. Energi untuk memanaskan udara pengering:

 \[
 788.39 \times (148 - 95) \times 1.041 = 40138.97 \text{ kJ/jam}
 \]

Energi untuk menguapkan air bahan:

\[
2308.79 \times 7.1947 = 16611.05 \text{ kJ/jam}
\]

Energi bahan bakar minyak:

\[
\frac{6.3 \times 35682.06}{1.07} = 210090.63 \text{ kJ/jam}
\]

Efisiensi pemanasan:

\[
\frac{40138.97}{210090.63} \times 100\% = 19.11\%
\]

E. Efisiensi penggunaan panas:

\[
\frac{16611.05}{40138.97} \times 100\% = 41.38\%
\]

i. Efisiensi pengeringan total:

\[
\frac{16611.05}{210090.63} \times 100\% = 7.91\%
\]

Bogor Agricultural University
Tabel 1. Tabel kadar air rata-rata pada proses pengeringan

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Kadar air rata-rata (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal</td>
<td>65.7296</td>
</tr>
<tr>
<td>Tahap 1</td>
<td>65.5828</td>
</tr>
<tr>
<td>Tahap 2</td>
<td>61.7400</td>
</tr>
<tr>
<td>Tahap 3</td>
<td>58.7390</td>
</tr>
<tr>
<td>Tahap 4</td>
<td>47.4685</td>
</tr>
</tbody>
</table>

Tabel 2. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di output

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK (°C)</td>
<td>BK (°C)</td>
<td>BK (°C)</td>
<td>BK (°C)</td>
</tr>
<tr>
<td>37.0</td>
<td>47.0</td>
<td>40.0</td>
<td>54.0</td>
</tr>
<tr>
<td>40.0</td>
<td>51.0</td>
<td>61.0</td>
<td>54.0</td>
</tr>
<tr>
<td>35.0</td>
<td>53.0</td>
<td>62.0</td>
<td>42.0</td>
</tr>
<tr>
<td>40.0</td>
<td>54.0</td>
<td>42.0</td>
<td>55.0</td>
</tr>
<tr>
<td>36.0</td>
<td>51.25</td>
<td>41.00</td>
<td>55.60</td>
</tr>
<tr>
<td>36.0</td>
<td>51.25</td>
<td>41.00</td>
<td>55.60</td>
</tr>
</tbody>
</table>

Tabel 3. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di lingkungan

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK (°C)</td>
<td>BK (°C)</td>
<td>BK (°C)</td>
<td>BK (°C)</td>
</tr>
<tr>
<td>34.0</td>
<td>25.0</td>
<td>25.0</td>
<td>34.0</td>
</tr>
<tr>
<td>34.0</td>
<td>26.0</td>
<td>26.0</td>
<td>34.0</td>
</tr>
<tr>
<td>35.0</td>
<td>27.0</td>
<td>26.0</td>
<td>35.0</td>
</tr>
<tr>
<td>35.0</td>
<td>27.0</td>
<td>26.0</td>
<td>35.0</td>
</tr>
<tr>
<td>35.0</td>
<td>27.0</td>
<td>26.5</td>
<td>35.0</td>
</tr>
<tr>
<td>35.0</td>
<td>27.0</td>
<td>27.0</td>
<td>35.0</td>
</tr>
<tr>
<td>35.0</td>
<td>27.0</td>
<td>28.0</td>
<td>35.0</td>
</tr>
<tr>
<td>36.0</td>
<td>28.0</td>
<td>28.0</td>
<td>36.0</td>
</tr>
</tbody>
</table>
Lampiran 5. Data hasil perhitungan pada proses pengeringan percobaan ke 2 (lanjutan)

4. Tabel hasil perhitungan

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tahap1</th>
<th>Tahap2</th>
<th>Tahap3</th>
<th>Tahap4</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berat awal bahan</td>
<td>134.000</td>
<td>133.4284</td>
<td>120.0269</td>
<td>111.2991</td>
<td>Kg</td>
</tr>
<tr>
<td>Berat bahan akhir</td>
<td>133.4284</td>
<td>120.0269</td>
<td>111.2991</td>
<td>87.4202</td>
<td>Kg</td>
</tr>
<tr>
<td>Kadar air awal</td>
<td>65.7296</td>
<td>65.5828</td>
<td>61.7400</td>
<td>58.7390</td>
<td>%</td>
</tr>
<tr>
<td>Kadar air akhir</td>
<td>65.5828</td>
<td>61.7400</td>
<td>58.7390</td>
<td>47.4686</td>
<td>%</td>
</tr>
<tr>
<td>Lama pengeringing</td>
<td>1.17</td>
<td>1.16</td>
<td>1</td>
<td>0.93</td>
<td>Jam</td>
</tr>
<tr>
<td>Kadar umum bahan bakar</td>
<td>4</td>
<td>5.1</td>
<td>5.3</td>
<td>5.2</td>
<td>Liter</td>
</tr>
<tr>
<td>Kadar air yang didapatkan</td>
<td>0.571644</td>
<td>12.3552</td>
<td>8.7298</td>
<td>23.8788</td>
<td>Kg</td>
</tr>
<tr>
<td>Udara lingkungan</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>32.5</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola kering rata-rata</td>
<td>26.875</td>
<td>26.375</td>
<td>27</td>
<td>27.2</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola basah rata-rata</td>
<td>0.0195</td>
<td>0.0185</td>
<td>0.0194</td>
<td>0.0208</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Kadar bahan mutlak</td>
<td>0.9000</td>
<td>0.8815</td>
<td>0.9000</td>
<td>0.895</td>
<td>m³/kg udara kering</td>
</tr>
<tr>
<td>Temperatur spektrum</td>
<td>85</td>
<td>83</td>
<td>85</td>
<td>86</td>
<td>kJ/kg udara kering</td>
</tr>
<tr>
<td>Volumen spektrum pada suhu (100°C)</td>
<td>1.0917</td>
<td>1.0902</td>
<td>1.093</td>
<td>1.0928</td>
<td>m³/kg udara kering</td>
</tr>
<tr>
<td>Persentase laten pada suhu (100°C)</td>
<td>2256.92</td>
<td>2256.92</td>
<td>2256.92</td>
<td>2256.92</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>Enthalpi pada suhu (100°C)</td>
<td>158</td>
<td>155</td>
<td>159</td>
<td>160</td>
<td>kJ/kg udara kering</td>
</tr>
<tr>
<td>Udara pengering di output</td>
<td>49</td>
<td>51.25</td>
<td>55.6</td>
<td>55</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola kering rata-rata</td>
<td>36</td>
<td>41</td>
<td>42.2</td>
<td>41.6</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola basah rata-rata</td>
<td>0.0332</td>
<td>0.0475</td>
<td>0.0495</td>
<td>0.048</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Laaju penguapan air</td>
<td>0.4895</td>
<td>10.65</td>
<td>8.7298</td>
<td>26.6761</td>
<td>Kg/jam</td>
</tr>
<tr>
<td>Laaju udara pengering</td>
<td>2607.86</td>
<td>26444.25</td>
<td>21462.24</td>
<td>69854.43</td>
<td>m³/jam</td>
</tr>
<tr>
<td>Laaju pengemasan</td>
<td>1104.76</td>
<td>24036.20</td>
<td>19702.46</td>
<td>57948.90</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Laaju menguapkan air</td>
<td>121989.95</td>
<td>156878.02</td>
<td>189114.92</td>
<td>199512.59</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Laaju bahan bakar</td>
<td>2.14</td>
<td>16.86</td>
<td>11.35</td>
<td>35.01</td>
<td>%</td>
</tr>
<tr>
<td>Laaju permukaan</td>
<td>42.36</td>
<td>90.89</td>
<td>91.80</td>
<td>82.96</td>
<td>%</td>
</tr>
<tr>
<td>Laaju total</td>
<td>0.91</td>
<td>15.32</td>
<td>10.42</td>
<td>29.04</td>
<td>%</td>
</tr>
<tr>
<td>Steam time</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>Menit</td>
</tr>
<tr>
<td>Air rate</td>
<td>8</td>
<td>6.63</td>
<td>5.03</td>
<td>6.42</td>
<td>Kg/menit</td>
</tr>
</tbody>
</table>
C. Kumpulan data hasil perhitungan pada proses pengeringan percobaan ke 3

1. Tabel kadar air rata-rata pada proses pengeringan

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Kadar air rata-rata (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal</td>
<td>66.1132</td>
</tr>
<tr>
<td>Tahap1</td>
<td>58.7297</td>
</tr>
<tr>
<td>Tahap2</td>
<td>53.9577</td>
</tr>
</tbody>
</table>

2. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di output

<table>
<thead>
<tr>
<th>Suhu (°C)</th>
<th>Tahap 1</th>
<th>Tahap 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BB (°C)</td>
<td>BK (°C)</td>
</tr>
<tr>
<td>20</td>
<td>37.0</td>
<td>44.0</td>
</tr>
<tr>
<td>30</td>
<td>39.0</td>
<td>44.0</td>
</tr>
<tr>
<td>40</td>
<td>41.0</td>
<td>42.0</td>
</tr>
<tr>
<td>50</td>
<td>42.0</td>
<td>44.0</td>
</tr>
<tr>
<td>60</td>
<td>43.0</td>
<td>44.5</td>
</tr>
<tr>
<td>65</td>
<td>42.0</td>
<td>44.0</td>
</tr>
<tr>
<td>70</td>
<td>39.0</td>
<td>44.0</td>
</tr>
<tr>
<td>75</td>
<td>39.0</td>
<td>43.5</td>
</tr>
<tr>
<td>80</td>
<td>40.0</td>
<td>44.0</td>
</tr>
<tr>
<td>85</td>
<td>40.0</td>
<td>44.0</td>
</tr>
<tr>
<td>90</td>
<td>40.0</td>
<td>43.5</td>
</tr>
<tr>
<td>95</td>
<td>40.5</td>
<td>44.0</td>
</tr>
<tr>
<td>100</td>
<td>40.20</td>
<td>43.80</td>
</tr>
</tbody>
</table>

3. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di lingkungan

<table>
<thead>
<tr>
<th>Suhu (°C)</th>
<th>Tahap 1</th>
<th>Tahap 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BB (°C)</td>
<td>BK (°C)</td>
</tr>
<tr>
<td>28.5</td>
<td>27.5</td>
<td>29.0</td>
</tr>
<tr>
<td>30.0</td>
<td>29.0</td>
<td>30.5</td>
</tr>
<tr>
<td>30.5</td>
<td>28.5</td>
<td>29.0</td>
</tr>
<tr>
<td>35.0</td>
<td>28.5</td>
<td>29.0</td>
</tr>
<tr>
<td>37.5</td>
<td>28.0</td>
<td>29.0</td>
</tr>
<tr>
<td>40.0</td>
<td>28.5</td>
<td>29.0</td>
</tr>
<tr>
<td>40.5</td>
<td>28.5</td>
<td>29.0</td>
</tr>
<tr>
<td>40.0</td>
<td>29.0</td>
<td>29.0</td>
</tr>
<tr>
<td>40.5</td>
<td>28.0</td>
<td>29.0</td>
</tr>
<tr>
<td>40.0</td>
<td>29.0</td>
<td>29.0</td>
</tr>
<tr>
<td>40.0</td>
<td>29.0</td>
<td>29.0</td>
</tr>
</tbody>
</table>

Bogor Agricultural University
4. Tabel hasil perhitungan

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hasil 1</th>
<th>Hasil 2</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berat awal bahan</td>
<td>150</td>
<td>123.1641</td>
<td>Kg</td>
</tr>
<tr>
<td>Berat bahan akhir</td>
<td>123.1641</td>
<td>110.3989</td>
<td>Kg</td>
</tr>
<tr>
<td>Kadar air awal</td>
<td>66.1132</td>
<td>58.7297</td>
<td>%</td>
</tr>
<tr>
<td>Kadar air akhir</td>
<td>58.7297</td>
<td>53.9577</td>
<td>%</td>
</tr>
<tr>
<td>Lama pengeringan</td>
<td>1.2</td>
<td>1</td>
<td>Jam</td>
</tr>
<tr>
<td>Kuarsa bahan bakar</td>
<td>5.4</td>
<td>5.4</td>
<td>Liter</td>
</tr>
<tr>
<td>Jumlah air yang diuapkan</td>
<td>26.8359</td>
<td>12.7652</td>
<td>Kg</td>
</tr>
<tr>
<td>Plastik berat</td>
<td>3.8</td>
<td>3.8</td>
<td>kg</td>
</tr>
<tr>
<td>Jumlah bola kering rata-rata</td>
<td>29.6</td>
<td>29.1</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola basah rata-rata</td>
<td>28.4</td>
<td>28</td>
<td>°C</td>
</tr>
<tr>
<td>Kadar kering</td>
<td>0.0244</td>
<td>0.0241</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Volumen speksifikasi</td>
<td>0.8905</td>
<td>0.8892</td>
<td>m³/kg udara kering</td>
</tr>
<tr>
<td>Beta phi</td>
<td>93</td>
<td>90</td>
<td>kJ/kg udara kering</td>
</tr>
<tr>
<td>Volumen speksifikasi pada tinta (120°C)</td>
<td>1.1573</td>
<td>1.1566</td>
<td>m³/kg udara kering</td>
</tr>
<tr>
<td>Suhu pengeringan</td>
<td>2202.25</td>
<td>2202.25</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>Suhu pengeringan pada tinta (120°C)</td>
<td>194</td>
<td>192</td>
<td>kJ/kg udara kering</td>
</tr>
<tr>
<td>Udara pengeringan di output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhu bola kering rata-rata</td>
<td>49.9</td>
<td>43.8</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola basah rata-rata</td>
<td>40.2</td>
<td>39.9</td>
<td>°C</td>
</tr>
<tr>
<td>Kebabiyan mutlak</td>
<td>0.0458</td>
<td>0.0471</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Laju penguapan air</td>
<td>22.3632</td>
<td>12.7652</td>
<td>Kg/jam</td>
</tr>
<tr>
<td>Laju udara pengering</td>
<td>1209.39</td>
<td>641.92</td>
<td>m³/jam</td>
</tr>
<tr>
<td>Energi memanaskan bila pengering</td>
<td>105546</td>
<td>56610.62</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi menguapkan air</td>
<td>49249.36</td>
<td>28112.16</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi bahan bakar</td>
<td>160569.27</td>
<td>192683.12</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi penangan</td>
<td>65.73</td>
<td>29.38</td>
<td>%</td>
</tr>
<tr>
<td>Energi penggunaan biopres</td>
<td>46.66</td>
<td>49.66</td>
<td>%</td>
</tr>
<tr>
<td>Energi total</td>
<td>30.67</td>
<td>14.59</td>
<td>%</td>
</tr>
<tr>
<td>Jumlah time</td>
<td>25</td>
<td>25</td>
<td>Menit</td>
</tr>
<tr>
<td>Jumlah produk</td>
<td>15</td>
<td>14</td>
<td>Kg/ton</td>
</tr>
</tbody>
</table>
1. Tabel kadar air rata-rata pada proses pengeringan

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Kadar air rata-rata (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal</td>
<td>69.8450</td>
</tr>
<tr>
<td>Tahap 1</td>
<td>65.0325</td>
</tr>
<tr>
<td>Tahap 2</td>
<td>50.7575</td>
</tr>
<tr>
<td>Tahap 3</td>
<td>46.9100</td>
</tr>
<tr>
<td>Tahap 4</td>
<td>24.8650</td>
</tr>
</tbody>
</table>

2. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di output

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB (°C)</td>
<td>BK (°C)</td>
<td>BB (°C)</td>
<td>BK (°C)</td>
</tr>
<tr>
<td>0</td>
<td>41.0</td>
<td>60.0</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>43.0</td>
<td>58.5</td>
<td>40.0</td>
</tr>
<tr>
<td>0</td>
<td>43.0</td>
<td>58.5</td>
<td>41.0</td>
</tr>
<tr>
<td>0</td>
<td>44.0</td>
<td>58.0</td>
<td>41.0</td>
</tr>
<tr>
<td>3</td>
<td>44.0</td>
<td>57.0</td>
<td>41.0</td>
</tr>
<tr>
<td>6</td>
<td>44.0</td>
<td>56.0</td>
<td>41.0</td>
</tr>
<tr>
<td>0</td>
<td>43.0</td>
<td>56.5</td>
<td>41.0</td>
</tr>
<tr>
<td>5</td>
<td>43.0</td>
<td>57.0</td>
<td>41.0</td>
</tr>
<tr>
<td>5</td>
<td>42.0</td>
<td>57.0</td>
<td>41.0</td>
</tr>
<tr>
<td>0</td>
<td>40.0</td>
<td>58.6</td>
<td>41.0</td>
</tr>
<tr>
<td>50</td>
<td>42.70</td>
<td>57.71</td>
<td>40.80</td>
</tr>
</tbody>
</table>

3. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di lingkungan

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK (°C)</td>
<td>BB (°C)</td>
<td>BK (°C)</td>
<td>BB (°C)</td>
</tr>
<tr>
<td>32.0</td>
<td>28.0</td>
<td>33.0</td>
<td>28.0</td>
</tr>
<tr>
<td>29.0</td>
<td>31.0</td>
<td>27.0</td>
<td>27.0</td>
</tr>
<tr>
<td>29.0</td>
<td>31.0</td>
<td>27.0</td>
<td>27.0</td>
</tr>
<tr>
<td>29.0</td>
<td>30.0</td>
<td>26.0</td>
<td>27.0</td>
</tr>
<tr>
<td>28.0</td>
<td>30.0</td>
<td>26.0</td>
<td>26.0</td>
</tr>
<tr>
<td>28.0</td>
<td>30.0</td>
<td>26.0</td>
<td>26.0</td>
</tr>
<tr>
<td>28.0</td>
<td>30.0</td>
<td>26.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>
Lampiran 7. Data hasil perhitungan pada proses pengeringan percobaan ke 4 (lanjutan)

4. Tabel hasil perhitungan

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berat awal bahan</td>
<td>119</td>
<td>102.6223</td>
<td>72.8655</td>
<td>67.5917</td>
<td>Kg</td>
</tr>
<tr>
<td>Berat bahan akhir</td>
<td>102.6223</td>
<td>72.8655</td>
<td>67.5917</td>
<td>47.7600</td>
<td>Kg</td>
</tr>
<tr>
<td>Kadar air awal</td>
<td>69.8450</td>
<td>65.0325</td>
<td>50.5725</td>
<td>46.9100</td>
<td>%</td>
</tr>
<tr>
<td>Kadar air akhir</td>
<td>65.0325</td>
<td>50.7525</td>
<td>46.9100</td>
<td>24.8650</td>
<td>%</td>
</tr>
<tr>
<td>Luar pengering</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.85</td>
<td>Jam</td>
</tr>
<tr>
<td>Kadar umsu bahan</td>
<td>5.7</td>
<td>5.5</td>
<td>5</td>
<td>5</td>
<td>Liter</td>
</tr>
<tr>
<td>Jumlah air yang dikeluarkan</td>
<td>16.3777</td>
<td>29.7568</td>
<td>5.2738</td>
<td>19.8317</td>
<td>Kg</td>
</tr>
<tr>
<td>Udara lingkungan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhu bola kering rata</td>
<td>33</td>
<td>30.5</td>
<td>27.1</td>
<td>27</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola basah rata</td>
<td>28.7</td>
<td>26.4</td>
<td>25.6</td>
<td>26</td>
<td>°C</td>
</tr>
<tr>
<td>Kembahan mutlak</td>
<td>0.0238</td>
<td>0.02</td>
<td>0.0203</td>
<td>0.0209</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Volume spesifik</td>
<td>0.9</td>
<td>0.889</td>
<td>0.879</td>
<td>0.8797</td>
<td>m³/kg udara kering</td>
</tr>
<tr>
<td>Enthalpi</td>
<td>94</td>
<td>82</td>
<td>79</td>
<td>81</td>
<td>kJ/kg udara kering</td>
</tr>
<tr>
<td>Volume spesifik panas</td>
<td>1.0979</td>
<td>1.0914</td>
<td>1.0928</td>
<td>1.0936</td>
<td>m³/kg udara kering</td>
</tr>
<tr>
<td>Panas laten pada suhu</td>
<td>2256.92</td>
<td>2256.92</td>
<td>2256.92</td>
<td>2256.92</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>Enthalpi pada suhu (100°C)</td>
<td>168</td>
<td>158</td>
<td>160</td>
<td>162</td>
<td>kJ/kg udara kering</td>
</tr>
<tr>
<td>Udara pengering di output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhu bola kering rata</td>
<td>66.5</td>
<td>57.7</td>
<td>62.3</td>
<td>70</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola basah rata</td>
<td>42.7</td>
<td>40.8</td>
<td>42.8</td>
<td>41</td>
<td>°C</td>
</tr>
<tr>
<td>Kembahan mutlak</td>
<td>0.047</td>
<td>0.0439</td>
<td>0.049</td>
<td>0.0391</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Penguapan air</td>
<td>10.9185</td>
<td>22.8865</td>
<td>5.8598</td>
<td>23.3314</td>
<td>Kg/jam</td>
</tr>
<tr>
<td>Jumlah udara pengering</td>
<td>516.6976</td>
<td>1045.2710</td>
<td>223.1207</td>
<td>1401.9358</td>
<td>m³/jam</td>
</tr>
<tr>
<td>Panas memasukan agen pengering</td>
<td>34826.143</td>
<td>72787.79</td>
<td>16538.0460</td>
<td>103837.6004</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Panas menguapkan bahan</td>
<td>24642.18</td>
<td>51653</td>
<td>13225.0998</td>
<td>52657.1033</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Sensi pemanasan</td>
<td>25.68</td>
<td>48.21</td>
<td>8.34</td>
<td>49.47</td>
<td>%</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
<tr>
<td>Sensi penggunaan gas</td>
<td>70.76</td>
<td>70.96</td>
<td>79.97</td>
<td>50.71</td>
<td>%</td>
</tr>
<tr>
<td>Sensi total</td>
<td>18.17</td>
<td>34.21</td>
<td>6.67</td>
<td>25.09</td>
<td>%</td>
</tr>
<tr>
<td>Bahan total</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>m³</td>
</tr>
</tbody>
</table>
1. Tabel kadar air rata-rata pada proses pengeringan

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Kadar air rata-rata (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal</td>
<td>67.2300</td>
</tr>
<tr>
<td>Tahap 1</td>
<td>61.8775</td>
</tr>
<tr>
<td>Tahap 2</td>
<td>49.6050</td>
</tr>
<tr>
<td>Tahap 3</td>
<td>27.9700</td>
</tr>
<tr>
<td>Tahap 4</td>
<td>20.7325</td>
</tr>
</tbody>
</table>

2. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di output

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB (°C)</td>
<td>BK (°C)</td>
<td>BB (°C)</td>
<td>BK (°C)</td>
</tr>
<tr>
<td>41.0</td>
<td>56.0</td>
<td>42.0</td>
<td>56.0</td>
</tr>
<tr>
<td>41.0</td>
<td>56.0</td>
<td>42.0</td>
<td>59.0</td>
</tr>
<tr>
<td>41.0</td>
<td>56.0</td>
<td>41.0</td>
<td>62.4</td>
</tr>
<tr>
<td>42.0</td>
<td>56.0</td>
<td>41.0</td>
<td>63.0</td>
</tr>
<tr>
<td>42.0</td>
<td>55.0</td>
<td>41.0</td>
<td>65.0</td>
</tr>
<tr>
<td>44.0</td>
<td>54.1</td>
<td>41.0</td>
<td>65.5</td>
</tr>
<tr>
<td>43.0</td>
<td>54.5</td>
<td>41.0</td>
<td>66.0</td>
</tr>
<tr>
<td>43.0</td>
<td>54.5</td>
<td>41.0</td>
<td>66.0</td>
</tr>
<tr>
<td>42.0</td>
<td>52.0</td>
<td>41.0</td>
<td>66.0</td>
</tr>
<tr>
<td>40.0</td>
<td>50.0</td>
<td>41.0</td>
<td>66.0</td>
</tr>
<tr>
<td>41.90</td>
<td>54.40</td>
<td>41.20</td>
<td>63.49</td>
</tr>
</tbody>
</table>

3. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di lingkungan

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK (°C)</td>
<td>BB (°C)</td>
<td>BK (°C)</td>
<td>BB (°C)</td>
</tr>
<tr>
<td>29.0</td>
<td>30.0</td>
<td>30.0</td>
<td>28.0</td>
</tr>
<tr>
<td>30.0</td>
<td>30.0</td>
<td>27.0</td>
<td>29.0</td>
</tr>
<tr>
<td>30.0</td>
<td>30.0</td>
<td>27.0</td>
<td>29.0</td>
</tr>
<tr>
<td>29.5</td>
<td>29.0</td>
<td>27.0</td>
<td>28.0</td>
</tr>
<tr>
<td>29.5</td>
<td>29.0</td>
<td>27.0</td>
<td>28.0</td>
</tr>
<tr>
<td>29.0</td>
<td>29.0</td>
<td>27.0</td>
<td>28.0</td>
</tr>
<tr>
<td>29.0</td>
<td>28.0</td>
<td>26.0</td>
<td>28.0</td>
</tr>
<tr>
<td>30.0</td>
<td>28.0</td>
<td>26.0</td>
<td>27.0</td>
</tr>
<tr>
<td>20.60</td>
<td>29.10</td>
<td>27.00</td>
<td>28.00</td>
</tr>
</tbody>
</table>
1. Diterima secara lisan. Undang-Undang

a. Pengujian hanya untuk kepentingan perumahan, pendidikan, pertanian, bagi lingkungan, penelitian, dan kegiatan yang dapat dipandang sebagai berikut:

b. Persetujuan untuk kepentingan perumahan, pendidikan, pertanian, bagi lingkungan, penelitian, dan kegiatan yang dapat dipandang sebagai berikut:

2. Diterima mengenai bahan baku atau serbuk sari yang akan digunakan untuk kepentingan perumahan, pendidikan, pertanian, bagi lingkungan, penelitian, dan kegiatan yang dapat dipandang sebagai berikut:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hasil</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAHAP 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berat awal bahan</td>
<td>149</td>
<td>Kg</td>
</tr>
<tr>
<td>Berat bahan akhir</td>
<td>128.0800</td>
<td>Kg</td>
</tr>
<tr>
<td>Kadar air awal</td>
<td>67.23</td>
<td>%</td>
</tr>
<tr>
<td>Kadar air akhir</td>
<td>61.8775</td>
<td>%</td>
</tr>
<tr>
<td>Lapisan pengeringan</td>
<td>1.86</td>
<td>Jam</td>
</tr>
<tr>
<td>Kapasitas bahan baku</td>
<td>9.8</td>
<td>Liter</td>
</tr>
<tr>
<td>Jumlah uap yang dihasilkan</td>
<td>20.9200</td>
<td>Kg</td>
</tr>
<tr>
<td>Tahuk rata</td>
<td>33</td>
<td>°C</td>
</tr>
<tr>
<td>Tahuk basah rata</td>
<td>29.6</td>
<td>°C</td>
</tr>
<tr>
<td>Kebabaran mutlak</td>
<td>0.0225</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Energi specifik</td>
<td>0.9003</td>
<td>m³/kg</td>
</tr>
<tr>
<td>Enthalpi</td>
<td>98</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>Energi udara keluaran</td>
<td>558.046</td>
<td>kJ/m³</td>
</tr>
<tr>
<td>Penghancur gas laten pada suhu (130°C)</td>
<td>2173.65</td>
<td>kJ/kg</td>
</tr>
</tbody>
</table>

TAHAP 2		
Berat awal bahan	128.0800	Kg
Berat bahan akhir	96.8892	Kg
Kadar air awal	67.7875	%
Kadar air akhir	61.5982	%
Lapisan pengeringan	1.6	Jam
Kapasitas bahan baku	9.6	Liter
Jumlah uap yang dihasilkan	31.1908	Kg
Tahuk rata	28	°C
Tahuk basah rata	27	°C
Kebabaran mutlak	0.0204	kg/m³
Energi specifik	0.8824	m³/kg
Enthalpi	85	kJ/kg
Energi udara keluaran	795.6844	kJ/m³
Penghancur gas laten pada suhu (130°C)	2173.65	kJ/kg

TAHAP 3		
Berat awal bahan	96.8892	Kg
Berat bahan akhir	67.7875	Kg
Kadar air awal	61.8775	%
Kadar air akhir	27.9700	%
Lapisan pengeringan	1.2	Jam
Kapasitas bahan baku	6.32	Liter
Jumlah uap yang dihasilkan	29.1017	Kg
Tahuk rata	27	°C
Tahuk basah rata	26	°C
Kebabaran mutlak	0.0209	kg/m³
Energi specifik	0.8791	m³/kg
Enthalpi	81	kJ/kg
Energi udara keluaran	911.7084	kJ/m³
Penghancur gas laten pada suhu (130°C)	2173.65	kJ/kg

TAHAP 4		
Berat awal bahan	67.7875	Kg
Berat bahan akhir	61.5982	Kg
Kadar air awal	27.9700	%
Kadar air akhir	20.7325	%
Lapisan pengeringan	0.85	Jam
Kapasitas bahan baku	4.50	Liter
Jumlah uap yang dihasilkan	6.1893	Kg
Tahuk rata	27	°C
Tahuk basah rata	26	°C
Kebabaran mutlak	0.0209	kg/m³
Energi specifik	0.8791	m³/kg
Enthalpi	81	kJ/kg
Energi udara keluaran	322.1927	kJ/m³
Penghancur gas laten pada suhu (130°C)	2173.65	kJ/kg
1. Tabel kadar air rata-rata pada proses pengeringan

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Kadar air rata-rata (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal</td>
<td>61.9175</td>
</tr>
<tr>
<td>Tahap1</td>
<td>42.9275</td>
</tr>
<tr>
<td>Tahap2</td>
<td>26.2250</td>
</tr>
<tr>
<td>Tahap3</td>
<td>10.2900</td>
</tr>
</tbody>
</table>

2. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di output

<table>
<thead>
<tr>
<th>Tahap</th>
<th>BB (°C)</th>
<th>BK (°C)</th>
<th>BB (°C)</th>
<th>BK (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.0</td>
<td>47.6</td>
<td>43.0</td>
<td>50.2</td>
</tr>
<tr>
<td>2</td>
<td>45.0</td>
<td>47.3</td>
<td>43.0</td>
<td>51.0</td>
</tr>
<tr>
<td>3</td>
<td>45.0</td>
<td>47.6</td>
<td>43.0</td>
<td>51.2</td>
</tr>
<tr>
<td>4</td>
<td>44.5</td>
<td>47.8</td>
<td>43.0</td>
<td>51.2</td>
</tr>
<tr>
<td>5</td>
<td>44.0</td>
<td>47.8</td>
<td>43.0</td>
<td>52.0</td>
</tr>
<tr>
<td>6</td>
<td>44.0</td>
<td>47.8</td>
<td>43.0</td>
<td>55.0</td>
</tr>
<tr>
<td>7</td>
<td>44.0</td>
<td>47.8</td>
<td>43.0</td>
<td>56.0</td>
</tr>
<tr>
<td>8</td>
<td>44.0</td>
<td>48.0</td>
<td>43.0</td>
<td>58.0</td>
</tr>
<tr>
<td>9</td>
<td>44.0</td>
<td>48.2</td>
<td>43.0</td>
<td>59.4</td>
</tr>
<tr>
<td>10</td>
<td>44.0</td>
<td>48.3</td>
<td>43.0</td>
<td>60.4</td>
</tr>
<tr>
<td>11</td>
<td>44.0</td>
<td>48.5</td>
<td>42.0</td>
<td>65.0</td>
</tr>
<tr>
<td>12</td>
<td>44.0</td>
<td>48.6</td>
<td>42.0</td>
<td>70.4</td>
</tr>
<tr>
<td>13</td>
<td>43.0</td>
<td>48.8</td>
<td>42.0</td>
<td>76.0</td>
</tr>
<tr>
<td>14</td>
<td>43.0</td>
<td>49.0</td>
<td>42.0</td>
<td>85.0</td>
</tr>
<tr>
<td>15</td>
<td>44.167</td>
<td>48.03</td>
<td>42.73</td>
<td>59.44</td>
</tr>
</tbody>
</table>

3. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) lingkungan

<table>
<thead>
<tr>
<th>Tahap</th>
<th>BK (°C)</th>
<th>BB (°C)</th>
<th>BK (°C)</th>
<th>BB (°C)</th>
<th>BK (°C)</th>
<th>BB (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34.5</td>
<td>31.5</td>
<td>27.0</td>
<td>30.0</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>34.5</td>
<td>31.5</td>
<td>27.0</td>
<td>29.5</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>34.0</td>
<td>31.0</td>
<td>26.5</td>
<td>29.5</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>27.0</td>
<td>31.0</td>
<td>26.0</td>
<td>29.5</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>27.0</td>
<td>30.0</td>
<td>26.0</td>
<td>29.5</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>27.0</td>
<td>30.0</td>
<td>26.0</td>
<td>29.5</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>27.0</td>
<td>30.0</td>
<td>26.0</td>
<td>29.5</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>27.0</td>
<td>30.0</td>
<td>26.0</td>
<td>29.5</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>27.0</td>
<td>30.0</td>
<td>26.0</td>
<td>29.5</td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>27.0</td>
<td>30.0</td>
<td>26.0</td>
<td>29.5</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>27.0</td>
<td>30.0</td>
<td>26.0</td>
<td>30.0</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>27.0</td>
<td>30.0</td>
<td>26.0</td>
<td>29.5</td>
<td>26.0</td>
<td></td>
</tr>
</tbody>
</table>

77
Tabel hasil perhitungan

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berat awal bahan</td>
<td>210.0000</td>
<td>140.1257</td>
<td>108.4015</td>
<td>Kg</td>
</tr>
<tr>
<td>Berat bahan akhir</td>
<td>140.1257</td>
<td>108.4015</td>
<td>89.1464</td>
<td>Kg</td>
</tr>
<tr>
<td>Kadar air awal</td>
<td>61.9175</td>
<td>42.9275</td>
<td>26.2250</td>
<td>%</td>
</tr>
<tr>
<td>Kadar air akhir</td>
<td>42.9275</td>
<td>26.2250</td>
<td>10.2900</td>
<td>%</td>
</tr>
<tr>
<td>Luas pengering</td>
<td>3.33</td>
<td>2.5</td>
<td>2</td>
<td>Jam</td>
</tr>
<tr>
<td>Kapasitas bahan bakar</td>
<td>17.2</td>
<td>13.1</td>
<td>10.13</td>
<td>Liter</td>
</tr>
<tr>
<td>Jumlah air yang digunakan</td>
<td>69.8743</td>
<td>31.724</td>
<td>19.2551</td>
<td>Kg</td>
</tr>
<tr>
<td>Ukuran bunga lingkungan</td>
<td>33.33</td>
<td>30.47</td>
<td>29.57</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola kering rata-rata</td>
<td>27.77</td>
<td>26.17</td>
<td>25.97</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola basah rata-rata</td>
<td>0.0221</td>
<td>0.0200</td>
<td>0.0196</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Volume spekifis</td>
<td>0.8959</td>
<td>0.8878</td>
<td>0.8851</td>
<td>m³/kg udara kering</td>
</tr>
<tr>
<td>Energi ph</td>
<td>89</td>
<td>82</td>
<td>80</td>
<td>kJ/kg udara kering</td>
</tr>
<tr>
<td>Energi udara lingkungan</td>
<td>568.652</td>
<td>362.562</td>
<td>411.434</td>
<td>kg/jam</td>
</tr>
<tr>
<td>Energi laten pada suhu (°C)</td>
<td>2159.99</td>
<td>2159.99</td>
<td>2159.99</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>Energi pengering di output</td>
<td>51.71</td>
<td>48.03</td>
<td>59.44</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola basah rata-rata</td>
<td>44.167</td>
<td>42.73</td>
<td>40.87</td>
<td>°C</td>
</tr>
<tr>
<td>Kadar mutlak</td>
<td>0.0590</td>
<td>0.0550</td>
<td>0.0430</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Laju pengencer</td>
<td>20.983</td>
<td>12.6897</td>
<td>9.6276</td>
<td>Kg/jam</td>
</tr>
<tr>
<td>Energi memanaskan udara pengering</td>
<td>58612.07</td>
<td>38403.16</td>
<td>43952.72</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi menguapkan air bahan</td>
<td>45323.649</td>
<td>27409.543</td>
<td>20795.446</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi bahan bakar</td>
<td>184303.7</td>
<td>186974</td>
<td>180729.6</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi pemanasan</td>
<td>31.80</td>
<td>20.339</td>
<td>24.32</td>
<td>%</td>
</tr>
<tr>
<td>Energi penggunaan bahan</td>
<td>77.33</td>
<td>71.37</td>
<td>47.31</td>
<td>%</td>
</tr>
<tr>
<td>Energi total</td>
<td>24.59</td>
<td>14.66</td>
<td>11.51</td>
<td>%</td>
</tr>
<tr>
<td>Time baking</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>Menit</td>
</tr>
<tr>
<td>Assy rate</td>
<td>8.4</td>
<td>8.6</td>
<td>9</td>
<td>Kg/menit</td>
</tr>
</tbody>
</table>
1. Tabel kadar air rata-rata pada proses pengeringan percobaan ke 7

<table>
<thead>
<tr>
<th>Sample</th>
<th>Kadar air rata-rata (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal</td>
<td>64.1500</td>
</tr>
<tr>
<td>Tahap1</td>
<td>46.8250</td>
</tr>
<tr>
<td>Tahap2</td>
<td>19.2125</td>
</tr>
<tr>
<td>Tahap3</td>
<td>5.3750</td>
</tr>
</tbody>
</table>

2. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di output

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BK (°C)</td>
<td>BB (°C)</td>
</tr>
<tr>
<td>1</td>
<td>45.0</td>
<td>49.0</td>
</tr>
<tr>
<td>2</td>
<td>44.0</td>
<td>50.0</td>
</tr>
<tr>
<td>3</td>
<td>44.0</td>
<td>50.2</td>
</tr>
<tr>
<td>4</td>
<td>44.0</td>
<td>51.0</td>
</tr>
<tr>
<td>5</td>
<td>43.0</td>
<td>51.2</td>
</tr>
<tr>
<td>6</td>
<td>43.0</td>
<td>51.2</td>
</tr>
<tr>
<td>7</td>
<td>43.0</td>
<td>51.0</td>
</tr>
<tr>
<td>8</td>
<td>42.5</td>
<td>52.0</td>
</tr>
<tr>
<td>9</td>
<td>43.0</td>
<td>54.0</td>
</tr>
<tr>
<td>10</td>
<td>43.0</td>
<td>55.0</td>
</tr>
<tr>
<td>11</td>
<td>43.0</td>
<td>55.0</td>
</tr>
<tr>
<td>12</td>
<td>43.0</td>
<td>51.78</td>
</tr>
</tbody>
</table>

3. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) lingkungan

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BK (°C)</td>
<td>BB (°C)</td>
</tr>
<tr>
<td>1</td>
<td>26.0</td>
<td>32.5</td>
</tr>
<tr>
<td>2</td>
<td>25.5</td>
<td>33.0</td>
</tr>
<tr>
<td>3</td>
<td>26.0</td>
<td>33.0</td>
</tr>
<tr>
<td>4</td>
<td>25.0</td>
<td>33.0</td>
</tr>
<tr>
<td>5</td>
<td>25.5</td>
<td>33.0</td>
</tr>
<tr>
<td>6</td>
<td>24.0</td>
<td>33.0</td>
</tr>
<tr>
<td>7</td>
<td>25.0</td>
<td>33.0</td>
</tr>
<tr>
<td>8</td>
<td>24.5</td>
<td>32.0</td>
</tr>
<tr>
<td>9</td>
<td>25.0</td>
<td>32.0</td>
</tr>
<tr>
<td>10</td>
<td>24.5</td>
<td>32.0</td>
</tr>
<tr>
<td>11</td>
<td>27</td>
<td>32.0</td>
</tr>
</tbody>
</table>
Lampiran 10. Data hasil perhitungan pada proses pengeringan percobaan ke 7 (lanjutan)

4. Tabel hasil perhitungan

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hasil</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tahap1</td>
<td>Tahap2</td>
</tr>
<tr>
<td>Berat awal bahan</td>
<td>161.0000</td>
<td>108.5444</td>
</tr>
<tr>
<td>Berat bahan akhir</td>
<td>108.5444</td>
<td>71.4448</td>
</tr>
<tr>
<td>Kadar air awal</td>
<td>64.1500</td>
<td>46.8250</td>
</tr>
<tr>
<td>Kadar air akhir</td>
<td>46.8250</td>
<td>19.2125</td>
</tr>
<tr>
<td>Bila pengering</td>
<td>3</td>
<td>2.4</td>
</tr>
<tr>
<td>Bila suhu bahan bakar</td>
<td>15.5</td>
<td>12.3</td>
</tr>
<tr>
<td>Bila udara yang digunakan</td>
<td>52.4556</td>
<td>37.0996</td>
</tr>
<tr>
<td>Bila lingkungan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhu bola kering rata-</td>
<td>34.27</td>
<td>32.59</td>
</tr>
<tr>
<td>Suhu bola basah rata-</td>
<td>25.04</td>
<td>24.68</td>
</tr>
<tr>
<td>Kembali mutlak</td>
<td>0.0163</td>
<td>0.0165</td>
</tr>
<tr>
<td>Suhu spesifik</td>
<td>0.8939</td>
<td>0.8885</td>
</tr>
<tr>
<td>Alphii</td>
<td>77</td>
<td>75</td>
</tr>
<tr>
<td>Suhu udara lingkungan</td>
<td>451.814</td>
<td>412.217</td>
</tr>
<tr>
<td>Suhu empat tanpa suhu 5°C</td>
<td>2159.99</td>
<td>2159.99</td>
</tr>
<tr>
<td>Bila pengering di output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhu bola kering rata-</td>
<td>52.98</td>
<td>51.78</td>
</tr>
<tr>
<td>Suhu bola basah rata-</td>
<td>43.41</td>
<td>42.91</td>
</tr>
<tr>
<td>Kembali mutlak</td>
<td>0.0550</td>
<td>0.0540</td>
</tr>
<tr>
<td>Luau penguapan air</td>
<td>17.4852</td>
<td>15.45816</td>
</tr>
<tr>
<td>Energi memanaskan udara pengering</td>
<td>46127.97</td>
<td>42782.77</td>
</tr>
<tr>
<td>Energi menguapkan udara pengering</td>
<td>37767.836</td>
<td>33389.46666</td>
</tr>
<tr>
<td>Energi bahan bakar</td>
<td>184357.3</td>
<td>182870.6</td>
</tr>
<tr>
<td>Energi pengemasan</td>
<td>25.02</td>
<td>23.39</td>
</tr>
<tr>
<td>Energi penggunaan</td>
<td>81.87</td>
<td>78.04</td>
</tr>
<tr>
<td>Energi total</td>
<td>20.49</td>
<td>18.26</td>
</tr>
<tr>
<td>Sedimen time</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>Cooling rate</td>
<td>8.5</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Dihari Cinta Dilindungi Umat, Indonesia

Pengujian bahan dari suhu matahari yang

Diperoleh data dari konsentrasi, pengujian bahan

Diperoleh data dari konsentrasi, pengujian bahan

Diperoleh data dari konsentrasi, pengujian bahan
Lampiran 11. Data hasil perhitungan pada proses pengeringan percobaan ke 8

1. **Tabel kadar air rata-rata pada proses pengeringan**

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Kadar air rata-rata (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal</td>
<td>64.2200</td>
</tr>
<tr>
<td>Tahap1</td>
<td>54.0375</td>
</tr>
<tr>
<td>Tahap2</td>
<td>34.4200</td>
</tr>
<tr>
<td>Tahap3</td>
<td>9.2450</td>
</tr>
<tr>
<td>Tahap4</td>
<td>2.8400</td>
</tr>
</tbody>
</table>

2. **Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di output**

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK (°C)</td>
<td>BK (°C)</td>
<td>BK (°C)</td>
<td>BK (°C)</td>
</tr>
<tr>
<td>5</td>
<td>43.0</td>
<td>41.3</td>
<td>41.0</td>
</tr>
<tr>
<td>3</td>
<td>43.0</td>
<td>43.0</td>
<td>42.0</td>
</tr>
<tr>
<td>2</td>
<td>43.0</td>
<td>43.3</td>
<td>42.0</td>
</tr>
<tr>
<td>4</td>
<td>43.0</td>
<td>43.3</td>
<td>41.0</td>
</tr>
<tr>
<td>5</td>
<td>44.0</td>
<td>43.8</td>
<td>41.0</td>
</tr>
</tbody>
</table>

3. **Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) lingkungan**

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK (°C)</td>
<td>BK (°C)</td>
<td>BK (°C)</td>
<td>BK (°C)</td>
</tr>
<tr>
<td>37.0</td>
<td>27.0</td>
<td>37.0</td>
<td>26.0</td>
</tr>
<tr>
<td>37.0</td>
<td>27.0</td>
<td>37.0</td>
<td>26.0</td>
</tr>
<tr>
<td>36.0</td>
<td>26.5</td>
<td>37.0</td>
<td>26.0</td>
</tr>
<tr>
<td>36.5</td>
<td>27.0</td>
<td>36.0</td>
<td>26.0</td>
</tr>
<tr>
<td>46</td>
<td>26.42</td>
<td>35.92</td>
<td>26.00</td>
</tr>
</tbody>
</table>
Lampiran 11. Data hasil perhitungan pada proses pengeringan percobaan ke 8 (lanjutan)

4. Tabel hasil perhitungan

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berat awal bahan</td>
<td>160.000</td>
<td>124.5537</td>
<td>87.2949</td>
<td>63.0797</td>
<td>Kg</td>
</tr>
<tr>
<td>Berat bahan akhir</td>
<td>124.5537</td>
<td>87.2949</td>
<td>63.0797</td>
<td>58.9214</td>
<td>Kg</td>
</tr>
<tr>
<td>Kadar air awal</td>
<td>64.2200</td>
<td>54.0375</td>
<td>34.4200</td>
<td>9.2450</td>
<td>%</td>
</tr>
<tr>
<td>Kadar air akhir</td>
<td>54.0375</td>
<td>34.4200</td>
<td>9.2450</td>
<td>2.8400</td>
<td>%</td>
</tr>
<tr>
<td>Umta pengeringan</td>
<td>2</td>
<td>1.7</td>
<td>1.2</td>
<td>1</td>
<td>Jam</td>
</tr>
<tr>
<td>Suhu bahan bair</td>
<td>10.6</td>
<td>9.2</td>
<td>6.5</td>
<td>5.4</td>
<td>Liter</td>
</tr>
<tr>
<td>Bahan yang diambil</td>
<td>35.4463</td>
<td>37.259</td>
<td>24.215</td>
<td>4.158</td>
<td>Kg</td>
</tr>
<tr>
<td>Kadar lingkungan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kadar bola kering</td>
<td>36.46</td>
<td>35.92</td>
<td>36.00</td>
<td>34.54</td>
<td>°C</td>
</tr>
<tr>
<td>Kadar bola basah rata-rata</td>
<td>26.42</td>
<td>26.00</td>
<td>26.00</td>
<td>25.42</td>
<td>°C</td>
</tr>
<tr>
<td>Kadar bahan kering</td>
<td>0.0176</td>
<td>0.0170</td>
<td>0.0170</td>
<td>0.0168</td>
<td>Kg/air/kg udara kering</td>
</tr>
<tr>
<td>Volume kering</td>
<td>0.9028</td>
<td>0.9000</td>
<td>0.9000</td>
<td>0.8959</td>
<td>m³/kg udara kering</td>
</tr>
<tr>
<td>Phi</td>
<td>82</td>
<td>81</td>
<td>81</td>
<td>73</td>
<td>kJ/kg udara kering</td>
</tr>
<tr>
<td>Kadar udara kering</td>
<td>530.633</td>
<td>730.565</td>
<td>776.1277</td>
<td>385.0327</td>
<td>kg/jam</td>
</tr>
<tr>
<td>Umta udara kering</td>
<td>2159.99</td>
<td>2159.99</td>
<td>2159.99</td>
<td>2159.99</td>
<td>kJ/kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suhu bola kering</td>
<td>53.62</td>
<td>45.71</td>
<td>56.78</td>
<td>70.04</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola basah rata-rata</td>
<td>42.38</td>
<td>41.11</td>
<td>40.23</td>
<td>37.23</td>
<td>°C</td>
</tr>
<tr>
<td>Kelembaban mutlak</td>
<td>0.0510</td>
<td>0.0470</td>
<td>0.0430</td>
<td>0.0276</td>
<td>Kg/air/kg udara kering</td>
</tr>
<tr>
<td>Laju pengair an air</td>
<td>17.723</td>
<td>21.917</td>
<td>20.1793</td>
<td>4.158</td>
<td>Kg/jam</td>
</tr>
<tr>
<td>Energi memanaskan air</td>
<td>53004.82</td>
<td>73373.22</td>
<td>77886.75</td>
<td>39205.27</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi menggunakbahan</td>
<td>38281.8135</td>
<td>47340.376</td>
<td>43587.131</td>
<td>8982.00</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi bahan bakar</td>
<td>189114.9</td>
<td>193102.9</td>
<td>193277.8</td>
<td>192683.1</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Energi pemanasan</td>
<td>28.03</td>
<td>37.99</td>
<td>40.30</td>
<td>20.35</td>
<td>%</td>
</tr>
<tr>
<td>Energi penggunaan panas</td>
<td>72.22</td>
<td>64.52</td>
<td>55.96</td>
<td>22.91</td>
<td>%</td>
</tr>
<tr>
<td>Energi total</td>
<td>20.24</td>
<td>24.51</td>
<td>22.55</td>
<td>4.66</td>
<td>%</td>
</tr>
<tr>
<td>Kadar air</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>Menit</td>
</tr>
<tr>
<td>Kadar permenan</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>Menit</td>
</tr>
</tbody>
</table>

- 82
1. Tabel kadar air rata-rata pada proses pengeringan

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Kadar air rata-rata (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awal</td>
<td>64.7250</td>
</tr>
<tr>
<td>Tahap 1</td>
<td>55.4475</td>
</tr>
<tr>
<td>Tahap 2</td>
<td>39.8125</td>
</tr>
<tr>
<td>Tahap 3</td>
<td>11.2550</td>
</tr>
<tr>
<td>Tahap 4</td>
<td>2.4950</td>
</tr>
</tbody>
</table>

2. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) di output

<table>
<thead>
<tr>
<th>Heksa (K)</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BK</td>
<td>BB</td>
<td>BK</td>
</tr>
<tr>
<td>0.0</td>
<td>44.0</td>
<td>41.5</td>
<td>40.0</td>
</tr>
<tr>
<td>0.5</td>
<td>43.0</td>
<td>43.0</td>
<td>40.5</td>
</tr>
<tr>
<td>1.0</td>
<td>43.0</td>
<td>43.0</td>
<td>41.0</td>
</tr>
<tr>
<td>1.5</td>
<td>43.0</td>
<td>43.6</td>
<td>41.0</td>
</tr>
<tr>
<td>2.0</td>
<td>43.0</td>
<td>45.6</td>
<td>40.0</td>
</tr>
<tr>
<td>2.5</td>
<td>43.0</td>
<td>47.6</td>
<td>41.0</td>
</tr>
<tr>
<td>3.0</td>
<td>43.0</td>
<td>48.2</td>
<td>40.0</td>
</tr>
<tr>
<td>3.5</td>
<td>44.2</td>
<td>48.6</td>
<td>40.0</td>
</tr>
<tr>
<td>4.0</td>
<td>42.18</td>
<td>45.40</td>
<td>40.45</td>
</tr>
<tr>
<td>4.5</td>
<td>42.18</td>
<td>45.40</td>
<td>40.45</td>
</tr>
</tbody>
</table>

3. Tabel perkembangan suhu bola kering (BK) dan bola basah (BB) lingkungan

<table>
<thead>
<tr>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK</td>
<td>BB</td>
<td>BK</td>
<td>BB</td>
</tr>
<tr>
<td>36.0</td>
<td>29.0</td>
<td>36.0</td>
<td>28.0</td>
</tr>
<tr>
<td>32.0</td>
<td>27.0</td>
<td>36.0</td>
<td>28.0</td>
</tr>
<tr>
<td>35.0</td>
<td>27.0</td>
<td>36.0</td>
<td>27.0</td>
</tr>
<tr>
<td>35.0</td>
<td>27.0</td>
<td>36.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>
Lampiran 12. Data hasil perhitungan pada proses pengeringan percobaan ke 9 (lanjutan)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tahap 1</th>
<th>Tahap 2</th>
<th>Tahap 3</th>
<th>Tahap 4</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berat awal bahan</td>
<td>166.0000</td>
<td>131.4326</td>
<td>97.2901</td>
<td>65.9829</td>
<td>Kg</td>
</tr>
<tr>
<td>Berat bahan akhir</td>
<td>131.4326</td>
<td>97.2901</td>
<td>65.9829</td>
<td>60.0549</td>
<td>Kg</td>
</tr>
<tr>
<td>Kadar air awal</td>
<td>64.7250</td>
<td>55.4475</td>
<td>39.8125</td>
<td>11.2550</td>
<td>%</td>
</tr>
<tr>
<td>Kadar air akhir</td>
<td>55.4475</td>
<td>39.8125</td>
<td>11.2550</td>
<td>2.4950</td>
<td>%</td>
</tr>
<tr>
<td>Waktu pengeringan</td>
<td>2.3</td>
<td>1.8</td>
<td>1.4</td>
<td>1</td>
<td>Jam</td>
</tr>
<tr>
<td>Prosesi bahan basah</td>
<td>12.2</td>
<td>9.6</td>
<td>7.5</td>
<td>5.5</td>
<td>Liter</td>
</tr>
<tr>
<td>Bakar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kadar air yang terbakar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelarut air yang terbakar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelarut air yang terbakar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umda lingkungan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelarut bola kering</td>
<td>36.00</td>
<td>36.00</td>
<td>36.00</td>
<td>34.81</td>
<td>°C</td>
</tr>
<tr>
<td>Pelarut bola basah</td>
<td>27.00</td>
<td>26.38</td>
<td>26.00</td>
<td>25.50</td>
<td>°C</td>
</tr>
<tr>
<td>Kelembaban basah</td>
<td>0.0190</td>
<td>0.0180</td>
<td>0.0170</td>
<td>0.0170</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Kelembaban bakar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Umda spesifik</td>
<td>0.9028</td>
<td>0.9000</td>
<td>0.9000</td>
<td>0.8959</td>
<td>m³/kg udara kering</td>
</tr>
<tr>
<td>Umda alpha</td>
<td>85</td>
<td>82</td>
<td>81</td>
<td>79</td>
<td>kJ/kg udara kering</td>
</tr>
<tr>
<td>Umda udara kering</td>
<td>518.2522</td>
<td>632.3676</td>
<td>1064.822</td>
<td>598.7883</td>
<td>kg/jam</td>
</tr>
<tr>
<td>Umda ujung kering</td>
<td>2159.99</td>
<td>2159.99</td>
<td>2159.99</td>
<td>2159.99</td>
<td>kg/jam</td>
</tr>
<tr>
<td>Suhu air pada suhu (135°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhu bola kering</td>
<td>58.14</td>
<td>45.40</td>
<td>56.30</td>
<td>70.37</td>
<td>°C</td>
</tr>
<tr>
<td>Suhu bola basah</td>
<td>42.18</td>
<td>40.45</td>
<td>38.82</td>
<td>37.45</td>
<td>°C</td>
</tr>
<tr>
<td>Kelembaban basah</td>
<td>0.0480</td>
<td>0.0480</td>
<td>0.0380</td>
<td>0.0260</td>
<td>Kg air/kg udara kering</td>
</tr>
<tr>
<td>Kelembaban bakar</td>
<td>15.02931</td>
<td>18.96803</td>
<td>22.36235</td>
<td>5.389095</td>
<td>Kg/jam</td>
</tr>
<tr>
<td>Umda pengering air</td>
<td>52008.16</td>
<td>63449.95</td>
<td>106863.2</td>
<td>60807.75</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Umda pengering basah</td>
<td>32463.1663</td>
<td>40970.7501</td>
<td>48302.4177</td>
<td>11640.3903</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Umda pengering bakar</td>
<td>189270.1</td>
<td>190304.3</td>
<td>191153.9</td>
<td>178410.3</td>
<td>kJ/jam</td>
</tr>
<tr>
<td>Umda panasisan</td>
<td>27.48</td>
<td>33.34</td>
<td>55.90</td>
<td>34.08</td>
<td>%</td>
</tr>
<tr>
<td>Umda penangan bahan</td>
<td>62.42</td>
<td>64.57</td>
<td>45.20</td>
<td>19.14</td>
<td>%</td>
</tr>
<tr>
<td>Umda penggunaan panas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umda total</td>
<td>17.15</td>
<td>21.53</td>
<td>25.27</td>
<td>6.52</td>
<td>%</td>
</tr>
<tr>
<td>Umda fire time</td>
<td>45</td>
<td>46</td>
<td>45</td>
<td>45</td>
<td>Menit</td>
</tr>
<tr>
<td>Umda tingkat</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Kg/Menit</td>
</tr>
</tbody>
</table>
Lampiran 13. Gambar ubi jalar, sawut basah, sawut kering, dan tepung ubi jalar

Gambar ubi jalar

Gambar sawut basah

Gambar sawut kering

Gambar tepung ubi jalar